xref: /redis-3.2.3/src/bitops.c (revision bd23ea3f)
1 /* Bit operations.
2  *
3  * Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  *   * Redistributions of source code must retain the above copyright notice,
10  *     this list of conditions and the following disclaimer.
11  *   * Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *   * Neither the name of Redis nor the names of its contributors may be used
15  *     to endorse or promote products derived from this software without
16  *     specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include "server.h"
32 
33 /* -----------------------------------------------------------------------------
34  * Helpers and low level bit functions.
35  * -------------------------------------------------------------------------- */
36 
37 /* Count number of bits set in the binary array pointed by 's' and long
38  * 'count' bytes. The implementation of this function is required to
39  * work with a input string length up to 512 MB. */
redisPopcount(void * s,long count)40 size_t redisPopcount(void *s, long count) {
41     size_t bits = 0;
42     unsigned char *p = s;
43     uint32_t *p4;
44     static const unsigned char bitsinbyte[256] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8};
45 
46     /* Count initial bytes not aligned to 32 bit. */
47     while((unsigned long)p & 3 && count) {
48         bits += bitsinbyte[*p++];
49         count--;
50     }
51 
52     /* Count bits 28 bytes at a time */
53     p4 = (uint32_t*)p;
54     while(count>=28) {
55         uint32_t aux1, aux2, aux3, aux4, aux5, aux6, aux7;
56 
57         aux1 = *p4++;
58         aux2 = *p4++;
59         aux3 = *p4++;
60         aux4 = *p4++;
61         aux5 = *p4++;
62         aux6 = *p4++;
63         aux7 = *p4++;
64         count -= 28;
65 
66         aux1 = aux1 - ((aux1 >> 1) & 0x55555555);
67         aux1 = (aux1 & 0x33333333) + ((aux1 >> 2) & 0x33333333);
68         aux2 = aux2 - ((aux2 >> 1) & 0x55555555);
69         aux2 = (aux2 & 0x33333333) + ((aux2 >> 2) & 0x33333333);
70         aux3 = aux3 - ((aux3 >> 1) & 0x55555555);
71         aux3 = (aux3 & 0x33333333) + ((aux3 >> 2) & 0x33333333);
72         aux4 = aux4 - ((aux4 >> 1) & 0x55555555);
73         aux4 = (aux4 & 0x33333333) + ((aux4 >> 2) & 0x33333333);
74         aux5 = aux5 - ((aux5 >> 1) & 0x55555555);
75         aux5 = (aux5 & 0x33333333) + ((aux5 >> 2) & 0x33333333);
76         aux6 = aux6 - ((aux6 >> 1) & 0x55555555);
77         aux6 = (aux6 & 0x33333333) + ((aux6 >> 2) & 0x33333333);
78         aux7 = aux7 - ((aux7 >> 1) & 0x55555555);
79         aux7 = (aux7 & 0x33333333) + ((aux7 >> 2) & 0x33333333);
80         bits += ((((aux1 + (aux1 >> 4)) & 0x0F0F0F0F) +
81                     ((aux2 + (aux2 >> 4)) & 0x0F0F0F0F) +
82                     ((aux3 + (aux3 >> 4)) & 0x0F0F0F0F) +
83                     ((aux4 + (aux4 >> 4)) & 0x0F0F0F0F) +
84                     ((aux5 + (aux5 >> 4)) & 0x0F0F0F0F) +
85                     ((aux6 + (aux6 >> 4)) & 0x0F0F0F0F) +
86                     ((aux7 + (aux7 >> 4)) & 0x0F0F0F0F))* 0x01010101) >> 24;
87     }
88     /* Count the remaining bytes. */
89     p = (unsigned char*)p4;
90     while(count--) bits += bitsinbyte[*p++];
91     return bits;
92 }
93 
94 /* Return the position of the first bit set to one (if 'bit' is 1) or
95  * zero (if 'bit' is 0) in the bitmap starting at 's' and long 'count' bytes.
96  *
97  * The function is guaranteed to return a value >= 0 if 'bit' is 0 since if
98  * no zero bit is found, it returns count*8 assuming the string is zero
99  * padded on the right. However if 'bit' is 1 it is possible that there is
100  * not a single set bit in the bitmap. In this special case -1 is returned. */
redisBitpos(void * s,unsigned long count,int bit)101 long redisBitpos(void *s, unsigned long count, int bit) {
102     unsigned long *l;
103     unsigned char *c;
104     unsigned long skipval, word = 0, one;
105     long pos = 0; /* Position of bit, to return to the caller. */
106     unsigned long j;
107 
108     /* Process whole words first, seeking for first word that is not
109      * all ones or all zeros respectively if we are lookig for zeros
110      * or ones. This is much faster with large strings having contiguous
111      * blocks of 1 or 0 bits compared to the vanilla bit per bit processing.
112      *
113      * Note that if we start from an address that is not aligned
114      * to sizeof(unsigned long) we consume it byte by byte until it is
115      * aligned. */
116 
117     /* Skip initial bits not aligned to sizeof(unsigned long) byte by byte. */
118     skipval = bit ? 0 : UCHAR_MAX;
119     c = (unsigned char*) s;
120     while((unsigned long)c & (sizeof(*l)-1) && count) {
121         if (*c != skipval) break;
122         c++;
123         count--;
124         pos += 8;
125     }
126 
127     /* Skip bits with full word step. */
128     skipval = bit ? 0 : ULONG_MAX;
129     l = (unsigned long*) c;
130     while (count >= sizeof(*l)) {
131         if (*l != skipval) break;
132         l++;
133         count -= sizeof(*l);
134         pos += sizeof(*l)*8;
135     }
136 
137     /* Load bytes into "word" considering the first byte as the most significant
138      * (we basically consider it as written in big endian, since we consider the
139      * string as a set of bits from left to right, with the first bit at position
140      * zero.
141      *
142      * Note that the loading is designed to work even when the bytes left
143      * (count) are less than a full word. We pad it with zero on the right. */
144     c = (unsigned char*)l;
145     for (j = 0; j < sizeof(*l); j++) {
146         word <<= 8;
147         if (count) {
148             word |= *c;
149             c++;
150             count--;
151         }
152     }
153 
154     /* Special case:
155      * If bits in the string are all zero and we are looking for one,
156      * return -1 to signal that there is not a single "1" in the whole
157      * string. This can't happen when we are looking for "0" as we assume
158      * that the right of the string is zero padded. */
159     if (bit == 1 && word == 0) return -1;
160 
161     /* Last word left, scan bit by bit. The first thing we need is to
162      * have a single "1" set in the most significant position in an
163      * unsigned long. We don't know the size of the long so we use a
164      * simple trick. */
165     one = ULONG_MAX; /* All bits set to 1.*/
166     one >>= 1;       /* All bits set to 1 but the MSB. */
167     one = ~one;      /* All bits set to 0 but the MSB. */
168 
169     while(one) {
170         if (((one & word) != 0) == bit) return pos;
171         pos++;
172         one >>= 1;
173     }
174 
175     /* If we reached this point, there is a bug in the algorithm, since
176      * the case of no match is handled as a special case before. */
177     serverPanic("End of redisBitpos() reached.");
178     return 0; /* Just to avoid warnings. */
179 }
180 
181 /* The following set.*Bitfield and get.*Bitfield functions implement setting
182  * and getting arbitrary size (up to 64 bits) signed and unsigned integers
183  * at arbitrary positions into a bitmap.
184  *
185  * The representation considers the bitmap as having the bit number 0 to be
186  * the most significant bit of the first byte, and so forth, so for example
187  * setting a 5 bits unsigned integer to value 23 at offset 7 into a bitmap
188  * previously set to all zeroes, will produce the following representation:
189  *
190  * +--------+--------+
191  * |00000001|01110000|
192  * +--------+--------+
193  *
194  * When offsets and integer sizes are aligned to bytes boundaries, this is the
195  * same as big endian, however when such alignment does not exist, its important
196  * to also understand how the bits inside a byte are ordered.
197  *
198  * Note that this format follows the same convention as SETBIT and related
199  * commands.
200  */
201 
setUnsignedBitfield(unsigned char * p,uint64_t offset,uint64_t bits,uint64_t value)202 void setUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, uint64_t value) {
203     uint64_t byte, bit, byteval, bitval, j;
204 
205     for (j = 0; j < bits; j++) {
206         bitval = (value & ((uint64_t)1<<(bits-1-j))) != 0;
207         byte = offset >> 3;
208         bit = 7 - (offset & 0x7);
209         byteval = p[byte];
210         byteval &= ~(1 << bit);
211         byteval |= bitval << bit;
212         p[byte] = byteval & 0xff;
213         offset++;
214     }
215 }
216 
setSignedBitfield(unsigned char * p,uint64_t offset,uint64_t bits,int64_t value)217 void setSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, int64_t value) {
218     uint64_t uv = value; /* Casting will add UINT64_MAX + 1 if v is negative. */
219     setUnsignedBitfield(p,offset,bits,uv);
220 }
221 
getUnsignedBitfield(unsigned char * p,uint64_t offset,uint64_t bits)222 uint64_t getUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {
223     uint64_t byte, bit, byteval, bitval, j, value = 0;
224 
225     for (j = 0; j < bits; j++) {
226         byte = offset >> 3;
227         bit = 7 - (offset & 0x7);
228         byteval = p[byte];
229         bitval = (byteval >> bit) & 1;
230         value = (value<<1) | bitval;
231         offset++;
232     }
233     return value;
234 }
235 
getSignedBitfield(unsigned char * p,uint64_t offset,uint64_t bits)236 int64_t getSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {
237     int64_t value;
238     union {uint64_t u; int64_t i;} conv;
239 
240     /* Converting from unsigned to signed is undefined when the value does
241      * not fit, however here we assume two's complement and the original value
242      * was obtained from signed -> unsigned conversion, so we'll find the
243      * most significant bit set if the original value was negative.
244      *
245      * Note that two's complement is mandatory for exact-width types
246      * according to the C99 standard. */
247     conv.u = getUnsignedBitfield(p,offset,bits);
248     value = conv.i;
249 
250     /* If the top significant bit is 1, propagate it to all the
251      * higher bits for two's complement representation of signed
252      * integers. */
253     if (value & ((uint64_t)1 << (bits-1)))
254         value |= ((uint64_t)-1) << bits;
255     return value;
256 }
257 
258 /* The following two functions detect overflow of a value in the context
259  * of storing it as an unsigned or signed integer with the specified
260  * number of bits. The functions both take the value and a possible increment.
261  * If no overflow could happen and the value+increment fit inside the limits,
262  * then zero is returned, otherwise in case of overflow, 1 is returned,
263  * otherwise in case of underflow, -1 is returned.
264  *
265  * When non-zero is returned (oferflow or underflow), if not NULL, *limit is
266  * set to the value the operation should result when an overflow happens,
267  * depending on the specified overflow semantics:
268  *
269  * For BFOVERFLOW_SAT if 1 is returned, *limit it is set maximum value that
270  * you can store in that integer. when -1 is returned, *limit is set to the
271  * minimum value that an integer of that size can represent.
272  *
273  * For BFOVERFLOW_WRAP *limit is set by performing the operation in order to
274  * "wrap" around towards zero for unsigned integers, or towards the most
275  * negative number that is possible to represent for signed integers. */
276 
277 #define BFOVERFLOW_WRAP 0
278 #define BFOVERFLOW_SAT 1
279 #define BFOVERFLOW_FAIL 2 /* Used by the BITFIELD command implementation. */
280 
checkUnsignedBitfieldOverflow(uint64_t value,int64_t incr,uint64_t bits,int owtype,uint64_t * limit)281 int checkUnsignedBitfieldOverflow(uint64_t value, int64_t incr, uint64_t bits, int owtype, uint64_t *limit) {
282     uint64_t max = (bits == 64) ? UINT64_MAX : (((uint64_t)1<<bits)-1);
283     int64_t maxincr = max-value;
284     int64_t minincr = -value;
285 
286     if (value > max || (incr > 0 && incr > maxincr)) {
287         if (limit) {
288             if (owtype == BFOVERFLOW_WRAP) {
289                 goto handle_wrap;
290             } else if (owtype == BFOVERFLOW_SAT) {
291                 *limit = max;
292             }
293         }
294         return 1;
295     } else if (incr < 0 && incr < minincr) {
296         if (limit) {
297             if (owtype == BFOVERFLOW_WRAP) {
298                 goto handle_wrap;
299             } else if (owtype == BFOVERFLOW_SAT) {
300                 *limit = 0;
301             }
302         }
303         return -1;
304     }
305     return 0;
306 
307 handle_wrap:
308     {
309         uint64_t mask = ((uint64_t)-1) << bits;
310         uint64_t res = value+incr;
311 
312         res &= ~mask;
313         *limit = res;
314     }
315     return 1;
316 }
317 
checkSignedBitfieldOverflow(int64_t value,int64_t incr,uint64_t bits,int owtype,int64_t * limit)318 int checkSignedBitfieldOverflow(int64_t value, int64_t incr, uint64_t bits, int owtype, int64_t *limit) {
319     int64_t max = (bits == 64) ? INT64_MAX : (((int64_t)1<<(bits-1))-1);
320     int64_t min = (-max)-1;
321 
322     /* Note that maxincr and minincr could overflow, but we use the values
323      * only after checking 'value' range, so when we use it no overflow
324      * happens. */
325     int64_t maxincr = max-value;
326     int64_t minincr = min-value;
327 
328     if (value > max || (bits != 64 && incr > maxincr) || (value >= 0 && incr > 0 && incr > maxincr))
329     {
330         if (limit) {
331             if (owtype == BFOVERFLOW_WRAP) {
332                 goto handle_wrap;
333             } else if (owtype == BFOVERFLOW_SAT) {
334                 *limit = max;
335             }
336         }
337         return 1;
338     } else if (value < min || (bits != 64 && incr < minincr) || (value < 0 && incr < 0 && incr < minincr)) {
339         if (limit) {
340             if (owtype == BFOVERFLOW_WRAP) {
341                 goto handle_wrap;
342             } else if (owtype == BFOVERFLOW_SAT) {
343                 *limit = min;
344             }
345         }
346         return -1;
347     }
348     return 0;
349 
350 handle_wrap:
351     {
352         uint64_t mask = ((uint64_t)-1) << bits;
353         uint64_t msb = (uint64_t)1 << (bits-1);
354         uint64_t a = value, b = incr, c;
355         c = a+b; /* Perform addition as unsigned so that's defined. */
356 
357         /* If the sign bit is set, propagate to all the higher order
358          * bits, to cap the negative value. If it's clear, mask to
359          * the positive integer limit. */
360         if (c & msb) {
361             c |= mask;
362         } else {
363             c &= ~mask;
364         }
365         *limit = c;
366     }
367     return 1;
368 }
369 
370 /* Debugging function. Just show bits in the specified bitmap. Not used
371  * but here for not having to rewrite it when debugging is needed. */
printBits(unsigned char * p,unsigned long count)372 void printBits(unsigned char *p, unsigned long count) {
373     unsigned long j, i, byte;
374 
375     for (j = 0; j < count; j++) {
376         byte = p[j];
377         for (i = 0x80; i > 0; i /= 2)
378             printf("%c", (byte & i) ? '1' : '0');
379         printf("|");
380     }
381     printf("\n");
382 }
383 
384 /* -----------------------------------------------------------------------------
385  * Bits related string commands: GETBIT, SETBIT, BITCOUNT, BITOP.
386  * -------------------------------------------------------------------------- */
387 
388 #define BITOP_AND   0
389 #define BITOP_OR    1
390 #define BITOP_XOR   2
391 #define BITOP_NOT   3
392 
393 #define BITFIELDOP_GET 0
394 #define BITFIELDOP_SET 1
395 #define BITFIELDOP_INCRBY 2
396 
397 /* This helper function used by GETBIT / SETBIT parses the bit offset argument
398  * making sure an error is returned if it is negative or if it overflows
399  * Redis 512 MB limit for the string value.
400  *
401  * If the 'hash' argument is true, and 'bits is positive, then the command
402  * will also parse bit offsets prefixed by "#". In such a case the offset
403  * is multiplied by 'bits'. This is useful for the BITFIELD command. */
getBitOffsetFromArgument(client * c,robj * o,size_t * offset,int hash,int bits)404 int getBitOffsetFromArgument(client *c, robj *o, size_t *offset, int hash, int bits) {
405     long long loffset;
406     char *err = "bit offset is not an integer or out of range";
407     char *p = o->ptr;
408     size_t plen = sdslen(p);
409     int usehash = 0;
410 
411     /* Handle #<offset> form. */
412     if (p[0] == '#' && hash && bits > 0) usehash = 1;
413 
414     if (string2ll(p+usehash,plen-usehash,&loffset) == 0) {
415         addReplyError(c,err);
416         return C_ERR;
417     }
418 
419     /* Adjust the offset by 'bits' for #<offset> form. */
420     if (usehash) loffset *= bits;
421 
422     /* Limit offset to 512MB in bytes */
423     if ((loffset < 0) || ((unsigned long long)loffset >> 3) >= (512*1024*1024))
424     {
425         addReplyError(c,err);
426         return C_ERR;
427     }
428 
429     *offset = (size_t)loffset;
430     return C_OK;
431 }
432 
433 /* This helper function for BITFIELD parses a bitfield type in the form
434  * <sign><bits> where sign is 'u' or 'i' for unsigned and signed, and
435  * the bits is a value between 1 and 64. However 64 bits unsigned integers
436  * are reported as an error because of current limitations of Redis protocol
437  * to return unsigned integer values greater than INT64_MAX.
438  *
439  * On error C_ERR is returned and an error is sent to the client. */
getBitfieldTypeFromArgument(client * c,robj * o,int * sign,int * bits)440 int getBitfieldTypeFromArgument(client *c, robj *o, int *sign, int *bits) {
441     char *p = o->ptr;
442     char *err = "Invalid bitfield type. Use something like i16 u8. Note that u64 is not supported but i64 is.";
443     long long llbits;
444 
445     if (p[0] == 'i') {
446         *sign = 1;
447     } else if (p[0] == 'u') {
448         *sign = 0;
449     } else {
450         addReplyError(c,err);
451         return C_ERR;
452     }
453 
454     if ((string2ll(p+1,strlen(p+1),&llbits)) == 0 ||
455         llbits < 1 ||
456         (*sign == 1 && llbits > 64) ||
457         (*sign == 0 && llbits > 63))
458     {
459         addReplyError(c,err);
460         return C_ERR;
461     }
462     *bits = llbits;
463     return C_OK;
464 }
465 
466 /* This is an helper function for commands implementations that need to write
467  * bits to a string object. The command creates or pad with zeroes the string
468  * so that the 'maxbit' bit can be addressed. The object is finally
469  * returned. Otherwise if the key holds a wrong type NULL is returned and
470  * an error is sent to the client. */
lookupStringForBitCommand(client * c,size_t maxbit)471 robj *lookupStringForBitCommand(client *c, size_t maxbit) {
472     size_t byte = maxbit >> 3;
473     robj *o = lookupKeyWrite(c->db,c->argv[1]);
474 
475     if (o == NULL) {
476         o = createObject(OBJ_STRING,sdsnewlen(NULL, byte+1));
477         dbAdd(c->db,c->argv[1],o);
478     } else {
479         if (checkType(c,o,OBJ_STRING)) return NULL;
480         o = dbUnshareStringValue(c->db,c->argv[1],o);
481         o->ptr = sdsgrowzero(o->ptr,byte+1);
482     }
483     return o;
484 }
485 
486 /* Return a pointer to the string object content, and stores its length
487  * in 'len'. The user is required to pass (likely stack allocated) buffer
488  * 'llbuf' of at least LONG_STR_SIZE bytes. Such a buffer is used in the case
489  * the object is integer encoded in order to provide the representation
490  * without usign heap allocation.
491  *
492  * The function returns the pointer to the object array of bytes representing
493  * the string it contains, that may be a pointer to 'llbuf' or to the
494  * internal object representation. As a side effect 'len' is filled with
495  * the length of such buffer.
496  *
497  * If the source object is NULL the function is guaranteed to return NULL
498  * and set 'len' to 0. */
getObjectReadOnlyString(robj * o,long * len,char * llbuf)499 unsigned char *getObjectReadOnlyString(robj *o, long *len, char *llbuf) {
500     serverAssert(o->type == OBJ_STRING);
501     unsigned char *p = NULL;
502 
503     /* Set the 'p' pointer to the string, that can be just a stack allocated
504      * array if our string was integer encoded. */
505     if (o && o->encoding == OBJ_ENCODING_INT) {
506         p = (unsigned char*) llbuf;
507         if (len) *len = ll2string(llbuf,LONG_STR_SIZE,(long)o->ptr);
508     } else if (o) {
509         p = (unsigned char*) o->ptr;
510         if (len) *len = sdslen(o->ptr);
511     } else {
512         if (len) *len = 0;
513     }
514     return p;
515 }
516 
517 /* SETBIT key offset bitvalue */
setbitCommand(client * c)518 void setbitCommand(client *c) {
519     robj *o;
520     char *err = "bit is not an integer or out of range";
521     size_t bitoffset;
522     ssize_t byte, bit;
523     int byteval, bitval;
524     long on;
525 
526     if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK)
527         return;
528 
529     if (getLongFromObjectOrReply(c,c->argv[3],&on,err) != C_OK)
530         return;
531 
532     /* Bits can only be set or cleared... */
533     if (on & ~1) {
534         addReplyError(c,err);
535         return;
536     }
537 
538     if ((o = lookupStringForBitCommand(c,bitoffset)) == NULL) return;
539 
540     /* Get current values */
541     byte = bitoffset >> 3;
542     byteval = ((uint8_t*)o->ptr)[byte];
543     bit = 7 - (bitoffset & 0x7);
544     bitval = byteval & (1 << bit);
545 
546     /* Update byte with new bit value and return original value */
547     byteval &= ~(1 << bit);
548     byteval |= ((on & 0x1) << bit);
549     ((uint8_t*)o->ptr)[byte] = byteval;
550     signalModifiedKey(c->db,c->argv[1]);
551     notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id);
552     server.dirty++;
553     addReply(c, bitval ? shared.cone : shared.czero);
554 }
555 
556 /* GETBIT key offset */
getbitCommand(client * c)557 void getbitCommand(client *c) {
558     robj *o;
559     char llbuf[32];
560     size_t bitoffset;
561     size_t byte, bit;
562     size_t bitval = 0;
563 
564     if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK)
565         return;
566 
567     if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
568         checkType(c,o,OBJ_STRING)) return;
569 
570     byte = bitoffset >> 3;
571     bit = 7 - (bitoffset & 0x7);
572     if (sdsEncodedObject(o)) {
573         if (byte < sdslen(o->ptr))
574             bitval = ((uint8_t*)o->ptr)[byte] & (1 << bit);
575     } else {
576         if (byte < (size_t)ll2string(llbuf,sizeof(llbuf),(long)o->ptr))
577             bitval = llbuf[byte] & (1 << bit);
578     }
579 
580     addReply(c, bitval ? shared.cone : shared.czero);
581 }
582 
583 /* BITOP op_name target_key src_key1 src_key2 src_key3 ... src_keyN */
bitopCommand(client * c)584 void bitopCommand(client *c) {
585     char *opname = c->argv[1]->ptr;
586     robj *o, *targetkey = c->argv[2];
587     unsigned long op, j, numkeys;
588     robj **objects;      /* Array of source objects. */
589     unsigned char **src; /* Array of source strings pointers. */
590     unsigned long *len, maxlen = 0; /* Array of length of src strings,
591                                        and max len. */
592     unsigned long minlen = 0;    /* Min len among the input keys. */
593     unsigned char *res = NULL; /* Resulting string. */
594 
595     /* Parse the operation name. */
596     if ((opname[0] == 'a' || opname[0] == 'A') && !strcasecmp(opname,"and"))
597         op = BITOP_AND;
598     else if((opname[0] == 'o' || opname[0] == 'O') && !strcasecmp(opname,"or"))
599         op = BITOP_OR;
600     else if((opname[0] == 'x' || opname[0] == 'X') && !strcasecmp(opname,"xor"))
601         op = BITOP_XOR;
602     else if((opname[0] == 'n' || opname[0] == 'N') && !strcasecmp(opname,"not"))
603         op = BITOP_NOT;
604     else {
605         addReply(c,shared.syntaxerr);
606         return;
607     }
608 
609     /* Sanity check: NOT accepts only a single key argument. */
610     if (op == BITOP_NOT && c->argc != 4) {
611         addReplyError(c,"BITOP NOT must be called with a single source key.");
612         return;
613     }
614 
615     /* Lookup keys, and store pointers to the string objects into an array. */
616     numkeys = c->argc - 3;
617     src = zmalloc(sizeof(unsigned char*) * numkeys);
618     len = zmalloc(sizeof(long) * numkeys);
619     objects = zmalloc(sizeof(robj*) * numkeys);
620     for (j = 0; j < numkeys; j++) {
621         o = lookupKeyRead(c->db,c->argv[j+3]);
622         /* Handle non-existing keys as empty strings. */
623         if (o == NULL) {
624             objects[j] = NULL;
625             src[j] = NULL;
626             len[j] = 0;
627             minlen = 0;
628             continue;
629         }
630         /* Return an error if one of the keys is not a string. */
631         if (checkType(c,o,OBJ_STRING)) {
632             unsigned long i;
633             for (i = 0; i < j; i++) {
634                 if (objects[i])
635                     decrRefCount(objects[i]);
636             }
637             zfree(src);
638             zfree(len);
639             zfree(objects);
640             return;
641         }
642         objects[j] = getDecodedObject(o);
643         src[j] = objects[j]->ptr;
644         len[j] = sdslen(objects[j]->ptr);
645         if (len[j] > maxlen) maxlen = len[j];
646         if (j == 0 || len[j] < minlen) minlen = len[j];
647     }
648 
649     /* Compute the bit operation, if at least one string is not empty. */
650     if (maxlen) {
651         res = (unsigned char*) sdsnewlen(NULL,maxlen);
652         unsigned char output, byte;
653         unsigned long i;
654 
655         /* Fast path: as far as we have data for all the input bitmaps we
656          * can take a fast path that performs much better than the
657          * vanilla algorithm. */
658         j = 0;
659         if (minlen >= sizeof(unsigned long)*4 && numkeys <= 16) {
660             unsigned long *lp[16];
661             unsigned long *lres = (unsigned long*) res;
662 
663             /* Note: sds pointer is always aligned to 8 byte boundary. */
664             memcpy(lp,src,sizeof(unsigned long*)*numkeys);
665             memcpy(res,src[0],minlen);
666 
667             /* Different branches per different operations for speed (sorry). */
668             if (op == BITOP_AND) {
669                 while(minlen >= sizeof(unsigned long)*4) {
670                     for (i = 1; i < numkeys; i++) {
671                         lres[0] &= lp[i][0];
672                         lres[1] &= lp[i][1];
673                         lres[2] &= lp[i][2];
674                         lres[3] &= lp[i][3];
675                         lp[i]+=4;
676                     }
677                     lres+=4;
678                     j += sizeof(unsigned long)*4;
679                     minlen -= sizeof(unsigned long)*4;
680                 }
681             } else if (op == BITOP_OR) {
682                 while(minlen >= sizeof(unsigned long)*4) {
683                     for (i = 1; i < numkeys; i++) {
684                         lres[0] |= lp[i][0];
685                         lres[1] |= lp[i][1];
686                         lres[2] |= lp[i][2];
687                         lres[3] |= lp[i][3];
688                         lp[i]+=4;
689                     }
690                     lres+=4;
691                     j += sizeof(unsigned long)*4;
692                     minlen -= sizeof(unsigned long)*4;
693                 }
694             } else if (op == BITOP_XOR) {
695                 while(minlen >= sizeof(unsigned long)*4) {
696                     for (i = 1; i < numkeys; i++) {
697                         lres[0] ^= lp[i][0];
698                         lres[1] ^= lp[i][1];
699                         lres[2] ^= lp[i][2];
700                         lres[3] ^= lp[i][3];
701                         lp[i]+=4;
702                     }
703                     lres+=4;
704                     j += sizeof(unsigned long)*4;
705                     minlen -= sizeof(unsigned long)*4;
706                 }
707             } else if (op == BITOP_NOT) {
708                 while(minlen >= sizeof(unsigned long)*4) {
709                     lres[0] = ~lres[0];
710                     lres[1] = ~lres[1];
711                     lres[2] = ~lres[2];
712                     lres[3] = ~lres[3];
713                     lres+=4;
714                     j += sizeof(unsigned long)*4;
715                     minlen -= sizeof(unsigned long)*4;
716                 }
717             }
718         }
719 
720         /* j is set to the next byte to process by the previous loop. */
721         for (; j < maxlen; j++) {
722             output = (len[0] <= j) ? 0 : src[0][j];
723             if (op == BITOP_NOT) output = ~output;
724             for (i = 1; i < numkeys; i++) {
725                 byte = (len[i] <= j) ? 0 : src[i][j];
726                 switch(op) {
727                 case BITOP_AND: output &= byte; break;
728                 case BITOP_OR:  output |= byte; break;
729                 case BITOP_XOR: output ^= byte; break;
730                 }
731             }
732             res[j] = output;
733         }
734     }
735     for (j = 0; j < numkeys; j++) {
736         if (objects[j])
737             decrRefCount(objects[j]);
738     }
739     zfree(src);
740     zfree(len);
741     zfree(objects);
742 
743     /* Store the computed value into the target key */
744     if (maxlen) {
745         o = createObject(OBJ_STRING,res);
746         setKey(c->db,targetkey,o);
747         notifyKeyspaceEvent(NOTIFY_STRING,"set",targetkey,c->db->id);
748         decrRefCount(o);
749     } else if (dbDelete(c->db,targetkey)) {
750         signalModifiedKey(c->db,targetkey);
751         notifyKeyspaceEvent(NOTIFY_GENERIC,"del",targetkey,c->db->id);
752     }
753     server.dirty++;
754     addReplyLongLong(c,maxlen); /* Return the output string length in bytes. */
755 }
756 
757 /* BITCOUNT key [start end] */
bitcountCommand(client * c)758 void bitcountCommand(client *c) {
759     robj *o;
760     long start, end, strlen;
761     unsigned char *p;
762     char llbuf[LONG_STR_SIZE];
763 
764     /* Lookup, check for type, and return 0 for non existing keys. */
765     if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
766         checkType(c,o,OBJ_STRING)) return;
767     p = getObjectReadOnlyString(o,&strlen,llbuf);
768 
769     /* Parse start/end range if any. */
770     if (c->argc == 4) {
771         if (getLongFromObjectOrReply(c,c->argv[2],&start,NULL) != C_OK)
772             return;
773         if (getLongFromObjectOrReply(c,c->argv[3],&end,NULL) != C_OK)
774             return;
775         /* Convert negative indexes */
776         if (start < 0 && end < 0 && start > end) {
777             addReply(c,shared.czero);
778             return;
779         }
780         if (start < 0) start = strlen+start;
781         if (end < 0) end = strlen+end;
782         if (start < 0) start = 0;
783         if (end < 0) end = 0;
784         if (end >= strlen) end = strlen-1;
785     } else if (c->argc == 2) {
786         /* The whole string. */
787         start = 0;
788         end = strlen-1;
789     } else {
790         /* Syntax error. */
791         addReply(c,shared.syntaxerr);
792         return;
793     }
794 
795     /* Precondition: end >= 0 && end < strlen, so the only condition where
796      * zero can be returned is: start > end. */
797     if (start > end) {
798         addReply(c,shared.czero);
799     } else {
800         long bytes = end-start+1;
801 
802         addReplyLongLong(c,redisPopcount(p+start,bytes));
803     }
804 }
805 
806 /* BITPOS key bit [start [end]] */
bitposCommand(client * c)807 void bitposCommand(client *c) {
808     robj *o;
809     long bit, start, end, strlen;
810     unsigned char *p;
811     char llbuf[LONG_STR_SIZE];
812     int end_given = 0;
813 
814     /* Parse the bit argument to understand what we are looking for, set
815      * or clear bits. */
816     if (getLongFromObjectOrReply(c,c->argv[2],&bit,NULL) != C_OK)
817         return;
818     if (bit != 0 && bit != 1) {
819         addReplyError(c, "The bit argument must be 1 or 0.");
820         return;
821     }
822 
823     /* If the key does not exist, from our point of view it is an infinite
824      * array of 0 bits. If the user is looking for the fist clear bit return 0,
825      * If the user is looking for the first set bit, return -1. */
826     if ((o = lookupKeyRead(c->db,c->argv[1])) == NULL) {
827         addReplyLongLong(c, bit ? -1 : 0);
828         return;
829     }
830     if (checkType(c,o,OBJ_STRING)) return;
831     p = getObjectReadOnlyString(o,&strlen,llbuf);
832 
833     /* Parse start/end range if any. */
834     if (c->argc == 4 || c->argc == 5) {
835         if (getLongFromObjectOrReply(c,c->argv[3],&start,NULL) != C_OK)
836             return;
837         if (c->argc == 5) {
838             if (getLongFromObjectOrReply(c,c->argv[4],&end,NULL) != C_OK)
839                 return;
840             end_given = 1;
841         } else {
842             end = strlen-1;
843         }
844         /* Convert negative indexes */
845         if (start < 0) start = strlen+start;
846         if (end < 0) end = strlen+end;
847         if (start < 0) start = 0;
848         if (end < 0) end = 0;
849         if (end >= strlen) end = strlen-1;
850     } else if (c->argc == 3) {
851         /* The whole string. */
852         start = 0;
853         end = strlen-1;
854     } else {
855         /* Syntax error. */
856         addReply(c,shared.syntaxerr);
857         return;
858     }
859 
860     /* For empty ranges (start > end) we return -1 as an empty range does
861      * not contain a 0 nor a 1. */
862     if (start > end) {
863         addReplyLongLong(c, -1);
864     } else {
865         long bytes = end-start+1;
866         long pos = redisBitpos(p+start,bytes,bit);
867 
868         /* If we are looking for clear bits, and the user specified an exact
869          * range with start-end, we can't consider the right of the range as
870          * zero padded (as we do when no explicit end is given).
871          *
872          * So if redisBitpos() returns the first bit outside the range,
873          * we return -1 to the caller, to mean, in the specified range there
874          * is not a single "0" bit. */
875         if (end_given && bit == 0 && pos == bytes*8) {
876             addReplyLongLong(c,-1);
877             return;
878         }
879         if (pos != -1) pos += start*8; /* Adjust for the bytes we skipped. */
880         addReplyLongLong(c,pos);
881     }
882 }
883 
884 /* BITFIELD key subcommmand-1 arg ... subcommand-2 arg ... subcommand-N ...
885  *
886  * Supported subcommands:
887  *
888  * GET <type> <offset>
889  * SET <type> <offset> <value>
890  * INCRBY <type> <offset> <increment>
891  * OVERFLOW [WRAP|SAT|FAIL]
892  */
893 
894 struct bitfieldOp {
895     uint64_t offset;    /* Bitfield offset. */
896     int64_t i64;        /* Increment amount (INCRBY) or SET value */
897     int opcode;         /* Operation id. */
898     int owtype;         /* Overflow type to use. */
899     int bits;           /* Integer bitfield bits width. */
900     int sign;           /* True if signed, otherwise unsigned op. */
901 };
902 
bitfieldCommand(client * c)903 void bitfieldCommand(client *c) {
904     robj *o;
905     size_t bitoffset;
906     int j, numops = 0, changes = 0;
907     struct bitfieldOp *ops = NULL; /* Array of ops to execute at end. */
908     int owtype = BFOVERFLOW_WRAP; /* Overflow type. */
909     int readonly = 1;
910     long higest_write_offset = 0;
911 
912     for (j = 2; j < c->argc; j++) {
913         int remargs = c->argc-j-1; /* Remaining args other than current. */
914         char *subcmd = c->argv[j]->ptr; /* Current command name. */
915         int opcode; /* Current operation code. */
916         long long i64 = 0;  /* Signed SET value. */
917         int sign = 0; /* Signed or unsigned type? */
918         int bits = 0; /* Bitfield width in bits. */
919 
920         if (!strcasecmp(subcmd,"get") && remargs >= 2)
921             opcode = BITFIELDOP_GET;
922         else if (!strcasecmp(subcmd,"set") && remargs >= 3)
923             opcode = BITFIELDOP_SET;
924         else if (!strcasecmp(subcmd,"incrby") && remargs >= 3)
925             opcode = BITFIELDOP_INCRBY;
926         else if (!strcasecmp(subcmd,"overflow") && remargs >= 1) {
927             char *owtypename = c->argv[j+1]->ptr;
928             j++;
929             if (!strcasecmp(owtypename,"wrap"))
930                 owtype = BFOVERFLOW_WRAP;
931             else if (!strcasecmp(owtypename,"sat"))
932                 owtype = BFOVERFLOW_SAT;
933             else if (!strcasecmp(owtypename,"fail"))
934                 owtype = BFOVERFLOW_FAIL;
935             else {
936                 addReplyError(c,"Invalid OVERFLOW type specified");
937                 zfree(ops);
938                 return;
939             }
940             continue;
941         } else {
942             addReply(c,shared.syntaxerr);
943             zfree(ops);
944             return;
945         }
946 
947         /* Get the type and offset arguments, common to all the ops. */
948         if (getBitfieldTypeFromArgument(c,c->argv[j+1],&sign,&bits) != C_OK) {
949             zfree(ops);
950             return;
951         }
952 
953         if (getBitOffsetFromArgument(c,c->argv[j+2],&bitoffset,1,bits) != C_OK){
954             zfree(ops);
955             return;
956         }
957 
958         if (opcode != BITFIELDOP_GET) {
959             readonly = 0;
960             higest_write_offset = bitoffset + bits - 1;
961             /* INCRBY and SET require another argument. */
962             if (getLongLongFromObjectOrReply(c,c->argv[j+3],&i64,NULL) != C_OK){
963                 zfree(ops);
964                 return;
965             }
966         }
967 
968         /* Populate the array of operations we'll process. */
969         ops = zrealloc(ops,sizeof(*ops)*(numops+1));
970         ops[numops].offset = bitoffset;
971         ops[numops].i64 = i64;
972         ops[numops].opcode = opcode;
973         ops[numops].owtype = owtype;
974         ops[numops].bits = bits;
975         ops[numops].sign = sign;
976         numops++;
977 
978         j += 3 - (opcode == BITFIELDOP_GET);
979     }
980 
981     if (readonly) {
982         /* Lookup for read is ok if key doesn't exit, but errors
983          * if it's not a string. */
984         o = lookupKeyRead(c->db,c->argv[1]);
985         if (o != NULL && checkType(c,o,OBJ_STRING)) return;
986     } else {
987         /* Lookup by making room up to the farest bit reached by
988          * this operation. */
989         if ((o = lookupStringForBitCommand(c,
990             higest_write_offset)) == NULL) return;
991     }
992 
993     addReplyMultiBulkLen(c,numops);
994 
995     /* Actually process the operations. */
996     for (j = 0; j < numops; j++) {
997         struct bitfieldOp *thisop = ops+j;
998 
999         /* Execute the operation. */
1000         if (thisop->opcode == BITFIELDOP_SET ||
1001             thisop->opcode == BITFIELDOP_INCRBY)
1002         {
1003             /* SET and INCRBY: We handle both with the same code path
1004              * for simplicity. SET return value is the previous value so
1005              * we need fetch & store as well. */
1006 
1007             /* We need two different but very similar code paths for signed
1008              * and unsigned operations, since the set of functions to get/set
1009              * the integers and the used variables types are different. */
1010             if (thisop->sign) {
1011                 int64_t oldval, newval, wrapped, retval;
1012                 int overflow;
1013 
1014                 oldval = getSignedBitfield(o->ptr,thisop->offset,
1015                         thisop->bits);
1016 
1017                 if (thisop->opcode == BITFIELDOP_INCRBY) {
1018                     newval = oldval + thisop->i64;
1019                     overflow = checkSignedBitfieldOverflow(oldval,
1020                             thisop->i64,thisop->bits,thisop->owtype,&wrapped);
1021                     if (overflow) newval = wrapped;
1022                     retval = newval;
1023                 } else {
1024                     newval = thisop->i64;
1025                     overflow = checkSignedBitfieldOverflow(newval,
1026                             0,thisop->bits,thisop->owtype,&wrapped);
1027                     if (overflow) newval = wrapped;
1028                     retval = oldval;
1029                 }
1030 
1031                 /* On overflow of type is "FAIL", don't write and return
1032                  * NULL to signal the condition. */
1033                 if (!(overflow && thisop->owtype == BFOVERFLOW_FAIL)) {
1034                     addReplyLongLong(c,retval);
1035                     setSignedBitfield(o->ptr,thisop->offset,
1036                                       thisop->bits,newval);
1037                 } else {
1038                     addReply(c,shared.nullbulk);
1039                 }
1040             } else {
1041                 uint64_t oldval, newval, wrapped, retval;
1042                 int overflow;
1043 
1044                 oldval = getUnsignedBitfield(o->ptr,thisop->offset,
1045                         thisop->bits);
1046 
1047                 if (thisop->opcode == BITFIELDOP_INCRBY) {
1048                     newval = oldval + thisop->i64;
1049                     overflow = checkUnsignedBitfieldOverflow(oldval,
1050                             thisop->i64,thisop->bits,thisop->owtype,&wrapped);
1051                     if (overflow) newval = wrapped;
1052                     retval = newval;
1053                 } else {
1054                     newval = thisop->i64;
1055                     overflow = checkUnsignedBitfieldOverflow(newval,
1056                             0,thisop->bits,thisop->owtype,&wrapped);
1057                     if (overflow) newval = wrapped;
1058                     retval = oldval;
1059                 }
1060                 /* On overflow of type is "FAIL", don't write and return
1061                  * NULL to signal the condition. */
1062                 if (!(overflow && thisop->owtype == BFOVERFLOW_FAIL)) {
1063                     addReplyLongLong(c,retval);
1064                     setUnsignedBitfield(o->ptr,thisop->offset,
1065                                         thisop->bits,newval);
1066                 } else {
1067                     addReply(c,shared.nullbulk);
1068                 }
1069             }
1070             changes++;
1071         } else {
1072             /* GET */
1073             unsigned char buf[9];
1074             long strlen = 0;
1075             unsigned char *src = NULL;
1076             char llbuf[LONG_STR_SIZE];
1077 
1078             if (o != NULL)
1079                 src = getObjectReadOnlyString(o,&strlen,llbuf);
1080 
1081             /* For GET we use a trick: before executing the operation
1082              * copy up to 9 bytes to a local buffer, so that we can easily
1083              * execute up to 64 bit operations that are at actual string
1084              * object boundaries. */
1085             memset(buf,0,9);
1086             int i;
1087             size_t byte = thisop->offset >> 3;
1088             for (i = 0; i < 9; i++) {
1089                 if (src == NULL || i+byte >= (size_t)strlen) break;
1090                 buf[i] = src[i+byte];
1091             }
1092 
1093             /* Now operate on the copied buffer which is guaranteed
1094              * to be zero-padded. */
1095             if (thisop->sign) {
1096                 int64_t val = getSignedBitfield(buf,thisop->offset-(byte*8),
1097                                             thisop->bits);
1098                 addReplyLongLong(c,val);
1099             } else {
1100                 uint64_t val = getUnsignedBitfield(buf,thisop->offset-(byte*8),
1101                                             thisop->bits);
1102                 addReplyLongLong(c,val);
1103             }
1104         }
1105     }
1106 
1107     if (changes) {
1108         signalModifiedKey(c->db,c->argv[1]);
1109         notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id);
1110         server.dirty += changes;
1111     }
1112     zfree(ops);
1113 }
1114