1 //===- RegionUtils.cpp - Region-related transformation utilities ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Transforms/RegionUtils.h"
10 #include "mlir/IR/Block.h"
11 #include "mlir/IR/Operation.h"
12 #include "mlir/IR/PatternMatch.h"
13 #include "mlir/IR/RegionGraphTraits.h"
14 #include "mlir/IR/Value.h"
15 #include "mlir/Interfaces/ControlFlowInterfaces.h"
16 #include "mlir/Interfaces/SideEffectInterfaces.h"
17 
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/SmallSet.h"
21 
22 using namespace mlir;
23 
replaceAllUsesInRegionWith(Value orig,Value replacement,Region & region)24 void mlir::replaceAllUsesInRegionWith(Value orig, Value replacement,
25                                       Region &region) {
26   for (auto &use : llvm::make_early_inc_range(orig.getUses())) {
27     if (region.isAncestor(use.getOwner()->getParentRegion()))
28       use.set(replacement);
29   }
30 }
31 
visitUsedValuesDefinedAbove(Region & region,Region & limit,function_ref<void (OpOperand *)> callback)32 void mlir::visitUsedValuesDefinedAbove(
33     Region &region, Region &limit, function_ref<void(OpOperand *)> callback) {
34   assert(limit.isAncestor(&region) &&
35          "expected isolation limit to be an ancestor of the given region");
36 
37   // Collect proper ancestors of `limit` upfront to avoid traversing the region
38   // tree for every value.
39   SmallPtrSet<Region *, 4> properAncestors;
40   for (auto *reg = limit.getParentRegion(); reg != nullptr;
41        reg = reg->getParentRegion()) {
42     properAncestors.insert(reg);
43   }
44 
45   region.walk([callback, &properAncestors](Operation *op) {
46     for (OpOperand &operand : op->getOpOperands())
47       // Callback on values defined in a proper ancestor of region.
48       if (properAncestors.count(operand.get().getParentRegion()))
49         callback(&operand);
50   });
51 }
52 
visitUsedValuesDefinedAbove(MutableArrayRef<Region> regions,function_ref<void (OpOperand *)> callback)53 void mlir::visitUsedValuesDefinedAbove(
54     MutableArrayRef<Region> regions, function_ref<void(OpOperand *)> callback) {
55   for (Region &region : regions)
56     visitUsedValuesDefinedAbove(region, region, callback);
57 }
58 
getUsedValuesDefinedAbove(Region & region,Region & limit,SetVector<Value> & values)59 void mlir::getUsedValuesDefinedAbove(Region &region, Region &limit,
60                                      SetVector<Value> &values) {
61   visitUsedValuesDefinedAbove(region, limit, [&](OpOperand *operand) {
62     values.insert(operand->get());
63   });
64 }
65 
getUsedValuesDefinedAbove(MutableArrayRef<Region> regions,SetVector<Value> & values)66 void mlir::getUsedValuesDefinedAbove(MutableArrayRef<Region> regions,
67                                      SetVector<Value> &values) {
68   for (Region &region : regions)
69     getUsedValuesDefinedAbove(region, region, values);
70 }
71 
72 //===----------------------------------------------------------------------===//
73 // Unreachable Block Elimination
74 //===----------------------------------------------------------------------===//
75 
76 /// Erase the unreachable blocks within the provided regions. Returns success
77 /// if any blocks were erased, failure otherwise.
78 // TODO: We could likely merge this with the DCE algorithm below.
eraseUnreachableBlocks(RewriterBase & rewriter,MutableArrayRef<Region> regions)79 LogicalResult mlir::eraseUnreachableBlocks(RewriterBase &rewriter,
80                                            MutableArrayRef<Region> regions) {
81   // Set of blocks found to be reachable within a given region.
82   llvm::df_iterator_default_set<Block *, 16> reachable;
83   // If any blocks were found to be dead.
84   bool erasedDeadBlocks = false;
85 
86   SmallVector<Region *, 1> worklist;
87   worklist.reserve(regions.size());
88   for (Region &region : regions)
89     worklist.push_back(&region);
90   while (!worklist.empty()) {
91     Region *region = worklist.pop_back_val();
92     if (region->empty())
93       continue;
94 
95     // If this is a single block region, just collect the nested regions.
96     if (std::next(region->begin()) == region->end()) {
97       for (Operation &op : region->front())
98         for (Region &region : op.getRegions())
99           worklist.push_back(&region);
100       continue;
101     }
102 
103     // Mark all reachable blocks.
104     reachable.clear();
105     for (Block *block : depth_first_ext(&region->front(), reachable))
106       (void)block /* Mark all reachable blocks */;
107 
108     // Collect all of the dead blocks and push the live regions onto the
109     // worklist.
110     for (Block &block : llvm::make_early_inc_range(*region)) {
111       if (!reachable.count(&block)) {
112         block.dropAllDefinedValueUses();
113         rewriter.eraseBlock(&block);
114         erasedDeadBlocks = true;
115         continue;
116       }
117 
118       // Walk any regions within this block.
119       for (Operation &op : block)
120         for (Region &region : op.getRegions())
121           worklist.push_back(&region);
122     }
123   }
124 
125   return success(erasedDeadBlocks);
126 }
127 
128 //===----------------------------------------------------------------------===//
129 // Dead Code Elimination
130 //===----------------------------------------------------------------------===//
131 
132 namespace {
133 /// Data structure used to track which values have already been proved live.
134 ///
135 /// Because Operation's can have multiple results, this data structure tracks
136 /// liveness for both Value's and Operation's to avoid having to look through
137 /// all Operation results when analyzing a use.
138 ///
139 /// This data structure essentially tracks the dataflow lattice.
140 /// The set of values/ops proved live increases monotonically to a fixed-point.
141 class LiveMap {
142 public:
143   /// Value methods.
wasProvenLive(Value value)144   bool wasProvenLive(Value value) {
145     // TODO: For results that are removable, e.g. for region based control flow,
146     // we could allow for these values to be tracked independently.
147     if (OpResult result = value.dyn_cast<OpResult>())
148       return wasProvenLive(result.getOwner());
149     return wasProvenLive(value.cast<BlockArgument>());
150   }
wasProvenLive(BlockArgument arg)151   bool wasProvenLive(BlockArgument arg) { return liveValues.count(arg); }
setProvedLive(Value value)152   void setProvedLive(Value value) {
153     // TODO: For results that are removable, e.g. for region based control flow,
154     // we could allow for these values to be tracked independently.
155     if (OpResult result = value.dyn_cast<OpResult>())
156       return setProvedLive(result.getOwner());
157     setProvedLive(value.cast<BlockArgument>());
158   }
setProvedLive(BlockArgument arg)159   void setProvedLive(BlockArgument arg) {
160     changed |= liveValues.insert(arg).second;
161   }
162 
163   /// Operation methods.
wasProvenLive(Operation * op)164   bool wasProvenLive(Operation *op) { return liveOps.count(op); }
setProvedLive(Operation * op)165   void setProvedLive(Operation *op) { changed |= liveOps.insert(op).second; }
166 
167   /// Methods for tracking if we have reached a fixed-point.
resetChanged()168   void resetChanged() { changed = false; }
hasChanged()169   bool hasChanged() { return changed; }
170 
171 private:
172   bool changed = false;
173   DenseSet<Value> liveValues;
174   DenseSet<Operation *> liveOps;
175 };
176 } // namespace
177 
isUseSpeciallyKnownDead(OpOperand & use,LiveMap & liveMap)178 static bool isUseSpeciallyKnownDead(OpOperand &use, LiveMap &liveMap) {
179   Operation *owner = use.getOwner();
180   unsigned operandIndex = use.getOperandNumber();
181   // This pass generally treats all uses of an op as live if the op itself is
182   // considered live. However, for successor operands to terminators we need a
183   // finer-grained notion where we deduce liveness for operands individually.
184   // The reason for this is easiest to think about in terms of a classical phi
185   // node based SSA IR, where each successor operand is really an operand to a
186   // *separate* phi node, rather than all operands to the branch itself as with
187   // the block argument representation that MLIR uses.
188   //
189   // And similarly, because each successor operand is really an operand to a phi
190   // node, rather than to the terminator op itself, a terminator op can't e.g.
191   // "print" the value of a successor operand.
192   if (owner->hasTrait<OpTrait::IsTerminator>()) {
193     if (BranchOpInterface branchInterface = dyn_cast<BranchOpInterface>(owner))
194       if (auto arg = branchInterface.getSuccessorBlockArgument(operandIndex))
195         return !liveMap.wasProvenLive(*arg);
196     return false;
197   }
198   return false;
199 }
200 
processValue(Value value,LiveMap & liveMap)201 static void processValue(Value value, LiveMap &liveMap) {
202   bool provedLive = llvm::any_of(value.getUses(), [&](OpOperand &use) {
203     if (isUseSpeciallyKnownDead(use, liveMap))
204       return false;
205     return liveMap.wasProvenLive(use.getOwner());
206   });
207   if (provedLive)
208     liveMap.setProvedLive(value);
209 }
210 
211 static void propagateLiveness(Region &region, LiveMap &liveMap);
212 
propagateTerminatorLiveness(Operation * op,LiveMap & liveMap)213 static void propagateTerminatorLiveness(Operation *op, LiveMap &liveMap) {
214   // Terminators are always live.
215   liveMap.setProvedLive(op);
216 
217   // Check to see if we can reason about the successor operands and mutate them.
218   BranchOpInterface branchInterface = dyn_cast<BranchOpInterface>(op);
219   if (!branchInterface) {
220     for (Block *successor : op->getSuccessors())
221       for (BlockArgument arg : successor->getArguments())
222         liveMap.setProvedLive(arg);
223     return;
224   }
225 
226   // If we can't reason about the operand to a successor, conservatively mark
227   // it as live.
228   for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) {
229     SuccessorOperands successorOperands =
230         branchInterface.getSuccessorOperands(i);
231     for (unsigned opI = 0, opE = successorOperands.getProducedOperandCount();
232          opI != opE; ++opI)
233       liveMap.setProvedLive(op->getSuccessor(i)->getArgument(opI));
234   }
235 }
236 
propagateLiveness(Operation * op,LiveMap & liveMap)237 static void propagateLiveness(Operation *op, LiveMap &liveMap) {
238   // Recurse on any regions the op has.
239   for (Region &region : op->getRegions())
240     propagateLiveness(region, liveMap);
241 
242   // Process terminator operations.
243   if (op->hasTrait<OpTrait::IsTerminator>())
244     return propagateTerminatorLiveness(op, liveMap);
245 
246   // Don't reprocess live operations.
247   if (liveMap.wasProvenLive(op))
248     return;
249 
250   // Process the op itself.
251   if (!wouldOpBeTriviallyDead(op))
252     return liveMap.setProvedLive(op);
253 
254   // If the op isn't intrinsically alive, check it's results.
255   for (Value value : op->getResults())
256     processValue(value, liveMap);
257 }
258 
propagateLiveness(Region & region,LiveMap & liveMap)259 static void propagateLiveness(Region &region, LiveMap &liveMap) {
260   if (region.empty())
261     return;
262 
263   for (Block *block : llvm::post_order(&region.front())) {
264     // We process block arguments after the ops in the block, to promote
265     // faster convergence to a fixed point (we try to visit uses before defs).
266     for (Operation &op : llvm::reverse(block->getOperations()))
267       propagateLiveness(&op, liveMap);
268 
269     // We currently do not remove entry block arguments, so there is no need to
270     // track their liveness.
271     // TODO: We could track these and enable removing dead operands/arguments
272     // from region control flow operations.
273     if (block->isEntryBlock())
274       continue;
275 
276     for (Value value : block->getArguments()) {
277       if (!liveMap.wasProvenLive(value))
278         processValue(value, liveMap);
279     }
280   }
281 }
282 
eraseTerminatorSuccessorOperands(Operation * terminator,LiveMap & liveMap)283 static void eraseTerminatorSuccessorOperands(Operation *terminator,
284                                              LiveMap &liveMap) {
285   BranchOpInterface branchOp = dyn_cast<BranchOpInterface>(terminator);
286   if (!branchOp)
287     return;
288 
289   for (unsigned succI = 0, succE = terminator->getNumSuccessors();
290        succI < succE; succI++) {
291     // Iterating successors in reverse is not strictly needed, since we
292     // aren't erasing any successors. But it is slightly more efficient
293     // since it will promote later operands of the terminator being erased
294     // first, reducing the quadratic-ness.
295     unsigned succ = succE - succI - 1;
296     SuccessorOperands succOperands = branchOp.getSuccessorOperands(succ);
297     Block *successor = terminator->getSuccessor(succ);
298 
299     for (unsigned argI = 0, argE = succOperands.size(); argI < argE; ++argI) {
300       // Iterating args in reverse is needed for correctness, to avoid
301       // shifting later args when earlier args are erased.
302       unsigned arg = argE - argI - 1;
303       if (!liveMap.wasProvenLive(successor->getArgument(arg)))
304         succOperands.erase(arg);
305     }
306   }
307 }
308 
deleteDeadness(RewriterBase & rewriter,MutableArrayRef<Region> regions,LiveMap & liveMap)309 static LogicalResult deleteDeadness(RewriterBase &rewriter,
310                                     MutableArrayRef<Region> regions,
311                                     LiveMap &liveMap) {
312   bool erasedAnything = false;
313   for (Region &region : regions) {
314     if (region.empty())
315       continue;
316     bool hasSingleBlock = llvm::hasSingleElement(region);
317 
318     // Delete every operation that is not live. Graph regions may have cycles
319     // in the use-def graph, so we must explicitly dropAllUses() from each
320     // operation as we erase it. Visiting the operations in post-order
321     // guarantees that in SSA CFG regions value uses are removed before defs,
322     // which makes dropAllUses() a no-op.
323     for (Block *block : llvm::post_order(&region.front())) {
324       if (!hasSingleBlock)
325         eraseTerminatorSuccessorOperands(block->getTerminator(), liveMap);
326       for (Operation &childOp :
327            llvm::make_early_inc_range(llvm::reverse(block->getOperations()))) {
328         if (!liveMap.wasProvenLive(&childOp)) {
329           erasedAnything = true;
330           childOp.dropAllUses();
331           rewriter.eraseOp(&childOp);
332         } else {
333           erasedAnything |= succeeded(
334               deleteDeadness(rewriter, childOp.getRegions(), liveMap));
335         }
336       }
337     }
338     // Delete block arguments.
339     // The entry block has an unknown contract with their enclosing block, so
340     // skip it.
341     for (Block &block : llvm::drop_begin(region.getBlocks(), 1)) {
342       block.eraseArguments(
343           [&](BlockArgument arg) { return !liveMap.wasProvenLive(arg); });
344     }
345   }
346   return success(erasedAnything);
347 }
348 
349 // This function performs a simple dead code elimination algorithm over the
350 // given regions.
351 //
352 // The overall goal is to prove that Values are dead, which allows deleting ops
353 // and block arguments.
354 //
355 // This uses an optimistic algorithm that assumes everything is dead until
356 // proved otherwise, allowing it to delete recursively dead cycles.
357 //
358 // This is a simple fixed-point dataflow analysis algorithm on a lattice
359 // {Dead,Alive}. Because liveness flows backward, we generally try to
360 // iterate everything backward to speed up convergence to the fixed-point. This
361 // allows for being able to delete recursively dead cycles of the use-def graph,
362 // including block arguments.
363 //
364 // This function returns success if any operations or arguments were deleted,
365 // failure otherwise.
runRegionDCE(RewriterBase & rewriter,MutableArrayRef<Region> regions)366 LogicalResult mlir::runRegionDCE(RewriterBase &rewriter,
367                                  MutableArrayRef<Region> regions) {
368   LiveMap liveMap;
369   do {
370     liveMap.resetChanged();
371 
372     for (Region &region : regions)
373       propagateLiveness(region, liveMap);
374   } while (liveMap.hasChanged());
375 
376   return deleteDeadness(rewriter, regions, liveMap);
377 }
378 
379 //===----------------------------------------------------------------------===//
380 // Block Merging
381 //===----------------------------------------------------------------------===//
382 
383 //===----------------------------------------------------------------------===//
384 // BlockEquivalenceData
385 
386 namespace {
387 /// This class contains the information for comparing the equivalencies of two
388 /// blocks. Blocks are considered equivalent if they contain the same operations
389 /// in the same order. The only allowed divergence is for operands that come
390 /// from sources outside of the parent block, i.e. the uses of values produced
391 /// within the block must be equivalent.
392 ///   e.g.,
393 /// Equivalent:
394 ///  ^bb1(%arg0: i32)
395 ///    return %arg0, %foo : i32, i32
396 ///  ^bb2(%arg1: i32)
397 ///    return %arg1, %bar : i32, i32
398 /// Not Equivalent:
399 ///  ^bb1(%arg0: i32)
400 ///    return %foo, %arg0 : i32, i32
401 ///  ^bb2(%arg1: i32)
402 ///    return %arg1, %bar : i32, i32
403 struct BlockEquivalenceData {
404   BlockEquivalenceData(Block *block);
405 
406   /// Return the order index for the given value that is within the block of
407   /// this data.
408   unsigned getOrderOf(Value value) const;
409 
410   /// The block this data refers to.
411   Block *block;
412   /// A hash value for this block.
413   llvm::hash_code hash;
414   /// A map of result producing operations to their relative orders within this
415   /// block. The order of an operation is the number of defined values that are
416   /// produced within the block before this operation.
417   DenseMap<Operation *, unsigned> opOrderIndex;
418 };
419 } // namespace
420 
BlockEquivalenceData(Block * block)421 BlockEquivalenceData::BlockEquivalenceData(Block *block)
422     : block(block), hash(0) {
423   unsigned orderIt = block->getNumArguments();
424   for (Operation &op : *block) {
425     if (unsigned numResults = op.getNumResults()) {
426       opOrderIndex.try_emplace(&op, orderIt);
427       orderIt += numResults;
428     }
429     auto opHash = OperationEquivalence::computeHash(
430         &op, OperationEquivalence::ignoreHashValue,
431         OperationEquivalence::ignoreHashValue,
432         OperationEquivalence::IgnoreLocations);
433     hash = llvm::hash_combine(hash, opHash);
434   }
435 }
436 
getOrderOf(Value value) const437 unsigned BlockEquivalenceData::getOrderOf(Value value) const {
438   assert(value.getParentBlock() == block && "expected value of this block");
439 
440   // Arguments use the argument number as the order index.
441   if (BlockArgument arg = value.dyn_cast<BlockArgument>())
442     return arg.getArgNumber();
443 
444   // Otherwise, the result order is offset from the parent op's order.
445   OpResult result = value.cast<OpResult>();
446   auto opOrderIt = opOrderIndex.find(result.getDefiningOp());
447   assert(opOrderIt != opOrderIndex.end() && "expected op to have an order");
448   return opOrderIt->second + result.getResultNumber();
449 }
450 
451 //===----------------------------------------------------------------------===//
452 // BlockMergeCluster
453 
454 namespace {
455 /// This class represents a cluster of blocks to be merged together.
456 class BlockMergeCluster {
457 public:
BlockMergeCluster(BlockEquivalenceData && leaderData)458   BlockMergeCluster(BlockEquivalenceData &&leaderData)
459       : leaderData(std::move(leaderData)) {}
460 
461   /// Attempt to add the given block to this cluster. Returns success if the
462   /// block was merged, failure otherwise.
463   LogicalResult addToCluster(BlockEquivalenceData &blockData);
464 
465   /// Try to merge all of the blocks within this cluster into the leader block.
466   LogicalResult merge(RewriterBase &rewriter);
467 
468 private:
469   /// The equivalence data for the leader of the cluster.
470   BlockEquivalenceData leaderData;
471 
472   /// The set of blocks that can be merged into the leader.
473   llvm::SmallSetVector<Block *, 1> blocksToMerge;
474 
475   /// A set of operand+index pairs that correspond to operands that need to be
476   /// replaced by arguments when the cluster gets merged.
477   std::set<std::pair<int, int>> operandsToMerge;
478 };
479 } // namespace
480 
addToCluster(BlockEquivalenceData & blockData)481 LogicalResult BlockMergeCluster::addToCluster(BlockEquivalenceData &blockData) {
482   if (leaderData.hash != blockData.hash)
483     return failure();
484   Block *leaderBlock = leaderData.block, *mergeBlock = blockData.block;
485   if (leaderBlock->getArgumentTypes() != mergeBlock->getArgumentTypes())
486     return failure();
487 
488   // A set of operands that mismatch between the leader and the new block.
489   SmallVector<std::pair<int, int>, 8> mismatchedOperands;
490   auto lhsIt = leaderBlock->begin(), lhsE = leaderBlock->end();
491   auto rhsIt = blockData.block->begin(), rhsE = blockData.block->end();
492   for (int opI = 0; lhsIt != lhsE && rhsIt != rhsE; ++lhsIt, ++rhsIt, ++opI) {
493     // Check that the operations are equivalent.
494     if (!OperationEquivalence::isEquivalentTo(
495             &*lhsIt, &*rhsIt, OperationEquivalence::ignoreValueEquivalence,
496             OperationEquivalence::ignoreValueEquivalence,
497             OperationEquivalence::Flags::IgnoreLocations))
498       return failure();
499 
500     // Compare the operands of the two operations. If the operand is within
501     // the block, it must refer to the same operation.
502     auto lhsOperands = lhsIt->getOperands(), rhsOperands = rhsIt->getOperands();
503     for (int operand : llvm::seq<int>(0, lhsIt->getNumOperands())) {
504       Value lhsOperand = lhsOperands[operand];
505       Value rhsOperand = rhsOperands[operand];
506       if (lhsOperand == rhsOperand)
507         continue;
508       // Check that the types of the operands match.
509       if (lhsOperand.getType() != rhsOperand.getType())
510         return failure();
511 
512       // Check that these uses are both external, or both internal.
513       bool lhsIsInBlock = lhsOperand.getParentBlock() == leaderBlock;
514       bool rhsIsInBlock = rhsOperand.getParentBlock() == mergeBlock;
515       if (lhsIsInBlock != rhsIsInBlock)
516         return failure();
517       // Let the operands differ if they are defined in a different block. These
518       // will become new arguments if the blocks get merged.
519       if (!lhsIsInBlock) {
520 
521         // Check whether the operands aren't the result of an immediate
522         // predecessors terminator. In that case we are not able to use it as a
523         // successor operand when branching to the merged block as it does not
524         // dominate its producing operation.
525         auto isValidSuccessorArg = [](Block *block, Value operand) {
526           if (operand.getDefiningOp() !=
527               operand.getParentBlock()->getTerminator())
528             return true;
529           return !llvm::is_contained(block->getPredecessors(),
530                                      operand.getParentBlock());
531         };
532 
533         if (!isValidSuccessorArg(leaderBlock, lhsOperand) ||
534             !isValidSuccessorArg(mergeBlock, rhsOperand))
535           return failure();
536 
537         mismatchedOperands.emplace_back(opI, operand);
538         continue;
539       }
540 
541       // Otherwise, these operands must have the same logical order within the
542       // parent block.
543       if (leaderData.getOrderOf(lhsOperand) != blockData.getOrderOf(rhsOperand))
544         return failure();
545     }
546 
547     // If the lhs or rhs has external uses, the blocks cannot be merged as the
548     // merged version of this operation will not be either the lhs or rhs
549     // alone (thus semantically incorrect), but some mix dependending on which
550     // block preceeded this.
551     // TODO allow merging of operations when one block does not dominate the
552     // other
553     if (rhsIt->isUsedOutsideOfBlock(mergeBlock) ||
554         lhsIt->isUsedOutsideOfBlock(leaderBlock)) {
555       return failure();
556     }
557   }
558   // Make sure that the block sizes are equivalent.
559   if (lhsIt != lhsE || rhsIt != rhsE)
560     return failure();
561 
562   // If we get here, the blocks are equivalent and can be merged.
563   operandsToMerge.insert(mismatchedOperands.begin(), mismatchedOperands.end());
564   blocksToMerge.insert(blockData.block);
565   return success();
566 }
567 
568 /// Returns true if the predecessor terminators of the given block can not have
569 /// their operands updated.
ableToUpdatePredOperands(Block * block)570 static bool ableToUpdatePredOperands(Block *block) {
571   for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) {
572     if (!isa<BranchOpInterface>((*it)->getTerminator()))
573       return false;
574   }
575   return true;
576 }
577 
merge(RewriterBase & rewriter)578 LogicalResult BlockMergeCluster::merge(RewriterBase &rewriter) {
579   // Don't consider clusters that don't have blocks to merge.
580   if (blocksToMerge.empty())
581     return failure();
582 
583   Block *leaderBlock = leaderData.block;
584   if (!operandsToMerge.empty()) {
585     // If the cluster has operands to merge, verify that the predecessor
586     // terminators of each of the blocks can have their successor operands
587     // updated.
588     // TODO: We could try and sub-partition this cluster if only some blocks
589     // cause the mismatch.
590     if (!ableToUpdatePredOperands(leaderBlock) ||
591         !llvm::all_of(blocksToMerge, ableToUpdatePredOperands))
592       return failure();
593 
594     // Collect the iterators for each of the blocks to merge. We will walk all
595     // of the iterators at once to avoid operand index invalidation.
596     SmallVector<Block::iterator, 2> blockIterators;
597     blockIterators.reserve(blocksToMerge.size() + 1);
598     blockIterators.push_back(leaderBlock->begin());
599     for (Block *mergeBlock : blocksToMerge)
600       blockIterators.push_back(mergeBlock->begin());
601 
602     // Update each of the predecessor terminators with the new arguments.
603     SmallVector<SmallVector<Value, 8>, 2> newArguments(
604         1 + blocksToMerge.size(),
605         SmallVector<Value, 8>(operandsToMerge.size()));
606     unsigned curOpIndex = 0;
607     for (const auto &it : llvm::enumerate(operandsToMerge)) {
608       unsigned nextOpOffset = it.value().first - curOpIndex;
609       curOpIndex = it.value().first;
610 
611       // Process the operand for each of the block iterators.
612       for (unsigned i = 0, e = blockIterators.size(); i != e; ++i) {
613         Block::iterator &blockIter = blockIterators[i];
614         std::advance(blockIter, nextOpOffset);
615         auto &operand = blockIter->getOpOperand(it.value().second);
616         newArguments[i][it.index()] = operand.get();
617 
618         // Update the operand and insert an argument if this is the leader.
619         if (i == 0) {
620           Value operandVal = operand.get();
621           operand.set(leaderBlock->addArgument(operandVal.getType(),
622                                                operandVal.getLoc()));
623         }
624       }
625     }
626     // Update the predecessors for each of the blocks.
627     auto updatePredecessors = [&](Block *block, unsigned clusterIndex) {
628       for (auto predIt = block->pred_begin(), predE = block->pred_end();
629            predIt != predE; ++predIt) {
630         auto branch = cast<BranchOpInterface>((*predIt)->getTerminator());
631         unsigned succIndex = predIt.getSuccessorIndex();
632         branch.getSuccessorOperands(succIndex).append(
633             newArguments[clusterIndex]);
634       }
635     };
636     updatePredecessors(leaderBlock, /*clusterIndex=*/0);
637     for (unsigned i = 0, e = blocksToMerge.size(); i != e; ++i)
638       updatePredecessors(blocksToMerge[i], /*clusterIndex=*/i + 1);
639   }
640 
641   // Replace all uses of the merged blocks with the leader and erase them.
642   for (Block *block : blocksToMerge) {
643     block->replaceAllUsesWith(leaderBlock);
644     rewriter.eraseBlock(block);
645   }
646   return success();
647 }
648 
649 /// Identify identical blocks within the given region and merge them, inserting
650 /// new block arguments as necessary. Returns success if any blocks were merged,
651 /// failure otherwise.
mergeIdenticalBlocks(RewriterBase & rewriter,Region & region)652 static LogicalResult mergeIdenticalBlocks(RewriterBase &rewriter,
653                                           Region &region) {
654   if (region.empty() || llvm::hasSingleElement(region))
655     return failure();
656 
657   // Identify sets of blocks, other than the entry block, that branch to the
658   // same successors. We will use these groups to create clusters of equivalent
659   // blocks.
660   DenseMap<SuccessorRange, SmallVector<Block *, 1>> matchingSuccessors;
661   for (Block &block : llvm::drop_begin(region, 1))
662     matchingSuccessors[block.getSuccessors()].push_back(&block);
663 
664   bool mergedAnyBlocks = false;
665   for (ArrayRef<Block *> blocks : llvm::make_second_range(matchingSuccessors)) {
666     if (blocks.size() == 1)
667       continue;
668 
669     SmallVector<BlockMergeCluster, 1> clusters;
670     for (Block *block : blocks) {
671       BlockEquivalenceData data(block);
672 
673       // Don't allow merging if this block has any regions.
674       // TODO: Add support for regions if necessary.
675       bool hasNonEmptyRegion = llvm::any_of(*block, [](Operation &op) {
676         return llvm::any_of(op.getRegions(),
677                             [](Region &region) { return !region.empty(); });
678       });
679       if (hasNonEmptyRegion)
680         continue;
681 
682       // Try to add this block to an existing cluster.
683       bool addedToCluster = false;
684       for (auto &cluster : clusters)
685         if ((addedToCluster = succeeded(cluster.addToCluster(data))))
686           break;
687       if (!addedToCluster)
688         clusters.emplace_back(std::move(data));
689     }
690     for (auto &cluster : clusters)
691       mergedAnyBlocks |= succeeded(cluster.merge(rewriter));
692   }
693 
694   return success(mergedAnyBlocks);
695 }
696 
697 /// Identify identical blocks within the given regions and merge them, inserting
698 /// new block arguments as necessary.
mergeIdenticalBlocks(RewriterBase & rewriter,MutableArrayRef<Region> regions)699 static LogicalResult mergeIdenticalBlocks(RewriterBase &rewriter,
700                                           MutableArrayRef<Region> regions) {
701   llvm::SmallSetVector<Region *, 1> worklist;
702   for (auto &region : regions)
703     worklist.insert(&region);
704   bool anyChanged = false;
705   while (!worklist.empty()) {
706     Region *region = worklist.pop_back_val();
707     if (succeeded(mergeIdenticalBlocks(rewriter, *region))) {
708       worklist.insert(region);
709       anyChanged = true;
710     }
711 
712     // Add any nested regions to the worklist.
713     for (Block &block : *region)
714       for (auto &op : block)
715         for (auto &nestedRegion : op.getRegions())
716           worklist.insert(&nestedRegion);
717   }
718 
719   return success(anyChanged);
720 }
721 
722 //===----------------------------------------------------------------------===//
723 // Region Simplification
724 //===----------------------------------------------------------------------===//
725 
726 /// Run a set of structural simplifications over the given regions. This
727 /// includes transformations like unreachable block elimination, dead argument
728 /// elimination, as well as some other DCE. This function returns success if any
729 /// of the regions were simplified, failure otherwise.
simplifyRegions(RewriterBase & rewriter,MutableArrayRef<Region> regions)730 LogicalResult mlir::simplifyRegions(RewriterBase &rewriter,
731                                     MutableArrayRef<Region> regions) {
732   bool eliminatedBlocks = succeeded(eraseUnreachableBlocks(rewriter, regions));
733   bool eliminatedOpsOrArgs = succeeded(runRegionDCE(rewriter, regions));
734   bool mergedIdenticalBlocks =
735       succeeded(mergeIdenticalBlocks(rewriter, regions));
736   return success(eliminatedBlocks || eliminatedOpsOrArgs ||
737                  mergedIdenticalBlocks);
738 }
739