1 //===- Sparsification.cpp - Implementation of sparsification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements converting sparse tensor types to actual sparse code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Affine/IR/AffineOps.h"
14 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
15 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
16 #include "mlir/Dialect/Linalg/Utils/Utils.h"
17 #include "mlir/Dialect/MemRef/IR/MemRef.h"
18 #include "mlir/Dialect/SCF/SCF.h"
19 #include "mlir/Dialect/SCF/Transforms.h"
20 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
21 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
22 #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
23 #include "mlir/Dialect/StandardOps/IR/Ops.h"
24 #include "mlir/Dialect/Vector/VectorOps.h"
25 #include "mlir/IR/Matchers.h"
26 #include "mlir/IR/TensorEncoding.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 
29 using namespace mlir;
30 using namespace mlir::sparse_tensor;
31 
32 //===----------------------------------------------------------------------===//
33 // Declarations of data structures.
34 //===----------------------------------------------------------------------===//
35 
36 namespace {
37 
38 // Iteration graph sorting.
39 enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 };
40 
41 // Reduction kinds.
42 enum Reduction { kSum, kProduct, kAnd, kOr, kXor };
43 
44 // Code generation.
45 struct CodeGen {
46   CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops)
47       : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
48         pointers(numTensors, std::vector<Value>(numLoops)),
49         indices(numTensors, std::vector<Value>(numLoops)),
50         highs(numTensors, std::vector<Value>(numLoops)),
51         pidxs(numTensors, std::vector<Value>(numLoops)),
52         idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
53         curVecLength(1), curVecMask() {}
54   /// Sparsification options.
55   SparsificationOptions options;
56   /// Universal dense indices and upper bounds (by index). The loops array
57   /// is updated with the value of the universal dense index in the current
58   /// loop. The sizes array is set once with the inferred dimension sizes.
59   std::vector<Value> loops;
60   std::vector<Value> sizes;
61   /// Buffers for storing dense and sparse numerical values (by tensor).
62   /// This array is set once during bufferization of all tensors.
63   std::vector<Value> buffers;
64   /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
65   /// This array is set once during bufferization of all sparse tensors.
66   std::vector<std::vector<Value>> pointers;
67   std::vector<std::vector<Value>> indices;
68   /// Sparse iteration information (by tensor and index). These arrays
69   /// are updated to remain current within the current loop.
70   std::vector<std::vector<Value>> highs;
71   std::vector<std::vector<Value>> pidxs;
72   std::vector<std::vector<Value>> idxs;
73   /// Current reduction, updated during code generation. When indices of a
74   /// reduction are exhausted,  all inner loops can "scalarize" the reduction.
75   // TODO: currently only done for (a chain of) innermost for-loops, where it
76   // is most effective; we could generalize to more outer and while-loops.
77   unsigned redExp;
78   Value redVal;
79   Reduction redKind;
80   // Current vector length and mask.
81   unsigned curVecLength;
82   Value curVecMask;
83 };
84 
85 } // namespace
86 
87 //===----------------------------------------------------------------------===//
88 // Sparse compiler analysis methods.
89 //===----------------------------------------------------------------------===//
90 
91 /// Helper method to apply dimension ordering permutation.
92 static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) {
93   if (enc) {
94     auto order = enc.getDimOrdering();
95     if (order) {
96       assert(order.isPermutation());
97       return order.getDimPosition(d);
98     }
99   }
100   return d;
101 }
102 
103 /// Helper method to translate dim level type to internal representation.
104 static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) {
105   if (enc) {
106     SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
107     if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
108       return Dim::kSparse;
109     if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
110       return Dim::kSingle;
111   }
112   return Dim::kDense;
113 }
114 
115 /// Helper method to inspect affine expressions. Rejects cases where the
116 /// same index is used in more than one dimension of a tensor. Also rejects
117 /// affine expressions that are not a direct index for annotated tensors.
118 /// TODO: accept more affine cases for sparse tensors
119 static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim,
120                        bool isDense) {
121   switch (a.getKind()) {
122   case AffineExprKind::DimId: {
123     unsigned idx = a.cast<AffineDimExpr>().getPosition();
124     if (!merger.isDim(tensor, idx, Dim::kUndef))
125       return false; // used more than once
126     merger.setDim(tensor, idx, dim);
127     return true;
128   }
129   case AffineExprKind::Add:
130   case AffineExprKind::Mul: {
131     if (!isDense)
132       return false;
133     auto binOp = a.cast<AffineBinaryOpExpr>();
134     return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) &&
135            findAffine(merger, tensor, binOp.getRHS(), dim, isDense);
136   }
137   case AffineExprKind::Constant:
138     return isDense;
139   default:
140     return false;
141   }
142 }
143 
144 /// Helper method to inspect sparse encodings in the tensor types.
145 /// Fills the per-dimension sparsity information for all tensors.
146 /// Returns true if the sparse annotations and affine subscript
147 /// expressions of all tensors are admissable. Returns false if
148 /// no annotations are found or inadmissable constructs occur.
149 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
150   bool annotated = false;
151   for (OpOperand *t : op.getInputAndOutputOperands()) {
152     auto map = op.getTiedIndexingMap(t);
153     auto enc = getSparseTensorEncoding(t->get().getType());
154     if (enc)
155       annotated = true;
156     assert(map.getNumResults() == op.getRank(t));
157     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
158       unsigned tensor = t->getOperandNumber();
159       AffineExpr a = map.getResult(perm(enc, d));
160       if (!findAffine(merger, tensor, a, toDim(enc, d), !enc))
161         return false; // inadmissable affine expression
162     }
163   }
164   return annotated;
165 }
166 
167 /// A DFS helper to compute a topological sort. Note that recursion is
168 /// bounded by the number of implicit loops, which is always small.
169 /// Returns false when a cycle is detected.
170 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
171                        std::vector<unsigned> &topSort,
172                        std::vector<std::vector<bool>> &adjM) {
173   if (visit[i] != 0)
174     return visit[i] != 1; // 1 denotes cycle!
175   visit[i] = 1;
176   for (unsigned j = 0, e = visit.size(); j < e; j++)
177     if (adjM[i][j])
178       if (!topSortDFS(j, visit, topSort, adjM))
179         return false;
180   visit[i] = 2;
181   topSort.push_back(i);
182   return true;
183 }
184 
185 /// Helper method to add all constraints from the indices in one affine
186 /// expression before all indices in the other affine expression. For
187 /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
188 static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
189                                AffineExpr a, AffineExpr b, unsigned fidx) {
190   switch (a.getKind()) {
191   case AffineExprKind::DimId: {
192     unsigned idx = a.cast<AffineDimExpr>().getPosition();
193     if (b)
194       addAffineOrderings(adjM, b, AffineExpr(), idx);
195     else
196       adjM[fidx][idx] = true;
197     break;
198   }
199   case AffineExprKind::Add:
200   case AffineExprKind::Mul: {
201     auto binOp = a.cast<AffineBinaryOpExpr>();
202     addAffineOrderings(adjM, binOp.getLHS(), b, fidx);
203     addAffineOrderings(adjM, binOp.getRHS(), b, fidx);
204     break;
205   }
206   default:
207     break;
208   }
209 }
210 
211 /// Computes a topologically sorted iteration graph for the linalg operation.
212 /// Ensures all tensors are visited in natural index order. This is essential
213 /// for sparse storage formats since these only support access along fixed
214 /// dimensions. Even for dense storage formats, however, the natural index
215 /// order yields innermost unit-stride access with better spatial locality.
216 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
217                                   std::vector<unsigned> &topSort,
218                                   unsigned mask) {
219   // Set up an n x n from/to adjacency matrix of the iteration graph
220   // for the implicit loop indices i_0 .. i_n-1.
221   unsigned n = op.getNumLoops();
222   std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
223 
224   // Iterate over the indexing maps of every tensor in the tensor expression.
225   for (OpOperand *t : op.getInputAndOutputOperands()) {
226     auto map = op.getTiedIndexingMap(t);
227     auto enc = getSparseTensorEncoding(t->get().getType());
228     assert(map.getNumDims() == n);
229     // Skip dense tensor constraints when not requested.
230     if (!(mask & SortMask::kIncludeDense) && !enc)
231       continue;
232     // Each tensor expression and optional dimension ordering (row-major
233     // by default) puts an ordering constraint on the loop indices. For
234     // example, the tensor expresion A_ijk forces the ordering i < j < k
235     // on the loop indices if no explicit dimension ordering is given.
236     for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
237       AffineExpr f = map.getResult(perm(enc, d - 1));
238       AffineExpr t = map.getResult(perm(enc, d));
239       addAffineOrderings(adjM, f, t, 0);
240     }
241     // Push unrelated loops into sparse iteration space, so these
242     // will be skipped more often.
243     if (mask & SortMask::kIncludeUndef) {
244       unsigned tensor = t->getOperandNumber();
245       for (unsigned i = 0; i < n; i++)
246         if (merger.isDim(tensor, i, Dim::kSparse))
247           for (unsigned j = 0; j < n; j++)
248             if (merger.isDim(tensor, j, Dim::kUndef))
249               adjM[i][j] = true;
250     }
251   }
252 
253   // Topologically sort the iteration graph to determine loop order.
254   // Report failure for a cyclic iteration graph.
255   topSort.clear();
256   topSort.reserve(n);
257   std::vector<unsigned> visit(n, 0);
258   for (unsigned i = 0; i < n; i++)
259     if (visit[i] == 0)
260       if (!topSortDFS(i, visit, topSort, adjM))
261         return false; // cycle!
262   std::reverse(std::begin(topSort), std::end(topSort));
263   return true;
264 }
265 
266 /// Returns true when the tensor expression is admissable for codegen.
267 /// Since all sparse input tensors are admissable, we just need to check
268 /// whether the output tensor in the tensor expression codegen is admissable.
269 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
270                                   unsigned exp) {
271   OpOperand *lhs = op.getOutputOperand(0);
272   unsigned tensor = lhs->getOperandNumber();
273   auto enc = getSparseTensorEncoding(lhs->get().getType());
274   // An non-annotated output tensor is assumed dense, and becomes a random
275   // access n-dim memref. Admissable since insertions cannot occur.
276   if (!enc)
277     return true;
278   // An all-dense annotated "sparse" output tensor becomes a linearized random
279   // access 1-dim memref. Also admissable since insertions cannot occur.
280   bool allDense = true;
281   unsigned numLoops = op.iterator_types().getValue().size();
282   for (unsigned i = 0; i < numLoops; i++)
283     if (merger.isDim(tensor, i, Dim::kSparse)) {
284       allDense = false;
285       break;
286     }
287   if (allDense)
288     return true;
289   // A tensor expression with a sparse output tensor that changes its values
290   // but not its nonzero structure, an operation called "simply dynamic" in
291   // [Bik96,Ch9], is also admissable without special codegen.
292   if (merger.isConjunction(tensor, exp))
293     return true;
294   // Reject for now since this requires changes to the nonzero structure.
295   // TODO: implement "workspaces" [Kjolstad2019]
296   return false;
297 }
298 
299 //===----------------------------------------------------------------------===//
300 // Sparse compiler synthesis methods.
301 //===----------------------------------------------------------------------===//
302 
303 /// Maps reduction kind to name encoding.
304 static StringRef getReductionName(Reduction kind) {
305   switch (kind) {
306   case kSum:
307     return "add";
308   case kProduct:
309     return "mul";
310   case kAnd:
311     return "and";
312   case kOr:
313     return "or";
314   case kXor:
315     return "xor";
316   }
317   llvm_unreachable("unknown reduction kind");
318 }
319 
320 /// Maps operation to reduction.
321 static Reduction getReduction(Kind kind) {
322   switch (kind) {
323   case Kind::kAddF:
324   case Kind::kAddI:
325   case Kind::kSubF:
326   case Kind::kSubI:
327     return kSum;
328   case Kind::kMulF:
329   case Kind::kMulI:
330     return kProduct;
331   case Kind::kAndI:
332     return kAnd;
333   case Kind::kOrI:
334     return kOr;
335   case Kind::kXorI:
336     return kXor;
337   default:
338     llvm_unreachable("unexpected reduction operator");
339   }
340 }
341 
342 /// Generates an initial value for a vector reductions, following the scheme
343 /// given in Chapter 5 of "The Software Vectorization Handbook", where the
344 /// initial scalar value is correctly embedded in the vector reduction value,
345 /// and a straightforward horizontal reduction will complete the operation.
346 static Value genReductionInit(PatternRewriter &rewriter, Location loc,
347                               Reduction kind, VectorType vtp, Value r) {
348   switch (kind) {
349   case kSum:
350   case kXor: {
351     // Initialize reduction vector to: | 0 | .. | 0 | r |
352     Attribute zero = rewriter.getZeroAttr(vtp);
353     Value vec = rewriter.create<ConstantOp>(loc, vtp, zero);
354     return rewriter.create<vector::InsertElementOp>(loc, r, vec, 0);
355   }
356   case kProduct: {
357     // Initialize reduction vector to: | 1 | .. | 1 | r |
358     Type etp = vtp.getElementType();
359     Attribute one;
360     if (etp.isa<FloatType>())
361       one = rewriter.getFloatAttr(etp, 1.0);
362     else
363       one = rewriter.getIntegerAttr(etp, 1);
364     Value vec =
365         rewriter.create<ConstantOp>(loc, vtp, DenseElementsAttr::get(vtp, one));
366     return rewriter.create<vector::InsertElementOp>(loc, r, vec, 0);
367   }
368   case kAnd:
369   case kOr:
370     // Initialize reduction vector to: | r | .. | r | r |
371     return rewriter.create<vector::BroadcastOp>(loc, vtp, r);
372   }
373   llvm_unreachable("unknown reduction kind");
374 }
375 
376 /// Maps sparse integer option to actual integral storage type.
377 static Type genIntType(PatternRewriter &rewriter, unsigned width) {
378   if (width == 0)
379     return rewriter.getIndexType();
380   return rewriter.getIntegerType(width);
381 }
382 
383 /// Detects in-place annotation on tensor argument.
384 static bool getInPlace(Value val) {
385   if (auto arg = val.dyn_cast<BlockArgument>())
386     if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
387       if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
388               arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName))
389         return attr.getValue();
390   return false;
391 }
392 
393 /// Generates buffer for the output tensor. Note that all sparse kernels
394 /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)),
395 /// the output buffer is already initialized to all zeroes and only nonzeroes
396 /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)),
397 /// only nonzeroes values are used for the updates and no assumption on the
398 /// original contents of the output buffer is necessary..
399 static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
400                              linalg::GenericOp op, MemRefType denseTp,
401                              ArrayRef<Value> args) {
402   Location loc = op.getLoc();
403   Value tensor = op.getOutputOperand(0)->get();
404   // The output tensor simply could materialize from the buffer that will
405   // be generated for the tensor present in the outs() clause. This has
406   // the major advantage that the sparse kernel only updates the nonzero
407   // positions for the output tensor.
408   if (getInPlace(tensor))
409     return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
410   // By default, a new buffer is allocated which is initialized to the
411   // tensor defined in the outs() clause. This is always correct but
412   // introduces a dense initialization component that may negatively
413   // impact the running complexity of the sparse kernel. If the tensor
414   // materializes within this method, we need to preserve the zero
415   // initialization assumption of all sparse output buffers.
416   if (auto init = tensor.getDefiningOp<linalg::InitTensorOp>()) {
417     Type tp = denseTp.getElementType();
418     Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
419     Value zero = rewriter.create<ConstantOp>(loc, tp, rewriter.getZeroAttr(tp));
420     rewriter.create<linalg::FillOp>(loc, zero, alloc);
421     return alloc;
422   }
423   Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
424   Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
425   rewriter.create<memref::CopyOp>(loc, init, alloc);
426   return alloc;
427 }
428 
429 /// Local bufferization of all dense and sparse data structures.
430 /// This code enables testing the first prototype sparse compiler.
431 // TODO: replace this with a proliferated bufferization strategy
432 static bool genBuffers(Merger &merger, CodeGen &codegen,
433                        PatternRewriter &rewriter, linalg::GenericOp op) {
434   Location loc = op.getLoc();
435   assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
436   // For every tensor, find lower and upper bound on dimensions, set the
437   // same bounds on loop indices, and obtain dense or sparse buffer(s).
438   SmallVector<Value, 4> args;
439   for (OpOperand *t : op.getInputAndOutputOperands()) {
440     unsigned tensor = t->getOperandNumber();
441     auto shape = op.getShape(t);
442     auto map = op.getTiedIndexingMap(t);
443     auto enc = getSparseTensorEncoding(t->get().getType());
444     // Scan all dimensions of current tensor.
445     args.clear();
446     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
447       AffineExpr a = map.getResult(perm(enc, d));
448       if (a.getKind() != AffineExprKind::DimId)
449         continue; // compound
450       unsigned idx = a.cast<AffineDimExpr>().getPosition();
451       // Handle sparse storage schemes.
452       if (merger.isDim(tensor, idx, Dim::kSparse)) {
453         auto dynShape = {ShapedType::kDynamicSize};
454         auto ptrTp = MemRefType::get(
455             dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
456         auto indTp = MemRefType::get(
457             dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
458         Value dim = rewriter.create<arith::ConstantIndexOp>(loc, d);
459         // Generate sparse primitives to obtains pointer and indices.
460         codegen.pointers[tensor][idx] =
461             rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
462         codegen.indices[tensor][idx] =
463             rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
464       }
465       // Find upper bound in current dimension.
466       unsigned p = perm(enc, d);
467       Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p);
468       if (shape[p] == MemRefType::kDynamicSize)
469         args.push_back(up);
470       assert(codegen.highs[tensor][idx] == nullptr);
471       codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
472     }
473     // Perform the required bufferization. Dense inputs materialize
474     // from the input tensors. Dense outputs need special handling.
475     // Sparse inputs use sparse primitives to obtain the values.
476     // We also accept in-place all-dense annotated "sparse" outputs.
477     Type elementType = getElementTypeOrSelf(t->get().getType());
478     if (!enc) {
479       // Non-annotated dense tensors.
480       auto denseTp = MemRefType::get(shape, elementType);
481       if (tensor < op.getNumInputs())
482         codegen.buffers[tensor] =
483             rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get());
484       else
485         codegen.buffers[tensor] =
486             genOutputBuffer(codegen, rewriter, op, denseTp, args);
487     } else {
488       // Annotated sparse tensors.
489       if (tensor == op.getNumInputs() && !getInPlace(t->get()))
490         return false; // reject output if not in-place
491       auto dynShape = {ShapedType::kDynamicSize};
492       auto sparseTp = MemRefType::get(dynShape, elementType);
493       codegen.buffers[tensor] =
494           rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
495     }
496   }
497   return true;
498 }
499 
500 /// Constructs vector type.
501 static VectorType vectorType(CodeGen &codegen, Type etp) {
502   return VectorType::get(codegen.curVecLength, etp);
503 }
504 
505 /// Constructs vector type from pointer.
506 static VectorType vectorType(CodeGen &codegen, Value ptr) {
507   return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
508 }
509 
510 /// Constructs vector iteration mask.
511 static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
512                            Value iv, Value lo, Value hi, Value step) {
513   Location loc = iv.getLoc();
514   VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1));
515   // Special case if the vector length evenly divides the trip count (for
516   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
517   // so that all subsequent masked memory operations are immediately folded
518   // into unconditional memory operations.
519   IntegerAttr loInt, hiInt, stepInt;
520   if (matchPattern(lo, m_Constant(&loInt)) &&
521       matchPattern(hi, m_Constant(&hiInt)) &&
522       matchPattern(step, m_Constant(&stepInt))) {
523     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
524       return rewriter.create<vector::BroadcastOp>(
525           loc, mtp, rewriter.create<arith::ConstantIntOp>(loc, 1, 1));
526   }
527   // Otherwise, generate a vector mask that avoids overrunning the upperbound
528   // during vector execution. Here we rely on subsequent loop optimizations to
529   // avoid executing the mask in all iterations, for example, by splitting the
530   // loop into an unconditional vector loop and a scalar cleanup loop.
531   auto minMap = AffineMap::get(
532       /*dimCount=*/2, /*symbolCount=*/1,
533       {rewriter.getAffineSymbolExpr(0),
534        rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)},
535       rewriter.getContext());
536   Value end =
537       rewriter.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step});
538   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
539 }
540 
541 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
542 static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
543                            Value ptr, ArrayRef<Value> args) {
544   Location loc = ptr.getLoc();
545   VectorType vtp = vectorType(codegen, ptr);
546   Value pass =
547       rewriter.create<arith::ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
548   if (args.back().getType().isa<VectorType>()) {
549     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
550     Value indexVec = args.back();
551     scalarArgs.back() = rewriter.create<arith::ConstantIndexOp>(loc, 0);
552     return rewriter.create<vector::GatherOp>(
553         loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
554   }
555   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
556                                                codegen.curVecMask, pass);
557 }
558 
559 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
560 static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
561                            Value rhs, Value ptr, ArrayRef<Value> args) {
562   Location loc = ptr.getLoc();
563   if (args.back().getType().isa<VectorType>()) {
564     SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
565     Value indexVec = args.back();
566     scalarArgs.back() = rewriter.create<arith::ConstantIndexOp>(loc, 0);
567     rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
568                                        codegen.curVecMask, rhs);
569     return;
570   }
571   rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
572                                          rhs);
573 }
574 
575 /// Generates a vectorized invariant. Here we rely on subsequent loop
576 /// optimizations to hoist the invariant broadcast out of the vector loop.
577 static Value genVectorInvariantValue(CodeGen &codegen,
578                                      PatternRewriter &rewriter, Value val) {
579   VectorType vtp = vectorType(codegen, val.getType());
580   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
581 }
582 
583 /// Generates an affine expression.
584 //
585 // TODO: generalize for sparse tensor subscripts
586 //
587 static Value genAffine(CodeGen &codegen, PatternRewriter &rewriter,
588                        AffineExpr a, Location loc) {
589   switch (a.getKind()) {
590   case AffineExprKind::DimId: {
591     unsigned idx = a.cast<AffineDimExpr>().getPosition();
592     return codegen.loops[idx]; // universal dense index
593   }
594   case AffineExprKind::Add: {
595     auto binOp = a.cast<AffineBinaryOpExpr>();
596     return rewriter.create<arith::AddIOp>(
597         loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
598         genAffine(codegen, rewriter, binOp.getRHS(), loc));
599   }
600   case AffineExprKind::Mul: {
601     auto binOp = a.cast<AffineBinaryOpExpr>();
602     return rewriter.create<arith::MulIOp>(
603         loc, genAffine(codegen, rewriter, binOp.getLHS(), loc),
604         genAffine(codegen, rewriter, binOp.getRHS(), loc));
605   }
606   case AffineExprKind::Constant: {
607     int64_t c = a.cast<AffineConstantExpr>().getValue();
608     return rewriter.create<arith::ConstantIndexOp>(loc, c);
609   }
610   default:
611     llvm_unreachable("unexpected affine subscript");
612   }
613 }
614 
615 /// Generates subscript for load/store on a dense or sparse tensor.
616 static Value genSubscript(CodeGen &codegen, PatternRewriter &rewriter,
617                           linalg::GenericOp op, OpOperand *t,
618                           SmallVector<Value, 4> &args) {
619   unsigned tensor = t->getOperandNumber();
620   auto map = op.getTiedIndexingMap(t);
621   auto enc = getSparseTensorEncoding(t->get().getType());
622   unsigned rank = map.getNumResults();
623   if (enc) {
624     // Note that currently, all sparse subscripts are simple.
625     // TODO: accept affine too?
626     unsigned idx = map.getDimPosition(perm(enc, rank - 1));
627     assert(codegen.pidxs[tensor][idx] != nullptr);
628     args.push_back(codegen.pidxs[tensor][idx]); // position index
629   } else {
630     for (unsigned d = 0; d < rank; d++) {
631       AffineExpr a = map.getResult(perm(enc, d));
632       args.push_back(genAffine(codegen, rewriter, a, op.getLoc()));
633     }
634   }
635   return codegen.buffers[tensor];
636 }
637 
638 /// Generates a load on a dense or sparse tensor.
639 static Value genTensorLoad(Merger &merger, CodeGen &codegen,
640                            PatternRewriter &rewriter, linalg::GenericOp op,
641                            unsigned exp) {
642   // Test if the load was hoisted to a higher loop nest.
643   Value val = merger.exp(exp).val;
644   if (val) {
645     if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
646       return genVectorInvariantValue(codegen, rewriter, val);
647     return val;
648   }
649   // Actual load.
650   SmallVector<Value, 4> args;
651   OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
652   Value ptr = genSubscript(codegen, rewriter, op, t, args);
653   if (codegen.curVecLength > 1)
654     return genVectorLoad(codegen, rewriter, ptr, args);
655   return rewriter.create<memref::LoadOp>(op.getLoc(), ptr, args);
656 }
657 
658 /// Generates a store on a dense or sparse tensor.
659 static void genTensorStore(Merger &merger, CodeGen &codegen,
660                            PatternRewriter &rewriter, linalg::GenericOp op,
661                            Value rhs) {
662   // Test if this is a scalarized reduction.
663   if (codegen.redVal) {
664     if (codegen.curVecLength > 1)
665       rhs = rewriter.create<SelectOp>(op.getLoc(), codegen.curVecMask, rhs,
666                                       codegen.redVal);
667     codegen.redVal = rhs;
668     return;
669   }
670   // Actual store.
671   SmallVector<Value, 4> args;
672   OpOperand *t = op.getOutputOperand(0);
673   Value ptr = genSubscript(codegen, rewriter, op, t, args);
674   if (codegen.curVecLength > 1)
675     genVectorStore(codegen, rewriter, rhs, ptr, args);
676   else
677     rewriter.create<memref::StoreOp>(op.getLoc(), rhs, ptr, args);
678 }
679 
680 /// Generates a pointer/index load from the sparse storage scheme. Narrower
681 /// data types need to be zero extended before casting the value into the
682 /// index type used for looping and indexing.
683 static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
684                      Value ptr, Value s) {
685   // See https://llvm.org/docs/GetElementPtr.html for some background on
686   // the complications described below.
687   if (codegen.curVecLength > 1) {
688     // Since the index vector is used in a subsequent gather/scatter operations,
689     // which effectively defines an unsigned pointer + signed index, we must
690     // zero extend the vector to an index width. For 8-bit and 16-bit values,
691     // an 32-bit index width suffices. For 32-bit values, zero extending the
692     // elements into 64-bit loses some performance since the 32-bit indexed
693     // gather/scatter is more efficient than the 64-bit index variant (if the
694     // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
695     // preserve this performance). For 64-bit values, there is no good way
696     // to state that the indices are unsigned, with creates the potential of
697     // incorrect address calculations in the unlikely case we need such
698     // extremely large offsets.
699     Type etp = ptr.getType().cast<MemRefType>().getElementType();
700     Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
701     if (!etp.isa<IndexType>()) {
702       if (etp.getIntOrFloatBitWidth() < 32)
703         vload = rewriter.create<arith::ExtUIOp>(
704             loc, vload, vectorType(codegen, rewriter.getIntegerType(32)));
705       else if (etp.getIntOrFloatBitWidth() < 64 &&
706                !codegen.options.enableSIMDIndex32)
707         vload = rewriter.create<arith::ExtUIOp>(
708             loc, vload, vectorType(codegen, rewriter.getIntegerType(64)));
709     }
710     return vload;
711   }
712   // For the scalar case, we simply zero extend narrower indices into 64-bit
713   // values before casting to index without a performance penalty. Here too,
714   // however, indices that already are 64-bit, in theory, cannot express the
715   // full range as explained above.
716   Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
717   if (!load.getType().isa<IndexType>()) {
718     if (load.getType().getIntOrFloatBitWidth() < 64)
719       load = rewriter.create<arith::ExtUIOp>(loc, load,
720                                              rewriter.getIntegerType(64));
721     load =
722         rewriter.create<arith::IndexCastOp>(loc, load, rewriter.getIndexType());
723   }
724   return load;
725 }
726 
727 /// Generates an invariant value.
728 static Value genInvariantValue(Merger &merger, CodeGen &codegen,
729                                PatternRewriter &rewriter, unsigned exp) {
730   Value val = merger.exp(exp).val;
731   if (codegen.curVecLength > 1)
732     return genVectorInvariantValue(codegen, rewriter, val);
733   return val;
734 }
735 
736 /// Generates an address computation "sz * p + i".
737 static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
738                         Location loc, Value size, Value p, Value i) {
739   Value mul = rewriter.create<arith::MulIOp>(loc, size, p);
740   if (auto vtp = i.getType().dyn_cast<VectorType>()) {
741     Value inv =
742         rewriter.create<arith::IndexCastOp>(loc, mul, vtp.getElementType());
743     mul = genVectorInvariantValue(codegen, rewriter, inv);
744   }
745   return rewriter.create<arith::AddIOp>(loc, mul, i);
746 }
747 
748 /// Generates start of a reduction.
749 static Value genReductionStart(Merger &merger, CodeGen &codegen,
750                                PatternRewriter &rewriter,
751                                linalg::GenericOp op) {
752   if (codegen.redVal)
753     return codegen.redVal; // chained with previous for-loop
754   // Generate vector or scalar start of a reduction.
755   unsigned vl = codegen.curVecLength;
756   if (vl > 1) {
757     VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]);
758     assert(!merger.exp(codegen.redExp).val);
759     codegen.curVecLength = 1;
760     Value load = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
761     codegen.curVecLength = vl;
762     return genReductionInit(rewriter, op.getLoc(), codegen.redKind, vtp, load);
763   }
764   return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
765 }
766 
767 /// Generates end of a reduction.
768 static void genReductionEnd(Merger &merger, CodeGen &codegen,
769                             PatternRewriter &rewriter, linalg::GenericOp op) {
770   Value red = codegen.redVal;
771   if (!red)
772     return;
773   assert(codegen.curVecLength == 1);
774   codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain
775   // Generate vector or scalar end of a reduction.
776   if (auto vtp = red.getType().dyn_cast<VectorType>()) {
777     StringRef name = getReductionName(codegen.redKind);
778     StringAttr kind = rewriter.getStringAttr(name);
779     red = rewriter.create<vector::ReductionOp>(
780         op.getLoc(), vtp.getElementType(), kind, red, ValueRange{});
781   }
782   genTensorStore(merger, codegen, rewriter, op, red);
783 }
784 
785 /// Recursively generates tensor expression.
786 static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
787                     linalg::GenericOp op, unsigned exp) {
788   Location loc = op.getLoc();
789   if (exp == -1u)
790     return Value();
791   if (merger.exp(exp).kind == Kind::kTensor)
792     return genTensorLoad(merger, codegen, rewriter, op, exp);
793   if (merger.exp(exp).kind == Kind::kInvariant)
794     return genInvariantValue(merger, codegen, rewriter, exp);
795   Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0);
796   Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1);
797   return merger.buildExp(rewriter, loc, exp, v0, v1);
798 }
799 
800 /// Determines if affine expression is invariant.
801 static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a,
802                               unsigned ldx, bool &atLevel) {
803   switch (a.getKind()) {
804   case AffineExprKind::DimId: {
805     unsigned idx = a.cast<AffineDimExpr>().getPosition();
806     if (idx == ldx)
807       atLevel = true;
808     return codegen.loops[idx] != nullptr; // no longer in play?
809   }
810   case AffineExprKind::Add:
811   case AffineExprKind::Mul: {
812     auto binOp = a.cast<AffineBinaryOpExpr>();
813     return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) &&
814            isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel);
815   }
816   default:
817     return true;
818   }
819 }
820 
821 /// Hoists loop invariant tensor loads for which indices have been exhausted.
822 static void genInvariants(Merger &merger, CodeGen &codegen,
823                           PatternRewriter &rewriter, linalg::GenericOp op,
824                           unsigned exp, unsigned ldx, bool hoist,
825                           Kind last = Kind::kTensor) {
826   if (exp == -1u)
827     return;
828   if (merger.exp(exp).kind == Kind::kTensor) {
829     // Inspect tensor indices.
830     bool atLevel = ldx == -1u;
831     OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
832     auto map = op.getTiedIndexingMap(t);
833     auto enc = getSparseTensorEncoding(t->get().getType());
834     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
835       AffineExpr a = map.getResult(perm(enc, d));
836       if (!isInvariantAffine(codegen, a, ldx, atLevel))
837         return; // still in play
838     }
839     // All exhausted at this level (atLevel denotes exactly at this level).
840     OpOperand *lhs = op.getOutputOperand(0);
841     if (lhs == t) {
842       codegen.redExp = hoist ? exp : -1u;
843       codegen.redKind = getReduction(last);
844     } else if (atLevel) {
845       merger.exp(exp).val =
846           hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
847     }
848   } else if (merger.exp(exp).kind != Kind::kInvariant) {
849     // Traverse into the binary operations. Note that we only hoist
850     // tensor loads, since subsequent MLIR/LLVM passes know how to
851     // deal with all other kinds of derived loop invariants.
852     Kind last = merger.exp(exp).kind;
853     unsigned e0 = merger.exp(exp).children.e0;
854     unsigned e1 = merger.exp(exp).children.e1;
855     genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist, last);
856     genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist, last);
857   }
858 }
859 
860 /// Generates initialization code for the subsequent loop sequence at
861 /// current index level. Returns true if the loop sequence needs to
862 /// maintain the universal index.
863 static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
864                     linalg::GenericOp op, std::vector<unsigned> &topSort,
865                     unsigned at, llvm::BitVector &inits) {
866   bool needsUniv = false;
867   Location loc = op.getLoc();
868   unsigned idx = topSort[at];
869 
870   // Initialize sparse positions.
871   for (unsigned b = 0, be = inits.size(); b < be; b++) {
872     if (inits[b]) {
873       unsigned tensor = merger.tensor(b);
874       assert(idx == merger.index(b));
875       if (merger.isDim(b, Dim::kSparse)) {
876         // Initialize sparse index.
877         unsigned pat = at;
878         for (; pat != 0; pat--) {
879           if (codegen.pidxs[tensor][topSort[pat - 1]])
880             break;
881         }
882         Value ptr = codegen.pointers[tensor][idx];
883         Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
884         Value p0 = (pat == 0) ? rewriter.create<arith::ConstantIndexOp>(loc, 0)
885                               : codegen.pidxs[tensor][topSort[pat - 1]];
886         codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
887         Value p1 = rewriter.create<arith::AddIOp>(loc, p0, one);
888         codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
889       } else {
890         // Dense index still in play.
891         needsUniv = true;
892       }
893     }
894   }
895 
896   // Initialize the universal dense index.
897   codegen.loops[idx] = rewriter.create<arith::ConstantIndexOp>(loc, 0);
898   return needsUniv;
899 }
900 
901 /// Returns vectorization strategy. Any implicit inner loop in the Linalg
902 /// operation is a candidate. Whether it is actually converted to SIMD code
903 /// depends on the requested strategy.
904 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
905   switch (codegen.options.vectorizationStrategy) {
906   case SparseVectorizationStrategy::kNone:
907     return false;
908   case SparseVectorizationStrategy::kDenseInnerLoop:
909     return isInner && !isSparse;
910   case SparseVectorizationStrategy::kAnyStorageInnerLoop:
911     return isInner;
912   }
913   llvm_unreachable("unexpected vectorization strategy");
914 }
915 
916 /// Returns parallelization strategy. Any implicit loop in the Linalg operation
917 /// that is marked "parallel" is a candidate. Whether it is actually converted
918 /// to a parallel operation depends on the requested strategy.
919 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
920                           bool isSparse, bool isVector) {
921   switch (codegen.options.parallelizationStrategy) {
922   case SparseParallelizationStrategy::kNone:
923     return false;
924   case SparseParallelizationStrategy::kDenseOuterLoop:
925     return isOuter && !isSparse && !isReduction && !isVector;
926   case SparseParallelizationStrategy::kAnyStorageOuterLoop:
927     return isOuter && !isReduction && !isVector;
928   case SparseParallelizationStrategy::kDenseAnyLoop:
929     return !isSparse && !isReduction && !isVector;
930   case SparseParallelizationStrategy::kAnyStorageAnyLoop:
931     return !isReduction && !isVector;
932   }
933   llvm_unreachable("unexpected parallelization strategy");
934 }
935 
936 /// Checks unit stride for dense tensors. The iteration graph may have ignored
937 /// dense access patterns in order to avoid cycles (sparse access patterns are
938 /// always placed innermost), but that means dense access has become strided.
939 /// This prevents effective vectorization.
940 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
941                              unsigned idx) {
942   for (OpOperand *t : op.getInputAndOutputOperands()) {
943     if (!getSparseTensorEncoding(t->get().getType())) {
944       auto map = op.getTiedIndexingMap(t);
945       for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
946         AffineExpr a = map.getResult(d);
947         // Report non-unit stride if innermost index appears at an outer
948         // dimension (true non-unit stride) or if the innermost index appears
949         // in a compound subscript in the innermost dimension. Even if the
950         // latter is unit stride, it does not play well with scatter/gather.
951         if (a.isFunctionOfDim(idx) &&
952             ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId)))
953           return false;
954       }
955     }
956   }
957   return true;
958 }
959 
960 /// Generates a for-loop on a single index.
961 static Operation *genFor(Merger &merger, CodeGen &codegen,
962                          PatternRewriter &rewriter, linalg::GenericOp op,
963                          bool isOuter, bool isInner, unsigned idx,
964                          llvm::BitVector &indices) {
965   unsigned fb = indices.find_first();
966   unsigned tensor = merger.tensor(fb);
967   assert(idx == merger.index(fb));
968   auto iteratorTypes = op.iterator_types().getValue();
969   bool isReduction = isReductionIterator(iteratorTypes[idx]);
970   bool isSparse = merger.isDim(fb, Dim::kSparse);
971   bool isVector = isVectorFor(codegen, isInner, isSparse) &&
972                   denseUnitStrides(merger, op, idx);
973   bool isParallel =
974       isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
975 
976   // Prepare vector length.
977   if (isVector)
978     codegen.curVecLength = codegen.options.vectorLength;
979 
980   // Loop bounds and increment.
981   Location loc = op.getLoc();
982   Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
983   Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
984   Value step =
985       rewriter.create<arith::ConstantIndexOp>(loc, codegen.curVecLength);
986 
987   // Emit a parallel loop.
988   if (isParallel) {
989     assert(!isVector);
990     scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
991     if (isSparse)
992       codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
993     else
994       codegen.loops[idx] = parOp.getInductionVars()[0];
995     rewriter.setInsertionPointToStart(parOp.getBody());
996     return parOp;
997   }
998 
999   // Emit a sequential loop, potentially with a scalarized reduction.
1000   bool scalarRed = isInner && codegen.redExp != -1u;
1001   SmallVector<Value, 4> operands;
1002   if (scalarRed) {
1003     Value load = genReductionStart(merger, codegen, rewriter, op);
1004     operands.push_back(load);
1005   }
1006   scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
1007   if (scalarRed) {
1008     codegen.redVal = merger.exp(codegen.redExp).val =
1009         forOp.getRegionIterArgs().front();
1010   }
1011   // Assign induction variable to sparse or dense index.
1012   Value iv = forOp.getInductionVar();
1013   if (isSparse)
1014     codegen.pidxs[tensor][idx] = iv;
1015   else
1016     codegen.loops[idx] = iv;
1017   rewriter.setInsertionPointToStart(forOp.getBody());
1018   // Share vector iteration mask between all subsequent loads/stores.
1019   if (isVector)
1020     codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
1021   return forOp;
1022 }
1023 
1024 /// Emit a while-loop for co-iteration over multiple indices.
1025 static Operation *genWhile(Merger &merger, CodeGen &codegen,
1026                            PatternRewriter &rewriter, linalg::GenericOp op,
1027                            unsigned idx, bool needsUniv,
1028                            llvm::BitVector &indices) {
1029   SmallVector<Type, 4> types;
1030   SmallVector<Value, 4> operands;
1031   // Construct the while-loop with a parameter for each index.
1032   Type indexType = rewriter.getIndexType();
1033   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1034     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1035       unsigned tensor = merger.tensor(b);
1036       assert(idx == merger.index(b));
1037       types.push_back(indexType);
1038       assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() &&
1039              "type mismatch for sparse index");
1040       operands.push_back(codegen.pidxs[tensor][idx]);
1041     }
1042   }
1043   if (needsUniv) {
1044     types.push_back(indexType);
1045     assert(codegen.loops[idx].getType().isa<IndexType>() &&
1046            "type mismatch for universal index");
1047     operands.push_back(codegen.loops[idx]);
1048   }
1049   Location loc = op.getLoc();
1050   scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
1051   Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
1052   Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
1053 
1054   // Build the "before" region, which effectively consists
1055   // of a conjunction of "i < upper" tests on all induction.
1056   rewriter.setInsertionPointToStart(&whileOp.before().front());
1057   Value cond;
1058   unsigned o = 0;
1059   for (unsigned b = 0, be = indices.size(); b < be; b++) {
1060     if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1061       unsigned tensor = merger.tensor(b);
1062       assert(idx == merger.index(b));
1063       Value op1 = before->getArgument(o);
1064       Value op2 = codegen.highs[tensor][idx];
1065       Value opc = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
1066                                                  op1, op2);
1067       cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, opc) : opc;
1068       codegen.pidxs[tensor][idx] = after->getArgument(o++);
1069     }
1070   }
1071   if (needsUniv)
1072     codegen.loops[idx] = after->getArgument(o++);
1073   assert(o == operands.size());
1074   rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
1075   rewriter.setInsertionPointToStart(&whileOp.after().front());
1076   return whileOp;
1077 }
1078 
1079 /// Generates a for-loop or a while-loop, depending on whether it implements
1080 /// singleton iteration or co-iteration over the given conjunction.
1081 static Operation *genLoop(Merger &merger, CodeGen &codegen,
1082                           PatternRewriter &rewriter, linalg::GenericOp op,
1083                           std::vector<unsigned> &topSort, unsigned at,
1084                           bool needsUniv, llvm::BitVector &indices) {
1085   unsigned idx = topSort[at];
1086   if (indices.count() == 1) {
1087     bool isOuter = at == 0;
1088     bool isInner = at == topSort.size() - 1;
1089     return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
1090                   indices);
1091   }
1092   genReductionEnd(merger, codegen, rewriter, op); // cannot chain
1093   return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
1094 }
1095 
1096 /// Generates the local variables for this loop, consisting of the sparse
1097 /// indices, restored universal dense index, and dense positions.
1098 static void genLocals(Merger &merger, CodeGen &codegen,
1099                       PatternRewriter &rewriter, linalg::GenericOp op,
1100                       std::vector<unsigned> &topSort, unsigned at,
1101                       bool needsUniv, llvm::BitVector &locals) {
1102   Location loc = op.getLoc();
1103   unsigned idx = topSort[at];
1104 
1105   // Initialize sparse indices.
1106   Value min;
1107   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1108     if (locals[b] && merger.isDim(b, Dim::kSparse)) {
1109       unsigned tensor = merger.tensor(b);
1110       assert(idx == merger.index(b));
1111       Value ptr = codegen.indices[tensor][idx];
1112       Value s = codegen.pidxs[tensor][idx];
1113       Value load = genLoad(codegen, rewriter, loc, ptr, s);
1114       codegen.idxs[tensor][idx] = load;
1115       if (!needsUniv) {
1116         if (min) {
1117           Value cmp = rewriter.create<arith::CmpIOp>(
1118               loc, arith::CmpIPredicate::ult, load, min);
1119           min = rewriter.create<SelectOp>(loc, cmp, load, min);
1120         } else {
1121           min = load;
1122         }
1123       }
1124     }
1125   }
1126 
1127   // Merge dense universal index over minimum.
1128   if (min) {
1129     assert(!needsUniv);
1130     codegen.loops[idx] = min;
1131   }
1132 
1133   // Initialize dense positions. Note that we generate dense indices of the
1134   // output tensor unconditionally, since they may not appear in the lattice,
1135   // but may be needed for linearized codegen.
1136   for (unsigned b = 0, be = locals.size(); b < be; b++) {
1137     if ((locals[b] || merger.isOutTensor(b, idx)) &&
1138         merger.isDim(b, Dim::kDense)) {
1139       unsigned tensor = merger.tensor(b);
1140       assert(idx == merger.index(b));
1141       unsigned pat = at;
1142       for (; pat != 0; pat--)
1143         if (codegen.pidxs[tensor][topSort[pat - 1]])
1144           break;
1145       Value p = (pat == 0) ? rewriter.create<arith::ConstantIndexOp>(loc, 0)
1146                            : codegen.pidxs[tensor][topSort[pat - 1]];
1147       codegen.pidxs[tensor][idx] = genAddress(
1148           codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
1149     }
1150   }
1151 }
1152 
1153 /// Generates the induction structure for a while-loop.
1154 static void genWhileInduction(Merger &merger, CodeGen &codegen,
1155                               PatternRewriter &rewriter, linalg::GenericOp op,
1156                               unsigned idx, bool needsUniv,
1157                               llvm::BitVector &induction, ResultRange results) {
1158   Location loc = op.getLoc();
1159   unsigned o = 0;
1160   SmallVector<Value, 4> operands;
1161   Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
1162   for (unsigned b = 0, be = induction.size(); b < be; b++) {
1163     if (induction[b] && merger.isDim(b, Dim::kSparse)) {
1164       unsigned tensor = merger.tensor(b);
1165       assert(idx == merger.index(b));
1166       Value op1 = codegen.idxs[tensor][idx];
1167       Value op2 = codegen.loops[idx];
1168       Value op3 = codegen.pidxs[tensor][idx];
1169       Value cmp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1170                                                  op1, op2);
1171       Value add = rewriter.create<arith::AddIOp>(loc, op3, one);
1172       operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
1173       codegen.pidxs[tensor][idx] = results[o++];
1174     }
1175   }
1176   if (needsUniv) {
1177     operands.push_back(
1178         rewriter.create<arith::AddIOp>(loc, codegen.loops[idx], one));
1179     codegen.loops[idx] = results[o++];
1180   }
1181   assert(o == operands.size());
1182   rewriter.create<scf::YieldOp>(loc, operands);
1183 }
1184 
1185 /// Generates a single if-statement within a while-loop.
1186 static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
1187                        PatternRewriter &rewriter, linalg::GenericOp op,
1188                        unsigned idx, llvm::BitVector &conditions) {
1189   Location loc = op.getLoc();
1190   Value cond;
1191   for (unsigned b = 0, be = conditions.size(); b < be; b++) {
1192     if (conditions[b]) {
1193       unsigned tensor = merger.tensor(b);
1194       assert(idx == merger.index(b));
1195       Value clause;
1196       if (merger.isDim(b, Dim::kSparse)) {
1197         Value op1 = codegen.idxs[tensor][idx];
1198         Value op2 = codegen.loops[idx];
1199         clause = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1200                                                 op1, op2);
1201       } else {
1202         clause = rewriter.create<arith::ConstantIntOp>(loc, 1, 1); // true
1203       }
1204       cond = cond ? rewriter.create<arith::AndIOp>(loc, cond, clause) : clause;
1205     }
1206   }
1207   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true);
1208   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
1209   return ifOp;
1210 }
1211 
1212 /// Recursively generates code while computing iteration lattices in order
1213 /// to manage the complexity of implementing co-iteration over unions
1214 /// and intersections of sparse iterations spaces.
1215 static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
1216                     linalg::GenericOp op, std::vector<unsigned> &topSort,
1217                     unsigned exp, unsigned at) {
1218   // At each leaf, assign remaining tensor (sub)expression to output tensor.
1219   if (at == topSort.size()) {
1220     Value rhs = genExp(merger, codegen, rewriter, op, exp);
1221     genTensorStore(merger, codegen, rewriter, op, rhs);
1222     return;
1223   }
1224   assert(codegen.curVecLength == 1);
1225 
1226   // Construct iteration lattices for current loop index, with L0 at top.
1227   // Then emit initialization code for the loop sequence at this level.
1228   // We maintain the universal dense index if dense indices are still
1229   // in play for a non-singleton loop sequence.
1230   Location loc = op.getLoc();
1231   unsigned idx = topSort[at];
1232   unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1233   unsigned lsize = merger.set(lts).size();
1234   assert(lsize != 0);
1235   unsigned l0 = merger.set(lts)[0];
1236   unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1237   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true);
1238   bool needsUniv = false;
1239   if (genInit(merger, codegen, rewriter, op, topSort, at,
1240               merger.lat(l0).bits)) {
1241     // Maintain the universal index only if it is actually
1242     // consumed by a subsequent lattice point.
1243     for (unsigned i = 1; i < lsize; i++) {
1244       unsigned li = merger.set(lts)[i];
1245       if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) {
1246         needsUniv = true;
1247         break;
1248       }
1249     }
1250   }
1251 
1252   // Emit a loop for every lattice point L0 >= Li.
1253   for (unsigned i = 0; i < lsize; i++) {
1254     unsigned li = merger.set(lts)[i];
1255 
1256     // Emit loop.
1257     codegen.curVecLength = 1;
1258     llvm::BitVector indices = merger.lat(li).simple;
1259     Operation *loop =
1260         genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices);
1261     genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
1262               merger.lat(li).bits);
1263 
1264     // Visit all lattices points with Li >= Lj to generate the
1265     // loop-body, possibly with if statements for coiteration.
1266     bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1267     for (unsigned j = 0; j < lsize; j++) {
1268       unsigned lj = merger.set(lts)[j];
1269       unsigned ej = merger.lat(lj).exp;
1270       if (li == lj || merger.latGT(li, lj)) {
1271         // Recurse into body of each branch.
1272         if (isWhile) {
1273           scf::IfOp ifOp =
1274               genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1275           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1276           rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
1277         } else {
1278           genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1279         }
1280       }
1281     }
1282 
1283     // Wrap-up induction and restore insertion point.
1284     if (isWhile) {
1285       scf::WhileOp whileOp = cast<scf::WhileOp>(loop);
1286       rewriter.setInsertionPointToEnd(&whileOp.after().front());
1287       genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
1288                         merger.lat(li).bits, whileOp.results());
1289     } else {
1290       needsUniv = false;
1291       if (codegen.redVal) {
1292         rewriter.create<scf::YieldOp>(loc, codegen.redVal);
1293         codegen.redVal = loop->getResult(0);
1294       }
1295     }
1296     rewriter.setInsertionPointAfter(loop);
1297   }
1298 
1299   // Wrap-up loop sequence.
1300   codegen.curVecLength = 1;
1301   genReductionEnd(merger, codegen, rewriter, op);
1302   genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false);
1303   codegen.loops[idx] = Value();
1304 }
1305 
1306 /// Converts the result computed by the sparse kernel into the required form.
1307 static void genResult(Merger &merger, CodeGen &codegen,
1308                       PatternRewriter &rewriter, linalg::GenericOp op) {
1309   Location loc = op.getLoc();
1310   OpOperand *lhs = op.getOutputOperand(0);
1311   Type resType = lhs->get().getType();
1312   unsigned tensor = lhs->getOperandNumber();
1313   auto map = op.getTiedIndexingMap(lhs);
1314   auto enc = getSparseTensorEncoding(resType);
1315   Value result = codegen.buffers.back(); // value array
1316   if (enc) {
1317     // The sparse annotation unambigiously defines the arrays needed
1318     // to "reconstruct" the sparse tensor from the storage scheme
1319     // (even though lowering should never need this eventually).
1320     SmallVector<Value, 4> args;
1321     for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1322       AffineExpr a = map.getResult(perm(enc, d));
1323       if (a.getKind() != AffineExprKind::DimId)
1324         continue; // compound
1325       unsigned idx = a.cast<AffineDimExpr>().getPosition();
1326       if (merger.isDim(tensor, idx, Dim::kSparse)) {
1327         args.push_back(codegen.pointers[tensor][idx]);
1328         args.push_back(codegen.indices[tensor][idx]);
1329       }
1330     }
1331     args.push_back(result);
1332     result = rewriter.create<ToTensorOp>(loc, resType, args);
1333   } else {
1334     // To "reconstruct" an non-annotated tensor, sipmly load it
1335     // from the bufferized value.
1336     result = rewriter.create<memref::TensorLoadOp>(loc, resType, result);
1337   }
1338   rewriter.replaceOp(op, result);
1339 }
1340 
1341 //===----------------------------------------------------------------------===//
1342 // Sparse compiler rewriting methods.
1343 //===----------------------------------------------------------------------===//
1344 
1345 namespace {
1346 
1347 /// Sparse rewriting rule for generic Lingalg operation.
1348 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1349 public:
1350   GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1351       : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1352 
1353   LogicalResult matchAndRewrite(linalg::GenericOp op,
1354                                 PatternRewriter &rewriter) const override {
1355     // Detects sparse annotations and translate the per-dimension sparsity
1356     // information for all tensors to loop indices in the kernel.
1357     assert(op.getNumOutputs() == 1);
1358     unsigned numTensors = op.getNumInputsAndOutputs();
1359     unsigned numLoops = op.iterator_types().getValue().size();
1360     Merger merger(numTensors, numLoops);
1361     if (!findSparseAnnotations(merger, op))
1362       return failure();
1363 
1364     // Computes a topologically sorted iteration graph to ensure
1365     // tensors are visited in natural index order. Fails on cycles.
1366     // This assumes that higher-level passes have already put the
1367     // tensors in each tensor expression in a feasible order.
1368     std::vector<unsigned> topSort;
1369     if (!computeIterationGraph(merger, op, topSort,
1370                                SortMask::kIncludeUndef |
1371                                    SortMask::kIncludeDense) &&
1372         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) &&
1373         !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) &&
1374         !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly))
1375       return failure();
1376 
1377     // Builds the tensor expression for the Linalg operation in SSA form.
1378     Optional<unsigned> exp = merger.buildTensorExpFromLinalg(op);
1379     if (!exp.hasValue())
1380       return failure();
1381 
1382     // Rejects an inadmissable tensor expression.
1383     if (!isAdmissableTensorExp(merger, op, exp.getValue()))
1384       return failure();
1385 
1386     // Recursively generates code.
1387     CodeGen codegen(options, numTensors, numLoops);
1388     if (!genBuffers(merger, codegen, rewriter, op))
1389       return failure(); // could not bufferize
1390     genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0);
1391     genResult(merger, codegen, rewriter, op);
1392     return success();
1393   }
1394 
1395 private:
1396   /// Options to control sparse code generation.
1397   SparsificationOptions options;
1398 };
1399 
1400 } // namespace
1401 
1402 /// Populates the given patterns list with rewriting rules required for
1403 /// the sparsification of linear algebra operations.
1404 void mlir::populateSparsificationPatterns(
1405     RewritePatternSet &patterns, const SparsificationOptions &options) {
1406   patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1407 }
1408