1 //===- Sparsification.cpp - Implementation of sparsification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements converting sparse tensor types to actual sparse code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CodegenUtils.h"
14
15 #include "mlir/Dialect/Affine/IR/AffineOps.h"
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
18 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
19 #include "mlir/Dialect/Func/IR/FuncOps.h"
20 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
21 #include "mlir/Dialect/Linalg/IR/Linalg.h"
22 #include "mlir/Dialect/Linalg/Utils/Utils.h"
23 #include "mlir/Dialect/MemRef/IR/MemRef.h"
24 #include "mlir/Dialect/SCF/IR/SCF.h"
25 #include "mlir/Dialect/SCF/Transforms/Transforms.h"
26 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
27 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
28 #include "mlir/Dialect/SparseTensor/Utils/Merger.h"
29 #include "mlir/Dialect/Tensor/IR/Tensor.h"
30 #include "mlir/Dialect/Vector/IR/VectorOps.h"
31 #include "mlir/IR/Matchers.h"
32 #include "mlir/IR/TensorEncoding.h"
33 #include "llvm/ADT/SmallBitVector.h"
34
35 using namespace mlir;
36 using namespace mlir::sparse_tensor;
37
38 //===----------------------------------------------------------------------===//
39 // Declarations of data structures.
40 //===----------------------------------------------------------------------===//
41
42 namespace {
43
44 // Iteration graph sorting.
45 enum SortMask {
46 kSparseOnly = 0x0,
47 kIncludeDense = 0x1,
48 kIncludeUndef = 0x2,
49 kIncludeAll = 0x3
50 };
51
52 // Reduction kinds.
53 enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor };
54
55 // Code generation.
56 struct CodeGen {
CodeGen__anon3f2435730111::CodeGen57 CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops,
58 OpOperand *op, unsigned nest)
59 : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
60 pointers(numTensors, std::vector<Value>(numLoops)),
61 indices(numTensors, std::vector<Value>(numLoops)),
62 highs(numTensors, std::vector<Value>(numLoops)),
63 pidxs(numTensors, std::vector<Value>(numLoops)),
64 idxs(numTensors, std::vector<Value>(numLoops)), redVal(), sparseOut(op),
65 outerParNest(nest), lexIdx(), lexVal(), expValues(), expFilled(),
66 expAdded(), expCount(), curVecMask() {}
67 /// Sparsification options.
68 SparsificationOptions options;
69 /// Universal dense indices and upper bounds (by index). The loops array
70 /// is updated with the value of the universal dense index in the current
71 /// loop. The sizes array is set once with the inferred dimension sizes.
72 std::vector<Value> loops;
73 std::vector<Value> sizes;
74 /// Buffers for storing dense and sparse numerical values (by tensor).
75 /// This array is set once during bufferization of all tensors.
76 std::vector<Value> buffers;
77 /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
78 /// This array is set once during bufferization of all sparse tensors.
79 std::vector<std::vector<Value>> pointers;
80 std::vector<std::vector<Value>> indices;
81 /// Sparse iteration information (by tensor and index). These arrays
82 /// are updated to remain current within the current loop.
83 std::vector<std::vector<Value>> highs;
84 std::vector<std::vector<Value>> pidxs;
85 std::vector<std::vector<Value>> idxs;
86 /// Current reduction, updated during code generation. When indices of a
87 /// reduction are exhausted, all inner loops can use a scalarized reduction.
88 unsigned redExp = -1u;
89 Value redVal;
90 Reduction redKind = kNoReduc;
91 // Sparse tensor as output. Implemented either through direct injective
92 // insertion in lexicographic index order (where indices are updated
93 // in the temporary array `lexIdx`) or through access pattern expansion
94 // in the innermost loop nest (`expValues` through `expCount`).
95 OpOperand *sparseOut;
96 unsigned outerParNest;
97 Value lexIdx;
98 Value lexVal;
99 Value expValues;
100 Value expFilled;
101 Value expAdded;
102 Value expCount;
103 // Current vector length and mask.
104 unsigned curVecLength = 1;
105 Value curVecMask;
106 };
107
108 } // namespace
109
110 //===----------------------------------------------------------------------===//
111 // Sparse compiler analysis methods.
112 //===----------------------------------------------------------------------===//
113
114 /// Helper method to construct a permuted dimension ordering
115 /// that adheres to the given topological sort.
permute(MLIRContext * context,AffineMap m,std::vector<unsigned> & topSort)116 static AffineMap permute(MLIRContext *context, AffineMap m,
117 std::vector<unsigned> &topSort) {
118 unsigned sz = topSort.size();
119 assert(m.getNumResults() == sz && "TopoSort/AffineMap size mismatch");
120 // Construct the inverse of `m`; to avoid the asymptotic complexity
121 // of calling `m.getPermutedPosition` repeatedly.
122 SmallVector<unsigned, 4> inv(sz);
123 for (unsigned i = 0; i < sz; i++)
124 inv[i] = m.getDimPosition(i);
125 // Construct the permutation.
126 SmallVector<unsigned, 4> perm(sz);
127 for (unsigned i = 0; i < sz; i++)
128 perm[i] = inv[topSort[i]];
129 return AffineMap::getPermutationMap(perm, context);
130 }
131
132 /// Helper method to apply dimension ordering permutation.
perm(const SparseTensorEncodingAttr & enc,unsigned d)133 static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) {
134 if (enc) {
135 auto order = enc.getDimOrdering();
136 if (order) {
137 assert(order.isPermutation());
138 return order.getDimPosition(d);
139 }
140 }
141 return d;
142 }
143
144 /// Helper method to translate dim level type to internal representation.
toDim(const SparseTensorEncodingAttr & enc,unsigned d)145 static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) {
146 if (enc) {
147 SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
148 if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
149 return Dim::kSparse;
150 if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
151 return Dim::kSingle;
152 }
153 return Dim::kDense;
154 }
155
156 /// Helper method to inspect affine expressions. Rejects cases where the
157 /// same index is used more than once. Also rejects affine expressions
158 /// that are not a direct index for annotated tensors.
159 // TODO: accept more affine cases for sparse tensors
findAffine(Merger & merger,unsigned tensor,AffineExpr a,Dim dim,bool isDense)160 static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim,
161 bool isDense) {
162 switch (a.getKind()) {
163 case AffineExprKind::DimId: {
164 unsigned idx = a.cast<AffineDimExpr>().getPosition();
165 if (!merger.isDim(tensor, idx, Dim::kUndef))
166 return false; // used more than once
167 merger.setDim(tensor, idx, dim);
168 return true;
169 }
170 case AffineExprKind::Add:
171 case AffineExprKind::Mul: {
172 if (!isDense)
173 return false;
174 auto binOp = a.cast<AffineBinaryOpExpr>();
175 return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) &&
176 findAffine(merger, tensor, binOp.getRHS(), dim, isDense);
177 }
178 case AffineExprKind::Constant:
179 return isDense;
180 default:
181 return false;
182 }
183 }
184
185 /// Helper method to inspect sparse encodings in the tensor types.
186 /// Fills the per-dimension sparsity information for all tensors.
187 /// Returns true if the sparse annotations and affine subscript
188 /// expressions of all tensors are admissable. Returns false if
189 /// no annotations are found or inadmissable constructs occur.
findSparseAnnotations(Merger & merger,linalg::GenericOp op)190 static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
191 bool annotated = false;
192 for (OpOperand *t : op.getInputAndOutputOperands()) {
193 auto map = op.getTiedIndexingMap(t);
194 auto enc = getSparseTensorEncoding(t->get().getType());
195 if (enc)
196 annotated = true;
197 assert(map.getNumResults() == op.getRank(t));
198 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
199 unsigned tensor = t->getOperandNumber();
200 AffineExpr a = map.getResult(perm(enc, d));
201 if (!findAffine(merger, tensor, a, toDim(enc, d), !enc))
202 return false; // inadmissable affine expression
203 }
204 }
205 return annotated;
206 }
207
208 /// A DFS helper to compute a topological sort. Note that recursion is
209 /// bounded by the number of implicit loops, which is always small.
210 /// Returns false when a cycle is detected.
topSortDFS(unsigned i,std::vector<unsigned> & visit,std::vector<unsigned> & topSort,std::vector<std::vector<bool>> & adjM)211 static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
212 std::vector<unsigned> &topSort,
213 std::vector<std::vector<bool>> &adjM) {
214 if (visit[i] != 0)
215 return visit[i] != 1; // 1 denotes cycle!
216 visit[i] = 1;
217 for (unsigned j = 0, e = visit.size(); j < e; j++)
218 if (adjM[i][j])
219 if (!topSortDFS(j, visit, topSort, adjM))
220 return false;
221 visit[i] = 2;
222 topSort.push_back(i);
223 return true;
224 }
225
226 /// Helper method to add all constraints from the indices in one affine
227 /// expression before all indices in the other affine expression. For
228 /// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
addAffineOrderings(std::vector<std::vector<bool>> & adjM,AffineExpr a,AffineExpr b,unsigned fidx)229 static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
230 AffineExpr a, AffineExpr b, unsigned fidx) {
231 switch (a.getKind()) {
232 case AffineExprKind::DimId: {
233 unsigned idx = a.cast<AffineDimExpr>().getPosition();
234 if (b)
235 addAffineOrderings(adjM, b, AffineExpr(), idx);
236 else
237 adjM[fidx][idx] = true;
238 break;
239 }
240 case AffineExprKind::Add:
241 case AffineExprKind::Mul: {
242 auto binOp = a.cast<AffineBinaryOpExpr>();
243 addAffineOrderings(adjM, binOp.getLHS(), b, fidx);
244 addAffineOrderings(adjM, binOp.getRHS(), b, fidx);
245 break;
246 }
247 default:
248 break;
249 }
250 }
251
252 /// Computes a topologically sorted iteration graph for the linalg operation.
253 /// Ensures all tensors are visited in natural index order. This is essential
254 /// for sparse storage formats since these only support access along fixed
255 /// dimensions. Even for dense storage formats, however, the natural index
256 /// order yields innermost unit-stride access with better spatial locality.
computeIterationGraph(Merger & merger,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned mask,OpOperand * skip=nullptr)257 static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
258 std::vector<unsigned> &topSort, unsigned mask,
259 OpOperand *skip = nullptr) {
260 // Set up an n x n from/to adjacency matrix of the iteration graph
261 // for the implicit loop indices i_0 .. i_n-1.
262 unsigned n = op.getNumLoops();
263 std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
264
265 // Iterate over the indexing maps of every tensor in the tensor expression.
266 for (OpOperand *t : op.getInputAndOutputOperands()) {
267 // Skip tensor during cycle resolution.
268 if (t == skip)
269 continue;
270 // Get map and encoding.
271 auto map = op.getTiedIndexingMap(t);
272 auto enc = getSparseTensorEncoding(t->get().getType());
273 assert(map.getNumDims() == n);
274 // Skip dense tensor constraints when not requested.
275 if (!(mask & SortMask::kIncludeDense) && !enc)
276 continue;
277 // Each tensor expression and optional dimension ordering (row-major
278 // by default) puts an ordering constraint on the loop indices. For
279 // example, the tensor expresion A_ijk forces the ordering i < j < k
280 // on the loop indices if no explicit dimension ordering is given.
281 for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
282 AffineExpr f = map.getResult(perm(enc, d - 1));
283 AffineExpr t = map.getResult(perm(enc, d));
284 addAffineOrderings(adjM, f, t, 0);
285 }
286 // Push unrelated loops into sparse iteration space, so these
287 // will be skipped more often.
288 if (mask & SortMask::kIncludeUndef) {
289 unsigned tensor = t->getOperandNumber();
290 for (unsigned i = 0; i < n; i++)
291 if (merger.isDim(tensor, i, Dim::kSparse))
292 for (unsigned j = 0; j < n; j++)
293 if (merger.isDim(tensor, j, Dim::kUndef))
294 adjM[i][j] = true;
295 }
296 }
297
298 // Topologically sort the iteration graph to determine loop order.
299 // Report failure for a cyclic iteration graph.
300 topSort.clear();
301 topSort.reserve(n);
302 std::vector<unsigned> visit(n, 0);
303 for (unsigned i = 0; i < n; i++)
304 if (visit[i] == 0)
305 if (!topSortDFS(i, visit, topSort, adjM))
306 return false; // cycle!
307 std::reverse(std::begin(topSort), std::end(topSort));
308 return true;
309 }
310
311 /// Returns true if tensor materializes uninitialized into the computation.
isMaterializing(Value val)312 static bool isMaterializing(Value val) {
313 return val.getDefiningOp<linalg::InitTensorOp>() ||
314 val.getDefiningOp<bufferization::AllocTensorOp>();
315 }
316
317 /// Returns true when the tensor expression is admissable for codegen.
318 /// Since all sparse input tensors are admissable, we just need to check
319 /// whether the out tensor in the tensor expression codegen is admissable.
320 /// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective
321 /// nesting depth when a "truly dynamic" sparse tensor output occurs.
isAdmissableTensorExp(Merger & merger,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned exp,OpOperand ** sparseOut,unsigned & outerParNest)322 static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
323 std::vector<unsigned> &topSort, unsigned exp,
324 OpOperand **sparseOut,
325 unsigned &outerParNest) {
326 OpOperand *lhs = op.getOutputOperand(0);
327 unsigned tensor = lhs->getOperandNumber();
328 auto enc = getSparseTensorEncoding(lhs->get().getType());
329 // An non-annotated output tensor is assumed dense, and becomes a random
330 // access n-dim memref. Admissable since insertions cannot occur.
331 if (!enc)
332 return true;
333 // An all-dense annotated "sparse" output tensor becomes a linearized random
334 // access 1-dim memref. Also admissable since insertions cannot occur.
335 bool allDense = true;
336 auto iteratorTypes = op.iterator_types().getValue();
337 unsigned numLoops = iteratorTypes.size();
338 for (unsigned i = 0; i < numLoops; i++)
339 if (merger.isDim(tensor, i, Dim::kSparse)) {
340 allDense = false;
341 break;
342 }
343 if (allDense)
344 return true;
345 // A tensor expression with a sparse output tensor that changes its values
346 // but not its nonzero structure, an operation called "simply dynamic" in
347 // [Bik96,Ch9], is also admissable without special codegen.
348 if (merger.isSingleCondition(tensor, exp))
349 return true;
350 // Accept "truly dynamic" if the output tensor materializes uninitialized
351 // into the computation and insertions occur in lexicographic index order.
352 if (isMaterializing(lhs->get())) {
353 unsigned nest = 0;
354 for (unsigned i = 0; i < numLoops; i++) {
355 if (isReductionIterator(iteratorTypes[topSort[i]]))
356 break; // terminate at first reduction
357 nest++;
358 }
359 // Determine admissable dynamic insertion situations:
360 // (1) fully injective, since there are no reductions,
361 // (2) admissable 1-d expansion in innermost dimension.
362 if (nest >= op.getRank(lhs) - 1) {
363 *sparseOut = lhs;
364 outerParNest = nest;
365 return true;
366 }
367 }
368 return false;
369 }
370
371 //===----------------------------------------------------------------------===//
372 // Sparse compiler synthesis methods (reductions).
373 //===----------------------------------------------------------------------===//
374
375 /// Maps reduction kind to vector::CombiningKind.
getCombiningKind(Reduction kind)376 static vector::CombiningKind getCombiningKind(Reduction kind) {
377 switch (kind) {
378 case kNoReduc:
379 break;
380 case kSum:
381 return vector::CombiningKind::ADD;
382 case kProduct:
383 return vector::CombiningKind::MUL;
384 case kAnd:
385 return vector::CombiningKind::AND;
386 case kOr:
387 return vector::CombiningKind::OR;
388 case kXor:
389 return vector::CombiningKind::XOR;
390 }
391 llvm_unreachable("unknown reduction kind");
392 }
393
394 /// Maps operation to reduction.
getReduction(Kind kind)395 static Reduction getReduction(Kind kind) {
396 switch (kind) {
397 case Kind::kAddF:
398 case Kind::kAddC:
399 case Kind::kAddI:
400 case Kind::kSubF:
401 case Kind::kSubC:
402 case Kind::kSubI:
403 return kSum;
404 case Kind::kMulF:
405 case Kind::kMulC:
406 case Kind::kMulI:
407 return kProduct;
408 case Kind::kAndI:
409 return kAnd;
410 case Kind::kOrI:
411 return kOr;
412 case Kind::kXorI:
413 return kXor;
414 default:
415 llvm_unreachable("unexpected reduction operator");
416 }
417 }
418
419 /// Generates an initial value for a vector reduction, following the scheme
420 /// given in Chapter 5 of "The Software Vectorization Handbook", where the
421 /// initial scalar value is correctly embedded in the vector reduction value,
422 /// and a straightforward horizontal reduction will complete the operation.
genVectorReducInit(CodeGen & codegen,OpBuilder & builder,Location loc,VectorType vtp)423 static Value genVectorReducInit(CodeGen &codegen, OpBuilder &builder,
424 Location loc, VectorType vtp) {
425 Value r = codegen.redVal;
426 switch (codegen.redKind) {
427 case kNoReduc:
428 break;
429 case kSum:
430 case kXor:
431 // Initialize reduction vector to: | 0 | .. | 0 | r |
432 return builder.create<vector::InsertElementOp>(
433 loc, r, constantZero(builder, loc, vtp),
434 constantIndex(builder, loc, 0));
435 case kProduct:
436 // Initialize reduction vector to: | 1 | .. | 1 | r |
437 return builder.create<vector::InsertElementOp>(
438 loc, r, constantOne(builder, loc, vtp), constantIndex(builder, loc, 0));
439 case kAnd:
440 case kOr:
441 // Initialize reduction vector to: | r | .. | r | r |
442 return builder.create<vector::BroadcastOp>(loc, vtp, r);
443 }
444 llvm_unreachable("unknown reduction kind");
445 }
446
447 /// Generates final value for a vector reduction.
genVectorReducEnd(CodeGen & codegen,OpBuilder & builder,Location loc,VectorType vtp)448 static Value genVectorReducEnd(CodeGen &codegen, OpBuilder &builder,
449 Location loc, VectorType vtp) {
450 vector::CombiningKind kind = getCombiningKind(codegen.redKind);
451 return builder.create<vector::ReductionOp>(loc, kind, codegen.redVal);
452 }
453
454 /// Updates scalarized reduction value.
updateReduc(Merger & merger,CodeGen & codegen,Value reduc)455 static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) {
456 assert(codegen.redKind != kNoReduc);
457 codegen.redVal = merger.exp(codegen.redExp).val = reduc;
458 }
459
460 //===----------------------------------------------------------------------===//
461 // Sparse compiler synthesis methods (statements and expressions).
462 //===----------------------------------------------------------------------===//
463
464 /// Generates buffer for the output tensor. Note that all sparse kernels
465 /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)),
466 /// the output buffer is already initialized to all zeroes and only nonzeroes
467 /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)),
468 /// only nonzeroes values are used for the updates and no assumption on the
469 /// original contents of the output buffer is necessary.
genOutputBuffer(CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,MemRefType denseTp,ArrayRef<Value> args)470 static Value genOutputBuffer(CodeGen &codegen, OpBuilder &builder,
471 linalg::GenericOp op, MemRefType denseTp,
472 ArrayRef<Value> args) {
473 Location loc = op.getLoc();
474 OpOperand *lhs = op.getOutputOperand(0);
475 Value tensor = lhs->get();
476 bool isInit = op.isInitTensor(lhs);
477 // An output tensor can simply materialize from the buffer of the tensor that
478 // appears in the outs() clause. For updates, this has the advantage that only
479 // the nonzero value are involved in the computation, keeping the operation
480 // O(nnz). In all other cases, we are forced to zero out the buffer to enforce
481 // the assumption above, which may negatively impact running complexity
482 // (viz. O(n^2 + nnz) vs. O(nnz) for matrices).
483 // TODO: use better analysis to avoid zeroing out the buffer?
484 Value init = builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
485 if (!isInit) {
486 Value zero = constantZero(builder, loc, denseTp.getElementType());
487 builder.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{init});
488 }
489 return init;
490 }
491
492 /// Local bufferization of all dense and sparse data structures.
493 /// This code enables testing the first prototype sparse compiler.
494 // TODO: replace this with a proliferated bufferization strategy
genBuffers(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op)495 static void genBuffers(Merger &merger, CodeGen &codegen, OpBuilder &builder,
496 linalg::GenericOp op) {
497 Location loc = op.getLoc();
498 assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
499 // For every tensor, find lower and upper bound on dimensions, set the
500 // same bounds on loop indices, and obtain dense or sparse buffer(s).
501 SmallVector<Value, 4> args;
502 for (OpOperand *t : op.getInputAndOutputOperands()) {
503 unsigned tensor = t->getOperandNumber();
504 auto shape = op.getShape(t);
505 auto map = op.getTiedIndexingMap(t);
506 auto enc = getSparseTensorEncoding(t->get().getType());
507 // Scan all dimensions of current tensor.
508 args.clear();
509 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
510 AffineExpr a = map.getResult(perm(enc, d));
511 if (a.getKind() != AffineExprKind::DimId)
512 continue; // compound
513 unsigned idx = a.cast<AffineDimExpr>().getPosition();
514 // Handle sparse storage schemes.
515 if (merger.isDim(tensor, idx, Dim::kSparse)) {
516 auto dynShape = {ShapedType::kDynamicSize};
517 auto ptrTp =
518 MemRefType::get(dynShape, getPointerOverheadType(builder, enc));
519 auto indTp =
520 MemRefType::get(dynShape, getIndexOverheadType(builder, enc));
521 Value dim = constantIndex(builder, loc, d);
522 // Generate sparse primitives to obtains pointer and indices.
523 codegen.pointers[tensor][idx] =
524 builder.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
525 codegen.indices[tensor][idx] =
526 builder.create<ToIndicesOp>(loc, indTp, t->get(), dim);
527 }
528 // Find upper bound in current dimension.
529 unsigned p = perm(enc, d);
530 Value up = linalg::createOrFoldDimOp(builder, loc, t->get(), p);
531 if (ShapedType::isDynamic(shape[p]))
532 args.push_back(up);
533 assert(codegen.highs[tensor][idx] == nullptr);
534 codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
535 }
536 // Perform the required bufferization. Dense inputs materialize
537 // from the input tensors. Dense outputs need special handling.
538 // Sparse inputs use sparse primitives to obtain the values.
539 // We also accept in-place all-dense annotated "sparse" outputs.
540 Type elementType = getElementTypeOrSelf(t->get().getType());
541 if (!enc) {
542 // Non-annotated dense tensors.
543 auto denseTp = MemRefType::get(shape, elementType);
544 if (tensor < op.getNumInputs())
545 codegen.buffers[tensor] =
546 builder.create<bufferization::ToMemrefOp>(loc, denseTp, t->get());
547 else
548 codegen.buffers[tensor] =
549 genOutputBuffer(codegen, builder, op, denseTp, args);
550 } else if (t == codegen.sparseOut) {
551 // True sparse output needs a lexIdx array.
552 Value rank = constantIndex(builder, loc, op.getRank(t));
553 auto dynShape = {ShapedType::kDynamicSize};
554 auto memTp = MemRefType::get(dynShape, builder.getIndexType());
555 codegen.lexIdx = builder.create<memref::AllocaOp>(loc, memTp, rank);
556 codegen.lexVal = builder.create<memref::AllocaOp>(
557 loc, MemRefType::get({}, elementType));
558 } else {
559 // Annotated sparse tensors.
560 auto dynShape = {ShapedType::kDynamicSize};
561 auto sparseTp = MemRefType::get(dynShape, elementType);
562 codegen.buffers[tensor] =
563 builder.create<ToValuesOp>(loc, sparseTp, t->get());
564 }
565 }
566 }
567
568 /// Constructs vector type.
vectorType(CodeGen & codegen,Type etp)569 static VectorType vectorType(CodeGen &codegen, Type etp) {
570 unsigned numScalableDims = codegen.options.enableVLAVectorization;
571 return VectorType::get(codegen.curVecLength, etp, numScalableDims);
572 }
573
574 /// Constructs vector type from pointer.
vectorType(CodeGen & codegen,Value ptr)575 static VectorType vectorType(CodeGen &codegen, Value ptr) {
576 return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
577 }
578
579 /// Constructs vector iteration mask.
genVectorMask(CodeGen & codegen,OpBuilder & builder,Value iv,Value lo,Value hi,Value step)580 static Value genVectorMask(CodeGen &codegen, OpBuilder &builder, Value iv,
581 Value lo, Value hi, Value step) {
582 Location loc = iv.getLoc();
583 VectorType mtp = vectorType(codegen, builder.getI1Type());
584 // Special case if the vector length evenly divides the trip count (for
585 // example, "for i = 0, 128, 16"). A constant all-true mask is generated
586 // so that all subsequent masked memory operations are immediately folded
587 // into unconditional memory operations.
588 IntegerAttr loInt, hiInt, stepInt;
589 if (matchPattern(lo, m_Constant(&loInt)) &&
590 matchPattern(hi, m_Constant(&hiInt)) &&
591 matchPattern(step, m_Constant(&stepInt))) {
592 if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
593 return builder.create<vector::BroadcastOp>(
594 loc, mtp, constantI1(builder, loc, true));
595 }
596 // Otherwise, generate a vector mask that avoids overrunning the upperbound
597 // during vector execution. Here we rely on subsequent loop optimizations to
598 // avoid executing the mask in all iterations, for example, by splitting the
599 // loop into an unconditional vector loop and a scalar cleanup loop.
600 auto minMap = AffineMap::get(
601 /*dimCount=*/2, /*symbolCount=*/1,
602 {builder.getAffineSymbolExpr(0),
603 builder.getAffineDimExpr(0) - builder.getAffineDimExpr(1)},
604 builder.getContext());
605 Value end =
606 builder.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step});
607 return builder.create<vector::CreateMaskOp>(loc, mtp, end);
608 }
609
610 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
genVectorLoad(CodeGen & codegen,OpBuilder & builder,Value ptr,ArrayRef<Value> args)611 static Value genVectorLoad(CodeGen &codegen, OpBuilder &builder, Value ptr,
612 ArrayRef<Value> args) {
613 Location loc = ptr.getLoc();
614 VectorType vtp = vectorType(codegen, ptr);
615 Value pass = constantZero(builder, loc, vtp);
616 if (args.back().getType().isa<VectorType>()) {
617 SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
618 Value indexVec = args.back();
619 scalarArgs.back() = constantIndex(builder, loc, 0);
620 return builder.create<vector::GatherOp>(loc, vtp, ptr, scalarArgs, indexVec,
621 codegen.curVecMask, pass);
622 }
623 return builder.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
624 codegen.curVecMask, pass);
625 }
626
627 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
genVectorStore(CodeGen & codegen,OpBuilder & builder,Value rhs,Value ptr,ArrayRef<Value> args)628 static void genVectorStore(CodeGen &codegen, OpBuilder &builder, Value rhs,
629 Value ptr, ArrayRef<Value> args) {
630 Location loc = ptr.getLoc();
631 if (args.back().getType().isa<VectorType>()) {
632 SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
633 Value indexVec = args.back();
634 scalarArgs.back() = constantIndex(builder, loc, 0);
635 builder.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
636 codegen.curVecMask, rhs);
637 return;
638 }
639 builder.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
640 rhs);
641 }
642
643 /// Generates a vectorized invariant. Here we rely on subsequent loop
644 /// optimizations to hoist the invariant broadcast out of the vector loop.
genVectorInvariantValue(CodeGen & codegen,OpBuilder & builder,Value val)645 static Value genVectorInvariantValue(CodeGen &codegen, OpBuilder &builder,
646 Value val) {
647 VectorType vtp = vectorType(codegen, val.getType());
648 return builder.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
649 }
650
651 /// Generates an affine expression.
652 //
653 // TODO: generalize for sparse tensor subscripts
654 //
genAffine(CodeGen & codegen,OpBuilder & builder,AffineExpr a,Location loc)655 static Value genAffine(CodeGen &codegen, OpBuilder &builder, AffineExpr a,
656 Location loc) {
657 switch (a.getKind()) {
658 case AffineExprKind::DimId: {
659 unsigned idx = a.cast<AffineDimExpr>().getPosition();
660 return codegen.loops[idx]; // universal dense index
661 }
662 case AffineExprKind::Add: {
663 auto binOp = a.cast<AffineBinaryOpExpr>();
664 return builder.create<arith::AddIOp>(
665 loc, genAffine(codegen, builder, binOp.getLHS(), loc),
666 genAffine(codegen, builder, binOp.getRHS(), loc));
667 }
668 case AffineExprKind::Mul: {
669 auto binOp = a.cast<AffineBinaryOpExpr>();
670 return builder.create<arith::MulIOp>(
671 loc, genAffine(codegen, builder, binOp.getLHS(), loc),
672 genAffine(codegen, builder, binOp.getRHS(), loc));
673 }
674 case AffineExprKind::Constant: {
675 int64_t c = a.cast<AffineConstantExpr>().getValue();
676 return constantIndex(builder, loc, c);
677 }
678 default:
679 llvm_unreachable("unexpected affine subscript");
680 }
681 }
682
683 /// Generates index for load/store on sparse tensor.
genIndex(CodeGen & codegen,linalg::GenericOp op,OpOperand * t)684 static Value genIndex(CodeGen &codegen, linalg::GenericOp op, OpOperand *t) {
685 auto map = op.getTiedIndexingMap(t);
686 auto enc = getSparseTensorEncoding(t->get().getType());
687 AffineExpr a = map.getResult(perm(enc, map.getNumResults() - 1));
688 assert(a.getKind() == AffineExprKind::DimId);
689 unsigned idx = a.cast<AffineDimExpr>().getPosition();
690 return codegen.loops[idx];
691 }
692
693 /// Generates subscript for load/store on a dense or sparse tensor.
genSubscript(CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,OpOperand * t,SmallVector<Value,4> & args)694 static Value genSubscript(CodeGen &codegen, OpBuilder &builder,
695 linalg::GenericOp op, OpOperand *t,
696 SmallVector<Value, 4> &args) {
697 unsigned tensor = t->getOperandNumber();
698 auto map = op.getTiedIndexingMap(t);
699 auto enc = getSparseTensorEncoding(t->get().getType());
700 unsigned rank = map.getNumResults();
701 if (enc) {
702 // Note that currently, all sparse subscripts are simple.
703 // TODO: accept affine too?
704 AffineExpr a = map.getResult(perm(enc, rank - 1));
705 assert(a.getKind() == AffineExprKind::DimId);
706 unsigned idx = a.cast<AffineDimExpr>().getPosition();
707 assert(codegen.pidxs[tensor][idx] != nullptr);
708 args.push_back(codegen.pidxs[tensor][idx]); // position index
709 } else {
710 for (unsigned d = 0; d < rank; d++) {
711 AffineExpr a = map.getResult(perm(enc, d));
712 args.push_back(genAffine(codegen, builder, a, op.getLoc()));
713 }
714 }
715 return codegen.buffers[tensor];
716 }
717
718 /// Generates insertion code to implement dynamic tensor load.
genInsertionLoad(CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,OpOperand * t)719 static Value genInsertionLoad(CodeGen &codegen, OpBuilder &builder,
720 linalg::GenericOp op, OpOperand *t) {
721 Location loc = op.getLoc();
722 // Direct lexicographic index order, tensor loads as zero.
723 if (!codegen.expValues) {
724 Type tp = getElementTypeOrSelf(t->get().getType());
725 return constantZero(builder, loc, tp);
726 }
727 // Load from expanded access pattern.
728 Value index = genIndex(codegen, op, t);
729 return builder.create<memref::LoadOp>(loc, codegen.expValues, index);
730 }
731
732 /// Generates insertion code to implement dynamic tensor store.
genInsertionStore(CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,OpOperand * t,Value rhs)733 static void genInsertionStore(CodeGen &codegen, OpBuilder &builder,
734 linalg::GenericOp op, OpOperand *t, Value rhs) {
735 Location loc = op.getLoc();
736 // Direct insertion in lexicographic index order.
737 if (!codegen.expValues) {
738 builder.create<memref::StoreOp>(loc, rhs, codegen.lexVal);
739 builder.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, codegen.lexVal);
740 return;
741 }
742 // Generates insertion code along expanded access pattern.
743 // if (!expFilled[i]) then
744 // expFilled[i] = true
745 // expAdded[inserts++] = i
746 // endif
747 // values[i] = rhs
748 Value index = genIndex(codegen, op, t);
749 Value fval = constantI1(builder, loc, false);
750 Value tval = constantI1(builder, loc, true);
751 // If statement.
752 Value filled = builder.create<memref::LoadOp>(loc, codegen.expFilled, index);
753 Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
754 filled, fval);
755 scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIndexType(), cond,
756 /*else=*/true);
757 // True branch.
758 builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
759 builder.create<memref::StoreOp>(loc, tval, codegen.expFilled, index);
760 builder.create<memref::StoreOp>(loc, index, codegen.expAdded,
761 codegen.expCount);
762 Value one = constantIndex(builder, loc, 1);
763 Value add = builder.create<arith::AddIOp>(loc, codegen.expCount, one);
764 builder.create<scf::YieldOp>(loc, add);
765 // False branch.
766 builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
767 builder.create<scf::YieldOp>(loc, codegen.expCount);
768 builder.setInsertionPointAfter(ifOp);
769 // Value assignment.
770 codegen.expCount = ifOp.getResult(0);
771 builder.create<memref::StoreOp>(loc, rhs, codegen.expValues, index);
772 }
773
774 /// Generates a load on a dense or sparse tensor.
genTensorLoad(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned exp)775 static Value genTensorLoad(Merger &merger, CodeGen &codegen, OpBuilder &builder,
776 linalg::GenericOp op, unsigned exp) {
777 // Test if the load was hoisted to a higher loop nest.
778 Value val = merger.exp(exp).val;
779 if (val) {
780 if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
781 return genVectorInvariantValue(codegen, builder, val);
782 return val;
783 }
784 // Load during insertion.
785 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
786 if (t == codegen.sparseOut)
787 return genInsertionLoad(codegen, builder, op, t);
788 // Actual load.
789 SmallVector<Value, 4> args;
790 Value ptr = genSubscript(codegen, builder, op, t, args);
791 if (codegen.curVecLength > 1)
792 return genVectorLoad(codegen, builder, ptr, args);
793 return builder.create<memref::LoadOp>(op.getLoc(), ptr, args);
794 }
795
796 /// Generates a store on a dense or sparse tensor.
genTensorStore(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned exp,Value rhs)797 static void genTensorStore(Merger &merger, CodeGen &codegen, OpBuilder &builder,
798 linalg::GenericOp op, unsigned exp, Value rhs) {
799 Location loc = op.getLoc();
800 // Test if this is a scalarized reduction.
801 if (codegen.redVal) {
802 if (codegen.curVecLength > 1)
803 rhs = builder.create<arith::SelectOp>(loc, codegen.curVecMask, rhs,
804 codegen.redVal);
805 updateReduc(merger, codegen, rhs);
806 return;
807 }
808 // Store during insertion.
809 OpOperand *t = op.getOutputOperand(0);
810 if (t == codegen.sparseOut) {
811 if (!rhs) {
812 // Only unary and binary are allowed to return uninitialized rhs
813 // to indicate missing output.
814 assert(merger.exp(exp).kind == kUnary || merger.exp(exp).kind == kBinary);
815 } else {
816 genInsertionStore(codegen, builder, op, t, rhs);
817 }
818 return;
819 }
820 // Actual store.
821 SmallVector<Value, 4> args;
822 Value ptr = genSubscript(codegen, builder, op, t, args);
823 if (codegen.curVecLength > 1)
824 genVectorStore(codegen, builder, rhs, ptr, args);
825 else
826 builder.create<memref::StoreOp>(loc, rhs, ptr, args);
827 }
828
829 /// Generates a pointer/index load from the sparse storage scheme. Narrower
830 /// data types need to be zero extended before casting the value into the
831 /// index type used for looping and indexing.
genLoad(CodeGen & codegen,OpBuilder & builder,Location loc,Value ptr,Value s)832 static Value genLoad(CodeGen &codegen, OpBuilder &builder, Location loc,
833 Value ptr, Value s) {
834 // See https://llvm.org/docs/GetElementPtr.html for some background on
835 // the complications described below.
836 if (codegen.curVecLength > 1) {
837 // Since the index vector is used in a subsequent gather/scatter operations,
838 // which effectively defines an unsigned pointer + signed index, we must
839 // zero extend the vector to an index width. For 8-bit and 16-bit values,
840 // an 32-bit index width suffices. For 32-bit values, zero extending the
841 // elements into 64-bit loses some performance since the 32-bit indexed
842 // gather/scatter is more efficient than the 64-bit index variant (if the
843 // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
844 // preserve this performance). For 64-bit values, there is no good way
845 // to state that the indices are unsigned, with creates the potential of
846 // incorrect address calculations in the unlikely case we need such
847 // extremely large offsets.
848 Type etp = ptr.getType().cast<MemRefType>().getElementType();
849 Value vload = genVectorLoad(codegen, builder, ptr, {s});
850 if (!etp.isa<IndexType>()) {
851 if (etp.getIntOrFloatBitWidth() < 32)
852 vload = builder.create<arith::ExtUIOp>(
853 loc, vectorType(codegen, builder.getI32Type()), vload);
854 else if (etp.getIntOrFloatBitWidth() < 64 &&
855 !codegen.options.enableSIMDIndex32)
856 vload = builder.create<arith::ExtUIOp>(
857 loc, vectorType(codegen, builder.getI64Type()), vload);
858 }
859 return vload;
860 }
861 // For the scalar case, we simply zero extend narrower indices into 64-bit
862 // values before casting to index without a performance penalty. Here too,
863 // however, indices that already are 64-bit, in theory, cannot express the
864 // full range as explained above.
865 Value load = builder.create<memref::LoadOp>(loc, ptr, s);
866 if (!load.getType().isa<IndexType>()) {
867 if (load.getType().getIntOrFloatBitWidth() < 64)
868 load = builder.create<arith::ExtUIOp>(loc, builder.getI64Type(), load);
869 load =
870 builder.create<arith::IndexCastOp>(loc, builder.getIndexType(), load);
871 }
872 return load;
873 }
874
875 /// Generates an invariant value.
genInvariantValue(Merger & merger,CodeGen & codegen,OpBuilder & builder,unsigned exp)876 static Value genInvariantValue(Merger &merger, CodeGen &codegen,
877 OpBuilder &builder, unsigned exp) {
878 Value val = merger.exp(exp).val;
879 if (codegen.curVecLength > 1)
880 return genVectorInvariantValue(codegen, builder, val);
881 return val;
882 }
883
884 /// Generates an address computation "sz * p + i".
genAddress(CodeGen & codegen,OpBuilder & builder,Location loc,Value size,Value p,Value i)885 static Value genAddress(CodeGen &codegen, OpBuilder &builder, Location loc,
886 Value size, Value p, Value i) {
887 Value mul = builder.create<arith::MulIOp>(loc, size, p);
888 if (auto vtp = i.getType().dyn_cast<VectorType>()) {
889 Value inv =
890 builder.create<arith::IndexCastOp>(loc, vtp.getElementType(), mul);
891 mul = genVectorInvariantValue(codegen, builder, inv);
892 }
893 return builder.create<arith::AddIOp>(loc, mul, i);
894 }
895
896 /// Generates an index value.
genIndexValue(CodeGen & codegen,OpBuilder & builder,unsigned idx,unsigned ldx)897 static Value genIndexValue(CodeGen &codegen, OpBuilder &builder, unsigned idx,
898 unsigned ldx) {
899 Value ival = codegen.loops[idx];
900 Type itype = ival.getType();
901 // During vectorization, we either encounter:
902 // (1) indices already in vector form, as in ... = ind[lo:hi], good to go, or
903 // (2) single index, as in ... = i, must convert to [i, i+1, ...] for inner i.
904 unsigned vl = codegen.curVecLength;
905 if (vl > 1 && !itype.isa<VectorType>()) {
906 Location loc = ival.getLoc();
907 VectorType vtp = vectorType(codegen, itype);
908 ival = builder.create<vector::BroadcastOp>(loc, vtp, ival);
909 if (idx == ldx) {
910 Value incr;
911 if (vtp.isScalable()) {
912 Type stepvty = vectorType(codegen, builder.getI64Type());
913 Value stepv = builder.create<LLVM::StepVectorOp>(loc, stepvty);
914 incr = builder.create<arith::IndexCastOp>(loc, vtp, stepv);
915 } else {
916 SmallVector<APInt, 4> integers;
917 for (unsigned i = 0; i < vl; i++)
918 integers.push_back(APInt(/*width=*/64, i));
919 auto values = DenseElementsAttr::get(vtp, integers);
920 incr = builder.create<arith::ConstantOp>(loc, vtp, values);
921 }
922 ival = builder.create<arith::AddIOp>(loc, ival, incr);
923 }
924 }
925 return ival;
926 }
927
928 /// Semi-ring branches are simply inlined by the sparse compiler. Prior
929 /// analysis has verified that all computations are "local" to the inlined
930 /// branch or otherwise invariantly defined outside the loop nest, with the
931 /// exception of index computations, which need to be relinked to actual
932 /// inlined cloned code.
relinkBranch(CodeGen & codegen,RewriterBase & rewriter,Block * block,Value e,unsigned ldx)933 static Value relinkBranch(CodeGen &codegen, RewriterBase &rewriter,
934 Block *block, Value e, unsigned ldx) {
935 if (Operation *def = e.getDefiningOp()) {
936 if (auto indexOp = dyn_cast<linalg::IndexOp>(def))
937 return genIndexValue(codegen, rewriter, indexOp.dim(), ldx);
938 if (def->getBlock() == block) {
939 for (unsigned i = 0, n = def->getNumOperands(); i < n; i++)
940 def->setOperand(
941 i, relinkBranch(codegen, rewriter, block, def->getOperand(i), ldx));
942 }
943 }
944 return e;
945 }
946
947 /// Recursively generates tensor expression.
genExp(Merger & merger,CodeGen & codegen,RewriterBase & rewriter,linalg::GenericOp op,unsigned exp,unsigned ldx)948 static Value genExp(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
949 linalg::GenericOp op, unsigned exp, unsigned ldx) {
950 Location loc = op.getLoc();
951 if (exp == -1u)
952 return Value();
953 if (merger.exp(exp).kind == Kind::kTensor)
954 return genTensorLoad(merger, codegen, rewriter, op, exp);
955 if (merger.exp(exp).kind == Kind::kInvariant)
956 return genInvariantValue(merger, codegen, rewriter, exp);
957 if (merger.exp(exp).kind == Kind::kIndex)
958 return genIndexValue(codegen, rewriter, merger.exp(exp).index, ldx);
959 Value v0 =
960 genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0, ldx);
961 Value v1 =
962 genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1, ldx);
963 Value ee = merger.buildExp(rewriter, loc, exp, v0, v1);
964 if (ee && (merger.exp(exp).kind == Kind::kUnary ||
965 merger.exp(exp).kind == Kind::kBinary ||
966 merger.exp(exp).kind == Kind::kBinaryBranch))
967 ee = relinkBranch(codegen, rewriter, ee.getParentBlock(), ee, ldx);
968 return ee;
969 }
970
971 /// Determines if affine expression is invariant.
isInvariantAffine(const CodeGen & codegen,AffineExpr a,unsigned ldx,bool & atLevel)972 static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a,
973 unsigned ldx, bool &atLevel) {
974 switch (a.getKind()) {
975 case AffineExprKind::DimId: {
976 unsigned idx = a.cast<AffineDimExpr>().getPosition();
977 if (idx == ldx)
978 atLevel = true;
979 return codegen.loops[idx] != nullptr; // no longer in play?
980 }
981 case AffineExprKind::Add:
982 case AffineExprKind::Mul: {
983 auto binOp = a.cast<AffineBinaryOpExpr>();
984 return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) &&
985 isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel);
986 }
987 default:
988 return true;
989 }
990 }
991
992 /// Hoists loop invariant tensor loads for which indices have been exhausted.
genInvariants(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned exp,unsigned ldx,bool atStart,Kind last=Kind::kTensor)993 static void genInvariants(Merger &merger, CodeGen &codegen, OpBuilder &builder,
994 linalg::GenericOp op, unsigned exp, unsigned ldx,
995 bool atStart, Kind last = Kind::kTensor) {
996 if (exp == -1u)
997 return;
998 if (merger.exp(exp).kind == Kind::kTensor) {
999 // Inspect tensor indices.
1000 bool atLevel = ldx == -1u;
1001 OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
1002 auto map = op.getTiedIndexingMap(t);
1003 auto enc = getSparseTensorEncoding(t->get().getType());
1004 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1005 AffineExpr a = map.getResult(perm(enc, d));
1006 if (!isInvariantAffine(codegen, a, ldx, atLevel))
1007 return; // still in play
1008 }
1009 // All exhausted at this level (atLevel denotes exactly at this level).
1010 if (!atLevel)
1011 return;
1012 OpOperand *lhs = op.getOutputOperand(0);
1013 if (lhs == t) {
1014 // Start or end a scalarized reduction
1015 if (atStart) {
1016 Value load = genTensorLoad(merger, codegen, builder, op, exp);
1017 codegen.redKind = getReduction(last);
1018 codegen.redExp = exp;
1019 updateReduc(merger, codegen, load);
1020 } else {
1021 Value redVal = codegen.redVal;
1022 updateReduc(merger, codegen, Value());
1023 codegen.redExp = -1u;
1024 codegen.redKind = kNoReduc;
1025 genTensorStore(merger, codegen, builder, op, exp, redVal);
1026 }
1027 } else {
1028 // Start or end loop invariant hoisting of a tensor load.
1029 merger.exp(exp).val =
1030 atStart ? genTensorLoad(merger, codegen, builder, op, exp) : Value();
1031 }
1032 } else if (merger.exp(exp).kind != Kind::kInvariant &&
1033 merger.exp(exp).kind != Kind::kIndex) {
1034 // Traverse into the binary operations. Note that we only hoist
1035 // tensor loads, since subsequent MLIR/LLVM passes know how to
1036 // deal with all other kinds of derived loop invariants.
1037 Kind last = merger.exp(exp).kind;
1038 unsigned e0 = merger.exp(exp).children.e0;
1039 unsigned e1 = merger.exp(exp).children.e1;
1040 genInvariants(merger, codegen, builder, op, e0, ldx, atStart, last);
1041 genInvariants(merger, codegen, builder, op, e1, ldx, atStart, last);
1042 }
1043 }
1044
1045 /// Generates an expanded access pattern in innermost dimension.
genExpansion(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned at,bool atStart)1046 static void genExpansion(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1047 linalg::GenericOp op, unsigned at, bool atStart) {
1048 OpOperand *lhs = codegen.sparseOut;
1049 if (!lhs || codegen.outerParNest != op.getRank(lhs) - 1 ||
1050 at != codegen.outerParNest)
1051 return; // not needed at this level
1052 // Generate start or end of an expanded access pattern.
1053 Value tensor = lhs->get();
1054 Location loc = op.getLoc();
1055 if (atStart) {
1056 auto dynShape = {ShapedType::kDynamicSize};
1057 Type etp = tensor.getType().cast<ShapedType>().getElementType();
1058 Type t1 = MemRefType::get(dynShape, etp);
1059 Type t2 = MemRefType::get(dynShape, builder.getI1Type());
1060 Type t3 = MemRefType::get(dynShape, builder.getIndexType());
1061 Type t4 = builder.getIndexType();
1062 auto res =
1063 builder.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor);
1064 assert(res.getNumResults() == 4);
1065 assert(!codegen.expValues);
1066 codegen.expValues = res.getResult(0);
1067 codegen.expFilled = res.getResult(1);
1068 codegen.expAdded = res.getResult(2);
1069 codegen.expCount = res.getResult(3);
1070 } else {
1071 assert(codegen.expValues);
1072 builder.create<CompressOp>(loc, tensor, codegen.lexIdx, codegen.expValues,
1073 codegen.expFilled, codegen.expAdded,
1074 codegen.expCount);
1075 codegen.expValues = codegen.expFilled = codegen.expAdded =
1076 codegen.expCount = Value();
1077 }
1078 }
1079
1080 /// Generates initialization code for the subsequent loop sequence at
1081 /// current index level. Returns true if the loop sequence needs to
1082 /// maintain the universal index.
genInit(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned at,BitVector & inits)1083 static bool genInit(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1084 linalg::GenericOp op, std::vector<unsigned> &topSort,
1085 unsigned at, BitVector &inits) {
1086 bool needsUniv = false;
1087 Location loc = op.getLoc();
1088 unsigned idx = topSort[at];
1089
1090 // Initialize sparse positions.
1091 for (unsigned b = 0, be = inits.size(); b < be; b++) {
1092 if (inits[b]) {
1093 unsigned tensor = merger.tensor(b);
1094 assert(idx == merger.index(b));
1095 if (merger.isDim(b, Dim::kSparse)) {
1096 // Initialize sparse index.
1097 unsigned pat = at;
1098 for (; pat != 0; pat--) {
1099 if (codegen.pidxs[tensor][topSort[pat - 1]])
1100 break;
1101 }
1102 Value ptr = codegen.pointers[tensor][idx];
1103 Value one = constantIndex(builder, loc, 1);
1104 Value p0 = (pat == 0) ? constantIndex(builder, loc, 0)
1105 : codegen.pidxs[tensor][topSort[pat - 1]];
1106 codegen.pidxs[tensor][idx] = genLoad(codegen, builder, loc, ptr, p0);
1107 Value p1 = builder.create<arith::AddIOp>(loc, p0, one);
1108 codegen.highs[tensor][idx] = genLoad(codegen, builder, loc, ptr, p1);
1109 } else {
1110 // Dense index still in play.
1111 needsUniv = true;
1112 }
1113 }
1114 }
1115
1116 // Initialize the universal dense index.
1117 codegen.loops[idx] = constantIndex(builder, loc, 0);
1118 return needsUniv;
1119 }
1120
1121 /// Returns vectorization strategy. Any implicit inner loop in the Linalg
1122 /// operation is a candidate. Whether it is actually converted to SIMD code
1123 /// depends on the requested strategy.
isVectorFor(CodeGen & codegen,bool isInner,bool isReduction,bool isSparse)1124 static bool isVectorFor(CodeGen &codegen, bool isInner, bool isReduction,
1125 bool isSparse) {
1126 // Reject vectorization of sparse output, unless innermost is reduction.
1127 if (codegen.sparseOut && !isReduction)
1128 return false;
1129 // Inspect strategy.
1130 switch (codegen.options.vectorizationStrategy) {
1131 case SparseVectorizationStrategy::kNone:
1132 return false;
1133 case SparseVectorizationStrategy::kDenseInnerLoop:
1134 return isInner && !isSparse;
1135 case SparseVectorizationStrategy::kAnyStorageInnerLoop:
1136 return isInner;
1137 }
1138 llvm_unreachable("unexpected vectorization strategy");
1139 }
1140
1141 /// Returns parallelization strategy. Any implicit loop in the Linalg operation
1142 /// that is marked "parallel" is a candidate. Whether it is actually converted
1143 /// to a parallel operation depends on the requested strategy.
isParallelFor(CodeGen & codegen,bool isOuter,bool isReduction,bool isSparse,bool isVector)1144 static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
1145 bool isSparse, bool isVector) {
1146 // Reject parallelization of sparse output.
1147 if (codegen.sparseOut)
1148 return false;
1149 // Inspect strategy.
1150 switch (codegen.options.parallelizationStrategy) {
1151 case SparseParallelizationStrategy::kNone:
1152 return false;
1153 case SparseParallelizationStrategy::kDenseOuterLoop:
1154 return isOuter && !isSparse && !isReduction && !isVector;
1155 case SparseParallelizationStrategy::kAnyStorageOuterLoop:
1156 return isOuter && !isReduction && !isVector;
1157 case SparseParallelizationStrategy::kDenseAnyLoop:
1158 return !isSparse && !isReduction && !isVector;
1159 case SparseParallelizationStrategy::kAnyStorageAnyLoop:
1160 return !isReduction && !isVector;
1161 }
1162 llvm_unreachable("unexpected parallelization strategy");
1163 }
1164
1165 /// Checks unit stride for dense tensors. The iteration graph may have ignored
1166 /// dense access patterns in order to avoid cycles (sparse access patterns are
1167 /// always placed innermost), but that means dense access has become strided.
1168 /// This prevents effective vectorization.
denseUnitStrides(Merger & merger,linalg::GenericOp op,unsigned idx)1169 static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
1170 unsigned idx) {
1171 for (OpOperand *t : op.getInputAndOutputOperands()) {
1172 if (!getSparseTensorEncoding(t->get().getType())) {
1173 auto map = op.getTiedIndexingMap(t);
1174 for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
1175 AffineExpr a = map.getResult(d);
1176 // Report non-unit stride if innermost index appears at an outer
1177 // dimension (true non-unit stride) or if the innermost index appears
1178 // in a compound subscript in the innermost dimension. Even if the
1179 // latter is unit stride, it does not play well with scatter/gather.
1180 // TODO: accept unit stride affine innermost like a[i,j+k+1]?
1181 if (a.isFunctionOfDim(idx) &&
1182 ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId)))
1183 return false;
1184 }
1185 }
1186 }
1187 return true;
1188 }
1189
1190 /// Generates a for-loop on a single index.
genFor(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,bool isOuter,bool isInner,unsigned idx,BitVector & indices)1191 static Operation *genFor(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1192 linalg::GenericOp op, bool isOuter, bool isInner,
1193 unsigned idx, BitVector &indices) {
1194 unsigned fb = indices.find_first();
1195 unsigned tensor = merger.tensor(fb);
1196 assert(idx == merger.index(fb));
1197 auto iteratorTypes = op.iterator_types().getValue();
1198 bool isReduction = isReductionIterator(iteratorTypes[idx]);
1199 bool isSparse = merger.isDim(fb, Dim::kSparse);
1200 bool isVector = isVectorFor(codegen, isInner, isReduction, isSparse) &&
1201 denseUnitStrides(merger, op, idx);
1202 bool isParallel =
1203 isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
1204
1205 // Prepare vector length.
1206 if (isVector)
1207 codegen.curVecLength = codegen.options.vectorLength;
1208
1209 // Loop bounds and increment.
1210 Location loc = op.getLoc();
1211 Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
1212 Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
1213 Value step = constantIndex(builder, loc, codegen.curVecLength);
1214 if (isVector && codegen.options.enableVLAVectorization) {
1215 Value vscale = builder.create<vector::VectorScaleOp>(
1216 loc, IndexType::get(builder.getContext()));
1217 step = builder.create<arith::MulIOp>(loc, vscale, step);
1218 }
1219
1220 // Emit a parallel loop.
1221 if (isParallel) {
1222 assert(!isVector);
1223 scf::ParallelOp parOp = builder.create<scf::ParallelOp>(loc, lo, hi, step);
1224 if (isSparse)
1225 codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
1226 else
1227 codegen.loops[idx] = parOp.getInductionVars()[0];
1228 builder.setInsertionPointToStart(parOp.getBody());
1229 return parOp;
1230 }
1231
1232 // Emit a sequential or vector loop.
1233 SmallVector<Value, 4> operands;
1234 if (codegen.redVal) {
1235 // In a vector loop, bring reduction into SIMD form, if not already.
1236 if (isVector && !codegen.redVal.getType().isa<VectorType>()) {
1237 VectorType vtp = vectorType(codegen, codegen.redVal.getType());
1238 Value vred = genVectorReducInit(codegen, builder, loc, vtp);
1239 updateReduc(merger, codegen, vred);
1240 }
1241 operands.push_back(codegen.redVal);
1242 }
1243 if (codegen.expValues)
1244 operands.push_back(codegen.expCount);
1245 scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, operands);
1246 if (codegen.redVal)
1247 updateReduc(merger, codegen, forOp.getRegionIterArgs().front());
1248 if (codegen.expValues)
1249 codegen.expCount = forOp.getRegionIterArgs().back();
1250 // Assign induction variable to sparse or dense index.
1251 Value iv = forOp.getInductionVar();
1252 if (isSparse)
1253 codegen.pidxs[tensor][idx] = iv;
1254 else
1255 codegen.loops[idx] = iv;
1256 builder.setInsertionPointToStart(forOp.getBody());
1257 // Share vector iteration mask between all subsequent loads/stores.
1258 if (isVector)
1259 codegen.curVecMask = genVectorMask(codegen, builder, iv, lo, hi, step);
1260 return forOp;
1261 }
1262
1263 /// Emit a while-loop for co-iteration over multiple indices.
genWhile(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned idx,bool needsUniv,BitVector & indices)1264 static Operation *genWhile(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1265 linalg::GenericOp op, unsigned idx, bool needsUniv,
1266 BitVector &indices) {
1267 SmallVector<Type, 4> types;
1268 SmallVector<Value, 4> operands;
1269 // Construct the while-loop with a parameter for each index.
1270 Type indexType = builder.getIndexType();
1271 for (unsigned b = 0, be = indices.size(); b < be; b++) {
1272 if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1273 unsigned tensor = merger.tensor(b);
1274 assert(idx == merger.index(b));
1275 types.push_back(indexType);
1276 operands.push_back(codegen.pidxs[tensor][idx]);
1277 }
1278 }
1279 if (codegen.redVal) {
1280 types.push_back(codegen.redVal.getType());
1281 operands.push_back(codegen.redVal);
1282 }
1283 if (codegen.expValues) {
1284 types.push_back(indexType);
1285 operands.push_back(codegen.expCount);
1286 }
1287 if (needsUniv) {
1288 types.push_back(indexType);
1289 operands.push_back(codegen.loops[idx]);
1290 }
1291 assert(types.size() == operands.size());
1292 Location loc = op.getLoc();
1293 scf::WhileOp whileOp = builder.create<scf::WhileOp>(loc, types, operands);
1294
1295 SmallVector<Location> locs(types.size(), loc);
1296 Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
1297 Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);
1298
1299 // Build the "before" region, which effectively consists
1300 // of a conjunction of "i < upper" tests on all induction.
1301 builder.setInsertionPointToStart(&whileOp.getBefore().front());
1302 Value cond;
1303 unsigned o = 0;
1304 for (unsigned b = 0, be = indices.size(); b < be; b++) {
1305 if (indices[b] && merger.isDim(b, Dim::kSparse)) {
1306 unsigned tensor = merger.tensor(b);
1307 assert(idx == merger.index(b));
1308 Value op1 = before->getArgument(o);
1309 Value op2 = codegen.highs[tensor][idx];
1310 Value opc = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
1311 op1, op2);
1312 cond = cond ? builder.create<arith::AndIOp>(loc, cond, opc) : opc;
1313 codegen.pidxs[tensor][idx] = after->getArgument(o++);
1314 }
1315 }
1316 if (codegen.redVal)
1317 updateReduc(merger, codegen, after->getArgument(o++));
1318 if (codegen.expValues)
1319 codegen.expCount = after->getArgument(o++);
1320 if (needsUniv)
1321 codegen.loops[idx] = after->getArgument(o++);
1322 assert(o == operands.size());
1323 builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
1324 builder.setInsertionPointToStart(&whileOp.getAfter().front());
1325 return whileOp;
1326 }
1327
1328 /// Generates a for-loop or a while-loop, depending on whether it implements
1329 /// singleton iteration or co-iteration over the given conjunction.
genLoop(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned at,bool needsUniv,BitVector & indices)1330 static Operation *genLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1331 linalg::GenericOp op, std::vector<unsigned> &topSort,
1332 unsigned at, bool needsUniv, BitVector &indices) {
1333 unsigned idx = topSort[at];
1334 if (indices.count() == 1) {
1335 bool isOuter = at == 0;
1336 bool isInner = at == topSort.size() - 1;
1337 return genFor(merger, codegen, builder, op, isOuter, isInner, idx, indices);
1338 }
1339 return genWhile(merger, codegen, builder, op, idx, needsUniv, indices);
1340 }
1341
1342 /// Generates the local variables for this loop, consisting of the sparse
1343 /// indices, restored universal dense index, and dense positions.
genLocals(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned at,bool needsUniv,BitVector & locals)1344 static void genLocals(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1345 linalg::GenericOp op, std::vector<unsigned> &topSort,
1346 unsigned at, bool needsUniv, BitVector &locals) {
1347 Location loc = op.getLoc();
1348 unsigned idx = topSort[at];
1349
1350 // Initialize sparse indices.
1351 Value min;
1352 for (unsigned b = 0, be = locals.size(); b < be; b++) {
1353 if (locals[b] && merger.isDim(b, Dim::kSparse)) {
1354 unsigned tensor = merger.tensor(b);
1355 assert(idx == merger.index(b));
1356 Value ptr = codegen.indices[tensor][idx];
1357 Value s = codegen.pidxs[tensor][idx];
1358 Value load = genLoad(codegen, builder, loc, ptr, s);
1359 codegen.idxs[tensor][idx] = load;
1360 if (!needsUniv) {
1361 if (min) {
1362 Value cmp = builder.create<arith::CmpIOp>(
1363 loc, arith::CmpIPredicate::ult, load, min);
1364 min = builder.create<arith::SelectOp>(loc, cmp, load, min);
1365 } else {
1366 min = load;
1367 }
1368 }
1369 }
1370 }
1371
1372 // Merge dense universal index over minimum.
1373 if (min) {
1374 assert(!needsUniv);
1375 codegen.loops[idx] = min;
1376 }
1377
1378 // Initialize dense positions. Note that we generate dense indices of the
1379 // output tensor unconditionally, since they may not appear in the lattice,
1380 // but may be needed for linearized codegen.
1381 for (unsigned b = 0, be = locals.size(); b < be; b++) {
1382 if ((locals[b] || merger.isOutTensor(b, idx)) &&
1383 merger.isDim(b, Dim::kDense)) {
1384 unsigned tensor = merger.tensor(b);
1385 assert(idx == merger.index(b));
1386 unsigned pat = at;
1387 for (; pat != 0; pat--)
1388 if (codegen.pidxs[tensor][topSort[pat - 1]])
1389 break;
1390 Value p = (pat == 0) ? constantIndex(builder, loc, 0)
1391 : codegen.pidxs[tensor][topSort[pat - 1]];
1392 codegen.pidxs[tensor][idx] = genAddress(
1393 codegen, builder, loc, codegen.sizes[idx], p, codegen.loops[idx]);
1394 }
1395 }
1396
1397 // Move the insertion indices in lexicographic index order. During access
1398 // pattern expansion, we can skip setting the innermost dimension.
1399 if (codegen.sparseOut && !codegen.expValues) {
1400 Value pos = constantIndex(builder, loc, at);
1401 builder.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx,
1402 pos);
1403 }
1404 }
1405
1406 /// Generates the induction structure for a while-loop.
genWhileInduction(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned idx,bool needsUniv,BitVector & induction,scf::WhileOp whileOp)1407 static void genWhileInduction(Merger &merger, CodeGen &codegen,
1408 OpBuilder &builder, linalg::GenericOp op,
1409 unsigned idx, bool needsUniv,
1410 BitVector &induction, scf::WhileOp whileOp) {
1411 Location loc = op.getLoc();
1412 // Finalize each else branch of all if statements.
1413 if (codegen.redVal || codegen.expValues) {
1414 while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
1415 builder.getInsertionBlock()->getParentOp())) {
1416 unsigned y = 0;
1417 SmallVector<Value, 4> yields;
1418 if (codegen.redVal) {
1419 yields.push_back(codegen.redVal);
1420 updateReduc(merger, codegen, ifOp.getResult(y++));
1421 }
1422 if (codegen.expValues) {
1423 yields.push_back(codegen.expCount);
1424 codegen.expCount = ifOp->getResult(y++);
1425 }
1426 assert(y == yields.size());
1427 builder.create<scf::YieldOp>(loc, yields);
1428 builder.setInsertionPointAfter(ifOp);
1429 }
1430 }
1431 builder.setInsertionPointToEnd(&whileOp.getAfter().front());
1432 // Finalize the induction. Note that the induction could be performed
1433 // in the individual if-branches to avoid re-evaluating the conditions.
1434 // However, that would result in a rather elaborate forest of yield
1435 // instructions during code generation. Moreover, performing the induction
1436 // after the if-statements more closely resembles code generated by TACO.
1437 unsigned o = 0;
1438 SmallVector<Value, 4> operands;
1439 Value one = constantIndex(builder, loc, 1);
1440 for (unsigned b = 0, be = induction.size(); b < be; b++) {
1441 if (induction[b] && merger.isDim(b, Dim::kSparse)) {
1442 unsigned tensor = merger.tensor(b);
1443 assert(idx == merger.index(b));
1444 Value op1 = codegen.idxs[tensor][idx];
1445 Value op2 = codegen.loops[idx];
1446 Value op3 = codegen.pidxs[tensor][idx];
1447 Value cmp = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1448 op1, op2);
1449 Value add = builder.create<arith::AddIOp>(loc, op3, one);
1450 operands.push_back(builder.create<arith::SelectOp>(loc, cmp, add, op3));
1451 codegen.pidxs[tensor][idx] = whileOp->getResult(o++);
1452 }
1453 }
1454 if (codegen.redVal) {
1455 operands.push_back(codegen.redVal);
1456 updateReduc(merger, codegen, whileOp->getResult(o++));
1457 }
1458 if (codegen.expValues) {
1459 operands.push_back(codegen.expCount);
1460 codegen.expCount = whileOp->getResult(o++);
1461 }
1462 if (needsUniv) {
1463 operands.push_back(
1464 builder.create<arith::AddIOp>(loc, codegen.loops[idx], one));
1465 codegen.loops[idx] = whileOp->getResult(o++);
1466 }
1467 assert(o == operands.size());
1468 builder.create<scf::YieldOp>(loc, operands);
1469 builder.setInsertionPointAfter(whileOp);
1470 }
1471
1472 /// Generates the induction structure for a for-loop.
genForInduction(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,Operation * loop)1473 static void genForInduction(Merger &merger, CodeGen &codegen,
1474 OpBuilder &builder, linalg::GenericOp op,
1475 Operation *loop) {
1476 Location loc = op.getLoc();
1477 unsigned o = 0;
1478 SmallVector<Value, 4> operands;
1479 if (codegen.redVal) {
1480 operands.push_back(codegen.redVal);
1481 updateReduc(merger, codegen, loop->getResult(o++));
1482 }
1483 if (codegen.expValues) {
1484 operands.push_back(codegen.expCount);
1485 codegen.expCount = loop->getResult(o++);
1486 }
1487 assert(o == operands.size());
1488 if (o > 0)
1489 builder.create<scf::YieldOp>(loc, operands);
1490 builder.setInsertionPointAfter(loop);
1491 }
1492
1493 /// Generates a single if-statement within a while-loop.
genIf(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned idx,BitVector & conditions)1494 static scf::IfOp genIf(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1495 linalg::GenericOp op, unsigned idx,
1496 BitVector &conditions) {
1497 Location loc = op.getLoc();
1498 SmallVector<Type, 4> types;
1499 Value cond;
1500 for (unsigned b = 0, be = conditions.size(); b < be; b++) {
1501 if (conditions[b]) {
1502 unsigned tensor = merger.tensor(b);
1503 assert(idx == merger.index(b));
1504 Value clause;
1505 if (merger.isDim(b, Dim::kSparse)) {
1506 Value op1 = codegen.idxs[tensor][idx];
1507 Value op2 = codegen.loops[idx];
1508 clause = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
1509 op1, op2);
1510 } else {
1511 clause = constantI1(builder, loc, true);
1512 }
1513 cond = cond ? builder.create<arith::AndIOp>(loc, cond, clause) : clause;
1514 }
1515 }
1516 if (codegen.redVal)
1517 types.push_back(codegen.redVal.getType());
1518 if (codegen.expValues)
1519 types.push_back(builder.getIndexType());
1520 scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
1521 builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
1522 return ifOp;
1523 }
1524
1525 /// Generates end of true branch of if-statement within a while-loop.
endIf(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,scf::IfOp ifOp,Operation * loop,Value redInput,Value cntInput)1526 static void endIf(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1527 linalg::GenericOp op, scf::IfOp ifOp, Operation *loop,
1528 Value redInput, Value cntInput) {
1529 SmallVector<Value, 4> operands;
1530 if (codegen.redVal) {
1531 operands.push_back(codegen.redVal);
1532 updateReduc(merger, codegen, redInput);
1533 }
1534 if (codegen.expValues) {
1535 operands.push_back(codegen.expCount);
1536 codegen.expCount = cntInput;
1537 }
1538 if (!operands.empty())
1539 builder.create<scf::YieldOp>(op.getLoc(), operands);
1540 builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
1541 }
1542
1543 //===----------------------------------------------------------------------===//
1544 // Sparse compiler synthesis methods (loop sequence).
1545 //===----------------------------------------------------------------------===//
1546
1547 /// Starts a loop sequence at given level. Returns true if
1548 /// the universal loop index must be maintained at this level.
startLoopSeq(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned exp,unsigned at,unsigned idx,unsigned ldx,unsigned lts)1549 static bool startLoopSeq(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1550 linalg::GenericOp op, std::vector<unsigned> &topSort,
1551 unsigned exp, unsigned at, unsigned idx, unsigned ldx,
1552 unsigned lts) {
1553 assert(codegen.curVecLength == 1);
1554 assert(!codegen.loops[idx]);
1555 // Emit invariants at this loop sequence level.
1556 genInvariants(merger, codegen, builder, op, exp, ldx, /*atStart=*/true);
1557 // Emit access pattern expansion for sparse tensor output.
1558 genExpansion(merger, codegen, builder, op, at, /*atStart=*/true);
1559 // Emit further intitialization at this loop sequence level.
1560 unsigned l0 = merger.set(lts)[0];
1561 bool needsUniv =
1562 genInit(merger, codegen, builder, op, topSort, at, merger.lat(l0).bits);
1563 // Maintain the universal index only if it is actually
1564 // consumed by a subsequent lattice point.
1565 if (needsUniv) {
1566 unsigned lsize = merger.set(lts).size();
1567 for (unsigned i = 1; i < lsize; i++) {
1568 unsigned li = merger.set(lts)[i];
1569 if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse))
1570 return true;
1571 }
1572 }
1573 return false;
1574 }
1575
1576 /// Starts a single loop in current sequence.
startLoop(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned at,unsigned li,bool needsUniv)1577 static Operation *startLoop(Merger &merger, CodeGen &codegen,
1578 OpBuilder &builder, linalg::GenericOp op,
1579 std::vector<unsigned> &topSort, unsigned at,
1580 unsigned li, bool needsUniv) {
1581 assert(codegen.curVecLength == 1);
1582 // Emit the for/while-loop control.
1583 Operation *loop = genLoop(merger, codegen, builder, op, topSort, at,
1584 needsUniv, merger.lat(li).simple);
1585 // Emit the locals for this loop.
1586 genLocals(merger, codegen, builder, op, topSort, at, needsUniv,
1587 merger.lat(li).bits);
1588 return loop;
1589 }
1590
1591 /// Ends a single loop in current sequence. Returns new values for needsUniv.
endLoop(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,Operation * loop,unsigned idx,unsigned li,bool needsUniv)1592 static bool endLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1593 linalg::GenericOp op, Operation *loop, unsigned idx,
1594 unsigned li, bool needsUniv) {
1595 codegen.curVecLength = 1;
1596 // End a while-loop.
1597 if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
1598 genWhileInduction(merger, codegen, builder, op, idx, needsUniv,
1599 merger.lat(li).bits, whileOp);
1600 return needsUniv;
1601 }
1602 // End a for-loop.
1603 genForInduction(merger, codegen, builder, op, loop);
1604 return false;
1605 }
1606
1607 /// Ends a loop sequence at given level.
endLoopSeq(Merger & merger,CodeGen & codegen,OpBuilder & builder,linalg::GenericOp op,unsigned exp,unsigned at,unsigned idx,unsigned ldx)1608 static void endLoopSeq(Merger &merger, CodeGen &codegen, OpBuilder &builder,
1609 linalg::GenericOp op, unsigned exp, unsigned at,
1610 unsigned idx, unsigned ldx) {
1611 assert(codegen.curVecLength == 1);
1612 codegen.loops[idx] = Value();
1613 // Bring a pending reduction back from SIMD form when sequence ends.
1614 if (codegen.redVal)
1615 if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>())
1616 updateReduc(merger, codegen,
1617 genVectorReducEnd(codegen, builder, op.getLoc(), vtp));
1618 // Unmark bookkeeping of invariants and loop index.
1619 genInvariants(merger, codegen, builder, op, exp, ldx, /*atStart=*/false);
1620 // Finalize access pattern expansion for sparse tensor output.
1621 genExpansion(merger, codegen, builder, op, at, /*atStart=*/false);
1622 }
1623
1624 /// Recursively generates code while computing iteration lattices in order
1625 /// to manage the complexity of implementing co-iteration over unions
1626 /// and intersections of sparse iterations spaces.
genStmt(Merger & merger,CodeGen & codegen,RewriterBase & rewriter,linalg::GenericOp op,std::vector<unsigned> & topSort,unsigned exp,unsigned at)1627 static void genStmt(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
1628 linalg::GenericOp op, std::vector<unsigned> &topSort,
1629 unsigned exp, unsigned at) {
1630 // At each leaf, assign remaining tensor (sub)expression to output tensor.
1631 if (at == topSort.size()) {
1632 unsigned ldx = topSort[at - 1];
1633 Value rhs = genExp(merger, codegen, rewriter, op, exp, ldx);
1634 genTensorStore(merger, codegen, rewriter, op, exp, rhs);
1635 return;
1636 }
1637
1638 // Construct iteration lattices for current loop index, with L0 at top.
1639 unsigned idx = topSort[at];
1640 unsigned ldx = at == 0 ? -1u : topSort[at - 1];
1641 unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
1642
1643 // Start a loop sequence.
1644 bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at,
1645 idx, ldx, lts);
1646
1647 // Emit a loop for every lattice point L0 >= Li in this loop sequence.
1648 unsigned lsize = merger.set(lts).size();
1649 for (unsigned i = 0; i < lsize; i++) {
1650 // Start a loop.
1651 unsigned li = merger.set(lts)[i];
1652 Operation *loop =
1653 startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv);
1654
1655 // Visit all lattices points with Li >= Lj to generate the
1656 // loop-body, possibly with if statements for coiteration.
1657 Value redInput = codegen.redVal;
1658 Value cntInput = codegen.expCount;
1659 bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
1660 for (unsigned j = 0; j < lsize; j++) {
1661 unsigned lj = merger.set(lts)[j];
1662 unsigned ej = merger.lat(lj).exp;
1663 if (li == lj || merger.latGT(li, lj)) {
1664 // Recurse into body of each branch.
1665 if (isWhile) {
1666 scf::IfOp ifOp =
1667 genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
1668 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1669 endIf(merger, codegen, rewriter, op, ifOp, loop, redInput, cntInput);
1670 } else {
1671 genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
1672 }
1673 }
1674 }
1675
1676 // End a loop.
1677 needsUniv =
1678 endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv);
1679 }
1680
1681 // End a loop sequence.
1682 endLoopSeq(merger, codegen, rewriter, op, exp, at, idx, ldx);
1683 }
1684
1685 /// Converts the result computed by the sparse kernel into the required form.
genResult(Merger & merger,CodeGen & codegen,RewriterBase & rewriter,linalg::GenericOp op)1686 static void genResult(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
1687 linalg::GenericOp op) {
1688 OpOperand *lhs = op.getOutputOperand(0);
1689 Type resType = lhs->get().getType();
1690 if (getSparseTensorEncoding(resType)) {
1691 // The sparse tensor rematerializes from the original sparse tensor's
1692 // underlying sparse storage format.
1693 rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(),
1694 codegen.sparseOut == lhs);
1695 } else {
1696 // To rematerialize an non-annotated tensor, simply load it
1697 // from the bufferized value.
1698 Value val = codegen.buffers.back(); // value array
1699 rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
1700 }
1701 }
1702
1703 //===----------------------------------------------------------------------===//
1704 // Sparse compiler rewriting methods.
1705 //===----------------------------------------------------------------------===//
1706
1707 namespace {
1708
1709 /// Sparse rewriting rule for generic Lingalg operation.
1710 struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
1711 public:
GenericOpSparsifier__anon3f2435730211::GenericOpSparsifier1712 GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
1713 : OpRewritePattern<linalg::GenericOp>(context), options(o) {}
1714
matchAndRewrite__anon3f2435730211::GenericOpSparsifier1715 LogicalResult matchAndRewrite(linalg::GenericOp op,
1716 PatternRewriter &rewriter) const override {
1717 // Detects sparse annotations and translate the per-dimension sparsity
1718 // information for all tensors to loop indices in the kernel.
1719 assert(op.getNumOutputs() == 1);
1720 unsigned numTensors = op.getNumInputsAndOutputs();
1721 unsigned numLoops = op.iterator_types().getValue().size();
1722 Merger merger(numTensors, numLoops);
1723 if (!findSparseAnnotations(merger, op))
1724 return failure();
1725
1726 // Computes a topologically sorted iteration graph to ensure tensors
1727 // are visited in natural index order. Gradually relaxes the considered
1728 // constraints until an acyclic iteration graph results, such that sparse
1729 // code generation can proceed. As a last resort, an attempt is made
1730 // to resolve cycles by inserting a conversion.
1731 std::vector<unsigned> topSort;
1732 if (!computeIterationGraph(merger, op, topSort, SortMask::kIncludeAll) &&
1733 !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) &&
1734 !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) &&
1735 !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly)) {
1736 return resolveCycle(merger, rewriter, op);
1737 }
1738
1739 // Builds the tensor expression for the Linalg operation in SSA form.
1740 Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op);
1741 if (!optExp.has_value())
1742 return failure();
1743 unsigned exp = optExp.value();
1744
1745 // Rejects an inadmissable tensor expression.
1746 OpOperand *sparseOut = nullptr;
1747 unsigned outerParNest = 0;
1748 if (!isAdmissableTensorExp(merger, op, topSort, exp, &sparseOut,
1749 outerParNest))
1750 return failure();
1751
1752 // Recursively generates code.
1753 merger.setHasSparseOut(sparseOut != nullptr);
1754 CodeGen codegen(options, numTensors, numLoops, sparseOut, outerParNest);
1755 genBuffers(merger, codegen, rewriter, op);
1756 genStmt(merger, codegen, rewriter, op, topSort, exp, 0);
1757 genResult(merger, codegen, rewriter, op);
1758 return success();
1759 }
1760
1761 private:
1762 // Last resort cycle resolution.
resolveCycle__anon3f2435730211::GenericOpSparsifier1763 LogicalResult resolveCycle(Merger &merger, PatternRewriter &rewriter,
1764 linalg::GenericOp op) const {
1765 // Compute topological sort while leaving out every
1766 // sparse input tensor in succession until an acylic
1767 // iteration graph results.
1768 std::vector<unsigned> topSort;
1769 for (OpOperand *t : op.getInputOperands()) {
1770 unsigned tensor = t->getOperandNumber();
1771 Value tval = t->get();
1772 auto srcEnc = getSparseTensorEncoding(tval.getType());
1773 if (!srcEnc ||
1774 !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly, t))
1775 continue;
1776 // Found an input tensor that resolves the cycle by inserting a
1777 // conversion into a sparse tensor that adheres to the iteration
1778 // graph order. Also releases the temporary sparse tensor.
1779 //
1780 // TODO: investigate fusing the conversion with computation,
1781 // especially if it is a direct yield!
1782 //
1783 auto srcTp = tval.getType().cast<RankedTensorType>();
1784 auto dstEnc = SparseTensorEncodingAttr::get(
1785 op->getContext(), srcEnc.getDimLevelType(),
1786 permute(getContext(), op.getTiedIndexingMap(t), topSort), // new order
1787 srcEnc.getPointerBitWidth(), srcEnc.getIndexBitWidth());
1788 auto dstTp = RankedTensorType::get(srcTp.getShape(),
1789 srcTp.getElementType(), dstEnc);
1790 auto convert = rewriter.create<ConvertOp>(tval.getLoc(), dstTp, tval);
1791 op->setOperand(tensor, convert);
1792 rewriter.setInsertionPointAfter(op);
1793 rewriter.create<bufferization::DeallocTensorOp>(tval.getLoc(), convert);
1794 return success();
1795 }
1796 // Cannot be resolved with a single conversion.
1797 // TODO: convert more than one?
1798 return failure();
1799 }
1800
1801 /// Options to control sparse code generation.
1802 SparsificationOptions options;
1803 };
1804
1805 } // namespace
1806
1807 /// Populates the given patterns list with rewriting rules required for
1808 /// the sparsification of linear algebra operations.
populateSparsificationPatterns(RewritePatternSet & patterns,const SparsificationOptions & options)1809 void mlir::populateSparsificationPatterns(
1810 RewritePatternSet &patterns, const SparsificationOptions &options) {
1811 patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
1812 }
1813