//===- Sparsification.cpp - Implementation of sparsification --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements converting sparse tensor types to actual sparse code. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/Linalg/IR/LinalgOps.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/SCF.h" #include "mlir/Dialect/SCF/Transforms.h" #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" #include "mlir/Dialect/SparseTensor/Utils/Merger.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/Dialect/Vector/VectorOps.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/TensorEncoding.h" #include "llvm/ADT/SmallBitVector.h" using namespace mlir; using namespace mlir::sparse_tensor; //===----------------------------------------------------------------------===// // Declarations of data structures. //===----------------------------------------------------------------------===// namespace { // Iteration graph sorting. enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2 }; // Reduction kinds. enum Reduction { kSum, kProduct, kAnd, kOr, kXor }; // Code generation. struct CodeGen { CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops) : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors), pointers(numTensors, std::vector(numLoops)), indices(numTensors, std::vector(numLoops)), highs(numTensors, std::vector(numLoops)), pidxs(numTensors, std::vector(numLoops)), idxs(numTensors, std::vector(numLoops)), redExp(-1u), redVal(), curVecLength(1), curVecMask() {} /// Sparsification options. SparsificationOptions options; /// Universal dense indices and upper bounds (by index). The loops array /// is updated with the value of the universal dense index in the current /// loop. The sizes array is set once with the inferred dimension sizes. std::vector loops; std::vector sizes; /// Buffers for storing dense and sparse numerical values (by tensor). /// This array is set once during bufferization of all tensors. std::vector buffers; /// Sparse storage schemes (1-D): pointers and indices (by tensor and index). /// This array is set once during bufferization of all sparse tensors. std::vector> pointers; std::vector> indices; /// Sparse iteration information (by tensor and index). These arrays /// are updated to remain current within the current loop. std::vector> highs; std::vector> pidxs; std::vector> idxs; /// Current reduction, updated during code generation. When indices of a /// reduction are exhausted, all inner loops can "scalarize" the reduction. // TODO: currently only done for (a chain of) innermost for-loops, where it // is most effective; we could generalize to more outer and while-loops. unsigned redExp; Value redVal; Reduction redKind; // Current vector length and mask. unsigned curVecLength; Value curVecMask; }; } // namespace //===----------------------------------------------------------------------===// // Sparse compiler analysis methods. //===----------------------------------------------------------------------===// /// Helper method to apply dimension ordering permutation. static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) { if (enc) { auto order = enc.getDimOrdering(); if (order) { assert(order.isPermutation()); return order.getDimPosition(d); } } return d; } /// Helper method to translate dim level type to internal representation. static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) { if (enc) { SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d]; if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed) return Dim::kSparse; if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton) return Dim::kSingle; } return Dim::kDense; } /// Helper method to inspect affine expressions. Rejects cases where the /// same index is used in more than one dimension of a tensor. Also rejects /// affine expressions that are not a direct index for annotated tensors. /// TODO: accept more affine cases for sparse tensors static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim, bool isDense) { switch (a.getKind()) { case AffineExprKind::DimId: { unsigned idx = a.cast().getPosition(); if (!merger.isDim(tensor, idx, Dim::kUndef)) return false; // used more than once merger.setDim(tensor, idx, dim); return true; } case AffineExprKind::Add: case AffineExprKind::Mul: { if (!isDense) return false; auto binOp = a.cast(); return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) && findAffine(merger, tensor, binOp.getRHS(), dim, isDense); } case AffineExprKind::Constant: return isDense; default: return false; } } /// Helper method to inspect sparse encodings in the tensor types. /// Fills the per-dimension sparsity information for all tensors. /// Returns true if the sparse annotations and affine subscript /// expressions of all tensors are admissable. Returns false if /// no annotations are found or inadmissable constructs occur. static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) { bool annotated = false; for (OpOperand *t : op.getInputAndOutputOperands()) { auto map = op.getTiedIndexingMap(t); auto enc = getSparseTensorEncoding(t->get().getType()); if (enc) annotated = true; assert(map.getNumResults() == op.getRank(t)); for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { unsigned tensor = t->getOperandNumber(); AffineExpr a = map.getResult(perm(enc, d)); if (!findAffine(merger, tensor, a, toDim(enc, d), !enc)) return false; // inadmissable affine expression } } return annotated; } /// A DFS helper to compute a topological sort. Note that recursion is /// bounded by the number of implicit loops, which is always small. /// Returns false when a cycle is detected. static bool topSortDFS(unsigned i, std::vector &visit, std::vector &topSort, std::vector> &adjM) { if (visit[i] != 0) return visit[i] != 1; // 1 denotes cycle! visit[i] = 1; for (unsigned j = 0, e = visit.size(); j < e; j++) if (adjM[i][j]) if (!topSortDFS(j, visit, topSort, adjM)) return false; visit[i] = 2; topSort.push_back(i); return true; } /// Helper method to add all constraints from the indices in one affine /// expression before all indices in the other affine expression. For /// example i0+i1 < i2+i3+1 yields i0> &adjM, AffineExpr a, AffineExpr b, unsigned fidx) { switch (a.getKind()) { case AffineExprKind::DimId: { unsigned idx = a.cast().getPosition(); if (b) addAffineOrderings(adjM, b, AffineExpr(), idx); else adjM[fidx][idx] = true; break; } case AffineExprKind::Add: case AffineExprKind::Mul: { auto binOp = a.cast(); addAffineOrderings(adjM, binOp.getLHS(), b, fidx); addAffineOrderings(adjM, binOp.getRHS(), b, fidx); break; } default: break; } } /// Computes a topologically sorted iteration graph for the linalg operation. /// Ensures all tensors are visited in natural index order. This is essential /// for sparse storage formats since these only support access along fixed /// dimensions. Even for dense storage formats, however, the natural index /// order yields innermost unit-stride access with better spatial locality. static bool computeIterationGraph(Merger &merger, linalg::GenericOp op, std::vector &topSort, unsigned mask) { // Set up an n x n from/to adjacency matrix of the iteration graph // for the implicit loop indices i_0 .. i_n-1. unsigned n = op.getNumLoops(); std::vector> adjM(n, std::vector(n, false)); // Iterate over the indexing maps of every tensor in the tensor expression. for (OpOperand *t : op.getInputAndOutputOperands()) { auto map = op.getTiedIndexingMap(t); auto enc = getSparseTensorEncoding(t->get().getType()); assert(map.getNumDims() == n); // Skip dense tensor constraints when not requested. if (!(mask & SortMask::kIncludeDense) && !enc) continue; // Each tensor expression and optional dimension ordering (row-major // by default) puts an ordering constraint on the loop indices. For // example, the tensor expresion A_ijk forces the ordering i < j < k // on the loop indices if no explicit dimension ordering is given. for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) { AffineExpr f = map.getResult(perm(enc, d - 1)); AffineExpr t = map.getResult(perm(enc, d)); addAffineOrderings(adjM, f, t, 0); } // Push unrelated loops into sparse iteration space, so these // will be skipped more often. if (mask & SortMask::kIncludeUndef) { unsigned tensor = t->getOperandNumber(); for (unsigned i = 0; i < n; i++) if (merger.isDim(tensor, i, Dim::kSparse)) for (unsigned j = 0; j < n; j++) if (merger.isDim(tensor, j, Dim::kUndef)) adjM[i][j] = true; } } // Topologically sort the iteration graph to determine loop order. // Report failure for a cyclic iteration graph. topSort.clear(); topSort.reserve(n); std::vector visit(n, 0); for (unsigned i = 0; i < n; i++) if (visit[i] == 0) if (!topSortDFS(i, visit, topSort, adjM)) return false; // cycle! std::reverse(std::begin(topSort), std::end(topSort)); return true; } /// Returns true when the tensor expression is admissable for codegen. /// Since all sparse input tensors are admissable, we just need to check /// whether the output tensor in the tensor expression codegen is admissable. static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op, unsigned exp) { OpOperand *lhs = op.getOutputOperand(0); unsigned tensor = lhs->getOperandNumber(); auto enc = getSparseTensorEncoding(lhs->get().getType()); // An non-annotated output tensor is assumed dense, and becomes a random // access n-dim memref. Admissable since insertions cannot occur. if (!enc) return true; // An all-dense annotated "sparse" output tensor becomes a linearized random // access 1-dim memref. Also admissable since insertions cannot occur. bool allDense = true; unsigned numLoops = op.iterator_types().getValue().size(); for (unsigned i = 0; i < numLoops; i++) if (merger.isDim(tensor, i, Dim::kSparse)) { allDense = false; break; } if (allDense) return true; // A tensor expression with a sparse output tensor that changes its values // but not its nonzero structure, an operation called "simply dynamic" in // [Bik96,Ch9], is also admissable without special codegen. if (merger.isConjunction(tensor, exp)) return true; // Reject for now since this requires changes to the nonzero structure. // TODO: implement "workspaces" [Kjolstad2019] return false; } //===----------------------------------------------------------------------===// // Sparse compiler synthesis methods. //===----------------------------------------------------------------------===// /// Maps reduction kind to name encoding. static StringRef getReductionName(Reduction kind) { switch (kind) { case kSum: return "add"; case kProduct: return "mul"; case kAnd: return "and"; case kOr: return "or"; case kXor: return "xor"; } llvm_unreachable("unknown reduction kind"); } /// Maps operation to reduction. static Reduction getReduction(Kind kind) { switch (kind) { case Kind::kAddF: case Kind::kAddI: case Kind::kSubF: case Kind::kSubI: return kSum; case Kind::kMulF: case Kind::kMulI: return kProduct; case Kind::kAndI: return kAnd; case Kind::kOrI: return kOr; case Kind::kXorI: return kXor; default: llvm_unreachable("unexpected reduction operator"); } } /// Generates an initial value for a vector reductions, following the scheme /// given in Chapter 5 of "The Software Vectorization Handbook", where the /// initial scalar value is correctly embedded in the vector reduction value, /// and a straightforward horizontal reduction will complete the operation. static Value genReductionInit(PatternRewriter &rewriter, Location loc, Reduction kind, VectorType vtp, Value r) { switch (kind) { case kSum: case kXor: { // Initialize reduction vector to: | 0 | .. | 0 | r | Attribute zero = rewriter.getZeroAttr(vtp); Value vec = rewriter.create(loc, vtp, zero); return rewriter.create(loc, r, vec, 0); } case kProduct: { // Initialize reduction vector to: | 1 | .. | 1 | r | Type etp = vtp.getElementType(); Attribute one; if (etp.isa()) one = rewriter.getFloatAttr(etp, 1.0); else one = rewriter.getIntegerAttr(etp, 1); Value vec = rewriter.create(loc, vtp, DenseElementsAttr::get(vtp, one)); return rewriter.create(loc, r, vec, 0); } case kAnd: case kOr: // Initialize reduction vector to: | r | .. | r | r | return rewriter.create(loc, vtp, r); } llvm_unreachable("unknown reduction kind"); } /// Maps sparse integer option to actual integral storage type. static Type genIntType(PatternRewriter &rewriter, unsigned width) { if (width == 0) return rewriter.getIndexType(); return rewriter.getIntegerType(width); } /// Detects in-place annotation on tensor argument. static bool getInPlace(Value val) { if (auto arg = val.dyn_cast()) if (auto funcOp = dyn_cast(arg.getOwner()->getParentOp())) if (auto attr = funcOp.getArgAttrOfType( arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName)) return attr.getValue(); return false; } /// Generates buffer for the output tensor. Note that all sparse kernels /// assume that when all elements are written to (viz. x(i) = y(i) * z(i)), /// the output buffer is already initialized to all zeroes and only nonzeroes /// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)), /// only nonzeroes values are used for the updates and no assumption on the /// original contents of the output buffer is necessary.. static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op, MemRefType denseTp, ArrayRef args) { Location loc = op.getLoc(); Value tensor = op.getOutputOperand(0)->get(); // The output tensor simply could materialize from the buffer that will // be generated for the tensor present in the outs() clause. This has // the major advantage that the sparse kernel only updates the nonzero // positions for the output tensor. if (getInPlace(tensor)) return rewriter.create(loc, denseTp, tensor); // By default, a new buffer is allocated which is initialized to the // tensor defined in the outs() clause. This is always correct but // introduces a dense initialization component that may negatively // impact the running complexity of the sparse kernel. If the tensor // materializes within this method, we need to preserve the zero // initialization assumption of all sparse output buffers. if (auto init = tensor.getDefiningOp()) { Type tp = denseTp.getElementType(); Value alloc = rewriter.create(loc, denseTp, args); Value zero = rewriter.create(loc, tp, rewriter.getZeroAttr(tp)); rewriter.create(loc, zero, alloc); return alloc; } Value init = rewriter.create(loc, denseTp, tensor); Value alloc = rewriter.create(loc, denseTp, args); rewriter.create(loc, init, alloc); return alloc; } /// Local bufferization of all dense and sparse data structures. /// This code enables testing the first prototype sparse compiler. // TODO: replace this with a proliferated bufferization strategy static bool genBuffers(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op) { Location loc = op.getLoc(); assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1); // For every tensor, find lower and upper bound on dimensions, set the // same bounds on loop indices, and obtain dense or sparse buffer(s). SmallVector args; for (OpOperand *t : op.getInputAndOutputOperands()) { unsigned tensor = t->getOperandNumber(); auto shape = op.getShape(t); auto map = op.getTiedIndexingMap(t); auto enc = getSparseTensorEncoding(t->get().getType()); // Scan all dimensions of current tensor. args.clear(); for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { AffineExpr a = map.getResult(perm(enc, d)); if (a.getKind() != AffineExprKind::DimId) continue; // compound unsigned idx = a.cast().getPosition(); // Handle sparse storage schemes. if (merger.isDim(tensor, idx, Dim::kSparse)) { auto dynShape = {ShapedType::kDynamicSize}; auto ptrTp = MemRefType::get( dynShape, genIntType(rewriter, enc.getPointerBitWidth())); auto indTp = MemRefType::get( dynShape, genIntType(rewriter, enc.getIndexBitWidth())); Value dim = rewriter.create(loc, d); // Generate sparse primitives to obtains pointer and indices. codegen.pointers[tensor][idx] = rewriter.create(loc, ptrTp, t->get(), dim); codegen.indices[tensor][idx] = rewriter.create(loc, indTp, t->get(), dim); } // Find upper bound in current dimension. unsigned p = perm(enc, d); Value up = linalg::createOrFoldDimOp(rewriter, loc, t->get(), p); if (shape[p] == MemRefType::kDynamicSize) args.push_back(up); assert(codegen.highs[tensor][idx] == nullptr); codegen.sizes[idx] = codegen.highs[tensor][idx] = up; } // Perform the required bufferization. Dense inputs materialize // from the input tensors. Dense outputs need special handling. // Sparse inputs use sparse primitives to obtain the values. // We also accept in-place all-dense annotated "sparse" outputs. Type elementType = getElementTypeOrSelf(t->get().getType()); if (!enc) { // Non-annotated dense tensors. auto denseTp = MemRefType::get(shape, elementType); if (tensor < op.getNumInputs()) codegen.buffers[tensor] = rewriter.create(loc, denseTp, t->get()); else codegen.buffers[tensor] = genOutputBuffer(codegen, rewriter, op, denseTp, args); } else { // Annotated sparse tensors. if (tensor == op.getNumInputs() && !getInPlace(t->get())) return false; // reject output if not in-place auto dynShape = {ShapedType::kDynamicSize}; auto sparseTp = MemRefType::get(dynShape, elementType); codegen.buffers[tensor] = rewriter.create(loc, sparseTp, t->get()); } } return true; } /// Constructs vector type. static VectorType vectorType(CodeGen &codegen, Type etp) { return VectorType::get(codegen.curVecLength, etp); } /// Constructs vector type from pointer. static VectorType vectorType(CodeGen &codegen, Value ptr) { return vectorType(codegen, ptr.getType().cast().getElementType()); } /// Constructs vector iteration mask. static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter, Value iv, Value lo, Value hi, Value step) { Location loc = iv.getLoc(); VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1)); // Special case if the vector length evenly divides the trip count (for // example, "for i = 0, 128, 16"). A constant all-true mask is generated // so that all subsequent masked memory operations are immediately folded // into unconditional memory operations. IntegerAttr loInt, hiInt, stepInt; if (matchPattern(lo, m_Constant(&loInt)) && matchPattern(hi, m_Constant(&hiInt)) && matchPattern(step, m_Constant(&stepInt))) { if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) return rewriter.create( loc, mtp, rewriter.create(loc, 1, 1)); } // Otherwise, generate a vector mask that avoids overrunning the upperbound // during vector execution. Here we rely on subsequent loop optimizations to // avoid executing the mask in all iterations, for example, by splitting the // loop into an unconditional vector loop and a scalar cleanup loop. auto minMap = AffineMap::get( /*dimCount=*/2, /*symbolCount=*/1, {rewriter.getAffineSymbolExpr(0), rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)}, rewriter.getContext()); Value end = rewriter.createOrFold(loc, minMap, ValueRange{hi, iv, step}); return rewriter.create(loc, mtp, end); } /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi]. static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter, Value ptr, ArrayRef args) { Location loc = ptr.getLoc(); VectorType vtp = vectorType(codegen, ptr); Value pass = rewriter.create(loc, vtp, rewriter.getZeroAttr(vtp)); if (args.back().getType().isa()) { SmallVector scalarArgs(args.begin(), args.end()); Value indexVec = args.back(); scalarArgs.back() = rewriter.create(loc, 0); return rewriter.create( loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass); } return rewriter.create(loc, vtp, ptr, args, codegen.curVecMask, pass); } /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs. static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter, Value rhs, Value ptr, ArrayRef args) { Location loc = ptr.getLoc(); if (args.back().getType().isa()) { SmallVector scalarArgs(args.begin(), args.end()); Value indexVec = args.back(); scalarArgs.back() = rewriter.create(loc, 0); rewriter.create(loc, ptr, scalarArgs, indexVec, codegen.curVecMask, rhs); return; } rewriter.create(loc, ptr, args, codegen.curVecMask, rhs); } /// Generates a vectorized invariant. Here we rely on subsequent loop /// optimizations to hoist the invariant broadcast out of the vector loop. static Value genVectorInvariantValue(CodeGen &codegen, PatternRewriter &rewriter, Value val) { VectorType vtp = vectorType(codegen, val.getType()); return rewriter.create(val.getLoc(), vtp, val); } /// Generates an affine expression. // // TODO: generalize for sparse tensor subscripts // static Value genAffine(CodeGen &codegen, PatternRewriter &rewriter, AffineExpr a, Location loc) { switch (a.getKind()) { case AffineExprKind::DimId: { unsigned idx = a.cast().getPosition(); return codegen.loops[idx]; // universal dense index } case AffineExprKind::Add: { auto binOp = a.cast(); return rewriter.create( loc, genAffine(codegen, rewriter, binOp.getLHS(), loc), genAffine(codegen, rewriter, binOp.getRHS(), loc)); } case AffineExprKind::Mul: { auto binOp = a.cast(); return rewriter.create( loc, genAffine(codegen, rewriter, binOp.getLHS(), loc), genAffine(codegen, rewriter, binOp.getRHS(), loc)); } case AffineExprKind::Constant: { int64_t c = a.cast().getValue(); return rewriter.create(loc, c); } default: llvm_unreachable("unexpected affine subscript"); } } /// Generates subscript for load/store on a dense or sparse tensor. static Value genSubscript(CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op, OpOperand *t, SmallVector &args) { unsigned tensor = t->getOperandNumber(); auto map = op.getTiedIndexingMap(t); auto enc = getSparseTensorEncoding(t->get().getType()); unsigned rank = map.getNumResults(); if (enc) { // Note that currently, all sparse subscripts are simple. // TODO: accept affine too? unsigned idx = map.getDimPosition(perm(enc, rank - 1)); assert(codegen.pidxs[tensor][idx] != nullptr); args.push_back(codegen.pidxs[tensor][idx]); // position index } else { for (unsigned d = 0; d < rank; d++) { AffineExpr a = map.getResult(perm(enc, d)); args.push_back(genAffine(codegen, rewriter, a, op.getLoc())); } } return codegen.buffers[tensor]; } /// Generates a load on a dense or sparse tensor. static Value genTensorLoad(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op, unsigned exp) { // Test if the load was hoisted to a higher loop nest. Value val = merger.exp(exp).val; if (val) { if (codegen.curVecLength > 1 && !val.getType().isa()) return genVectorInvariantValue(codegen, rewriter, val); return val; } // Actual load. SmallVector args; OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; Value ptr = genSubscript(codegen, rewriter, op, t, args); if (codegen.curVecLength > 1) return genVectorLoad(codegen, rewriter, ptr, args); return rewriter.create(op.getLoc(), ptr, args); } /// Generates a store on a dense or sparse tensor. static void genTensorStore(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op, Value rhs) { // Test if this is a scalarized reduction. if (codegen.redVal) { if (codegen.curVecLength > 1) rhs = rewriter.create(op.getLoc(), codegen.curVecMask, rhs, codegen.redVal); codegen.redVal = rhs; return; } // Actual store. SmallVector args; OpOperand *t = op.getOutputOperand(0); Value ptr = genSubscript(codegen, rewriter, op, t, args); if (codegen.curVecLength > 1) genVectorStore(codegen, rewriter, rhs, ptr, args); else rewriter.create(op.getLoc(), rhs, ptr, args); } /// Generates a pointer/index load from the sparse storage scheme. Narrower /// data types need to be zero extended before casting the value into the /// index type used for looping and indexing. static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc, Value ptr, Value s) { // See https://llvm.org/docs/GetElementPtr.html for some background on // the complications described below. if (codegen.curVecLength > 1) { // Since the index vector is used in a subsequent gather/scatter operations, // which effectively defines an unsigned pointer + signed index, we must // zero extend the vector to an index width. For 8-bit and 16-bit values, // an 32-bit index width suffices. For 32-bit values, zero extending the // elements into 64-bit loses some performance since the 32-bit indexed // gather/scatter is more efficient than the 64-bit index variant (if the // negative 32-bit index space is unused, the enableSIMDIndex32 flag can // preserve this performance). For 64-bit values, there is no good way // to state that the indices are unsigned, with creates the potential of // incorrect address calculations in the unlikely case we need such // extremely large offsets. Type etp = ptr.getType().cast().getElementType(); Value vload = genVectorLoad(codegen, rewriter, ptr, {s}); if (!etp.isa()) { if (etp.getIntOrFloatBitWidth() < 32) vload = rewriter.create( loc, vload, vectorType(codegen, rewriter.getIntegerType(32))); else if (etp.getIntOrFloatBitWidth() < 64 && !codegen.options.enableSIMDIndex32) vload = rewriter.create( loc, vload, vectorType(codegen, rewriter.getIntegerType(64))); } return vload; } // For the scalar case, we simply zero extend narrower indices into 64-bit // values before casting to index without a performance penalty. Here too, // however, indices that already are 64-bit, in theory, cannot express the // full range as explained above. Value load = rewriter.create(loc, ptr, s); if (!load.getType().isa()) { if (load.getType().getIntOrFloatBitWidth() < 64) load = rewriter.create(loc, load, rewriter.getIntegerType(64)); load = rewriter.create(loc, load, rewriter.getIndexType()); } return load; } /// Generates an invariant value. static Value genInvariantValue(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, unsigned exp) { Value val = merger.exp(exp).val; if (codegen.curVecLength > 1) return genVectorInvariantValue(codegen, rewriter, val); return val; } /// Generates an address computation "sz * p + i". static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter, Location loc, Value size, Value p, Value i) { Value mul = rewriter.create(loc, size, p); if (auto vtp = i.getType().dyn_cast()) { Value inv = rewriter.create(loc, mul, vtp.getElementType()); mul = genVectorInvariantValue(codegen, rewriter, inv); } return rewriter.create(loc, mul, i); } /// Generates start of a reduction. static Value genReductionStart(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op) { if (codegen.redVal) return codegen.redVal; // chained with previous for-loop // Generate vector or scalar start of a reduction. unsigned vl = codegen.curVecLength; if (vl > 1) { VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]); assert(!merger.exp(codegen.redExp).val); codegen.curVecLength = 1; Value load = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); codegen.curVecLength = vl; return genReductionInit(rewriter, op.getLoc(), codegen.redKind, vtp, load); } return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp); } /// Generates end of a reduction. static void genReductionEnd(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op) { Value red = codegen.redVal; if (!red) return; assert(codegen.curVecLength == 1); codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain // Generate vector or scalar end of a reduction. if (auto vtp = red.getType().dyn_cast()) { StringRef name = getReductionName(codegen.redKind); StringAttr kind = rewriter.getStringAttr(name); red = rewriter.create( op.getLoc(), vtp.getElementType(), kind, red, ValueRange{}); } genTensorStore(merger, codegen, rewriter, op, red); } /// Recursively generates tensor expression. static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op, unsigned exp) { Location loc = op.getLoc(); if (exp == -1u) return Value(); if (merger.exp(exp).kind == Kind::kTensor) return genTensorLoad(merger, codegen, rewriter, op, exp); if (merger.exp(exp).kind == Kind::kInvariant) return genInvariantValue(merger, codegen, rewriter, exp); Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0); Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1); return merger.buildExp(rewriter, loc, exp, v0, v1); } /// Determines if affine expression is invariant. static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a, unsigned ldx, bool &atLevel) { switch (a.getKind()) { case AffineExprKind::DimId: { unsigned idx = a.cast().getPosition(); if (idx == ldx) atLevel = true; return codegen.loops[idx] != nullptr; // no longer in play? } case AffineExprKind::Add: case AffineExprKind::Mul: { auto binOp = a.cast(); return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) && isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel); } default: return true; } } /// Hoists loop invariant tensor loads for which indices have been exhausted. static void genInvariants(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op, unsigned exp, unsigned ldx, bool hoist, Kind last = Kind::kTensor) { if (exp == -1u) return; if (merger.exp(exp).kind == Kind::kTensor) { // Inspect tensor indices. bool atLevel = ldx == -1u; OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor]; auto map = op.getTiedIndexingMap(t); auto enc = getSparseTensorEncoding(t->get().getType()); for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { AffineExpr a = map.getResult(perm(enc, d)); if (!isInvariantAffine(codegen, a, ldx, atLevel)) return; // still in play } // All exhausted at this level (atLevel denotes exactly at this level). OpOperand *lhs = op.getOutputOperand(0); if (lhs == t) { codegen.redExp = hoist ? exp : -1u; codegen.redKind = getReduction(last); } else if (atLevel) { merger.exp(exp).val = hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value(); } } else if (merger.exp(exp).kind != Kind::kInvariant) { // Traverse into the binary operations. Note that we only hoist // tensor loads, since subsequent MLIR/LLVM passes know how to // deal with all other kinds of derived loop invariants. Kind last = merger.exp(exp).kind; unsigned e0 = merger.exp(exp).children.e0; unsigned e1 = merger.exp(exp).children.e1; genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist, last); genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist, last); } } /// Generates initialization code for the subsequent loop sequence at /// current index level. Returns true if the loop sequence needs to /// maintain the universal index. static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op, std::vector &topSort, unsigned at, llvm::BitVector &inits) { bool needsUniv = false; Location loc = op.getLoc(); unsigned idx = topSort[at]; // Initialize sparse positions. for (unsigned b = 0, be = inits.size(); b < be; b++) { if (inits[b]) { unsigned tensor = merger.tensor(b); assert(idx == merger.index(b)); if (merger.isDim(b, Dim::kSparse)) { // Initialize sparse index. unsigned pat = at; for (; pat != 0; pat--) { if (codegen.pidxs[tensor][topSort[pat - 1]]) break; } Value ptr = codegen.pointers[tensor][idx]; Value one = rewriter.create(loc, 1); Value p0 = (pat == 0) ? rewriter.create(loc, 0) : codegen.pidxs[tensor][topSort[pat - 1]]; codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0); Value p1 = rewriter.create(loc, p0, one); codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1); } else { // Dense index still in play. needsUniv = true; } } } // Initialize the universal dense index. codegen.loops[idx] = rewriter.create(loc, 0); return needsUniv; } /// Returns vectorization strategy. Any implicit inner loop in the Linalg /// operation is a candidate. Whether it is actually converted to SIMD code /// depends on the requested strategy. static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) { switch (codegen.options.vectorizationStrategy) { case SparseVectorizationStrategy::kNone: return false; case SparseVectorizationStrategy::kDenseInnerLoop: return isInner && !isSparse; case SparseVectorizationStrategy::kAnyStorageInnerLoop: return isInner; } llvm_unreachable("unexpected vectorization strategy"); } /// Returns parallelization strategy. Any implicit loop in the Linalg operation /// that is marked "parallel" is a candidate. Whether it is actually converted /// to a parallel operation depends on the requested strategy. static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction, bool isSparse, bool isVector) { switch (codegen.options.parallelizationStrategy) { case SparseParallelizationStrategy::kNone: return false; case SparseParallelizationStrategy::kDenseOuterLoop: return isOuter && !isSparse && !isReduction && !isVector; case SparseParallelizationStrategy::kAnyStorageOuterLoop: return isOuter && !isReduction && !isVector; case SparseParallelizationStrategy::kDenseAnyLoop: return !isSparse && !isReduction && !isVector; case SparseParallelizationStrategy::kAnyStorageAnyLoop: return !isReduction && !isVector; } llvm_unreachable("unexpected parallelization strategy"); } /// Checks unit stride for dense tensors. The iteration graph may have ignored /// dense access patterns in order to avoid cycles (sparse access patterns are /// always placed innermost), but that means dense access has become strided. /// This prevents effective vectorization. static bool denseUnitStrides(Merger &merger, linalg::GenericOp op, unsigned idx) { for (OpOperand *t : op.getInputAndOutputOperands()) { if (!getSparseTensorEncoding(t->get().getType())) { auto map = op.getTiedIndexingMap(t); for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { AffineExpr a = map.getResult(d); // Report non-unit stride if innermost index appears at an outer // dimension (true non-unit stride) or if the innermost index appears // in a compound subscript in the innermost dimension. Even if the // latter is unit stride, it does not play well with scatter/gather. if (a.isFunctionOfDim(idx) && ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId))) return false; } } } return true; } /// Generates a for-loop on a single index. static Operation *genFor(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op, bool isOuter, bool isInner, unsigned idx, llvm::BitVector &indices) { unsigned fb = indices.find_first(); unsigned tensor = merger.tensor(fb); assert(idx == merger.index(fb)); auto iteratorTypes = op.iterator_types().getValue(); bool isReduction = isReductionIterator(iteratorTypes[idx]); bool isSparse = merger.isDim(fb, Dim::kSparse); bool isVector = isVectorFor(codegen, isInner, isSparse) && denseUnitStrides(merger, op, idx); bool isParallel = isParallelFor(codegen, isOuter, isReduction, isSparse, isVector); // Prepare vector length. if (isVector) codegen.curVecLength = codegen.options.vectorLength; // Loop bounds and increment. Location loc = op.getLoc(); Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx]; Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx]; Value step = rewriter.create(loc, codegen.curVecLength); // Emit a parallel loop. if (isParallel) { assert(!isVector); scf::ParallelOp parOp = rewriter.create(loc, lo, hi, step); if (isSparse) codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0]; else codegen.loops[idx] = parOp.getInductionVars()[0]; rewriter.setInsertionPointToStart(parOp.getBody()); return parOp; } // Emit a sequential loop, potentially with a scalarized reduction. bool scalarRed = isInner && codegen.redExp != -1u; SmallVector operands; if (scalarRed) { Value load = genReductionStart(merger, codegen, rewriter, op); operands.push_back(load); } scf::ForOp forOp = rewriter.create(loc, lo, hi, step, operands); if (scalarRed) { codegen.redVal = merger.exp(codegen.redExp).val = forOp.getRegionIterArgs().front(); } // Assign induction variable to sparse or dense index. Value iv = forOp.getInductionVar(); if (isSparse) codegen.pidxs[tensor][idx] = iv; else codegen.loops[idx] = iv; rewriter.setInsertionPointToStart(forOp.getBody()); // Share vector iteration mask between all subsequent loads/stores. if (isVector) codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step); return forOp; } /// Emit a while-loop for co-iteration over multiple indices. static Operation *genWhile(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op, unsigned idx, bool needsUniv, llvm::BitVector &indices) { SmallVector types; SmallVector operands; // Construct the while-loop with a parameter for each index. Type indexType = rewriter.getIndexType(); for (unsigned b = 0, be = indices.size(); b < be; b++) { if (indices[b] && merger.isDim(b, Dim::kSparse)) { unsigned tensor = merger.tensor(b); assert(idx == merger.index(b)); types.push_back(indexType); assert(codegen.pidxs[tensor][idx].getType().isa() && "type mismatch for sparse index"); operands.push_back(codegen.pidxs[tensor][idx]); } } if (needsUniv) { types.push_back(indexType); assert(codegen.loops[idx].getType().isa() && "type mismatch for universal index"); operands.push_back(codegen.loops[idx]); } Location loc = op.getLoc(); scf::WhileOp whileOp = rewriter.create(loc, types, operands); Block *before = rewriter.createBlock(&whileOp.before(), {}, types); Block *after = rewriter.createBlock(&whileOp.after(), {}, types); // Build the "before" region, which effectively consists // of a conjunction of "i < upper" tests on all induction. rewriter.setInsertionPointToStart(&whileOp.before().front()); Value cond; unsigned o = 0; for (unsigned b = 0, be = indices.size(); b < be; b++) { if (indices[b] && merger.isDim(b, Dim::kSparse)) { unsigned tensor = merger.tensor(b); assert(idx == merger.index(b)); Value op1 = before->getArgument(o); Value op2 = codegen.highs[tensor][idx]; Value opc = rewriter.create(loc, arith::CmpIPredicate::ult, op1, op2); cond = cond ? rewriter.create(loc, cond, opc) : opc; codegen.pidxs[tensor][idx] = after->getArgument(o++); } } if (needsUniv) codegen.loops[idx] = after->getArgument(o++); assert(o == operands.size()); rewriter.create(loc, cond, before->getArguments()); rewriter.setInsertionPointToStart(&whileOp.after().front()); return whileOp; } /// Generates a for-loop or a while-loop, depending on whether it implements /// singleton iteration or co-iteration over the given conjunction. static Operation *genLoop(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op, std::vector &topSort, unsigned at, bool needsUniv, llvm::BitVector &indices) { unsigned idx = topSort[at]; if (indices.count() == 1) { bool isOuter = at == 0; bool isInner = at == topSort.size() - 1; return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx, indices); } genReductionEnd(merger, codegen, rewriter, op); // cannot chain return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices); } /// Generates the local variables for this loop, consisting of the sparse /// indices, restored universal dense index, and dense positions. static void genLocals(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op, std::vector &topSort, unsigned at, bool needsUniv, llvm::BitVector &locals) { Location loc = op.getLoc(); unsigned idx = topSort[at]; // Initialize sparse indices. Value min; for (unsigned b = 0, be = locals.size(); b < be; b++) { if (locals[b] && merger.isDim(b, Dim::kSparse)) { unsigned tensor = merger.tensor(b); assert(idx == merger.index(b)); Value ptr = codegen.indices[tensor][idx]; Value s = codegen.pidxs[tensor][idx]; Value load = genLoad(codegen, rewriter, loc, ptr, s); codegen.idxs[tensor][idx] = load; if (!needsUniv) { if (min) { Value cmp = rewriter.create( loc, arith::CmpIPredicate::ult, load, min); min = rewriter.create(loc, cmp, load, min); } else { min = load; } } } } // Merge dense universal index over minimum. if (min) { assert(!needsUniv); codegen.loops[idx] = min; } // Initialize dense positions. Note that we generate dense indices of the // output tensor unconditionally, since they may not appear in the lattice, // but may be needed for linearized codegen. for (unsigned b = 0, be = locals.size(); b < be; b++) { if ((locals[b] || merger.isOutTensor(b, idx)) && merger.isDim(b, Dim::kDense)) { unsigned tensor = merger.tensor(b); assert(idx == merger.index(b)); unsigned pat = at; for (; pat != 0; pat--) if (codegen.pidxs[tensor][topSort[pat - 1]]) break; Value p = (pat == 0) ? rewriter.create(loc, 0) : codegen.pidxs[tensor][topSort[pat - 1]]; codegen.pidxs[tensor][idx] = genAddress( codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]); } } } /// Generates the induction structure for a while-loop. static void genWhileInduction(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op, unsigned idx, bool needsUniv, llvm::BitVector &induction, ResultRange results) { Location loc = op.getLoc(); unsigned o = 0; SmallVector operands; Value one = rewriter.create(loc, 1); for (unsigned b = 0, be = induction.size(); b < be; b++) { if (induction[b] && merger.isDim(b, Dim::kSparse)) { unsigned tensor = merger.tensor(b); assert(idx == merger.index(b)); Value op1 = codegen.idxs[tensor][idx]; Value op2 = codegen.loops[idx]; Value op3 = codegen.pidxs[tensor][idx]; Value cmp = rewriter.create(loc, arith::CmpIPredicate::eq, op1, op2); Value add = rewriter.create(loc, op3, one); operands.push_back(rewriter.create(loc, cmp, add, op3)); codegen.pidxs[tensor][idx] = results[o++]; } } if (needsUniv) { operands.push_back( rewriter.create(loc, codegen.loops[idx], one)); codegen.loops[idx] = results[o++]; } assert(o == operands.size()); rewriter.create(loc, operands); } /// Generates a single if-statement within a while-loop. static scf::IfOp genIf(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op, unsigned idx, llvm::BitVector &conditions) { Location loc = op.getLoc(); Value cond; for (unsigned b = 0, be = conditions.size(); b < be; b++) { if (conditions[b]) { unsigned tensor = merger.tensor(b); assert(idx == merger.index(b)); Value clause; if (merger.isDim(b, Dim::kSparse)) { Value op1 = codegen.idxs[tensor][idx]; Value op2 = codegen.loops[idx]; clause = rewriter.create(loc, arith::CmpIPredicate::eq, op1, op2); } else { clause = rewriter.create(loc, 1, 1); // true } cond = cond ? rewriter.create(loc, cond, clause) : clause; } } scf::IfOp ifOp = rewriter.create(loc, cond, /*else*/ true); rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); return ifOp; } /// Recursively generates code while computing iteration lattices in order /// to manage the complexity of implementing co-iteration over unions /// and intersections of sparse iterations spaces. static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op, std::vector &topSort, unsigned exp, unsigned at) { // At each leaf, assign remaining tensor (sub)expression to output tensor. if (at == topSort.size()) { Value rhs = genExp(merger, codegen, rewriter, op, exp); genTensorStore(merger, codegen, rewriter, op, rhs); return; } assert(codegen.curVecLength == 1); // Construct iteration lattices for current loop index, with L0 at top. // Then emit initialization code for the loop sequence at this level. // We maintain the universal dense index if dense indices are still // in play for a non-singleton loop sequence. Location loc = op.getLoc(); unsigned idx = topSort[at]; unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx)); unsigned lsize = merger.set(lts).size(); assert(lsize != 0); unsigned l0 = merger.set(lts)[0]; unsigned ldx = at == 0 ? -1u : topSort[at - 1]; genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true); bool needsUniv = false; if (genInit(merger, codegen, rewriter, op, topSort, at, merger.lat(l0).bits)) { // Maintain the universal index only if it is actually // consumed by a subsequent lattice point. for (unsigned i = 1; i < lsize; i++) { unsigned li = merger.set(lts)[i]; if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) { needsUniv = true; break; } } } // Emit a loop for every lattice point L0 >= Li. for (unsigned i = 0; i < lsize; i++) { unsigned li = merger.set(lts)[i]; // Emit loop. codegen.curVecLength = 1; llvm::BitVector indices = merger.lat(li).simple; Operation *loop = genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices); genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv, merger.lat(li).bits); // Visit all lattices points with Li >= Lj to generate the // loop-body, possibly with if statements for coiteration. bool isWhile = dyn_cast(loop) != nullptr; for (unsigned j = 0; j < lsize; j++) { unsigned lj = merger.set(lts)[j]; unsigned ej = merger.lat(lj).exp; if (li == lj || merger.latGT(li, lj)) { // Recurse into body of each branch. if (isWhile) { scf::IfOp ifOp = genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple); genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); rewriter.setInsertionPointToStart(&ifOp.elseRegion().front()); } else { genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1); } } } // Wrap-up induction and restore insertion point. if (isWhile) { scf::WhileOp whileOp = cast(loop); rewriter.setInsertionPointToEnd(&whileOp.after().front()); genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv, merger.lat(li).bits, whileOp.results()); } else { needsUniv = false; if (codegen.redVal) { rewriter.create(loc, codegen.redVal); codegen.redVal = loop->getResult(0); } } rewriter.setInsertionPointAfter(loop); } // Wrap-up loop sequence. codegen.curVecLength = 1; genReductionEnd(merger, codegen, rewriter, op); genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false); codegen.loops[idx] = Value(); } /// Converts the result computed by the sparse kernel into the required form. static void genResult(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter, linalg::GenericOp op) { Location loc = op.getLoc(); OpOperand *lhs = op.getOutputOperand(0); Type resType = lhs->get().getType(); unsigned tensor = lhs->getOperandNumber(); auto map = op.getTiedIndexingMap(lhs); auto enc = getSparseTensorEncoding(resType); Value result = codegen.buffers.back(); // value array if (enc) { // The sparse annotation unambigiously defines the arrays needed // to "reconstruct" the sparse tensor from the storage scheme // (even though lowering should never need this eventually). SmallVector args; for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { AffineExpr a = map.getResult(perm(enc, d)); if (a.getKind() != AffineExprKind::DimId) continue; // compound unsigned idx = a.cast().getPosition(); if (merger.isDim(tensor, idx, Dim::kSparse)) { args.push_back(codegen.pointers[tensor][idx]); args.push_back(codegen.indices[tensor][idx]); } } args.push_back(result); result = rewriter.create(loc, resType, args); } else { // To "reconstruct" an non-annotated tensor, sipmly load it // from the bufferized value. result = rewriter.create(loc, resType, result); } rewriter.replaceOp(op, result); } //===----------------------------------------------------------------------===// // Sparse compiler rewriting methods. //===----------------------------------------------------------------------===// namespace { /// Sparse rewriting rule for generic Lingalg operation. struct GenericOpSparsifier : public OpRewritePattern { public: GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) : OpRewritePattern(context), options(o) {} LogicalResult matchAndRewrite(linalg::GenericOp op, PatternRewriter &rewriter) const override { // Detects sparse annotations and translate the per-dimension sparsity // information for all tensors to loop indices in the kernel. assert(op.getNumOutputs() == 1); unsigned numTensors = op.getNumInputsAndOutputs(); unsigned numLoops = op.iterator_types().getValue().size(); Merger merger(numTensors, numLoops); if (!findSparseAnnotations(merger, op)) return failure(); // Computes a topologically sorted iteration graph to ensure // tensors are visited in natural index order. Fails on cycles. // This assumes that higher-level passes have already put the // tensors in each tensor expression in a feasible order. std::vector topSort; if (!computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef | SortMask::kIncludeDense) && !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) && !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) && !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly)) return failure(); // Builds the tensor expression for the Linalg operation in SSA form. Optional exp = merger.buildTensorExpFromLinalg(op); if (!exp.hasValue()) return failure(); // Rejects an inadmissable tensor expression. if (!isAdmissableTensorExp(merger, op, exp.getValue())) return failure(); // Recursively generates code. CodeGen codegen(options, numTensors, numLoops); if (!genBuffers(merger, codegen, rewriter, op)) return failure(); // could not bufferize genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0); genResult(merger, codegen, rewriter, op); return success(); } private: /// Options to control sparse code generation. SparsificationOptions options; }; } // namespace /// Populates the given patterns list with rewriting rules required for /// the sparsification of linear algebra operations. void mlir::populateSparsificationPatterns( RewritePatternSet &patterns, const SparsificationOptions &options) { patterns.add(patterns.getContext(), options); }