1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Vectorization transformations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Analysis/LoopAnalysis.h"
14 #include "mlir/Analysis/SliceAnalysis.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/Tensor/IR/Tensor.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/Dialect/Vector/VectorOps.h"
23 #include "mlir/Dialect/Vector/VectorTransforms.h"
24 #include "mlir/IR/AffineExpr.h"
25 #include "mlir/IR/Matchers.h"
26 #include "mlir/IR/PatternMatch.h"
27 #include "mlir/Pass/Pass.h"
28 #include "mlir/Support/LLVM.h"
29 #include "mlir/Transforms/RegionUtils.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/ADT/Sequence.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/TypeSwitch.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <type_traits>
37 
38 using namespace mlir;
39 using namespace mlir::linalg;
40 
41 using llvm::dbgs;
42 
43 #define DEBUG_TYPE "linalg-vectorization"
44 
45 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
46 #define LDBG(X) LLVM_DEBUG(DBGS() << X)
47 
48 static FailureOr<Operation *>
49 vectorizeConvolution(OpBuilder &b, ConvolutionOpInterface convOp);
50 
51 /// Return the unique instance of OpType in `block` if it is indeed unique.
52 /// Return null if none or more than 1 instances exist.
53 template <typename OpType>
54 static OpType getSingleOpOfType(Block &block) {
55   OpType res;
56   block.walk([&](OpType op) {
57     if (res) {
58       res = nullptr;
59       return WalkResult::interrupt();
60     }
61     res = op;
62     return WalkResult::advance();
63   });
64   return res;
65 }
66 
67 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a
68 /// projectedPermutation, compress the unused dimensions to serve as a
69 /// permutation_map for a vector transfer operation.
70 /// For example, given a linalg op such as:
71 ///
72 /// ```
73 ///   %0 = linalg.generic {
74 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>,
75 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)>
76 ///      }
77 ///     ins(%0 : tensor<2x3x4xf32>)
78 ///    outs(%1 : tensor<5x6xf32>)
79 /// ```
80 ///
81 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine
82 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second
83 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`.
84 static AffineMap reindexIndexingMap(AffineMap map) {
85   assert(map.isProjectedPermutation(/*allowZerosInResults=*/true) &&
86          "expected projected permutation");
87   auto res = compressUnusedDims(map);
88   assert(res.getNumDims() == res.getNumResults() &&
89          "expected reindexed map with same number of dims and results");
90   return res;
91 }
92 
93 /// Helper data structure to represent the result of vectorization.
94 /// In certain specific cases, like terminators, we do not want to propagate/
95 enum VectorizationStatus {
96   /// Op failed to vectorize.
97   Failure = 0,
98   /// Op vectorized and custom function took care of replacement logic
99   NoReplace,
100   /// Op vectorized into a new Op whose results will replace original Op's
101   /// results.
102   NewOp
103   // TODO: support values if Op vectorized to Many-Ops whose results we need to
104   // aggregate for replacement.
105 };
106 struct VectorizationResult {
107   /// Return status from vectorizing the current op.
108   enum VectorizationStatus status = VectorizationStatus::Failure;
109   /// New vectorized operation to replace the current op.
110   /// Replacement behavior is specified by `status`.
111   Operation *newOp;
112 };
113 
114 /// Return a vector type of the same shape and element type as the (assumed)
115 /// ShapedType of `v`.
116 static VectorType extractVectorTypeFromShapedValue(Value v) {
117   auto st = v.getType().cast<ShapedType>();
118   if (st.getShape().empty())
119     return VectorType();
120   return VectorType::get(st.getShape(), st.getElementType());
121 }
122 
123 static llvm::Optional<vector::CombiningKind>
124 getKindForOp(Operation *reductionOp) {
125   if (!reductionOp)
126     return llvm::None;
127   return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>(
128              reductionOp)
129       .Case<arith::AddIOp, arith::AddFOp>(
130           [&](auto op) { return vector::CombiningKind::ADD; })
131       .Case<arith::AndIOp>([&](auto op) { return vector::CombiningKind::AND; })
132       .Case<MaxSIOp>([&](auto op) { return vector::CombiningKind::MAXSI; })
133       .Case<MaxFOp>([&](auto op) { return vector::CombiningKind::MAXF; })
134       .Case<MinSIOp>([&](auto op) { return vector::CombiningKind::MINSI; })
135       .Case<MinFOp>([&](auto op) { return vector::CombiningKind::MINF; })
136       .Case<arith::MulIOp, arith::MulFOp>(
137           [&](auto op) { return vector::CombiningKind::MUL; })
138       .Case<arith::OrIOp>([&](auto op) { return vector::CombiningKind::OR; })
139       .Case<arith::XOrIOp>([&](auto op) { return vector::CombiningKind::XOR; })
140       .Default([&](auto op) { return llvm::None; });
141 }
142 
143 /// Check whether `outputOperand` is a reduction with a single combiner
144 /// operation. Return the combiner operation of the reduction. Return
145 /// nullptr otherwise. Multiple reduction operations would impose an
146 /// ordering between reduction dimensions and is currently unsupported in
147 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) !=
148 /// max(min(X))
149 // TODO: use in LinalgOp verification, there is a circular dependency atm.
150 static Operation *matchLinalgReduction(OpOperand *outputOperand) {
151   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
152   unsigned outputPos =
153       outputOperand->getOperandNumber() - linalgOp.getNumInputs();
154   // Only single combiner operations are supported for now.
155   SmallVector<Operation *, 4> combinerOps;
156   if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) ||
157       combinerOps.size() != 1)
158     return nullptr;
159 
160   // Return the combiner operation.
161   return combinerOps[0];
162 }
163 
164 /// Broadcast `value` to a vector of `shape` if possible. Return value
165 /// otherwise.
166 static Value broadcastIfNeeded(OpBuilder &b, Value value,
167                                ArrayRef<int64_t> shape) {
168   // If no shape to broadcast to, just return `value`.
169   if (shape.empty())
170     return value;
171   VectorType targetVectorType =
172       VectorType::get(shape, getElementTypeOrSelf(value));
173   if (vector::isBroadcastableTo(value.getType(), targetVectorType) !=
174       vector::BroadcastableToResult::Success)
175     return value;
176   Location loc = b.getInsertionPoint()->getLoc();
177   return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value);
178 }
179 
180 /// Build a vector.transfer_read from `source` at indices set to all `0`.
181 /// If source has rank zero, build a `vector<1xt> transfer_read + extract`.
182 /// Return the produced value.
183 static Value buildVectorRead(OpBuilder &b, Value source, Type readType,
184                              AffineMap map) {
185   Location loc = source.getLoc();
186   auto shapedType = source.getType().cast<ShapedType>();
187   SmallVector<Value> indices(shapedType.getRank(),
188                              b.create<arith::ConstantIndexOp>(loc, 0));
189   if (auto vectorType = readType.dyn_cast<VectorType>())
190     return b.create<vector::TransferReadOp>(loc, vectorType, source, indices,
191                                             map);
192   return vector::TransferReadOp::createScalarOp(b, loc, source, indices);
193 }
194 
195 /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This
196 /// assumes that `reductionOp` has two operands and one of them is the reduction
197 /// initial value.
198 static Value buildMultiDimReduce(OpBuilder &b, Operation *reduceOp,
199                                  Value valueToReduce,
200                                  const SmallVector<bool> &reductionMask) {
201   auto maybeKind = getKindForOp(reduceOp);
202   assert(maybeKind && "Failed precondition: could not get reduction kind");
203   return b.create<vector::MultiDimReductionOp>(
204       reduceOp->getLoc(), valueToReduce, reductionMask, *maybeKind);
205 }
206 
207 static SmallVector<bool> getReductionMask(LinalgOp linalgOp) {
208   unsigned idx = 0;
209   SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false);
210   for (auto attr : linalgOp.iterator_types()) {
211     if (isReductionIterator(attr))
212       reductionMask[idx] = true;
213     ++idx;
214   }
215   return reductionMask;
216 }
217 
218 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set
219 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp
220 /// currently being vectorized. If `dest` has null rank, build an memref.store.
221 /// Return the produced value or null if no value is produced.
222 static Value buildVectorWrite(OpBuilder &b, Value value,
223                               OpOperand *outputOperand) {
224   Operation *write;
225   Location loc = value.getLoc();
226   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
227   if (VectorType vectorType =
228           extractVectorTypeFromShapedValue(outputOperand->get())) {
229     AffineMap map =
230         reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand));
231     SmallVector<int64_t> transposeShape =
232         applyPermutationMap(inversePermutation(map), vectorType.getShape());
233     assert(!transposeShape.empty() && "unexpected empty transpose shape");
234     vectorType = VectorType::get(transposeShape, vectorType.getElementType());
235     SmallVector<Value> indices(linalgOp.getRank(outputOperand),
236                                b.create<arith::ConstantIndexOp>(loc, 0));
237     value = broadcastIfNeeded(b, value, vectorType.getShape());
238     write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(),
239                                               indices, map);
240   } else {
241     write = vector::TransferWriteOp::createScalarOp(
242         b, loc, value, outputOperand->get(), ValueRange{});
243   }
244   LDBG("vectorized op: " << *write);
245   if (!write->getResults().empty())
246     return write->getResult(0);
247   return Value();
248 }
249 
250 // Custom vectorization function type. Produce a vector form of Operation*
251 // assuming all its vectorized operands are already in the BlockAndValueMapping.
252 // Return nullptr if the Operation cannot be vectorized.
253 using CustomVectorizationHook = std::function<VectorizationResult(
254     Operation *, const BlockAndValueMapping &)>;
255 
256 /// Helper function to vectorize the terminator of a `linalgOp`. New result
257 /// vector values are appended to `newResults`. Return
258 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
259 /// should not try to map produced operations and instead return the results
260 /// using the `newResults` vector making them available to the
261 /// vectorization algorithm for RAUW. This function is meant to be used as a
262 /// CustomVectorizationHook.
263 static VectorizationResult
264 vectorizeLinalgYield(OpBuilder &b, Operation *op,
265                      const BlockAndValueMapping &bvm, LinalgOp linalgOp,
266                      SmallVectorImpl<Value> &newResults) {
267   auto yieldOp = dyn_cast<linalg::YieldOp>(op);
268   if (!yieldOp)
269     return VectorizationResult{VectorizationStatus::Failure, nullptr};
270   for (auto outputs : llvm::enumerate(yieldOp.values())) {
271     // TODO: Scan for an opportunity for reuse.
272     // TODO: use a map.
273     Value vectorValue = bvm.lookup(outputs.value());
274     Value newResult = buildVectorWrite(
275         b, vectorValue, linalgOp.getOutputOperand(outputs.index()));
276     if (newResult)
277       newResults.push_back(newResult);
278   }
279   return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
280 }
281 
282 /// Helper function to vectorize the index operations of a `linalgOp`. Return
283 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it
284 /// should map the produced operations. This function is meant to be used as a
285 /// CustomVectorizationHook.
286 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op,
287                                                 LinalgOp linalgOp) {
288   IndexOp indexOp = dyn_cast<linalg::IndexOp>(op);
289   if (!indexOp)
290     return VectorizationResult{VectorizationStatus::Failure, nullptr};
291   auto loc = indexOp.getLoc();
292   // Compute the static loop sizes of the index op.
293   auto targetShape = linalgOp.computeStaticLoopSizes();
294   // Compute a one-dimensional index vector for the index op dimension.
295   SmallVector<int64_t> constantSeq =
296       llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()]));
297   auto constantOp =
298       b.create<arith::ConstantOp>(loc, b.getIndexVectorAttr(constantSeq));
299   // Return the one-dimensional index vector if it lives in the trailing
300   // dimension of the iteration space since the vectorization algorithm in this
301   // case can handle the broadcast.
302   if (indexOp.dim() == targetShape.size() - 1)
303     return VectorizationResult{VectorizationStatus::NewOp, constantOp};
304   // Otherwise permute the targetShape to move the index dimension last,
305   // broadcast the one-dimensional index vector to the permuted shape, and
306   // finally transpose the broadcasted index vector to undo the permutation.
307   std::swap(targetShape[indexOp.dim()], targetShape.back());
308   auto broadCastOp = b.create<vector::BroadcastOp>(
309       loc, VectorType::get(targetShape, b.getIndexType()), constantOp);
310   SmallVector<int64_t> transposition =
311       llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops()));
312   std::swap(transposition.back(), transposition[indexOp.dim()]);
313   auto transposeOp =
314       b.create<vector::TransposeOp>(loc, broadCastOp, transposition);
315   return VectorizationResult{VectorizationStatus::NewOp, transposeOp};
316 }
317 
318 /// Create a new vectorized verstion of `op` with the given operands and types.
319 static Operation *createVectorizedOp(OpBuilder &b, Operation *op,
320                                      ValueRange newOperands,
321                                      ArrayRef<Type> types) {
322   OperationState state(op->getLoc(), op->getName());
323   state.addAttributes(op->getAttrs());
324   state.addOperands(newOperands);
325   state.addTypes(types);
326   return b.createOperation(state);
327 }
328 
329 /// Emit reduction operations if the shapes of the value to reduce is different
330 /// that the result shape.
331 static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op,
332                                  Value reduceValue, Value initialValue,
333                                  const BlockAndValueMapping &bvm) {
334   Value reduceVec = bvm.lookup(reduceValue);
335   Value outputVec = bvm.lookup(initialValue);
336   auto reduceType = reduceVec.getType().dyn_cast<VectorType>();
337   auto outputType = outputVec.getType().dyn_cast<VectorType>();
338   // Reduce only if needed as the value may already have been reduce for
339   // contraction vectorization.
340   if (!reduceType ||
341       (outputType && reduceType.getShape() == outputType.getShape()))
342     return nullptr;
343   SmallVector<bool> reductionMask = getReductionMask(linalgOp);
344   Value reduce = buildMultiDimReduce(b, op, reduceVec, reductionMask);
345   return createVectorizedOp(b, op, {reduce, outputVec}, reduce.getType());
346 }
347 
348 /// Generic vectorization for a single operation `op`, given already vectorized
349 /// operands carried by `bvm`. Vectorization occurs as follows:
350 ///   1. Try to apply any of the `customVectorizationHooks` and return its
351 ///   result on success.
352 ///   2. Clone any constant in the current scope without vectorization: each
353 ///   consumer of the constant will later determine the shape to which the
354 ///   constant needs to be broadcast to.
355 ///   3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
356 ///   of the `customVectorizationHooks` to cover such cases.
357 ///   4. Clone `op` in vector form to a vector of shape prescribed by the first
358 ///   operand of maximal rank. Other operands have smaller rank and are
359 ///   broadcast accordingly. It is assumed this broadcast is always legal,
360 ///   otherwise, it means one of the `customVectorizationHooks` is incorrect.
361 ///
362 /// This function assumes all operands of `op` have been vectorized and are in
363 /// the `bvm` mapping. As a consequence, this function is meant to be called on
364 /// a topologically-sorted list of ops.
365 /// This function does not update `bvm` but returns a VectorizationStatus that
366 /// instructs the caller what `bvm` update needs to occur.
367 static VectorizationResult
368 vectorizeOneOp(OpBuilder &b, LinalgOp linalgOp, Operation *op,
369                const BlockAndValueMapping &bvm,
370                ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
371   LDBG("vectorize op " << *op);
372 
373   // 1. Try to apply any CustomVectorizationHook.
374   if (!customVectorizationHooks.empty()) {
375     for (auto &customFunc : customVectorizationHooks) {
376       VectorizationResult result = customFunc(op, bvm);
377       if (result.status == VectorizationStatus::Failure)
378         continue;
379       return result;
380     }
381   }
382 
383   // 2. Constant ops don't get vectorized but rather broadcasted at their users.
384   // Clone so that the constant is not confined to the linalgOp block .
385   if (isa<arith::ConstantOp, ConstantOp>(op))
386     return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)};
387 
388   // 3. Only ElementwiseMappable are allowed in the generic vectorization.
389   if (!OpTrait::hasElementwiseMappableTraits(op))
390     return VectorizationResult{VectorizationStatus::Failure, nullptr};
391 
392   // 4 . Check if the operation is a reduction.
393   SmallVector<std::pair<Value, Value>> reductionOperands;
394   for (Value operand : op->getOperands()) {
395     auto arg = operand.dyn_cast<BlockArgument>();
396     if (!arg || arg.getArgNumber() < linalgOp.getNumInputs())
397       continue;
398     SmallVector<Operation *> reductionOps;
399     Value reduceValue = matchReduction(
400         linalgOp.getRegionOutputArgs(),
401         arg.getArgNumber() - linalgOp.getNumInputs(), reductionOps);
402     if (!reduceValue)
403       continue;
404     reductionOperands.push_back(std::make_pair(reduceValue, operand));
405   }
406   if (!reductionOperands.empty()) {
407     assert(reductionOperands.size() == 1);
408     Operation *reduceOp =
409         reduceIfNeeded(b, linalgOp, op, reductionOperands[0].first,
410                        reductionOperands[0].second, bvm);
411     if (reduceOp)
412       return VectorizationResult{VectorizationStatus::NewOp, reduceOp};
413   }
414 
415   // 5. Generic vectorization path for ElementwiseMappable ops.
416   //   a. first get the first max ranked shape.
417   SmallVector<int64_t, 4> firstMaxRankedShape;
418   for (Value operand : op->getOperands()) {
419     auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>();
420     if (vt && firstMaxRankedShape.size() < vt.getShape().size())
421       firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end());
422   }
423   //   b. broadcast each op if needed.
424   auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) {
425     return firstMaxRankedShape.empty()
426                ? bvm.lookup(v)
427                : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape);
428   });
429   //   c. for elementwise, the result is the vector with the firstMaxRankedShape
430   auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) {
431     return firstMaxRankedShape.empty()
432                ? t
433                : VectorType::get(firstMaxRankedShape, t);
434   });
435 
436   // Build and return the new op.
437   return VectorizationResult{
438       VectorizationStatus::NewOp,
439       createVectorizedOp(b, op, llvm::to_vector<4>(vectorizedOperands),
440                          llvm::to_vector<4>(returnTypes))};
441 }
442 
443 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp.
444 static bool hasOnlyScalarElementwiseOp(Region &r) {
445   if (!llvm::hasSingleElement(r))
446     return false;
447   for (Operation &op : r.front()) {
448     if (!(isa<arith::ConstantOp, ConstantOp, linalg::YieldOp, linalg::IndexOp>(
449               op) ||
450           OpTrait::hasElementwiseMappableTraits(&op)) ||
451         llvm::any_of(op.getResultTypes(),
452                      [](Type type) { return !type.isIntOrIndexOrFloat(); }))
453       return false;
454   }
455   return true;
456 }
457 
458 // Return true if the op is an element-wise linalg op.
459 static bool isElementwise(Operation *op) {
460   auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
461   if (!linalgOp)
462     return false;
463   if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops())
464     return false;
465   // TODO: relax the restrictions on indexing map.
466   for (OpOperand *opOperand : linalgOp.getOutputOperands()) {
467     if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity())
468       return false;
469   }
470   return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0));
471 }
472 
473 /// Generic vectorization function that rewrites the body of a `linalgOp` into
474 /// vector form. Generic vectorization proceeds as follows:
475 ///   1. Verify the `linalgOp` has one non-empty region.
476 ///   2. Values defined above the region are mapped to themselves and will be
477 ///   broadcasted on a per-need basis by their consumers.
478 ///   3. Each region argument is vectorized into a vector.transfer_read (or 0-d
479 ///   load).
480 ///   TODO: Reuse opportunities for RAR dependencies.
481 ///   4a. Register CustomVectorizationHook for YieldOp to capture the results.
482 ///   4b. Register CustomVectorizationHook for IndexOp to access the iteration
483 ///   indices.
484 ///   5. Iteratively call vectorizeOneOp on the region operations.
485 ///
486 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is
487 /// performed to the maximal common vector size implied by the `linalgOp`
488 /// iteration space. This eager broadcasting is introduced in the
489 /// permutation_map of the vector.transfer_read operations. The eager
490 /// broadcasting makes it trivial to detrmine where broadcast, transposes and
491 /// reductions should occur, without any bookkeeping. The tradeoff is that, in
492 /// the absence of good canonicalizations, the amount of work increases.
493 /// This is not deemed a problem as we expect canonicalizations and foldings to
494 /// aggressively clean up the useless work.
495 static LogicalResult
496 vectorizeAsLinalgGeneric(OpBuilder &b, LinalgOp linalgOp,
497                          SmallVectorImpl<Value> &newResults) {
498   Block *block = linalgOp.getBlock();
499 
500   // 2. Values defined above the region can only be broadcast for now. Make them
501   // map to themselves.
502   BlockAndValueMapping bvm;
503   SetVector<Value> valuesSet;
504   mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet);
505   bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());
506 
507   if (linalgOp.getNumOutputs() == 0)
508     return failure();
509 
510   // TODO: the common vector shape is equal to the static loop sizes only when
511   // all indexing maps are projected permutations. For convs and stencils the
512   // logic will need to evolve.
513   SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes();
514 
515   // 3. Turn all BBArgs into vector.transfer_read / load.
516   SmallVector<AffineMap> indexings;
517   for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) {
518     BlockArgument bbarg = block->getArgument(opOperand->getOperandNumber());
519     if (linalgOp.isScalar(opOperand)) {
520       bvm.map(bbarg, opOperand->get());
521       continue;
522     }
523     // TODO: 0-d vectors.
524     Type readType;
525     AffineMap map;
526     if (linalgOp.getShape(opOperand).empty()) {
527       readType = bbarg.getType();
528     } else {
529       if (opOperand->getOperandNumber() < linalgOp.getNumInputs()) {
530         map = inverseAndBroadcastProjectedPermuation(
531             linalgOp.getTiedIndexingMap(opOperand));
532         readType = VectorType::get(commonVectorShape,
533                                    getElementTypeOrSelf(opOperand->get()));
534       } else {
535         map = inversePermutation(
536             reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand)));
537         readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)),
538                                    getElementTypeOrSelf(opOperand->get()));
539       }
540     }
541     Value readValue = buildVectorRead(b, opOperand->get(), readType, map);
542     LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue);
543     bvm.map(bbarg, readValue);
544     bvm.map(opOperand->get(), readValue);
545   }
546 
547   SmallVector<CustomVectorizationHook> hooks;
548   // 4a. Register CustomVectorizationHook for yieldOp.
549   CustomVectorizationHook vectorizeYield =
550       [&](Operation *op,
551           const BlockAndValueMapping &bvm) -> VectorizationResult {
552     return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults);
553   };
554   hooks.push_back(vectorizeYield);
555 
556   // 4b. Register CustomVectorizationHook for indexOp.
557   CustomVectorizationHook vectorizeIndex =
558       [&](Operation *op,
559           const BlockAndValueMapping &bvm) -> VectorizationResult {
560     return vectorizeLinalgIndex(b, op, linalgOp);
561   };
562   hooks.push_back(vectorizeIndex);
563 
564   // 5. Iteratively call `vectorizeOneOp` to each op in the slice.
565   for (Operation &op : block->getOperations()) {
566     VectorizationResult result = vectorizeOneOp(b, linalgOp, &op, bvm, hooks);
567     if (result.status == VectorizationStatus::Failure) {
568       LDBG("failed to vectorize: " << op);
569       return failure();
570     }
571     if (result.status == VectorizationStatus::NewOp) {
572       LDBG("new vector op: " << *result.newOp;);
573       bvm.map(op.getResults(), result.newOp->getResults());
574     }
575   }
576 
577   return success();
578 }
579 
580 /// Helper function to vectorize a `linalgOp` with contraction semantics in a
581 /// generic fashion.
582 /// This helper is needed atm because the truly generic implementation requires
583 /// good vector.multi_reduce folding patterns that are currently NYI.
584 // TODO: drop reliance on a specific pattern.
585 static bool allIndexingsAreProjectedPermutation(LinalgOp op) {
586   return llvm::all_of(op.getIndexingMaps(), [](AffineMap m) {
587     return m.isProjectedPermutation(/*allowZerosInResults=*/true);
588   });
589 }
590 
591 // TODO: probably need some extra checks for reduction followed by consumer
592 // ops that may not commute (e.g. linear reduction + non-linear instructions).
593 static LogicalResult reductionPreconditions(LinalgOp op) {
594   if (llvm::none_of(op.iterator_types(), isReductionIterator)) {
595     LDBG("reduction precondition failed: no reduction iterator");
596     return failure();
597   }
598   for (OpOperand *opOperand : op.getOutputOperands()) {
599     Operation *reduceOp = matchLinalgReduction(opOperand);
600     if (!reduceOp || !getKindForOp(reduceOp)) {
601       LDBG("reduction precondition failed: reduction detection failed");
602       return failure();
603     }
604   }
605   return success();
606 }
607 
608 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) {
609   auto linalgOp = cast<linalg::LinalgOp>(op);
610   // All types must be static shape to go to vector.
611   if (linalgOp.hasDynamicShape()) {
612     LDBG("precondition failed: dynamic shape");
613     return failure();
614   }
615   if (isElementwise(op))
616     return success();
617   // TODO: isaConvolutionOpInterface that can also infer from generic features.
618   // But we will still need stride/dilation attributes that will be annoying to
619   // reverse-engineer...
620   if (isa<ConvolutionOpInterface>(op))
621     return success();
622   // TODO: the common vector shape is equal to the static loop sizes only when
623   // all indexing maps are projected permutations. For convs and stencils the
624   // logic will need to evolve.
625   if (!allIndexingsAreProjectedPermutation(linalgOp)) {
626     LDBG("precondition failed: not projected permutations");
627     return failure();
628   }
629   if (failed(reductionPreconditions(linalgOp))) {
630     LDBG("precondition failed: reduction preconditions");
631     return failure();
632   }
633   return success();
634 }
635 
636 LogicalResult
637 mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op,
638                                 SmallVectorImpl<Value> &newResults) {
639   if (failed(vectorizeLinalgOpPrecondition(op)))
640     return failure();
641 
642   auto linalgOp = cast<LinalgOp>(op);
643 
644   // TODO: isaConvolutionOpInterface that can also infer from generic features.
645   // But we will still need stride/dilation attributes that will be annoying to
646   // reverse-engineer...
647   if (auto convOp = dyn_cast<ConvolutionOpInterface>(op)) {
648     FailureOr<Operation *> resultOrFail = vectorizeConvolution(b, convOp);
649     if (failed(resultOrFail))
650       return failure();
651     Operation *newOp = *resultOrFail;
652     llvm::append_range(newResults, newOp->getResults());
653     return success();
654   }
655 
656   LDBG(""
657        << "Vectorize linalg op as a generic by broadcasting to "
658           "maximal common shape: "
659        << *op);
660   return vectorizeAsLinalgGeneric(b, linalgOp, newResults);
661 }
662 
663 //----------------------------------------------------------------------------//
664 // Misc. vectorization patterns.
665 //----------------------------------------------------------------------------//
666 
667 /// Helper function that retrieves the value of an IntegerAttr.
668 static int64_t getIntFromAttr(Attribute attr) {
669   return attr.cast<IntegerAttr>().getInt();
670 }
671 
672 /// Given an ArrayRef of OpFoldResults, return a vector of Values. IntegerAttrs
673 /// are converted to ConstantIndexOps. Other attribute types are not supported.
674 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc,
675                                            ArrayRef<OpFoldResult> ofrs) {
676   SmallVector<Value> result;
677   llvm::for_each(ofrs, [&](auto o) {
678     if (auto val = o.template dyn_cast<Value>()) {
679       result.push_back(val);
680     } else {
681       result.push_back(builder.create<arith::ConstantIndexOp>(
682           loc, getIntFromAttr(o.template get<Attribute>())));
683     }
684   });
685   return result;
686 }
687 
688 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and
689 /// InsertSliceOp. For now, only constant padding values are supported.
690 /// If there is enough static type information, TransferReadOps and
691 /// TransferWriteOps may be generated instead of InsertSliceOps.
692 struct GenericPadTensorOpVectorizationPattern
693     : public GeneralizePadTensorOpPattern {
694   GenericPadTensorOpVectorizationPattern(MLIRContext *context,
695                                          PatternBenefit benefit = 1)
696       : GeneralizePadTensorOpPattern(context, tryVectorizeCopy, benefit) {}
697   /// Vectorize the copying of a PadTensorOp's source. This is possible if each
698   /// dimension size is statically know in the source type or the result type
699   /// (or both).
700   static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter,
701                                         PadTensorOp padOp, Value dest) {
702     auto sourceType = padOp.getSourceType();
703     auto resultType = padOp.getResultType();
704 
705     // Copy cannot be vectorized if pad value is non-constant and source shape
706     // is dynamic. In case of a dynamic source shape, padding must be appended
707     // by TransferReadOp, but TransferReadOp supports only constant padding.
708     auto padValue = padOp.getConstantPaddingValue();
709     if (!padValue) {
710       if (!sourceType.hasStaticShape())
711         return failure();
712       // Create dummy padding value.
713       auto elemType = sourceType.getElementType();
714       padValue = rewriter.create<arith::ConstantOp>(
715           padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType));
716     }
717 
718     SmallVector<int64_t> vecShape;
719     SmallVector<bool> readInBounds;
720     SmallVector<bool> writeInBounds;
721     for (unsigned i = 0; i < sourceType.getRank(); ++i) {
722       if (!sourceType.isDynamicDim(i)) {
723         vecShape.push_back(sourceType.getDimSize(i));
724         // Source shape is statically known: Neither read nor write are out-of-
725         // bounds.
726         readInBounds.push_back(true);
727         writeInBounds.push_back(true);
728       } else if (!resultType.isDynamicDim(i)) {
729         // Source shape is not statically known, but result shape is. Vectorize
730         // with size of result shape. This may be larger than the source size.
731         vecShape.push_back(resultType.getDimSize(i));
732         // Read may be out-of-bounds because the result size could be larger
733         // than the source size.
734         readInBounds.push_back(false);
735         // Write is out-of-bounds if low padding > 0.
736         writeInBounds.push_back(
737             getConstantIntValue(padOp.getMixedLowPad()[i]) ==
738             static_cast<int64_t>(0));
739       } else {
740         // Neither source nor result dim of padOp is static. Cannot vectorize
741         // the copy.
742         return failure();
743       }
744     }
745     auto vecType = VectorType::get(vecShape, sourceType.getElementType());
746 
747     // Generate TransferReadOp.
748     SmallVector<Value> readIndices(
749         vecType.getRank(),
750         rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
751     auto read = rewriter.create<vector::TransferReadOp>(
752         padOp.getLoc(), vecType, padOp.source(), readIndices, padValue,
753         readInBounds);
754 
755     // If `dest` is a FillOp and the TransferWriteOp would overwrite the entire
756     // tensor, write directly to the FillOp's operand.
757     if (llvm::equal(vecShape, resultType.getShape()) &&
758         llvm::all_of(writeInBounds, [](bool b) { return b; }))
759       if (auto fill = dest.getDefiningOp<FillOp>())
760         dest = fill.output();
761 
762     // Generate TransferWriteOp.
763     auto writeIndices =
764         ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad());
765     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
766         padOp, read, dest, writeIndices, writeInBounds);
767 
768     return success();
769   }
770 };
771 
772 /// Base pattern for rewriting PadTensorOps whose result is consumed by a given
773 /// operation type OpTy.
774 template <typename OpTy>
775 struct VectorizePadTensorOpUserPattern : public OpRewritePattern<PadTensorOp> {
776   using OpRewritePattern<PadTensorOp>::OpRewritePattern;
777 
778   LogicalResult matchAndRewrite(PadTensorOp padOp,
779                                 PatternRewriter &rewriter) const final {
780     bool changed = false;
781     // Insert users in vector, because some users may be replaced/removed.
782     for (auto *user : llvm::to_vector<4>(padOp->getUsers()))
783       if (auto op = dyn_cast<OpTy>(user))
784         changed |= rewriteUser(rewriter, padOp, op).succeeded();
785     return success(changed);
786   }
787 
788 protected:
789   virtual LogicalResult rewriteUser(PatternRewriter &rewriter,
790                                     PadTensorOp padOp, OpTy op) const = 0;
791 };
792 
793 /// Rewrite use of PadTensorOp result in TransferReadOp. E.g.:
794 /// ```
795 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32>
796 /// %r = vector.transfer_read %0[%c0, %c0], %cst
797 ///     {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32>
798 /// ```
799 /// is rewritten to:
800 /// ```
801 /// %r = vector.transfer_read %src[%c0, %c0], %padding
802 ///     {in_bounds = [true, true]}
803 ///     : tensor<?x?xf32>, vector<17x5xf32>
804 /// ```
805 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be
806 /// sure that the original padding value %cst was never used.
807 ///
808 /// This rewrite is possible if:
809 /// - `xferOp` has no out-of-bounds dims or mask.
810 /// - Low padding is static 0.
811 /// - Single, scalar padding value.
812 struct PadTensorOpVectorizationWithTransferReadPattern
813     : public VectorizePadTensorOpUserPattern<vector::TransferReadOp> {
814   using VectorizePadTensorOpUserPattern<
815       vector::TransferReadOp>::VectorizePadTensorOpUserPattern;
816 
817   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
818                             vector::TransferReadOp xferOp) const override {
819     // Low padding must be static 0.
820     if (!padOp.hasZeroLowPad())
821       return failure();
822     // Pad value must be a constant.
823     auto padValue = padOp.getConstantPaddingValue();
824     if (!padValue)
825       return failure();
826     // Padding value of existing `xferOp` is unused.
827     if (xferOp.hasOutOfBoundsDim() || xferOp.mask())
828       return failure();
829 
830     rewriter.updateRootInPlace(xferOp, [&]() {
831       SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
832       xferOp->setAttr(xferOp.getInBoundsAttrName(),
833                       rewriter.getBoolArrayAttr(inBounds));
834       xferOp.sourceMutable().assign(padOp.source());
835       xferOp.paddingMutable().assign(padValue);
836     });
837 
838     return success();
839   }
840 };
841 
842 /// Rewrite use of PadTensorOp result in TransferWriteOp.
843 /// This pattern rewrites TransferWriteOps that write to a padded tensor value,
844 /// where the same amount of padding is immediately removed again after the
845 /// write. In such cases, the TransferWriteOp can write to the non-padded tensor
846 /// value and apply out-of-bounds masking. E.g.:
847 /// ```
848 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
849 ///     : tensor<...> to tensor<?x?xf32>
850 /// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32>
851 /// %2 = vector.transfer_write %vec, %1[...]
852 ///     : vector<17x5xf32>, tensor<17x5xf32>
853 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1]
854 ///     : tensor<17x5xf32> to tensor<?x?xf32>
855 /// ```
856 /// is rewritten to:
857 /// ```
858 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
859 ///     : tensor<...> to tensor<?x?xf32>
860 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor<?x?xf32>
861 /// ```
862 /// Note: It is important that the ExtractSliceOp %r resizes the result of the
863 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an even
864 /// smaller size). Otherwise, %r's new (dynamic) dimensions would differ from
865 /// %r's old dimensions.
866 ///
867 /// This rewrite is possible if:
868 /// - Low padding is static 0.
869 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This
870 ///   ExtractSliceOp trims the same amount of padding that was added beforehand.
871 /// - Single, scalar padding value.
872 struct PadTensorOpVectorizationWithTransferWritePattern
873     : public VectorizePadTensorOpUserPattern<vector::TransferWriteOp> {
874   using VectorizePadTensorOpUserPattern<
875       vector::TransferWriteOp>::VectorizePadTensorOpUserPattern;
876 
877   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
878                             vector::TransferWriteOp xferOp) const override {
879     // Low padding must be static 0.
880     if (!padOp.hasZeroLowPad())
881       return failure();
882     // Pad value must be a constant.
883     auto padValue = padOp.getConstantPaddingValue();
884     if (!padValue)
885       return failure();
886     // TransferWriteOp result must be directly consumed by an ExtractSliceOp.
887     if (!xferOp->hasOneUse())
888       return failure();
889     auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin());
890     if (!trimPadding)
891       return failure();
892     // Only static zero offsets supported when trimming padding.
893     if (!trimPadding.hasZeroOffset())
894       return failure();
895     // trimPadding must remove the amount of padding that was added earlier.
896     if (!hasSameTensorSize(padOp.source(), trimPadding))
897       return failure();
898 
899     // Insert the new TransferWriteOp at position of the old TransferWriteOp.
900     rewriter.setInsertionPoint(xferOp);
901 
902     SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
903     auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
904         xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(),
905         xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(),
906         rewriter.getBoolArrayAttr(inBounds));
907     rewriter.replaceOp(trimPadding, newXferOp->getResult(0));
908 
909     return success();
910   }
911 
912   /// Check if `beforePadding` and `afterTrimming` have the same tensor size,
913   /// i.e., same dimensions.
914   ///
915   /// Dimensions may be static, dynamic or mix of both. In case of dynamic
916   /// dimensions, this function tries to infer the (static) tensor size by
917   /// looking at the defining op and utilizing op-specific knowledge.
918   ///
919   /// This is a conservative analysis. In case equal tensor sizes cannot be
920   /// proven statically, this analysis returns `false` even though the tensor
921   /// sizes may turn out to be equal at runtime.
922   bool hasSameTensorSize(Value beforePadding,
923                          tensor::ExtractSliceOp afterTrimming) const {
924     // If the input to PadTensorOp is a CastOp, try with with both CastOp result
925     // and CastOp operand.
926     if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>())
927       if (hasSameTensorSize(castOp.source(), afterTrimming))
928         return true;
929 
930     auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>();
931     auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>();
932     // Only RankedTensorType supported.
933     if (!t1 || !t2)
934       return false;
935     // Rank of both values must be the same.
936     if (t1.getRank() != t2.getRank())
937       return false;
938 
939     // All static dimensions must be the same. Mixed cases (e.g., dimension
940     // static in `t1` but dynamic in `t2`) are not supported.
941     for (unsigned i = 0; i < t1.getRank(); ++i) {
942       if (t1.isDynamicDim(i) != t2.isDynamicDim(i))
943         return false;
944       if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i))
945         return false;
946     }
947 
948     // Nothing more to check if all dimensions are static.
949     if (t1.getNumDynamicDims() == 0)
950       return true;
951 
952     // All dynamic sizes must be the same. The only supported case at the moment
953     // is when `beforePadding` is an ExtractSliceOp (or a cast thereof).
954 
955     // Apart from CastOp, only ExtractSliceOp is supported.
956     auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>();
957     if (!beforeSlice)
958       return false;
959 
960     assert(static_cast<size_t>(t1.getRank()) ==
961            beforeSlice.getMixedSizes().size());
962     assert(static_cast<size_t>(t2.getRank()) ==
963            afterTrimming.getMixedSizes().size());
964 
965     for (unsigned i = 0; i < t1.getRank(); ++i) {
966       // Skip static dimensions.
967       if (!t1.isDynamicDim(i))
968         continue;
969       auto size1 = beforeSlice.getMixedSizes()[i];
970       auto size2 = afterTrimming.getMixedSizes()[i];
971 
972       // Case 1: Same value or same constant int.
973       if (isEqualConstantIntOrValue(size1, size2))
974         continue;
975 
976       // Other cases: Take a deeper look at defining ops of values.
977       auto v1 = size1.dyn_cast<Value>();
978       auto v2 = size2.dyn_cast<Value>();
979       if (!v1 || !v2)
980         return false;
981 
982       // Case 2: Both values are identical AffineMinOps. (Should not happen if
983       // CSE is run.)
984       auto minOp1 = v1.getDefiningOp<AffineMinOp>();
985       auto minOp2 = v2.getDefiningOp<AffineMinOp>();
986       if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() &&
987           minOp1.operands() == minOp2.operands())
988         continue;
989 
990       // Add additional cases as needed.
991     }
992 
993     // All tests passed.
994     return true;
995   }
996 };
997 
998 /// Rewrite use of PadTensorOp result in InsertSliceOp. E.g.:
999 /// ```
1000 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32>
1001 /// %r = tensor.insert_slice %0
1002 ///     into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1]
1003 ///     : tensor<17x5xf32> into tensor<?x?x17x5xf32>
1004 /// ```
1005 /// is rewritten to:
1006 /// ```
1007 /// %0 = vector.transfer_read %src[%c0, %c0], %padding
1008 ///     : tensor<?x?xf32>, vector<17x5xf32>
1009 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0]
1010 ///     {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32>
1011 /// ```
1012 ///
1013 /// This rewrite is possible if:
1014 /// - Low padding is static 0.
1015 /// - `padOp` result shape is static.
1016 /// - The entire padded tensor is inserted.
1017 ///   (Implies that sizes of `insertOp` are all static.)
1018 /// - Only unit strides in `insertOp`.
1019 /// - Single, scalar padding value.
1020 struct PadTensorOpVectorizationWithInsertSlicePattern
1021     : public VectorizePadTensorOpUserPattern<tensor::InsertSliceOp> {
1022   using VectorizePadTensorOpUserPattern<
1023       tensor::InsertSliceOp>::VectorizePadTensorOpUserPattern;
1024 
1025   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
1026                             tensor::InsertSliceOp insertOp) const override {
1027     // Low padding must be static 0.
1028     if (!padOp.hasZeroLowPad())
1029       return failure();
1030     // Only unit stride supported.
1031     if (!insertOp.hasUnitStride())
1032       return failure();
1033     // Pad value must be a constant.
1034     auto padValue = padOp.getConstantPaddingValue();
1035     if (!padValue)
1036       return failure();
1037     // Dynamic shapes not supported.
1038     if (!padOp.result().getType().cast<ShapedType>().hasStaticShape())
1039       return failure();
1040 
1041     auto vecType = VectorType::get(padOp.getType().getShape(),
1042                                    padOp.getType().getElementType());
1043     unsigned vecRank = vecType.getRank();
1044     unsigned tensorRank = insertOp.getType().getRank();
1045 
1046     // Check if sizes match: Insert the entire tensor into most minor dims.
1047     // (No permutations allowed.)
1048     SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1);
1049     expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end());
1050     if (!llvm::all_of(
1051             llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) {
1052               return getConstantIntValue(std::get<0>(it)) == std::get<1>(it);
1053             }))
1054       return failure();
1055 
1056     // Insert the TransferReadOp and TransferWriteOp at the position of the
1057     // InsertSliceOp.
1058     rewriter.setInsertionPoint(insertOp);
1059 
1060     // Generate TransferReadOp: Read entire source tensor and add high padding.
1061     SmallVector<Value> readIndices(
1062         vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
1063     auto read = rewriter.create<vector::TransferReadOp>(
1064         padOp.getLoc(), vecType, padOp.source(), readIndices, padValue);
1065 
1066     // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at
1067     // specified offsets. Write is fully in-bounds because a InsertSliceOp's
1068     // source must fit into the destination at the specified offsets.
1069     auto writeIndices =
1070         ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets());
1071     SmallVector<bool> inBounds(vecRank, true);
1072     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
1073         insertOp, read, insertOp.dest(), writeIndices, inBounds);
1074 
1075     return success();
1076   }
1077 };
1078 
1079 void mlir::linalg::populatePadTensorOpVectorizationPatterns(
1080     RewritePatternSet &patterns, PatternBenefit baseBenefit) {
1081   patterns.add<GenericPadTensorOpVectorizationPattern>(patterns.getContext(),
1082                                                        baseBenefit);
1083   // Try these specialized patterns first before resorting to the generic one.
1084   patterns.add<PadTensorOpVectorizationWithTransferReadPattern,
1085                PadTensorOpVectorizationWithTransferWritePattern,
1086                PadTensorOpVectorizationWithInsertSlicePattern>(
1087       patterns.getContext(), baseBenefit.getBenefit() + 1);
1088 }
1089 
1090 // TODO: cleanup all the convolution vectorization patterns.
1091 template <class ConvOp, int N>
1092 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite(
1093     ConvOp op, PatternRewriter &rewriter) const {
1094   Location loc = op.getLoc();
1095   MLIRContext *context = op.getContext();
1096 
1097   OpOperand *input = op.getInputOperand(0);
1098   OpOperand *kernel = op.getInputOperand(1);
1099   OpOperand *output = op.getOutputOperand(0);
1100   ArrayRef<int64_t> inShape = op.getShape(input);
1101   ArrayRef<int64_t> kShape = op.getShape(kernel);
1102 
1103   if (llvm::any_of(inShape, ShapedType::isDynamic) ||
1104       llvm::any_of(kShape, ShapedType::isDynamic))
1105     return failure();
1106 
1107   SmallVector<AffineExpr, 4> mapping;
1108   SmallVector<int64_t, 4> vectorDims;
1109   // Fail to apply when the size of not vectorized dimension is not 1.
1110   for (unsigned i = 0; i < N; i++) {
1111     if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1))
1112       return failure();
1113 
1114     if (mask[i] && inShape[i] != kShape[i])
1115       return failure();
1116 
1117     if (mask[i]) {
1118       mapping.push_back(getAffineDimExpr(i, context));
1119       vectorDims.push_back(inShape[i]);
1120     }
1121   }
1122 
1123   int64_t rank = op.getRank(input);
1124   int64_t numDims = mapping.size();
1125   Type elemType = getElementTypeOrSelf(input->get());
1126 
1127   auto map = AffineMap::get(rank, 0, mapping, context);
1128   SmallVector<Value, 4> zeros(rank,
1129                               rewriter.create<arith::ConstantIndexOp>(loc, 0));
1130   auto vecType = VectorType::get(vectorDims, elemType);
1131 
1132   auto inputVec = rewriter.create<vector::TransferReadOp>(
1133       loc, vecType, input->get(), zeros, map);
1134   auto kernelVec = rewriter.create<vector::TransferReadOp>(
1135       loc, vecType, kernel->get(), zeros, map);
1136 
1137   auto acc = rewriter.create<arith::ConstantOp>(loc, elemType,
1138                                                 rewriter.getZeroAttr(elemType));
1139 
1140   std::array<AffineMap, 3> indexingMaps{
1141       AffineMap::getMultiDimIdentityMap(numDims, context),
1142       AffineMap::getMultiDimIdentityMap(numDims, context),
1143       AffineMap::get(numDims, 0, {}, context)};
1144 
1145   std::vector<StringRef> iteratorTypes(numDims, "reduction");
1146 
1147   auto result = rewriter.create<vector::ContractionOp>(
1148       loc, inputVec, kernelVec, acc,
1149       rewriter.getAffineMapArrayAttr(indexingMaps),
1150       rewriter.getStrArrayAttr(iteratorTypes));
1151 
1152   rewriter.create<memref::StoreOp>(loc, result, output->get(),
1153                                    ValueRange(zeros));
1154   rewriter.eraseOp(op);
1155   return success();
1156 }
1157 
1158 /// Inserts tiling, promotion and vectorization pattern for ConvOp
1159 /// conversion into corresponding pattern lists.
1160 template <typename ConvOp, unsigned N>
1161 static void populateVectorizationPatterns(
1162     RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns,
1163     RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) {
1164   auto *context = tilingPatterns.getContext();
1165   if (tileSizes.size() < N)
1166     return;
1167 
1168   constexpr static StringRef kTiledMarker = "TILED";
1169   constexpr static StringRef kPromotedMarker = "PROMOTED";
1170   tilingPatterns.add<LinalgTilingPattern<ConvOp>>(
1171       context, LinalgTilingOptions().setTileSizes(tileSizes),
1172       LinalgTransformationFilter(ArrayRef<Identifier>{},
1173                                  Identifier::get(kTiledMarker, context)));
1174 
1175   promotionPatterns.add<LinalgPromotionPattern<ConvOp>>(
1176       context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
1177       LinalgTransformationFilter(Identifier::get(kTiledMarker, context),
1178                                  Identifier::get(kPromotedMarker, context)));
1179 
1180   SmallVector<bool, 4> mask(N);
1181   int offset = tileSizes.size() - N;
1182   std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(),
1183                  [](int64_t i) -> bool { return i > 1; });
1184 
1185   vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask);
1186 }
1187 
1188 void mlir::linalg::populateConvVectorizationPatterns(
1189     MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns,
1190     ArrayRef<int64_t> tileSizes) {
1191   RewritePatternSet tiling(context);
1192   RewritePatternSet promotion(context);
1193   RewritePatternSet vectorization(context);
1194   populateVectorizationPatterns<Conv1DOp, 1>(tiling, promotion, vectorization,
1195                                              tileSizes);
1196 
1197   populateVectorizationPatterns<Conv2DOp, 2>(tiling, promotion, vectorization,
1198                                              tileSizes);
1199 
1200   populateVectorizationPatterns<Conv3DOp, 3>(tiling, promotion, vectorization,
1201                                              tileSizes);
1202 
1203   populateVectorizationPatterns<Conv1DNwcWcfOp, 3>(tiling, promotion,
1204                                                    vectorization, tileSizes);
1205 
1206   populateVectorizationPatterns<Conv2DNhwcHwcfOp, 4>(tiling, promotion,
1207                                                      vectorization, tileSizes);
1208 
1209   populateVectorizationPatterns<Conv3DNdhwcDhwcfOp, 5>(
1210       tiling, promotion, vectorization, tileSizes);
1211 
1212   patterns.push_back(std::move(tiling));
1213   patterns.push_back(std::move(promotion));
1214   patterns.push_back(std::move(vectorization));
1215 }
1216 
1217 //----------------------------------------------------------------------------//
1218 // Forwarding patterns
1219 //----------------------------------------------------------------------------//
1220 
1221 /// Check whether there is any interleaved use of any `values` between `firstOp`
1222 /// and `secondOp`. Conservatively return `true` if any op or value is in a
1223 /// different block.
1224 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
1225                                     ValueRange values) {
1226   if (firstOp->getBlock() != secondOp->getBlock() ||
1227       !firstOp->isBeforeInBlock(secondOp)) {
1228     LDBG("interleavedUses precondition failed, firstOp: "
1229          << *firstOp << ", second op: " << *secondOp);
1230     return true;
1231   }
1232   for (auto v : values) {
1233     for (auto &u : v.getUses()) {
1234       Operation *owner = u.getOwner();
1235       if (owner == firstOp || owner == secondOp)
1236         continue;
1237       // TODO: this is too conservative, use dominance info in the future.
1238       if (owner->getBlock() == firstOp->getBlock() &&
1239           (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
1240         continue;
1241       LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp
1242                                     << ", second op: " << *secondOp);
1243       return true;
1244     }
1245   }
1246   return false;
1247 }
1248 
1249 /// Return the unique subview use of `v` if it is indeed unique, null otherwise.
1250 static memref::SubViewOp getSubViewUseIfUnique(Value v) {
1251   memref::SubViewOp subViewOp;
1252   for (auto &u : v.getUses()) {
1253     if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) {
1254       if (subViewOp)
1255         return memref::SubViewOp();
1256       subViewOp = newSubViewOp;
1257     }
1258   }
1259   return subViewOp;
1260 }
1261 
1262 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1263 /// when available.
1264 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
1265     vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
1266 
1267   // Transfer into `view`.
1268   Value viewOrAlloc = xferOp.source();
1269   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1270       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1271     return failure();
1272 
1273   LDBG(viewOrAlloc);
1274 
1275   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1276   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1277   if (!subViewOp)
1278     return failure();
1279   Value subView = subViewOp.getResult();
1280   LDBG("with subView " << subView);
1281 
1282   // Find the copy into `subView` without interleaved uses.
1283   CopyOp copyOp;
1284   for (auto &u : subView.getUses()) {
1285     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
1286       assert(newCopyOp.output().getType().isa<MemRefType>());
1287       if (newCopyOp.output() != subView)
1288         continue;
1289       LDBG("copy candidate " << *newCopyOp);
1290       if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
1291         continue;
1292       copyOp = newCopyOp;
1293       break;
1294     }
1295   }
1296   if (!copyOp)
1297     return failure();
1298   LDBG("with copy " << *copyOp);
1299 
1300   // Find the fill into `viewOrAlloc` without interleaved uses before the copy.
1301   FillOp maybeFillOp;
1302   for (auto &u : viewOrAlloc.getUses()) {
1303     if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
1304       assert(newFillOp.output().getType().isa<MemRefType>());
1305       if (newFillOp.output() != viewOrAlloc)
1306         continue;
1307       LDBG("fill candidate " << *newFillOp);
1308       if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
1309         continue;
1310       maybeFillOp = newFillOp;
1311       break;
1312     }
1313   }
1314   // Ensure padding matches.
1315   if (maybeFillOp && xferOp.padding() != maybeFillOp.value())
1316     return failure();
1317   if (maybeFillOp)
1318     LDBG("with maybeFillOp " << *maybeFillOp);
1319 
1320   // `in` is the subview that linalg.copy reads. Replace it.
1321   Value in = copyOp.input();
1322 
1323   // linalg.copy + linalg.fill can be used to create a padded local buffer.
1324   // The `masked` attribute is only valid on this padded buffer.
1325   // When forwarding to vector.transfer_read, the attribute must be reset
1326   // conservatively.
1327   Value res = rewriter.create<vector::TransferReadOp>(
1328       xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(),
1329       xferOp.permutation_map(), xferOp.padding(), ArrayAttr());
1330 
1331   if (maybeFillOp)
1332     rewriter.eraseOp(maybeFillOp);
1333   rewriter.eraseOp(copyOp);
1334   rewriter.replaceOp(xferOp, res);
1335 
1336   return success();
1337 }
1338 
1339 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1340 /// when available.
1341 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
1342     vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
1343   // Transfer into `viewOrAlloc`.
1344   Value viewOrAlloc = xferOp.source();
1345   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1346       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1347     return failure();
1348 
1349   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1350   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1351   if (!subViewOp)
1352     return failure();
1353   Value subView = subViewOp.getResult();
1354 
1355   // Find the copy from `subView` without interleaved uses.
1356   CopyOp copyOp;
1357   for (auto &u : subViewOp.getResult().getUses()) {
1358     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
1359       if (newCopyOp.getInputOperand(0)->get() != subView)
1360         continue;
1361       if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
1362         continue;
1363       copyOp = newCopyOp;
1364       break;
1365     }
1366   }
1367   if (!copyOp)
1368     return failure();
1369 
1370   // `out` is the subview copied into that we replace.
1371   assert(copyOp.output().getType().isa<MemRefType>());
1372   Value out = copyOp.output();
1373 
1374   // Forward vector.transfer into copy.
1375   // linalg.copy + linalg.fill can be used to create a padded local buffer.
1376   // The `masked` attribute is only valid on this padded buffer.
1377   // When forwarding to vector.transfer_write, the attribute must be reset
1378   // conservatively.
1379   rewriter.create<vector::TransferWriteOp>(
1380       xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(),
1381       xferOp.permutation_map(), ArrayAttr());
1382 
1383   rewriter.eraseOp(copyOp);
1384   rewriter.eraseOp(xferOp);
1385 
1386   return success();
1387 }
1388 
1389 //===----------------------------------------------------------------------===//
1390 // Convolution vectorization patterns
1391 //===----------------------------------------------------------------------===//
1392 namespace {
1393 /// Generate a vector implementation for:
1394 /// ```
1395 ///   Op def: (     n,     w,     c,    kw,    f  )
1396 ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
1397 ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1398 /// ```
1399 /// kw is unrolled, w is unrolled iff dilationW > 1.
1400 struct Conv1D_NWC_WCF_Generator : public StructuredGenerator<LinalgOp> {
1401   Conv1D_NWC_WCF_Generator(OpBuilder &builder, LinalgOp linalgOp, int strideW,
1402                            int dilationW)
1403       : StructuredGenerator<LinalgOp>(builder, linalgOp), valid(false),
1404         strideW(strideW), dilationW(dilationW) {
1405     // Determine whether `linalgOp` can be generated with this generator
1406     if (linalgOp.getNumInputs() != 2 || linalgOp.getNumOutputs() != 1)
1407       return;
1408     lhsShaped = linalgOp.inputs()[0];
1409     rhsShaped = linalgOp.inputs()[1];
1410     resShaped = linalgOp.outputs()[0];
1411     lhsShapedType = lhsShaped.getType().dyn_cast<ShapedType>();
1412     rhsShapedType = rhsShaped.getType().dyn_cast<ShapedType>();
1413     resShapedType = resShaped.getType().dyn_cast<ShapedType>();
1414     if (!lhsShapedType || !rhsShapedType || !resShapedType)
1415       return;
1416     if (lhsShapedType.getRank() != 3 || rhsShapedType.getRank() != 3 ||
1417         resShapedType.getRank() != 3)
1418       return;
1419 
1420     // Check for reduction `add` preceded by `mul`.
1421     Operation *reduceOp = matchLinalgReduction(linalgOp.getOutputOperand(0));
1422     if (!reduceOp)
1423       return;
1424     llvm::Optional<vector::CombiningKind> maybeKind;
1425     maybeKind = getKindForOp(reduceOp);
1426     if (!maybeKind || *maybeKind != vector::CombiningKind::ADD)
1427       return;
1428     maybeKind = getKindForOp(&(linalgOp->getRegion(0).front().front()));
1429     if (!maybeKind || *maybeKind != vector::CombiningKind::MUL)
1430       return;
1431 
1432     // The op is now known to be valid.
1433     valid = true;
1434   }
1435 
1436   /// Generate a vector implementation for:
1437   /// ```
1438   ///   Op def: (     n,     w,     c,    kw,    f  )
1439   ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
1440   ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1441   /// ```
1442   /// kw is always unrolled.
1443   /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is > 1.
1444   FailureOr<Operation *> conv() {
1445     if (!valid)
1446       return failure();
1447 
1448     int nSize = lhsShapedType.getShape()[0];
1449     int wSize = resShapedType.getShape()[1];
1450     int cSize = lhsShapedType.getShape()[2];
1451     int kwSize = rhsShapedType.getShape()[0];
1452     int fSize = rhsShapedType.getShape()[2];
1453 
1454     vector::TransferWriteOp write;
1455     Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
1456 
1457     // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
1458     // When strideW == 1, we can batch the contiguous loads and avoid unrolling
1459     int64_t wSizeStep = strideW == 1 ? wSize : 1;
1460 
1461     Type lhsEltType = lhsShapedType.getElementType();
1462     Type rhsEltType = rhsShapedType.getElementType();
1463     Type resEltType = resShapedType.getElementType();
1464     VectorType lhsType = VectorType::get(
1465         {nSize, (wSize - 1) * strideW + 1 + (kwSize - 1) * dilationW + 1,
1466          cSize},
1467         lhsEltType);
1468     VectorType rhsType = VectorType::get({kwSize, cSize, fSize}, rhsEltType);
1469     VectorType resType = VectorType::get({nSize, wSize, fSize}, resEltType);
1470 
1471     // Read lhs slice of size {w * strideW + kw * dilationW, c, f} @ [0, 0, 0].
1472     Value lhs = builder.create<vector::TransferReadOp>(
1473         loc, lhsType, lhsShaped, ValueRange{zero, zero, zero});
1474     // Read rhs slice of size {kw, c, f} @ [0, 0, 0].
1475     Value rhs = builder.create<vector::TransferReadOp>(
1476         loc, rhsType, rhsShaped, ValueRange{zero, zero, zero});
1477     // Read res slice of size {n, w, f} @ [0, 0, 0].
1478     Value res = builder.create<vector::TransferReadOp>(
1479         loc, resType, resShaped, ValueRange{zero, zero, zero});
1480 
1481     //===------------------------------------------------------------------===//
1482     // Begin vector-only rewrite part
1483     //===------------------------------------------------------------------===//
1484     // Unroll along kw and read slices of lhs and rhs.
1485     SmallVector<Value> lhsVals, rhsVals, resVals;
1486     for (int64_t kw = 0; kw < kwSize; ++kw) {
1487       // Extract rhs slice of size {c, f} @ [kw].
1488       rhsVals.push_back(builder.create<vector::ExtractOp>(
1489           loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw}));
1490 
1491       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1492         // Extract lhs slice of size {n, wSizeStep, c}
1493         //   @ [0, sw * w + dw * kw, 0].
1494         lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1495             loc, lhs,
1496             /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
1497             /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1498             /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1499 
1500         // This does not depend on kw.
1501         if (kw == 0) {
1502           // Extract res slice: {n, wSizeStep, f} @ [0, w, 0].
1503           resVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1504               loc, res,
1505               /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1506               /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, fSize},
1507               /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1508         }
1509       }
1510     }
1511 
1512     auto linearIndex = [&](int64_t kw, int64_t w) {
1513       return kw * (wSize / wSizeStep) + w;
1514     };
1515 
1516     // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f}
1517     for (int64_t kw = 0; kw < kwSize; ++kw) {
1518       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1519         resVals[w] = conv1dSliceAsContraction(
1520             builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]);
1521       }
1522     }
1523 
1524     // Write back res slice: {n, wSizeStep, f} @ [0, w, 0].
1525     // This does not depend on kw.
1526     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1527       res = builder.create<vector::InsertStridedSliceOp>(
1528           loc, resVals[w], res,
1529           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1530           /*strides=*/ArrayRef<int64_t>{1, 1, 1});
1531     }
1532     //===------------------------------------------------------------------===//
1533     // End vector-only rewrite part
1534     //===------------------------------------------------------------------===//
1535 
1536     // Write back res slice of size {n, w, f} @ [0, 0, 0].
1537     return builder
1538         .create<vector::TransferWriteOp>(loc, res, resShaped,
1539                                          ValueRange{zero, zero, zero})
1540         .getOperation();
1541   }
1542 
1543   // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f}
1544   vector::ContractionOp conv1dSliceAsContraction(OpBuilder &b, Location loc,
1545                                                  Value lhs, Value rhs,
1546                                                  Value res) {
1547     StringRef par = Par().strRef, red = Red().strRef;
1548     AffineExpr n, w, f, c;
1549     bindDims(ctx, n, w, f, c);
1550     return builder.create<vector::ContractionOp>(
1551         loc, lhs, rhs, res,
1552         /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}},
1553         /*iteratorTypes=*/ArrayRef<StringRef>{par, par, par, red});
1554   }
1555 
1556   /// Entry point that transposes into the common form:
1557   ///   {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1558   FailureOr<Operation *> generateConv() {
1559     AffineExpr n, w, f, kw, c;
1560     bindDims(ctx, n, w, f, kw, c);
1561 
1562     if (!iters({Par(), Par(), Par(), Red(), Red()}))
1563       return failure();
1564 
1565     // No transposition needed.
1566     if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
1567                 /*rhsIndex*/ {kw, c, f},
1568                 /*resIndex*/ {n, w, f}}))
1569       return conv();
1570     return failure();
1571   }
1572 
1573 private:
1574   bool valid;
1575   int strideW, dilationW;
1576   Value lhsShaped, rhsShaped, resShaped;
1577   ShapedType lhsShapedType, rhsShapedType, resShapedType;
1578 };
1579 } // namespace
1580 
1581 /// Helper function to vectorize a `linalgOp` with convolution semantics.
1582 // TODO: extend the generic vectorization to support windows and drop this.
1583 static FailureOr<Operation *>
1584 vectorizeConvolution(OpBuilder &b, ConvolutionOpInterface convOp) {
1585   // TODO: these are legitimately part of ConvolutionOpInterface.
1586   auto strides = convOp->getAttrOfType<DenseIntElementsAttr>("strides");
1587   auto dilations = convOp->getAttrOfType<DenseIntElementsAttr>("dilations");
1588   auto stride = strides ? *strides.getValues<uint64_t>().begin() : 1;
1589   auto dilation = dilations ? *dilations.getValues<uint64_t>().begin() : 1;
1590   LinalgOp linalgOp = cast<LinalgOp>(convOp.getOperation());
1591   Conv1D_NWC_WCF_Generator e(b, linalgOp, stride, dilation);
1592   return e.generateConv();
1593 }
1594 
1595 struct VectorizeConvolution
1596     : public OpInterfaceRewritePattern<ConvolutionOpInterface> {
1597   using OpInterfaceRewritePattern::OpInterfaceRewritePattern;
1598 
1599   LogicalResult matchAndRewrite(ConvolutionOpInterface convOp,
1600                                 PatternRewriter &rewriter) const override {
1601     FailureOr<Operation *> resultOrFail =
1602         vectorizeConvolution(rewriter, convOp);
1603     if (failed(resultOrFail))
1604       return failure();
1605     Operation *newOp = *resultOrFail;
1606     if (newOp->getNumResults() == 0) {
1607       rewriter.eraseOp(convOp.getOperation());
1608       return success();
1609     }
1610     assert(newOp->getNumResults() == 1 && "expected single result");
1611     rewriter.replaceOp(convOp.getOperation(), newOp->getResult(0));
1612     return success();
1613   }
1614 };
1615 
1616 void mlir::linalg::populateConvolutionVectorizationPatterns(
1617     RewritePatternSet &patterns, PatternBenefit benefit) {
1618   patterns.add<VectorizeConvolution>(patterns.getContext(), benefit);
1619 }
1620