//===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the linalg dialect Vectorization transformations. // //===----------------------------------------------------------------------===// #include "mlir/Analysis/LoopAnalysis.h" #include "mlir/Analysis/SliceAnalysis.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" #include "mlir/Dialect/Linalg/IR/LinalgOps.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Utils/StructuredOpsUtils.h" #include "mlir/Dialect/Vector/VectorOps.h" #include "mlir/Dialect/Vector/VectorTransforms.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Pass/Pass.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/RegionUtils.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace mlir; using namespace mlir::linalg; using llvm::dbgs; #define DEBUG_TYPE "linalg-vectorization" #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") #define LDBG(X) LLVM_DEBUG(DBGS() << X) static FailureOr vectorizeConvolution(OpBuilder &b, ConvolutionOpInterface convOp); /// Return the unique instance of OpType in `block` if it is indeed unique. /// Return null if none or more than 1 instances exist. template static OpType getSingleOpOfType(Block &block) { OpType res; block.walk([&](OpType op) { if (res) { res = nullptr; return WalkResult::interrupt(); } res = op; return WalkResult::advance(); }); return res; } /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a /// projectedPermutation, compress the unused dimensions to serve as a /// permutation_map for a vector transfer operation. /// For example, given a linalg op such as: /// /// ``` /// %0 = linalg.generic { /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> /// } /// ins(%0 : tensor<2x3x4xf32>) /// outs(%1 : tensor<5x6xf32>) /// ``` /// /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. static AffineMap reindexIndexingMap(AffineMap map) { assert(map.isProjectedPermutation(/*allowZerosInResults=*/true) && "expected projected permutation"); auto res = compressUnusedDims(map); assert(res.getNumDims() == res.getNumResults() && "expected reindexed map with same number of dims and results"); return res; } /// Helper data structure to represent the result of vectorization. /// In certain specific cases, like terminators, we do not want to propagate/ enum VectorizationStatus { /// Op failed to vectorize. Failure = 0, /// Op vectorized and custom function took care of replacement logic NoReplace, /// Op vectorized into a new Op whose results will replace original Op's /// results. NewOp // TODO: support values if Op vectorized to Many-Ops whose results we need to // aggregate for replacement. }; struct VectorizationResult { /// Return status from vectorizing the current op. enum VectorizationStatus status = VectorizationStatus::Failure; /// New vectorized operation to replace the current op. /// Replacement behavior is specified by `status`. Operation *newOp; }; /// Return a vector type of the same shape and element type as the (assumed) /// ShapedType of `v`. static VectorType extractVectorTypeFromShapedValue(Value v) { auto st = v.getType().cast(); if (st.getShape().empty()) return VectorType(); return VectorType::get(st.getShape(), st.getElementType()); } static llvm::Optional getKindForOp(Operation *reductionOp) { if (!reductionOp) return llvm::None; return llvm::TypeSwitch>( reductionOp) .Case( [&](auto op) { return vector::CombiningKind::ADD; }) .Case([&](auto op) { return vector::CombiningKind::AND; }) .Case([&](auto op) { return vector::CombiningKind::MAXSI; }) .Case([&](auto op) { return vector::CombiningKind::MAXF; }) .Case([&](auto op) { return vector::CombiningKind::MINSI; }) .Case([&](auto op) { return vector::CombiningKind::MINF; }) .Case( [&](auto op) { return vector::CombiningKind::MUL; }) .Case([&](auto op) { return vector::CombiningKind::OR; }) .Case([&](auto op) { return vector::CombiningKind::XOR; }) .Default([&](auto op) { return llvm::None; }); } /// Check whether `outputOperand` is a reduction with a single combiner /// operation. Return the combiner operation of the reduction. Return /// nullptr otherwise. Multiple reduction operations would impose an /// ordering between reduction dimensions and is currently unsupported in /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != /// max(min(X)) // TODO: use in LinalgOp verification, there is a circular dependency atm. static Operation *matchLinalgReduction(OpOperand *outputOperand) { auto linalgOp = cast(outputOperand->getOwner()); unsigned outputPos = outputOperand->getOperandNumber() - linalgOp.getNumInputs(); // Only single combiner operations are supported for now. SmallVector combinerOps; if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || combinerOps.size() != 1) return nullptr; // Return the combiner operation. return combinerOps[0]; } /// Broadcast `value` to a vector of `shape` if possible. Return value /// otherwise. static Value broadcastIfNeeded(OpBuilder &b, Value value, ArrayRef shape) { // If no shape to broadcast to, just return `value`. if (shape.empty()) return value; VectorType targetVectorType = VectorType::get(shape, getElementTypeOrSelf(value)); if (vector::isBroadcastableTo(value.getType(), targetVectorType) != vector::BroadcastableToResult::Success) return value; Location loc = b.getInsertionPoint()->getLoc(); return b.createOrFold(loc, targetVectorType, value); } /// Build a vector.transfer_read from `source` at indices set to all `0`. /// If source has rank zero, build a `vector<1xt> transfer_read + extract`. /// Return the produced value. static Value buildVectorRead(OpBuilder &b, Value source, Type readType, AffineMap map) { Location loc = source.getLoc(); auto shapedType = source.getType().cast(); SmallVector indices(shapedType.getRank(), b.create(loc, 0)); if (auto vectorType = readType.dyn_cast()) return b.create(loc, vectorType, source, indices, map); return vector::TransferReadOp::createScalarOp(b, loc, source, indices); } /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This /// assumes that `reductionOp` has two operands and one of them is the reduction /// initial value. static Value buildMultiDimReduce(OpBuilder &b, Operation *reduceOp, Value valueToReduce, const SmallVector &reductionMask) { auto maybeKind = getKindForOp(reduceOp); assert(maybeKind && "Failed precondition: could not get reduction kind"); return b.create( reduceOp->getLoc(), valueToReduce, reductionMask, *maybeKind); } static SmallVector getReductionMask(LinalgOp linalgOp) { unsigned idx = 0; SmallVector reductionMask(linalgOp.iterator_types().size(), false); for (auto attr : linalgOp.iterator_types()) { if (isReductionIterator(attr)) reductionMask[idx] = true; ++idx; } return reductionMask; } /// Build a vector.transfer_write of `value` into `outputOperand` at indices set /// to all `0`; where `outputOperand` is an output operand of the LinalgOp /// currently being vectorized. If `dest` has null rank, build an memref.store. /// Return the produced value or null if no value is produced. static Value buildVectorWrite(OpBuilder &b, Value value, OpOperand *outputOperand) { Operation *write; Location loc = value.getLoc(); auto linalgOp = cast(outputOperand->getOwner()); if (VectorType vectorType = extractVectorTypeFromShapedValue(outputOperand->get())) { AffineMap map = reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand)); SmallVector transposeShape = applyPermutationMap(inversePermutation(map), vectorType.getShape()); assert(!transposeShape.empty() && "unexpected empty transpose shape"); vectorType = VectorType::get(transposeShape, vectorType.getElementType()); SmallVector indices(linalgOp.getRank(outputOperand), b.create(loc, 0)); value = broadcastIfNeeded(b, value, vectorType.getShape()); write = b.create(loc, value, outputOperand->get(), indices, map); } else { write = vector::TransferWriteOp::createScalarOp( b, loc, value, outputOperand->get(), ValueRange{}); } LDBG("vectorized op: " << *write); if (!write->getResults().empty()) return write->getResult(0); return Value(); } // Custom vectorization function type. Produce a vector form of Operation* // assuming all its vectorized operands are already in the BlockAndValueMapping. // Return nullptr if the Operation cannot be vectorized. using CustomVectorizationHook = std::function; /// Helper function to vectorize the terminator of a `linalgOp`. New result /// vector values are appended to `newResults`. Return /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it /// should not try to map produced operations and instead return the results /// using the `newResults` vector making them available to the /// vectorization algorithm for RAUW. This function is meant to be used as a /// CustomVectorizationHook. static VectorizationResult vectorizeLinalgYield(OpBuilder &b, Operation *op, const BlockAndValueMapping &bvm, LinalgOp linalgOp, SmallVectorImpl &newResults) { auto yieldOp = dyn_cast(op); if (!yieldOp) return VectorizationResult{VectorizationStatus::Failure, nullptr}; for (auto outputs : llvm::enumerate(yieldOp.values())) { // TODO: Scan for an opportunity for reuse. // TODO: use a map. Value vectorValue = bvm.lookup(outputs.value()); Value newResult = buildVectorWrite( b, vectorValue, linalgOp.getOutputOperand(outputs.index())); if (newResult) newResults.push_back(newResult); } return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; } /// Helper function to vectorize the index operations of a `linalgOp`. Return /// VectorizationStatus::NewOp to signal the vectorization algorithm that it /// should map the produced operations. This function is meant to be used as a /// CustomVectorizationHook. static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op, LinalgOp linalgOp) { IndexOp indexOp = dyn_cast(op); if (!indexOp) return VectorizationResult{VectorizationStatus::Failure, nullptr}; auto loc = indexOp.getLoc(); // Compute the static loop sizes of the index op. auto targetShape = linalgOp.computeStaticLoopSizes(); // Compute a one-dimensional index vector for the index op dimension. SmallVector constantSeq = llvm::to_vector<16>(llvm::seq(0, targetShape[indexOp.dim()])); auto constantOp = b.create(loc, b.getIndexVectorAttr(constantSeq)); // Return the one-dimensional index vector if it lives in the trailing // dimension of the iteration space since the vectorization algorithm in this // case can handle the broadcast. if (indexOp.dim() == targetShape.size() - 1) return VectorizationResult{VectorizationStatus::NewOp, constantOp}; // Otherwise permute the targetShape to move the index dimension last, // broadcast the one-dimensional index vector to the permuted shape, and // finally transpose the broadcasted index vector to undo the permutation. std::swap(targetShape[indexOp.dim()], targetShape.back()); auto broadCastOp = b.create( loc, VectorType::get(targetShape, b.getIndexType()), constantOp); SmallVector transposition = llvm::to_vector<16>(llvm::seq(0, linalgOp.getNumLoops())); std::swap(transposition.back(), transposition[indexOp.dim()]); auto transposeOp = b.create(loc, broadCastOp, transposition); return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; } /// Create a new vectorized verstion of `op` with the given operands and types. static Operation *createVectorizedOp(OpBuilder &b, Operation *op, ValueRange newOperands, ArrayRef types) { OperationState state(op->getLoc(), op->getName()); state.addAttributes(op->getAttrs()); state.addOperands(newOperands); state.addTypes(types); return b.createOperation(state); } /// Emit reduction operations if the shapes of the value to reduce is different /// that the result shape. static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op, Value reduceValue, Value initialValue, const BlockAndValueMapping &bvm) { Value reduceVec = bvm.lookup(reduceValue); Value outputVec = bvm.lookup(initialValue); auto reduceType = reduceVec.getType().dyn_cast(); auto outputType = outputVec.getType().dyn_cast(); // Reduce only if needed as the value may already have been reduce for // contraction vectorization. if (!reduceType || (outputType && reduceType.getShape() == outputType.getShape())) return nullptr; SmallVector reductionMask = getReductionMask(linalgOp); Value reduce = buildMultiDimReduce(b, op, reduceVec, reductionMask); return createVectorizedOp(b, op, {reduce, outputVec}, reduce.getType()); } /// Generic vectorization for a single operation `op`, given already vectorized /// operands carried by `bvm`. Vectorization occurs as follows: /// 1. Try to apply any of the `customVectorizationHooks` and return its /// result on success. /// 2. Clone any constant in the current scope without vectorization: each /// consumer of the constant will later determine the shape to which the /// constant needs to be broadcast to. /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose /// of the `customVectorizationHooks` to cover such cases. /// 4. Clone `op` in vector form to a vector of shape prescribed by the first /// operand of maximal rank. Other operands have smaller rank and are /// broadcast accordingly. It is assumed this broadcast is always legal, /// otherwise, it means one of the `customVectorizationHooks` is incorrect. /// /// This function assumes all operands of `op` have been vectorized and are in /// the `bvm` mapping. As a consequence, this function is meant to be called on /// a topologically-sorted list of ops. /// This function does not update `bvm` but returns a VectorizationStatus that /// instructs the caller what `bvm` update needs to occur. static VectorizationResult vectorizeOneOp(OpBuilder &b, LinalgOp linalgOp, Operation *op, const BlockAndValueMapping &bvm, ArrayRef customVectorizationHooks) { LDBG("vectorize op " << *op); // 1. Try to apply any CustomVectorizationHook. if (!customVectorizationHooks.empty()) { for (auto &customFunc : customVectorizationHooks) { VectorizationResult result = customFunc(op, bvm); if (result.status == VectorizationStatus::Failure) continue; return result; } } // 2. Constant ops don't get vectorized but rather broadcasted at their users. // Clone so that the constant is not confined to the linalgOp block . if (isa(op)) return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)}; // 3. Only ElementwiseMappable are allowed in the generic vectorization. if (!OpTrait::hasElementwiseMappableTraits(op)) return VectorizationResult{VectorizationStatus::Failure, nullptr}; // 4 . Check if the operation is a reduction. SmallVector> reductionOperands; for (Value operand : op->getOperands()) { auto arg = operand.dyn_cast(); if (!arg || arg.getArgNumber() < linalgOp.getNumInputs()) continue; SmallVector reductionOps; Value reduceValue = matchReduction( linalgOp.getRegionOutputArgs(), arg.getArgNumber() - linalgOp.getNumInputs(), reductionOps); if (!reduceValue) continue; reductionOperands.push_back(std::make_pair(reduceValue, operand)); } if (!reductionOperands.empty()) { assert(reductionOperands.size() == 1); Operation *reduceOp = reduceIfNeeded(b, linalgOp, op, reductionOperands[0].first, reductionOperands[0].second, bvm); if (reduceOp) return VectorizationResult{VectorizationStatus::NewOp, reduceOp}; } // 5. Generic vectorization path for ElementwiseMappable ops. // a. first get the first max ranked shape. SmallVector firstMaxRankedShape; for (Value operand : op->getOperands()) { auto vt = bvm.lookup(operand).getType().dyn_cast(); if (vt && firstMaxRankedShape.size() < vt.getShape().size()) firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); } // b. broadcast each op if needed. auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { return firstMaxRankedShape.empty() ? bvm.lookup(v) : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape); }); // c. for elementwise, the result is the vector with the firstMaxRankedShape auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { return firstMaxRankedShape.empty() ? t : VectorType::get(firstMaxRankedShape, t); }); // Build and return the new op. return VectorizationResult{ VectorizationStatus::NewOp, createVectorizedOp(b, op, llvm::to_vector<4>(vectorizedOperands), llvm::to_vector<4>(returnTypes))}; } /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. static bool hasOnlyScalarElementwiseOp(Region &r) { if (!llvm::hasSingleElement(r)) return false; for (Operation &op : r.front()) { if (!(isa( op) || OpTrait::hasElementwiseMappableTraits(&op)) || llvm::any_of(op.getResultTypes(), [](Type type) { return !type.isIntOrIndexOrFloat(); })) return false; } return true; } // Return true if the op is an element-wise linalg op. static bool isElementwise(Operation *op) { auto linalgOp = dyn_cast(op); if (!linalgOp) return false; if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) return false; // TODO: relax the restrictions on indexing map. for (OpOperand *opOperand : linalgOp.getOutputOperands()) { if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity()) return false; } return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0)); } /// Generic vectorization function that rewrites the body of a `linalgOp` into /// vector form. Generic vectorization proceeds as follows: /// 1. Verify the `linalgOp` has one non-empty region. /// 2. Values defined above the region are mapped to themselves and will be /// broadcasted on a per-need basis by their consumers. /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d /// load). /// TODO: Reuse opportunities for RAR dependencies. /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration /// indices. /// 5. Iteratively call vectorizeOneOp on the region operations. /// /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is /// performed to the maximal common vector size implied by the `linalgOp` /// iteration space. This eager broadcasting is introduced in the /// permutation_map of the vector.transfer_read operations. The eager /// broadcasting makes it trivial to detrmine where broadcast, transposes and /// reductions should occur, without any bookkeeping. The tradeoff is that, in /// the absence of good canonicalizations, the amount of work increases. /// This is not deemed a problem as we expect canonicalizations and foldings to /// aggressively clean up the useless work. static LogicalResult vectorizeAsLinalgGeneric(OpBuilder &b, LinalgOp linalgOp, SmallVectorImpl &newResults) { Block *block = linalgOp.getBlock(); // 2. Values defined above the region can only be broadcast for now. Make them // map to themselves. BlockAndValueMapping bvm; SetVector valuesSet; mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); if (linalgOp.getNumOutputs() == 0) return failure(); // TODO: the common vector shape is equal to the static loop sizes only when // all indexing maps are projected permutations. For convs and stencils the // logic will need to evolve. SmallVector commonVectorShape = linalgOp.computeStaticLoopSizes(); // 3. Turn all BBArgs into vector.transfer_read / load. SmallVector indexings; for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) { BlockArgument bbarg = block->getArgument(opOperand->getOperandNumber()); if (linalgOp.isScalar(opOperand)) { bvm.map(bbarg, opOperand->get()); continue; } // TODO: 0-d vectors. Type readType; AffineMap map; if (linalgOp.getShape(opOperand).empty()) { readType = bbarg.getType(); } else { if (opOperand->getOperandNumber() < linalgOp.getNumInputs()) { map = inverseAndBroadcastProjectedPermuation( linalgOp.getTiedIndexingMap(opOperand)); readType = VectorType::get(commonVectorShape, getElementTypeOrSelf(opOperand->get())); } else { map = inversePermutation( reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand))); readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)), getElementTypeOrSelf(opOperand->get())); } } Value readValue = buildVectorRead(b, opOperand->get(), readType, map); LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue); bvm.map(bbarg, readValue); bvm.map(opOperand->get(), readValue); } SmallVector hooks; // 4a. Register CustomVectorizationHook for yieldOp. CustomVectorizationHook vectorizeYield = [&](Operation *op, const BlockAndValueMapping &bvm) -> VectorizationResult { return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults); }; hooks.push_back(vectorizeYield); // 4b. Register CustomVectorizationHook for indexOp. CustomVectorizationHook vectorizeIndex = [&](Operation *op, const BlockAndValueMapping &bvm) -> VectorizationResult { return vectorizeLinalgIndex(b, op, linalgOp); }; hooks.push_back(vectorizeIndex); // 5. Iteratively call `vectorizeOneOp` to each op in the slice. for (Operation &op : block->getOperations()) { VectorizationResult result = vectorizeOneOp(b, linalgOp, &op, bvm, hooks); if (result.status == VectorizationStatus::Failure) { LDBG("failed to vectorize: " << op); return failure(); } if (result.status == VectorizationStatus::NewOp) { LDBG("new vector op: " << *result.newOp;); bvm.map(op.getResults(), result.newOp->getResults()); } } return success(); } /// Helper function to vectorize a `linalgOp` with contraction semantics in a /// generic fashion. /// This helper is needed atm because the truly generic implementation requires /// good vector.multi_reduce folding patterns that are currently NYI. // TODO: drop reliance on a specific pattern. static bool allIndexingsAreProjectedPermutation(LinalgOp op) { return llvm::all_of(op.getIndexingMaps(), [](AffineMap m) { return m.isProjectedPermutation(/*allowZerosInResults=*/true); }); } // TODO: probably need some extra checks for reduction followed by consumer // ops that may not commute (e.g. linear reduction + non-linear instructions). static LogicalResult reductionPreconditions(LinalgOp op) { if (llvm::none_of(op.iterator_types(), isReductionIterator)) { LDBG("reduction precondition failed: no reduction iterator"); return failure(); } for (OpOperand *opOperand : op.getOutputOperands()) { Operation *reduceOp = matchLinalgReduction(opOperand); if (!reduceOp || !getKindForOp(reduceOp)) { LDBG("reduction precondition failed: reduction detection failed"); return failure(); } } return success(); } LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { auto linalgOp = cast(op); // All types must be static shape to go to vector. if (linalgOp.hasDynamicShape()) { LDBG("precondition failed: dynamic shape"); return failure(); } if (isElementwise(op)) return success(); // TODO: isaConvolutionOpInterface that can also infer from generic features. // But we will still need stride/dilation attributes that will be annoying to // reverse-engineer... if (isa(op)) return success(); // TODO: the common vector shape is equal to the static loop sizes only when // all indexing maps are projected permutations. For convs and stencils the // logic will need to evolve. if (!allIndexingsAreProjectedPermutation(linalgOp)) { LDBG("precondition failed: not projected permutations"); return failure(); } if (failed(reductionPreconditions(linalgOp))) { LDBG("precondition failed: reduction preconditions"); return failure(); } return success(); } LogicalResult mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op, SmallVectorImpl &newResults) { if (failed(vectorizeLinalgOpPrecondition(op))) return failure(); auto linalgOp = cast(op); // TODO: isaConvolutionOpInterface that can also infer from generic features. // But we will still need stride/dilation attributes that will be annoying to // reverse-engineer... if (auto convOp = dyn_cast(op)) { FailureOr resultOrFail = vectorizeConvolution(b, convOp); if (failed(resultOrFail)) return failure(); Operation *newOp = *resultOrFail; llvm::append_range(newResults, newOp->getResults()); return success(); } LDBG("" << "Vectorize linalg op as a generic by broadcasting to " "maximal common shape: " << *op); return vectorizeAsLinalgGeneric(b, linalgOp, newResults); } //----------------------------------------------------------------------------// // Misc. vectorization patterns. //----------------------------------------------------------------------------// /// Helper function that retrieves the value of an IntegerAttr. static int64_t getIntFromAttr(Attribute attr) { return attr.cast().getInt(); } /// Given an ArrayRef of OpFoldResults, return a vector of Values. IntegerAttrs /// are converted to ConstantIndexOps. Other attribute types are not supported. static SmallVector ofrToIndexValues(OpBuilder &builder, Location loc, ArrayRef ofrs) { SmallVector result; llvm::for_each(ofrs, [&](auto o) { if (auto val = o.template dyn_cast()) { result.push_back(val); } else { result.push_back(builder.create( loc, getIntFromAttr(o.template get()))); } }); return result; } /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and /// InsertSliceOp. For now, only constant padding values are supported. /// If there is enough static type information, TransferReadOps and /// TransferWriteOps may be generated instead of InsertSliceOps. struct GenericPadTensorOpVectorizationPattern : public GeneralizePadTensorOpPattern { GenericPadTensorOpVectorizationPattern(MLIRContext *context, PatternBenefit benefit = 1) : GeneralizePadTensorOpPattern(context, tryVectorizeCopy, benefit) {} /// Vectorize the copying of a PadTensorOp's source. This is possible if each /// dimension size is statically know in the source type or the result type /// (or both). static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter, PadTensorOp padOp, Value dest) { auto sourceType = padOp.getSourceType(); auto resultType = padOp.getResultType(); // Copy cannot be vectorized if pad value is non-constant and source shape // is dynamic. In case of a dynamic source shape, padding must be appended // by TransferReadOp, but TransferReadOp supports only constant padding. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) { if (!sourceType.hasStaticShape()) return failure(); // Create dummy padding value. auto elemType = sourceType.getElementType(); padValue = rewriter.create( padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType)); } SmallVector vecShape; SmallVector readInBounds; SmallVector writeInBounds; for (unsigned i = 0; i < sourceType.getRank(); ++i) { if (!sourceType.isDynamicDim(i)) { vecShape.push_back(sourceType.getDimSize(i)); // Source shape is statically known: Neither read nor write are out-of- // bounds. readInBounds.push_back(true); writeInBounds.push_back(true); } else if (!resultType.isDynamicDim(i)) { // Source shape is not statically known, but result shape is. Vectorize // with size of result shape. This may be larger than the source size. vecShape.push_back(resultType.getDimSize(i)); // Read may be out-of-bounds because the result size could be larger // than the source size. readInBounds.push_back(false); // Write is out-of-bounds if low padding > 0. writeInBounds.push_back( getConstantIntValue(padOp.getMixedLowPad()[i]) == static_cast(0)); } else { // Neither source nor result dim of padOp is static. Cannot vectorize // the copy. return failure(); } } auto vecType = VectorType::get(vecShape, sourceType.getElementType()); // Generate TransferReadOp. SmallVector readIndices( vecType.getRank(), rewriter.create(padOp.getLoc(), 0)); auto read = rewriter.create( padOp.getLoc(), vecType, padOp.source(), readIndices, padValue, readInBounds); // If `dest` is a FillOp and the TransferWriteOp would overwrite the entire // tensor, write directly to the FillOp's operand. if (llvm::equal(vecShape, resultType.getShape()) && llvm::all_of(writeInBounds, [](bool b) { return b; })) if (auto fill = dest.getDefiningOp()) dest = fill.output(); // Generate TransferWriteOp. auto writeIndices = ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad()); rewriter.replaceOpWithNewOp( padOp, read, dest, writeIndices, writeInBounds); return success(); } }; /// Base pattern for rewriting PadTensorOps whose result is consumed by a given /// operation type OpTy. template struct VectorizePadTensorOpUserPattern : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(PadTensorOp padOp, PatternRewriter &rewriter) const final { bool changed = false; // Insert users in vector, because some users may be replaced/removed. for (auto *user : llvm::to_vector<4>(padOp->getUsers())) if (auto op = dyn_cast(user)) changed |= rewriteUser(rewriter, padOp, op).succeeded(); return success(changed); } protected: virtual LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, OpTy op) const = 0; }; /// Rewrite use of PadTensorOp result in TransferReadOp. E.g.: /// ``` /// %0 = linalg.pad_tensor %src ... : tensor to tensor<17x5xf32> /// %r = vector.transfer_read %0[%c0, %c0], %cst /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> /// ``` /// is rewritten to: /// ``` /// %r = vector.transfer_read %src[%c0, %c0], %padding /// {in_bounds = [true, true]} /// : tensor, vector<17x5xf32> /// ``` /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be /// sure that the original padding value %cst was never used. /// /// This rewrite is possible if: /// - `xferOp` has no out-of-bounds dims or mask. /// - Low padding is static 0. /// - Single, scalar padding value. struct PadTensorOpVectorizationWithTransferReadPattern : public VectorizePadTensorOpUserPattern { using VectorizePadTensorOpUserPattern< vector::TransferReadOp>::VectorizePadTensorOpUserPattern; LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, vector::TransferReadOp xferOp) const override { // Low padding must be static 0. if (!padOp.hasZeroLowPad()) return failure(); // Pad value must be a constant. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) return failure(); // Padding value of existing `xferOp` is unused. if (xferOp.hasOutOfBoundsDim() || xferOp.mask()) return failure(); rewriter.updateRootInPlace(xferOp, [&]() { SmallVector inBounds(xferOp.getVectorType().getRank(), false); xferOp->setAttr(xferOp.getInBoundsAttrName(), rewriter.getBoolArrayAttr(inBounds)); xferOp.sourceMutable().assign(padOp.source()); xferOp.paddingMutable().assign(padValue); }); return success(); } }; /// Rewrite use of PadTensorOp result in TransferWriteOp. /// This pattern rewrites TransferWriteOps that write to a padded tensor value, /// where the same amount of padding is immediately removed again after the /// write. In such cases, the TransferWriteOp can write to the non-padded tensor /// value and apply out-of-bounds masking. E.g.: /// ``` /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] /// : tensor<...> to tensor /// %1 = linalg.pad_tensor %0 ... : tensor to tensor<17x5xf32> /// %2 = vector.transfer_write %vec, %1[...] /// : vector<17x5xf32>, tensor<17x5xf32> /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] /// : tensor<17x5xf32> to tensor /// ``` /// is rewritten to: /// ``` /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] /// : tensor<...> to tensor /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor /// ``` /// Note: It is important that the ExtractSliceOp %r resizes the result of the /// TransferWriteOp to the same size as the input of the TensorPadOp (or an even /// smaller size). Otherwise, %r's new (dynamic) dimensions would differ from /// %r's old dimensions. /// /// This rewrite is possible if: /// - Low padding is static 0. /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This /// ExtractSliceOp trims the same amount of padding that was added beforehand. /// - Single, scalar padding value. struct PadTensorOpVectorizationWithTransferWritePattern : public VectorizePadTensorOpUserPattern { using VectorizePadTensorOpUserPattern< vector::TransferWriteOp>::VectorizePadTensorOpUserPattern; LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, vector::TransferWriteOp xferOp) const override { // Low padding must be static 0. if (!padOp.hasZeroLowPad()) return failure(); // Pad value must be a constant. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) return failure(); // TransferWriteOp result must be directly consumed by an ExtractSliceOp. if (!xferOp->hasOneUse()) return failure(); auto trimPadding = dyn_cast(*xferOp->user_begin()); if (!trimPadding) return failure(); // Only static zero offsets supported when trimming padding. if (!trimPadding.hasZeroOffset()) return failure(); // trimPadding must remove the amount of padding that was added earlier. if (!hasSameTensorSize(padOp.source(), trimPadding)) return failure(); // Insert the new TransferWriteOp at position of the old TransferWriteOp. rewriter.setInsertionPoint(xferOp); SmallVector inBounds(xferOp.getVectorType().getRank(), false); auto newXferOp = rewriter.replaceOpWithNewOp( xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(), xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(), rewriter.getBoolArrayAttr(inBounds)); rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); return success(); } /// Check if `beforePadding` and `afterTrimming` have the same tensor size, /// i.e., same dimensions. /// /// Dimensions may be static, dynamic or mix of both. In case of dynamic /// dimensions, this function tries to infer the (static) tensor size by /// looking at the defining op and utilizing op-specific knowledge. /// /// This is a conservative analysis. In case equal tensor sizes cannot be /// proven statically, this analysis returns `false` even though the tensor /// sizes may turn out to be equal at runtime. bool hasSameTensorSize(Value beforePadding, tensor::ExtractSliceOp afterTrimming) const { // If the input to PadTensorOp is a CastOp, try with with both CastOp result // and CastOp operand. if (auto castOp = beforePadding.getDefiningOp()) if (hasSameTensorSize(castOp.source(), afterTrimming)) return true; auto t1 = beforePadding.getType().dyn_cast(); auto t2 = afterTrimming.getType().dyn_cast(); // Only RankedTensorType supported. if (!t1 || !t2) return false; // Rank of both values must be the same. if (t1.getRank() != t2.getRank()) return false; // All static dimensions must be the same. Mixed cases (e.g., dimension // static in `t1` but dynamic in `t2`) are not supported. for (unsigned i = 0; i < t1.getRank(); ++i) { if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) return false; if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) return false; } // Nothing more to check if all dimensions are static. if (t1.getNumDynamicDims() == 0) return true; // All dynamic sizes must be the same. The only supported case at the moment // is when `beforePadding` is an ExtractSliceOp (or a cast thereof). // Apart from CastOp, only ExtractSliceOp is supported. auto beforeSlice = beforePadding.getDefiningOp(); if (!beforeSlice) return false; assert(static_cast(t1.getRank()) == beforeSlice.getMixedSizes().size()); assert(static_cast(t2.getRank()) == afterTrimming.getMixedSizes().size()); for (unsigned i = 0; i < t1.getRank(); ++i) { // Skip static dimensions. if (!t1.isDynamicDim(i)) continue; auto size1 = beforeSlice.getMixedSizes()[i]; auto size2 = afterTrimming.getMixedSizes()[i]; // Case 1: Same value or same constant int. if (isEqualConstantIntOrValue(size1, size2)) continue; // Other cases: Take a deeper look at defining ops of values. auto v1 = size1.dyn_cast(); auto v2 = size2.dyn_cast(); if (!v1 || !v2) return false; // Case 2: Both values are identical AffineMinOps. (Should not happen if // CSE is run.) auto minOp1 = v1.getDefiningOp(); auto minOp2 = v2.getDefiningOp(); if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() && minOp1.operands() == minOp2.operands()) continue; // Add additional cases as needed. } // All tests passed. return true; } }; /// Rewrite use of PadTensorOp result in InsertSliceOp. E.g.: /// ``` /// %0 = linalg.pad_tensor %src ... : tensor to tensor<17x5xf32> /// %r = tensor.insert_slice %0 /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] /// : tensor<17x5xf32> into tensor /// ``` /// is rewritten to: /// ``` /// %0 = vector.transfer_read %src[%c0, %c0], %padding /// : tensor, vector<17x5xf32> /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor /// ``` /// /// This rewrite is possible if: /// - Low padding is static 0. /// - `padOp` result shape is static. /// - The entire padded tensor is inserted. /// (Implies that sizes of `insertOp` are all static.) /// - Only unit strides in `insertOp`. /// - Single, scalar padding value. struct PadTensorOpVectorizationWithInsertSlicePattern : public VectorizePadTensorOpUserPattern { using VectorizePadTensorOpUserPattern< tensor::InsertSliceOp>::VectorizePadTensorOpUserPattern; LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, tensor::InsertSliceOp insertOp) const override { // Low padding must be static 0. if (!padOp.hasZeroLowPad()) return failure(); // Only unit stride supported. if (!insertOp.hasUnitStride()) return failure(); // Pad value must be a constant. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) return failure(); // Dynamic shapes not supported. if (!padOp.result().getType().cast().hasStaticShape()) return failure(); auto vecType = VectorType::get(padOp.getType().getShape(), padOp.getType().getElementType()); unsigned vecRank = vecType.getRank(); unsigned tensorRank = insertOp.getType().getRank(); // Check if sizes match: Insert the entire tensor into most minor dims. // (No permutations allowed.) SmallVector expectedSizes(tensorRank - vecRank, 1); expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); if (!llvm::all_of( llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); })) return failure(); // Insert the TransferReadOp and TransferWriteOp at the position of the // InsertSliceOp. rewriter.setInsertionPoint(insertOp); // Generate TransferReadOp: Read entire source tensor and add high padding. SmallVector readIndices( vecRank, rewriter.create(padOp.getLoc(), 0)); auto read = rewriter.create( padOp.getLoc(), vecType, padOp.source(), readIndices, padValue); // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at // specified offsets. Write is fully in-bounds because a InsertSliceOp's // source must fit into the destination at the specified offsets. auto writeIndices = ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); SmallVector inBounds(vecRank, true); rewriter.replaceOpWithNewOp( insertOp, read, insertOp.dest(), writeIndices, inBounds); return success(); } }; void mlir::linalg::populatePadTensorOpVectorizationPatterns( RewritePatternSet &patterns, PatternBenefit baseBenefit) { patterns.add(patterns.getContext(), baseBenefit); // Try these specialized patterns first before resorting to the generic one. patterns.add( patterns.getContext(), baseBenefit.getBenefit() + 1); } // TODO: cleanup all the convolution vectorization patterns. template LogicalResult ConvOpVectorization::matchAndRewrite( ConvOp op, PatternRewriter &rewriter) const { Location loc = op.getLoc(); MLIRContext *context = op.getContext(); OpOperand *input = op.getInputOperand(0); OpOperand *kernel = op.getInputOperand(1); OpOperand *output = op.getOutputOperand(0); ArrayRef inShape = op.getShape(input); ArrayRef kShape = op.getShape(kernel); if (llvm::any_of(inShape, ShapedType::isDynamic) || llvm::any_of(kShape, ShapedType::isDynamic)) return failure(); SmallVector mapping; SmallVector vectorDims; // Fail to apply when the size of not vectorized dimension is not 1. for (unsigned i = 0; i < N; i++) { if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) return failure(); if (mask[i] && inShape[i] != kShape[i]) return failure(); if (mask[i]) { mapping.push_back(getAffineDimExpr(i, context)); vectorDims.push_back(inShape[i]); } } int64_t rank = op.getRank(input); int64_t numDims = mapping.size(); Type elemType = getElementTypeOrSelf(input->get()); auto map = AffineMap::get(rank, 0, mapping, context); SmallVector zeros(rank, rewriter.create(loc, 0)); auto vecType = VectorType::get(vectorDims, elemType); auto inputVec = rewriter.create( loc, vecType, input->get(), zeros, map); auto kernelVec = rewriter.create( loc, vecType, kernel->get(), zeros, map); auto acc = rewriter.create(loc, elemType, rewriter.getZeroAttr(elemType)); std::array indexingMaps{ AffineMap::getMultiDimIdentityMap(numDims, context), AffineMap::getMultiDimIdentityMap(numDims, context), AffineMap::get(numDims, 0, {}, context)}; std::vector iteratorTypes(numDims, "reduction"); auto result = rewriter.create( loc, inputVec, kernelVec, acc, rewriter.getAffineMapArrayAttr(indexingMaps), rewriter.getStrArrayAttr(iteratorTypes)); rewriter.create(loc, result, output->get(), ValueRange(zeros)); rewriter.eraseOp(op); return success(); } /// Inserts tiling, promotion and vectorization pattern for ConvOp /// conversion into corresponding pattern lists. template static void populateVectorizationPatterns( RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns, RewritePatternSet &vectorizationPatterns, ArrayRef tileSizes) { auto *context = tilingPatterns.getContext(); if (tileSizes.size() < N) return; constexpr static StringRef kTiledMarker = "TILED"; constexpr static StringRef kPromotedMarker = "PROMOTED"; tilingPatterns.add>( context, LinalgTilingOptions().setTileSizes(tileSizes), LinalgTransformationFilter(ArrayRef{}, Identifier::get(kTiledMarker, context))); promotionPatterns.add>( context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), LinalgTransformationFilter(Identifier::get(kTiledMarker, context), Identifier::get(kPromotedMarker, context))); SmallVector mask(N); int offset = tileSizes.size() - N; std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), [](int64_t i) -> bool { return i > 1; }); vectorizationPatterns.add>(context, mask); } void mlir::linalg::populateConvVectorizationPatterns( MLIRContext *context, SmallVectorImpl &patterns, ArrayRef tileSizes) { RewritePatternSet tiling(context); RewritePatternSet promotion(context); RewritePatternSet vectorization(context); populateVectorizationPatterns(tiling, promotion, vectorization, tileSizes); populateVectorizationPatterns(tiling, promotion, vectorization, tileSizes); populateVectorizationPatterns(tiling, promotion, vectorization, tileSizes); populateVectorizationPatterns(tiling, promotion, vectorization, tileSizes); populateVectorizationPatterns(tiling, promotion, vectorization, tileSizes); populateVectorizationPatterns( tiling, promotion, vectorization, tileSizes); patterns.push_back(std::move(tiling)); patterns.push_back(std::move(promotion)); patterns.push_back(std::move(vectorization)); } //----------------------------------------------------------------------------// // Forwarding patterns //----------------------------------------------------------------------------// /// Check whether there is any interleaved use of any `values` between `firstOp` /// and `secondOp`. Conservatively return `true` if any op or value is in a /// different block. static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, ValueRange values) { if (firstOp->getBlock() != secondOp->getBlock() || !firstOp->isBeforeInBlock(secondOp)) { LDBG("interleavedUses precondition failed, firstOp: " << *firstOp << ", second op: " << *secondOp); return true; } for (auto v : values) { for (auto &u : v.getUses()) { Operation *owner = u.getOwner(); if (owner == firstOp || owner == secondOp) continue; // TODO: this is too conservative, use dominance info in the future. if (owner->getBlock() == firstOp->getBlock() && (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) continue; LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp << ", second op: " << *secondOp); return true; } } return false; } /// Return the unique subview use of `v` if it is indeed unique, null otherwise. static memref::SubViewOp getSubViewUseIfUnique(Value v) { memref::SubViewOp subViewOp; for (auto &u : v.getUses()) { if (auto newSubViewOp = dyn_cast(u.getOwner())) { if (subViewOp) return memref::SubViewOp(); subViewOp = newSubViewOp; } } return subViewOp; } /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, /// when available. LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { // Transfer into `view`. Value viewOrAlloc = xferOp.source(); if (!viewOrAlloc.getDefiningOp() && !viewOrAlloc.getDefiningOp()) return failure(); LDBG(viewOrAlloc); // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); if (!subViewOp) return failure(); Value subView = subViewOp.getResult(); LDBG("with subView " << subView); // Find the copy into `subView` without interleaved uses. CopyOp copyOp; for (auto &u : subView.getUses()) { if (auto newCopyOp = dyn_cast(u.getOwner())) { assert(newCopyOp.output().getType().isa()); if (newCopyOp.output() != subView) continue; LDBG("copy candidate " << *newCopyOp); if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) continue; copyOp = newCopyOp; break; } } if (!copyOp) return failure(); LDBG("with copy " << *copyOp); // Find the fill into `viewOrAlloc` without interleaved uses before the copy. FillOp maybeFillOp; for (auto &u : viewOrAlloc.getUses()) { if (auto newFillOp = dyn_cast(u.getOwner())) { assert(newFillOp.output().getType().isa()); if (newFillOp.output() != viewOrAlloc) continue; LDBG("fill candidate " << *newFillOp); if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) continue; maybeFillOp = newFillOp; break; } } // Ensure padding matches. if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) return failure(); if (maybeFillOp) LDBG("with maybeFillOp " << *maybeFillOp); // `in` is the subview that linalg.copy reads. Replace it. Value in = copyOp.input(); // linalg.copy + linalg.fill can be used to create a padded local buffer. // The `masked` attribute is only valid on this padded buffer. // When forwarding to vector.transfer_read, the attribute must be reset // conservatively. Value res = rewriter.create( xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); if (maybeFillOp) rewriter.eraseOp(maybeFillOp); rewriter.eraseOp(copyOp); rewriter.replaceOp(xferOp, res); return success(); } /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, /// when available. LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { // Transfer into `viewOrAlloc`. Value viewOrAlloc = xferOp.source(); if (!viewOrAlloc.getDefiningOp() && !viewOrAlloc.getDefiningOp()) return failure(); // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); if (!subViewOp) return failure(); Value subView = subViewOp.getResult(); // Find the copy from `subView` without interleaved uses. CopyOp copyOp; for (auto &u : subViewOp.getResult().getUses()) { if (auto newCopyOp = dyn_cast(u.getOwner())) { if (newCopyOp.getInputOperand(0)->get() != subView) continue; if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) continue; copyOp = newCopyOp; break; } } if (!copyOp) return failure(); // `out` is the subview copied into that we replace. assert(copyOp.output().getType().isa()); Value out = copyOp.output(); // Forward vector.transfer into copy. // linalg.copy + linalg.fill can be used to create a padded local buffer. // The `masked` attribute is only valid on this padded buffer. // When forwarding to vector.transfer_write, the attribute must be reset // conservatively. rewriter.create( xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), xferOp.permutation_map(), ArrayAttr()); rewriter.eraseOp(copyOp); rewriter.eraseOp(xferOp); return success(); } //===----------------------------------------------------------------------===// // Convolution vectorization patterns //===----------------------------------------------------------------------===// namespace { /// Generate a vector implementation for: /// ``` /// Op def: ( n, w, c, kw, f ) /// Iters: ({Par(), Par(), Par(), Red(), Red()}) /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} /// ``` /// kw is unrolled, w is unrolled iff dilationW > 1. struct Conv1D_NWC_WCF_Generator : public StructuredGenerator { Conv1D_NWC_WCF_Generator(OpBuilder &builder, LinalgOp linalgOp, int strideW, int dilationW) : StructuredGenerator(builder, linalgOp), valid(false), strideW(strideW), dilationW(dilationW) { // Determine whether `linalgOp` can be generated with this generator if (linalgOp.getNumInputs() != 2 || linalgOp.getNumOutputs() != 1) return; lhsShaped = linalgOp.inputs()[0]; rhsShaped = linalgOp.inputs()[1]; resShaped = linalgOp.outputs()[0]; lhsShapedType = lhsShaped.getType().dyn_cast(); rhsShapedType = rhsShaped.getType().dyn_cast(); resShapedType = resShaped.getType().dyn_cast(); if (!lhsShapedType || !rhsShapedType || !resShapedType) return; if (lhsShapedType.getRank() != 3 || rhsShapedType.getRank() != 3 || resShapedType.getRank() != 3) return; // Check for reduction `add` preceded by `mul`. Operation *reduceOp = matchLinalgReduction(linalgOp.getOutputOperand(0)); if (!reduceOp) return; llvm::Optional maybeKind; maybeKind = getKindForOp(reduceOp); if (!maybeKind || *maybeKind != vector::CombiningKind::ADD) return; maybeKind = getKindForOp(&(linalgOp->getRegion(0).front().front())); if (!maybeKind || *maybeKind != vector::CombiningKind::MUL) return; // The op is now known to be valid. valid = true; } /// Generate a vector implementation for: /// ``` /// Op def: ( n, w, c, kw, f ) /// Iters: ({Par(), Par(), Par(), Red(), Red()}) /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} /// ``` /// kw is always unrolled. /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is > 1. FailureOr conv() { if (!valid) return failure(); int nSize = lhsShapedType.getShape()[0]; int wSize = resShapedType.getShape()[1]; int cSize = lhsShapedType.getShape()[2]; int kwSize = rhsShapedType.getShape()[0]; int fSize = rhsShapedType.getShape()[2]; vector::TransferWriteOp write; Value zero = builder.create(loc, 0); // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. // When strideW == 1, we can batch the contiguous loads and avoid unrolling int64_t wSizeStep = strideW == 1 ? wSize : 1; Type lhsEltType = lhsShapedType.getElementType(); Type rhsEltType = rhsShapedType.getElementType(); Type resEltType = resShapedType.getElementType(); VectorType lhsType = VectorType::get( {nSize, (wSize - 1) * strideW + 1 + (kwSize - 1) * dilationW + 1, cSize}, lhsEltType); VectorType rhsType = VectorType::get({kwSize, cSize, fSize}, rhsEltType); VectorType resType = VectorType::get({nSize, wSize, fSize}, resEltType); // Read lhs slice of size {w * strideW + kw * dilationW, c, f} @ [0, 0, 0]. Value lhs = builder.create( loc, lhsType, lhsShaped, ValueRange{zero, zero, zero}); // Read rhs slice of size {kw, c, f} @ [0, 0, 0]. Value rhs = builder.create( loc, rhsType, rhsShaped, ValueRange{zero, zero, zero}); // Read res slice of size {n, w, f} @ [0, 0, 0]. Value res = builder.create( loc, resType, resShaped, ValueRange{zero, zero, zero}); //===------------------------------------------------------------------===// // Begin vector-only rewrite part //===------------------------------------------------------------------===// // Unroll along kw and read slices of lhs and rhs. SmallVector lhsVals, rhsVals, resVals; for (int64_t kw = 0; kw < kwSize; ++kw) { // Extract rhs slice of size {c, f} @ [kw]. rhsVals.push_back(builder.create( loc, rhs, /*offsets=*/ArrayRef{kw})); for (int64_t w = 0; w < wSize; w += wSizeStep) { // Extract lhs slice of size {n, wSizeStep, c} // @ [0, sw * w + dw * kw, 0]. lhsVals.push_back(builder.create( loc, lhs, /*offsets=*/ArrayRef{0, w * strideW + kw * dilationW, 0}, /*sizes=*/ArrayRef{nSize, wSizeStep, cSize}, /*strides=*/ArrayRef{1, 1, 1})); // This does not depend on kw. if (kw == 0) { // Extract res slice: {n, wSizeStep, f} @ [0, w, 0]. resVals.push_back(builder.create( loc, res, /*offsets=*/ArrayRef{0, w, 0}, /*sizes=*/ArrayRef{nSize, wSizeStep, fSize}, /*strides=*/ArrayRef{1, 1, 1})); } } } auto linearIndex = [&](int64_t kw, int64_t w) { return kw * (wSize / wSizeStep) + w; }; // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f} for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { resVals[w] = conv1dSliceAsContraction( builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]); } } // Write back res slice: {n, wSizeStep, f} @ [0, w, 0]. // This does not depend on kw. for (int64_t w = 0; w < wSize; w += wSizeStep) { res = builder.create( loc, resVals[w], res, /*offsets=*/ArrayRef{0, w, 0}, /*strides=*/ArrayRef{1, 1, 1}); } //===------------------------------------------------------------------===// // End vector-only rewrite part //===------------------------------------------------------------------===// // Write back res slice of size {n, w, f} @ [0, 0, 0]. return builder .create(loc, res, resShaped, ValueRange{zero, zero, zero}) .getOperation(); } // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f} vector::ContractionOp conv1dSliceAsContraction(OpBuilder &b, Location loc, Value lhs, Value rhs, Value res) { StringRef par = Par().strRef, red = Red().strRef; AffineExpr n, w, f, c; bindDims(ctx, n, w, f, c); return builder.create( loc, lhs, rhs, res, /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}}, /*iteratorTypes=*/ArrayRef{par, par, par, red}); } /// Entry point that transposes into the common form: /// {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} FailureOr generateConv() { AffineExpr n, w, f, kw, c; bindDims(ctx, n, w, f, kw, c); if (!iters({Par(), Par(), Par(), Red(), Red()})) return failure(); // No transposition needed. if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, /*rhsIndex*/ {kw, c, f}, /*resIndex*/ {n, w, f}})) return conv(); return failure(); } private: bool valid; int strideW, dilationW; Value lhsShaped, rhsShaped, resShaped; ShapedType lhsShapedType, rhsShapedType, resShapedType; }; } // namespace /// Helper function to vectorize a `linalgOp` with convolution semantics. // TODO: extend the generic vectorization to support windows and drop this. static FailureOr vectorizeConvolution(OpBuilder &b, ConvolutionOpInterface convOp) { // TODO: these are legitimately part of ConvolutionOpInterface. auto strides = convOp->getAttrOfType("strides"); auto dilations = convOp->getAttrOfType("dilations"); auto stride = strides ? *strides.getValues().begin() : 1; auto dilation = dilations ? *dilations.getValues().begin() : 1; LinalgOp linalgOp = cast(convOp.getOperation()); Conv1D_NWC_WCF_Generator e(b, linalgOp, stride, dilation); return e.generateConv(); } struct VectorizeConvolution : public OpInterfaceRewritePattern { using OpInterfaceRewritePattern::OpInterfaceRewritePattern; LogicalResult matchAndRewrite(ConvolutionOpInterface convOp, PatternRewriter &rewriter) const override { FailureOr resultOrFail = vectorizeConvolution(rewriter, convOp); if (failed(resultOrFail)) return failure(); Operation *newOp = *resultOrFail; if (newOp->getNumResults() == 0) { rewriter.eraseOp(convOp.getOperation()); return success(); } assert(newOp->getNumResults() == 1 && "expected single result"); rewriter.replaceOp(convOp.getOperation(), newOp->getResult(0)); return success(); } }; void mlir::linalg::populateConvolutionVectorizationPatterns( RewritePatternSet &patterns, PatternBenefit benefit) { patterns.add(patterns.getContext(), benefit); }