1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Vectorization transformations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Analysis/SliceAnalysis.h"
14 #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
15 #include "mlir/Dialect/Affine/IR/AffineOps.h"
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Func/IR/FuncOps.h"
18 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
19 #include "mlir/Dialect/Linalg/IR/Linalg.h"
20 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
21 #include "mlir/Dialect/Linalg/Utils/Utils.h"
22 #include "mlir/Dialect/Tensor/IR/Tensor.h"
23 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
24 #include "mlir/Dialect/Vector/IR/VectorOps.h"
25 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
26 #include "mlir/IR/AffineExpr.h"
27 #include "mlir/IR/Matchers.h"
28 #include "mlir/IR/PatternMatch.h"
29 #include "mlir/Pass/Pass.h"
30 #include "mlir/Support/LLVM.h"
31 #include "mlir/Transforms/RegionUtils.h"
32 #include "llvm/ADT/ScopeExit.h"
33 #include "llvm/ADT/Sequence.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/TypeSwitch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <type_traits>
39 
40 using namespace mlir;
41 using namespace mlir::linalg;
42 
43 #define DEBUG_TYPE "linalg-vectorization"
44 
45 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
46 #define LDBG(X) LLVM_DEBUG(DBGS() << X)
47 
48 /// Try to vectorize `convOp` as a convolution.
49 static FailureOr<Operation *> vectorizeConvolution(OpBuilder &b,
50                                                    LinalgOp convOp);
51 
52 /// Return the unique instance of OpType in `block` if it is indeed unique.
53 /// Return null if none or more than 1 instances exist.
54 template <typename OpType>
getSingleOpOfType(Block & block)55 static OpType getSingleOpOfType(Block &block) {
56   OpType res;
57   block.walk([&](OpType op) {
58     if (res) {
59       res = nullptr;
60       return WalkResult::interrupt();
61     }
62     res = op;
63     return WalkResult::advance();
64   });
65   return res;
66 }
67 
68 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a
69 /// projectedPermutation, compress the unused dimensions to serve as a
70 /// permutation_map for a vector transfer operation.
71 /// For example, given a linalg op such as:
72 ///
73 /// ```
74 ///   %0 = linalg.generic {
75 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>,
76 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)>
77 ///      }
78 ///     ins(%0 : tensor<2x3x4xf32>)
79 ///    outs(%1 : tensor<5x6xf32>)
80 /// ```
81 ///
82 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine
83 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second
84 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`.
reindexIndexingMap(AffineMap map)85 static AffineMap reindexIndexingMap(AffineMap map) {
86   assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) &&
87          "expected projected permutation");
88   auto res = compressUnusedDims(map);
89   assert(res.getNumDims() == res.getNumResults() &&
90          "expected reindexed map with same number of dims and results");
91   return res;
92 }
93 
94 /// Helper data structure to represent the result of vectorization.
95 /// In certain specific cases, like terminators, we do not want to propagate/
96 enum VectorizationStatus {
97   /// Op failed to vectorize.
98   Failure = 0,
99   /// Op vectorized and custom function took care of replacement logic
100   NoReplace,
101   /// Op vectorized into a new Op whose results will replace original Op's
102   /// results.
103   NewOp
104   // TODO: support values if Op vectorized to Many-Ops whose results we need to
105   // aggregate for replacement.
106 };
107 struct VectorizationResult {
108   /// Return status from vectorizing the current op.
109   enum VectorizationStatus status = VectorizationStatus::Failure;
110   /// New vectorized operation to replace the current op.
111   /// Replacement behavior is specified by `status`.
112   Operation *newOp;
113 };
114 
115 llvm::Optional<vector::CombiningKind>
getCombinerOpKind(Operation * combinerOp)116 mlir::linalg::getCombinerOpKind(Operation *combinerOp) {
117   using ::mlir::vector::CombiningKind;
118 
119   if (!combinerOp)
120     return llvm::None;
121   return llvm::TypeSwitch<Operation *, llvm::Optional<CombiningKind>>(
122              combinerOp)
123       .Case<arith::AddIOp, arith::AddFOp>(
124           [&](auto op) { return CombiningKind::ADD; })
125       .Case<arith::AndIOp>([&](auto op) { return CombiningKind::AND; })
126       .Case<arith::MaxSIOp>([&](auto op) { return CombiningKind::MAXSI; })
127       .Case<arith::MaxFOp>([&](auto op) { return CombiningKind::MAXF; })
128       .Case<arith::MinSIOp>([&](auto op) { return CombiningKind::MINSI; })
129       .Case<arith::MinFOp>([&](auto op) { return CombiningKind::MINF; })
130       .Case<arith::MulIOp, arith::MulFOp>(
131           [&](auto op) { return CombiningKind::MUL; })
132       .Case<arith::OrIOp>([&](auto op) { return CombiningKind::OR; })
133       .Case<arith::XOrIOp>([&](auto op) { return CombiningKind::XOR; })
134       .Default([&](auto op) { return llvm::None; });
135 }
136 
137 /// Check whether `outputOperand` is a reduction with a single combiner
138 /// operation. Return the combiner operation of the reduction. Return
139 /// nullptr otherwise. Multiple reduction operations would impose an
140 /// ordering between reduction dimensions and is currently unsupported in
141 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) !=
142 /// max(min(X))
143 // TODO: use in LinalgOp verification, there is a circular dependency atm.
matchLinalgReduction(OpOperand * outputOperand)144 static Operation *matchLinalgReduction(OpOperand *outputOperand) {
145   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
146   unsigned outputPos =
147       outputOperand->getOperandNumber() - linalgOp.getNumInputs();
148   // Only single combiner operations are supported for now.
149   SmallVector<Operation *, 4> combinerOps;
150   if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) ||
151       combinerOps.size() != 1)
152     return nullptr;
153 
154   // Return the combiner operation.
155   return combinerOps[0];
156 }
157 
158 /// Broadcast `value` to a vector of `shape` if possible. Return value
159 /// otherwise.
broadcastIfNeeded(OpBuilder & b,Value value,ArrayRef<int64_t> shape)160 static Value broadcastIfNeeded(OpBuilder &b, Value value,
161                                ArrayRef<int64_t> shape) {
162   // If no shape to broadcast to, just return `value`.
163   if (shape.empty())
164     return value;
165   VectorType targetVectorType =
166       VectorType::get(shape, getElementTypeOrSelf(value));
167   if (vector::isBroadcastableTo(value.getType(), targetVectorType) !=
168       vector::BroadcastableToResult::Success)
169     return value;
170   Location loc = b.getInsertionPoint()->getLoc();
171   return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value);
172 }
173 
174 /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This
175 /// assumes that `reductionOp` has two operands and one of them is the reduction
176 /// initial value.
buildMultiDimReduce(OpBuilder & b,Operation * reduceOp,Value valueToReduce,Value acc,const SmallVector<bool> & reductionMask)177 static Operation *buildMultiDimReduce(OpBuilder &b, Operation *reduceOp,
178                                       Value valueToReduce, Value acc,
179                                       const SmallVector<bool> &reductionMask) {
180   auto maybeKind = getCombinerOpKind(reduceOp);
181   assert(maybeKind && "Failed precondition: could not get reduction kind");
182   return b.create<vector::MultiDimReductionOp>(
183       reduceOp->getLoc(), valueToReduce, acc, reductionMask, *maybeKind);
184 }
185 
getReductionMask(LinalgOp linalgOp)186 static SmallVector<bool> getReductionMask(LinalgOp linalgOp) {
187   unsigned idx = 0;
188   SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false);
189   for (auto attr : linalgOp.iterator_types()) {
190     if (isReductionIterator(attr))
191       reductionMask[idx] = true;
192     ++idx;
193   }
194   return reductionMask;
195 }
196 
197 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set
198 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp
199 /// currently being vectorized. If `dest` has null rank, build an memref.store.
200 /// Return the produced value or null if no value is produced.
buildVectorWrite(OpBuilder & b,Value value,OpOperand * outputOperand)201 static Value buildVectorWrite(OpBuilder &b, Value value,
202                               OpOperand *outputOperand) {
203   Operation *write;
204   Location loc = value.getLoc();
205   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
206   ArrayRef<int64_t> shape = linalgOp.getShape(outputOperand);
207   auto vectorType = VectorType::get(
208       shape, getElementTypeOrSelf(outputOperand->get().getType()));
209   if (vectorType.getRank() > 0) {
210     // 0-d case is still special: do not invert the reindexing map.
211     AffineMap map =
212         reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand));
213     SmallVector<int64_t> transposeShape =
214         applyPermutationMap(inversePermutation(map), vectorType.getShape());
215     assert(!transposeShape.empty() && "unexpected empty transpose shape");
216     vectorType = VectorType::get(transposeShape, vectorType.getElementType());
217     SmallVector<Value> indices(linalgOp.getRank(outputOperand),
218                                b.create<arith::ConstantIndexOp>(loc, 0));
219     value = broadcastIfNeeded(b, value, vectorType.getShape());
220     write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(),
221                                               indices, map);
222   } else {
223     if (!value.getType().isa<VectorType>())
224       value = b.create<vector::BroadcastOp>(loc, vectorType, value);
225     assert(value.getType() == vectorType && "incorrect type");
226     write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(),
227                                               ValueRange{});
228   }
229   LDBG("vectorized op: " << *write);
230   if (!write->getResults().empty())
231     return write->getResult(0);
232   return Value();
233 }
234 
235 // Custom vectorization function type. Produce a vector form of Operation*
236 // assuming all its vectorized operands are already in the BlockAndValueMapping.
237 // Return nullptr if the Operation cannot be vectorized.
238 using CustomVectorizationHook = std::function<VectorizationResult(
239     Operation *, const BlockAndValueMapping &)>;
240 
241 /// Helper function to vectorize the terminator of a `linalgOp`. New result
242 /// vector values are appended to `newResults`. Return
243 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
244 /// should not try to map produced operations and instead return the results
245 /// using the `newResults` vector making them available to the
246 /// vectorization algorithm for RAUW. This function is meant to be used as a
247 /// CustomVectorizationHook.
248 static VectorizationResult
vectorizeLinalgYield(OpBuilder & b,Operation * op,const BlockAndValueMapping & bvm,LinalgOp linalgOp,SmallVectorImpl<Value> & newResults)249 vectorizeLinalgYield(OpBuilder &b, Operation *op,
250                      const BlockAndValueMapping &bvm, LinalgOp linalgOp,
251                      SmallVectorImpl<Value> &newResults) {
252   auto yieldOp = dyn_cast<linalg::YieldOp>(op);
253   if (!yieldOp)
254     return VectorizationResult{VectorizationStatus::Failure, nullptr};
255   for (const auto &outputs : llvm::enumerate(yieldOp.values())) {
256     // TODO: Scan for an opportunity for reuse.
257     // TODO: use a map.
258     Value vectorValue = bvm.lookup(outputs.value());
259     Value newResult = buildVectorWrite(
260         b, vectorValue, linalgOp.getOutputOperand(outputs.index()));
261     if (newResult)
262       newResults.push_back(newResult);
263   }
264   return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
265 }
266 
267 /// Helper function to vectorize the index operations of a `linalgOp`. Return
268 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it
269 /// should map the produced operations. This function is meant to be used as a
270 /// CustomVectorizationHook.
vectorizeLinalgIndex(OpBuilder & b,Operation * op,LinalgOp linalgOp)271 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op,
272                                                 LinalgOp linalgOp) {
273   IndexOp indexOp = dyn_cast<linalg::IndexOp>(op);
274   if (!indexOp)
275     return VectorizationResult{VectorizationStatus::Failure, nullptr};
276   auto loc = indexOp.getLoc();
277   // Compute the static loop sizes of the index op.
278   auto targetShape = linalgOp.computeStaticLoopSizes();
279   // Compute a one-dimensional index vector for the index op dimension.
280   SmallVector<int64_t> constantSeq =
281       llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()]));
282   auto constantOp =
283       b.create<arith::ConstantOp>(loc, b.getIndexVectorAttr(constantSeq));
284   // Return the one-dimensional index vector if it lives in the trailing
285   // dimension of the iteration space since the vectorization algorithm in this
286   // case can handle the broadcast.
287   if (indexOp.dim() == targetShape.size() - 1)
288     return VectorizationResult{VectorizationStatus::NewOp, constantOp};
289   // Otherwise permute the targetShape to move the index dimension last,
290   // broadcast the one-dimensional index vector to the permuted shape, and
291   // finally transpose the broadcasted index vector to undo the permutation.
292   std::swap(targetShape[indexOp.dim()], targetShape.back());
293   auto broadCastOp = b.create<vector::BroadcastOp>(
294       loc, VectorType::get(targetShape, b.getIndexType()), constantOp);
295   SmallVector<int64_t> transposition =
296       llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops()));
297   std::swap(transposition.back(), transposition[indexOp.dim()]);
298   auto transposeOp =
299       b.create<vector::TransposeOp>(loc, broadCastOp, transposition);
300   return VectorizationResult{VectorizationStatus::NewOp, transposeOp};
301 }
302 
303 /// Emit reduction operations if the shapes of the value to reduce is different
304 /// that the result shape.
reduceIfNeeded(OpBuilder & b,LinalgOp linalgOp,Operation * op,Value reduceValue,Value initialValue,const BlockAndValueMapping & bvm)305 static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op,
306                                  Value reduceValue, Value initialValue,
307                                  const BlockAndValueMapping &bvm) {
308   Value reduceVec = bvm.lookup(reduceValue);
309   Value outputVec = bvm.lookup(initialValue);
310   auto reduceType = reduceVec.getType().dyn_cast<VectorType>();
311   auto outputType = outputVec.getType().dyn_cast<VectorType>();
312   // Reduce only if needed as the value may already have been reduce for
313   // contraction vectorization.
314   if (!reduceType ||
315       (outputType && reduceType.getShape() == outputType.getShape()))
316     return nullptr;
317   SmallVector<bool> reductionMask = getReductionMask(linalgOp);
318   return buildMultiDimReduce(b, op, reduceVec, outputVec, reductionMask);
319 }
320 
321 /// Generic vectorization for a single operation `op`, given already vectorized
322 /// operands carried by `bvm`. Vectorization occurs as follows:
323 ///   1. Try to apply any of the `customVectorizationHooks` and return its
324 ///   result on success.
325 ///   2. Clone any constant in the current scope without vectorization: each
326 ///   consumer of the constant will later determine the shape to which the
327 ///   constant needs to be broadcast to.
328 ///   3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
329 ///   of the `customVectorizationHooks` to cover such cases.
330 ///   4. Clone `op` in vector form to a vector of shape prescribed by the first
331 ///   operand of maximal rank. Other operands have smaller rank and are
332 ///   broadcast accordingly. It is assumed this broadcast is always legal,
333 ///   otherwise, it means one of the `customVectorizationHooks` is incorrect.
334 ///
335 /// This function assumes all operands of `op` have been vectorized and are in
336 /// the `bvm` mapping. As a consequence, this function is meant to be called on
337 /// a topologically-sorted list of ops.
338 /// This function does not update `bvm` but returns a VectorizationStatus that
339 /// instructs the caller what `bvm` update needs to occur.
340 static VectorizationResult
vectorizeOneOp(OpBuilder & b,LinalgOp linalgOp,Operation * op,const BlockAndValueMapping & bvm,ArrayRef<CustomVectorizationHook> customVectorizationHooks)341 vectorizeOneOp(OpBuilder &b, LinalgOp linalgOp, Operation *op,
342                const BlockAndValueMapping &bvm,
343                ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
344   LDBG("vectorize op " << *op);
345 
346   // 1. Try to apply any CustomVectorizationHook.
347   if (!customVectorizationHooks.empty()) {
348     for (auto &customFunc : customVectorizationHooks) {
349       VectorizationResult result = customFunc(op, bvm);
350       if (result.status == VectorizationStatus::Failure)
351         continue;
352       return result;
353     }
354   }
355 
356   // 2. Constant ops don't get vectorized but rather broadcasted at their users.
357   // Clone so that the constant is not confined to the linalgOp block .
358   if (isa<arith::ConstantOp, func::ConstantOp>(op))
359     return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)};
360 
361   // 3. Only ElementwiseMappable are allowed in the generic vectorization.
362   if (!OpTrait::hasElementwiseMappableTraits(op))
363     return VectorizationResult{VectorizationStatus::Failure, nullptr};
364 
365   // 4 . Check if the operation is a reduction.
366   SmallVector<std::pair<Value, Value>> reductionOperands;
367   for (Value operand : op->getOperands()) {
368     auto arg = operand.dyn_cast<BlockArgument>();
369     if (!arg || arg.getArgNumber() < linalgOp.getNumInputs())
370       continue;
371     SmallVector<Operation *> reductionOps;
372     Value reduceValue = matchReduction(
373         linalgOp.getRegionOutputArgs(),
374         arg.getArgNumber() - linalgOp.getNumInputs(), reductionOps);
375     if (!reduceValue)
376       continue;
377     reductionOperands.push_back(std::make_pair(reduceValue, operand));
378   }
379   if (!reductionOperands.empty()) {
380     assert(reductionOperands.size() == 1);
381     Operation *reduceOp =
382         reduceIfNeeded(b, linalgOp, op, reductionOperands[0].first,
383                        reductionOperands[0].second, bvm);
384     if (reduceOp)
385       return VectorizationResult{VectorizationStatus::NewOp, reduceOp};
386   }
387 
388   // 5. Generic vectorization path for ElementwiseMappable ops.
389   //   a. first get the first max ranked shape.
390   SmallVector<int64_t, 4> firstMaxRankedShape;
391   for (Value operand : op->getOperands()) {
392     auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>();
393     if (vt && firstMaxRankedShape.size() < vt.getShape().size())
394       firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end());
395   }
396   //   b. broadcast each op if needed.
397   auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) {
398     return firstMaxRankedShape.empty()
399                ? bvm.lookup(v)
400                : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape);
401   });
402   //   c. for elementwise, the result is the vector with the firstMaxRankedShape
403   auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) {
404     return firstMaxRankedShape.empty()
405                ? t
406                : VectorType::get(firstMaxRankedShape, t);
407   });
408 
409   // Build and return the new op.
410   return VectorizationResult{
411       VectorizationStatus::NewOp,
412       b.create(op->getLoc(), op->getName().getIdentifier(),
413                llvm::to_vector<4>(vectorizedOperands),
414                llvm::to_vector<4>(returnTypes), op->getAttrs())};
415 }
416 
417 /// Generic vectorization function that rewrites the body of a `linalgOp` into
418 /// vector form. Generic vectorization proceeds as follows:
419 ///   1. Verify the `linalgOp` has one non-empty region.
420 ///   2. Values defined above the region are mapped to themselves and will be
421 ///   broadcasted on a per-need basis by their consumers.
422 ///   3. Each region argument is vectorized into a vector.transfer_read (or 0-d
423 ///   load).
424 ///   TODO: Reuse opportunities for RAR dependencies.
425 ///   4a. Register CustomVectorizationHook for YieldOp to capture the results.
426 ///   4b. Register CustomVectorizationHook for IndexOp to access the iteration
427 ///   indices.
428 ///   5. Iteratively call vectorizeOneOp on the region operations.
429 ///
430 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is
431 /// performed to the maximal common vector size implied by the `linalgOp`
432 /// iteration space. This eager broadcasting is introduced in the
433 /// permutation_map of the vector.transfer_read operations. The eager
434 /// broadcasting makes it trivial to detrmine where broadcast, transposes and
435 /// reductions should occur, without any bookkeeping. The tradeoff is that, in
436 /// the absence of good canonicalizations, the amount of work increases.
437 /// This is not deemed a problem as we expect canonicalizations and foldings to
438 /// aggressively clean up the useless work.
439 static LogicalResult
vectorizeAsLinalgGeneric(OpBuilder & b,LinalgOp linalgOp,SmallVectorImpl<Value> & newResults)440 vectorizeAsLinalgGeneric(OpBuilder &b, LinalgOp linalgOp,
441                          SmallVectorImpl<Value> &newResults) {
442   Block *block = linalgOp.getBlock();
443 
444   // 2. Values defined above the region can only be broadcast for now. Make them
445   // map to themselves.
446   BlockAndValueMapping bvm;
447   SetVector<Value> valuesSet;
448   mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet);
449   bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());
450 
451   if (linalgOp.getNumOutputs() == 0)
452     return failure();
453 
454   // TODO: the common vector shape is equal to the static loop sizes only when
455   // all indexing maps are projected permutations. For convs and stencils the
456   // logic will need to evolve.
457   SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes();
458 
459   // 3. Turn all BBArgs into vector.transfer_read / load.
460   Location loc = linalgOp.getLoc();
461   Value zero = b.create<arith::ConstantIndexOp>(loc, 0);
462   for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) {
463     BlockArgument bbarg = block->getArgument(opOperand->getOperandNumber());
464     if (linalgOp.isScalar(opOperand)) {
465       bvm.map(bbarg, opOperand->get());
466       continue;
467     }
468     VectorType readType;
469     AffineMap map;
470     // TODO: can we keep this simplification?
471     // if (linalgOp.getShape(opOperand).empty()) {
472     //   readType = VectorType::get({}, bbarg.getType());
473     // } else {
474     if (opOperand->getOperandNumber() < linalgOp.getNumInputs()) {
475       map = inverseAndBroadcastProjectedPermutation(
476           linalgOp.getTiedIndexingMap(opOperand));
477       readType = VectorType::get(commonVectorShape,
478                                  getElementTypeOrSelf(opOperand->get()));
479     } else {
480       map = inversePermutation(
481           reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand)));
482       readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)),
483                                  getElementTypeOrSelf(opOperand->get()));
484     }
485     // }
486 
487     auto shape = linalgOp.getShape(opOperand);
488     SmallVector<Value> indices(shape.size(), zero);
489     Value readValue = b.create<vector::TransferReadOp>(
490         loc, readType, opOperand->get(), indices, map);
491     // Not all ops support 0-d vectors, extract the scalar for now.
492     // TODO: remove this.
493     if (readValue.getType().cast<VectorType>().getRank() == 0)
494       readValue = b.create<vector::ExtractElementOp>(loc, readValue);
495 
496     LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue);
497     bvm.map(bbarg, readValue);
498     bvm.map(opOperand->get(), readValue);
499   }
500 
501   SmallVector<CustomVectorizationHook> hooks;
502   // 4a. Register CustomVectorizationHook for yieldOp.
503   CustomVectorizationHook vectorizeYield =
504       [&](Operation *op,
505           const BlockAndValueMapping &bvm) -> VectorizationResult {
506     return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults);
507   };
508   hooks.push_back(vectorizeYield);
509 
510   // 4b. Register CustomVectorizationHook for indexOp.
511   CustomVectorizationHook vectorizeIndex =
512       [&](Operation *op,
513           const BlockAndValueMapping &bvm) -> VectorizationResult {
514     return vectorizeLinalgIndex(b, op, linalgOp);
515   };
516   hooks.push_back(vectorizeIndex);
517 
518   // 5. Iteratively call `vectorizeOneOp` to each op in the slice.
519   for (Operation &op : block->getOperations()) {
520     VectorizationResult result = vectorizeOneOp(b, linalgOp, &op, bvm, hooks);
521     if (result.status == VectorizationStatus::Failure) {
522       LDBG("failed to vectorize: " << op);
523       return failure();
524     }
525     if (result.status == VectorizationStatus::NewOp) {
526       LDBG("new vector op: " << *result.newOp;);
527       bvm.map(op.getResults(), result.newOp->getResults());
528     }
529   }
530 
531   return success();
532 }
533 
534 // TODO: probably need some extra checks for reduction followed by consumer
535 // ops that may not commute (e.g. linear reduction + non-linear instructions).
reductionPreconditions(LinalgOp op)536 static LogicalResult reductionPreconditions(LinalgOp op) {
537   if (llvm::none_of(op.iterator_types(), isReductionIterator)) {
538     LDBG("reduction precondition failed: no reduction iterator");
539     return failure();
540   }
541   for (OpOperand *opOperand : op.getOutputOperands()) {
542     Operation *reduceOp = matchLinalgReduction(opOperand);
543     if (!reduceOp || !getCombinerOpKind(reduceOp)) {
544       LDBG("reduction precondition failed: reduction detection failed");
545       return failure();
546     }
547   }
548   return success();
549 }
550 
vectorizeStaticLinalgOpPrecondition(linalg::LinalgOp op)551 static LogicalResult vectorizeStaticLinalgOpPrecondition(linalg::LinalgOp op) {
552   // All types in the body should be a supported element type for VectorType.
553   for (Operation &innerOp : op->getRegion(0).front()) {
554     if (llvm::any_of(innerOp.getOperandTypes(), [](Type type) {
555           return !VectorType::isValidElementType(type);
556         })) {
557       return failure();
558     }
559     if (llvm::any_of(innerOp.getResultTypes(), [](Type type) {
560           return !VectorType::isValidElementType(type);
561         })) {
562       return failure();
563     }
564   }
565   if (isElementwise(op))
566     return success();
567   // TODO: isaConvolutionOpInterface that can also infer from generic features.
568   // But we will still need stride/dilation attributes that will be annoying to
569   // reverse-engineer...
570   if (isa<ConvolutionOpInterface>(op.getOperation()))
571     return success();
572   // TODO: the common vector shape is equal to the static loop sizes only when
573   // all indexing maps are projected permutations. For convs and stencils the
574   // logic will need to evolve.
575   if (!allIndexingsAreProjectedPermutation(op)) {
576     LDBG("precondition failed: not projected permutations");
577     return failure();
578   }
579   if (failed(reductionPreconditions(op))) {
580     LDBG("precondition failed: reduction preconditions");
581     return failure();
582   }
583   return success();
584 }
585 
vectorizeLinalgOpPrecondition(LinalgOp linalgOp)586 static LogicalResult vectorizeLinalgOpPrecondition(LinalgOp linalgOp) {
587   // All types must be static shape to go to vector.
588   if (linalgOp.hasDynamicShape()) {
589     LDBG("precondition failed: dynamic shape");
590     return failure();
591   }
592   return vectorizeStaticLinalgOpPrecondition(linalgOp);
593 }
594 
vectorize(RewriterBase & rewriter,LinalgOp linalgOp)595 LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter,
596                                       LinalgOp linalgOp) {
597   if (failed(vectorizeLinalgOpPrecondition(linalgOp)))
598     return failure();
599 
600   SmallVector<Value> results;
601   // TODO: isaConvolutionOpInterface that can also infer from generic
602   // features. Will require stride/dilation attributes inference.
603   FailureOr<Operation *> convOr = vectorizeConvolution(rewriter, linalgOp);
604   if (succeeded(convOr)) {
605     llvm::append_range(results, (*convOr)->getResults());
606   } else {
607     if (failed(vectorizeLinalgOpPrecondition(linalgOp)))
608       return failure();
609     LDBG("Vectorize generic by broadcasting to a common shape: " << linalgOp);
610     if (failed(vectorizeAsLinalgGeneric(rewriter, linalgOp, results)))
611       return failure();
612   }
613 
614   if (!results.empty())
615     rewriter.replaceOp(linalgOp, results);
616   else
617     rewriter.eraseOp(linalgOp);
618 
619   return success();
620 }
621 
vectorizeCopy(RewriterBase & rewriter,memref::CopyOp copyOp)622 LogicalResult mlir::linalg::vectorizeCopy(RewriterBase &rewriter,
623                                           memref::CopyOp copyOp) {
624 
625   auto srcType = copyOp.getSource().getType().cast<MemRefType>();
626   auto dstType = copyOp.getTarget().getType().cast<MemRefType>();
627   if (!srcType.hasStaticShape() || !dstType.hasStaticShape())
628     return failure();
629 
630   auto readType =
631       VectorType::get(srcType.getShape(), getElementTypeOrSelf(srcType));
632   auto writeType =
633       VectorType::get(dstType.getShape(), getElementTypeOrSelf(dstType));
634 
635   Location loc = copyOp->getLoc();
636   Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
637   SmallVector<Value> indices(srcType.getRank(), zero);
638 
639   Value readValue = rewriter.create<vector::TransferReadOp>(
640       loc, readType, copyOp.getSource(), indices,
641       rewriter.getMultiDimIdentityMap(srcType.getRank()));
642   if (readValue.getType().cast<VectorType>().getRank() == 0) {
643     readValue = rewriter.create<vector::ExtractElementOp>(loc, readValue);
644     readValue = rewriter.create<vector::BroadcastOp>(loc, writeType, readValue);
645   }
646   Operation *writeValue = rewriter.create<vector::TransferWriteOp>(
647       loc, readValue, copyOp.getTarget(), indices,
648       rewriter.getMultiDimIdentityMap(srcType.getRank()));
649   rewriter.replaceOp(copyOp, writeValue->getResults());
650   return success();
651 }
652 
653 //----------------------------------------------------------------------------//
654 // Misc. vectorization patterns.
655 //----------------------------------------------------------------------------//
656 
657 /// Helper function that retrieves the value of an IntegerAttr.
getIntFromAttr(Attribute attr)658 static int64_t getIntFromAttr(Attribute attr) {
659   return attr.cast<IntegerAttr>().getInt();
660 }
661 
662 /// Given an ArrayRef of OpFoldResults, return a vector of Values.
663 /// IntegerAttrs are converted to ConstantIndexOps. Other attribute types are
664 /// not supported.
ofrToIndexValues(OpBuilder & builder,Location loc,ArrayRef<OpFoldResult> ofrs)665 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc,
666                                            ArrayRef<OpFoldResult> ofrs) {
667   SmallVector<Value> result;
668   for (auto o : ofrs) {
669     if (auto val = o.template dyn_cast<Value>()) {
670       result.push_back(val);
671     } else {
672       result.push_back(builder.create<arith::ConstantIndexOp>(
673           loc, getIntFromAttr(o.template get<Attribute>())));
674     }
675   }
676   return result;
677 }
678 
679 /// Rewrite a tensor::PadOp into a sequence of InitTensorOp, FillOp and
680 /// InsertSliceOp. For now, only constant padding values are supported.
681 /// If there is enough static type information, TransferReadOps and
682 /// TransferWriteOps may be generated instead of InsertSliceOps.
683 struct GenericPadOpVectorizationPattern : public GeneralizePadOpPattern {
GenericPadOpVectorizationPatternGenericPadOpVectorizationPattern684   GenericPadOpVectorizationPattern(MLIRContext *context,
685                                    PatternBenefit benefit = 1)
686       : GeneralizePadOpPattern(context, tryVectorizeCopy, benefit) {}
687   /// Vectorize the copying of a tensor::PadOp's source. This is possible if
688   /// each dimension size is statically know in the source type or the result
689   /// type (or both).
tryVectorizeCopyGenericPadOpVectorizationPattern690   static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter,
691                                         tensor::PadOp padOp, Value dest) {
692     auto sourceType = padOp.getSourceType();
693     auto resultType = padOp.getResultType();
694 
695     // Copy cannot be vectorized if pad value is non-constant and source shape
696     // is dynamic. In case of a dynamic source shape, padding must be appended
697     // by TransferReadOp, but TransferReadOp supports only constant padding.
698     auto padValue = padOp.getConstantPaddingValue();
699     if (!padValue) {
700       if (!sourceType.hasStaticShape())
701         return failure();
702       // Create dummy padding value.
703       auto elemType = sourceType.getElementType();
704       padValue = rewriter.create<arith::ConstantOp>(
705           padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType));
706     }
707 
708     SmallVector<int64_t> vecShape;
709     SmallVector<bool> readInBounds;
710     SmallVector<bool> writeInBounds;
711     for (unsigned i = 0; i < sourceType.getRank(); ++i) {
712       if (!sourceType.isDynamicDim(i)) {
713         vecShape.push_back(sourceType.getDimSize(i));
714         // Source shape is statically known: Neither read nor write are
715         // out-of- bounds.
716         readInBounds.push_back(true);
717         writeInBounds.push_back(true);
718       } else if (!resultType.isDynamicDim(i)) {
719         // Source shape is not statically known, but result shape is.
720         // Vectorize with size of result shape. This may be larger than the
721         // source size.
722         vecShape.push_back(resultType.getDimSize(i));
723         // Read may be out-of-bounds because the result size could be larger
724         // than the source size.
725         readInBounds.push_back(false);
726         // Write is out-of-bounds if low padding > 0.
727         writeInBounds.push_back(
728             getConstantIntValue(padOp.getMixedLowPad()[i]) ==
729             static_cast<int64_t>(0));
730       } else {
731         // Neither source nor result dim of padOp is static. Cannot vectorize
732         // the copy.
733         return failure();
734       }
735     }
736     auto vecType = VectorType::get(vecShape, sourceType.getElementType());
737 
738     // Generate TransferReadOp.
739     SmallVector<Value> readIndices(
740         vecType.getRank(),
741         rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
742     auto read = rewriter.create<vector::TransferReadOp>(
743         padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue,
744         ArrayRef<bool>{readInBounds});
745 
746     // If `dest` is a FillOp and the TransferWriteOp would overwrite the
747     // entire tensor, write directly to the FillOp's operand.
748     if (llvm::equal(vecShape, resultType.getShape()) &&
749         llvm::all_of(writeInBounds, [](bool b) { return b; }))
750       if (auto fill = dest.getDefiningOp<FillOp>())
751         dest = fill.output();
752 
753     // Generate TransferWriteOp.
754     auto writeIndices =
755         ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad());
756     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
757         padOp, read, dest, writeIndices, ArrayRef<bool>{writeInBounds});
758 
759     return success();
760   }
761 };
762 
763 /// Base pattern for rewriting tensor::PadOps whose result is consumed by a
764 /// given operation type OpTy.
765 template <typename OpTy>
766 struct VectorizePadOpUserPattern : public OpRewritePattern<tensor::PadOp> {
767   using OpRewritePattern<tensor::PadOp>::OpRewritePattern;
768 
matchAndRewriteVectorizePadOpUserPattern769   LogicalResult matchAndRewrite(tensor::PadOp padOp,
770                                 PatternRewriter &rewriter) const final {
771     bool changed = false;
772     // Insert users in vector, because some users may be replaced/removed.
773     for (auto *user : llvm::to_vector<4>(padOp->getUsers()))
774       if (auto op = dyn_cast<OpTy>(user))
775         changed |= rewriteUser(rewriter, padOp, op).succeeded();
776     return success(changed);
777   }
778 
779 protected:
780   virtual LogicalResult rewriteUser(PatternRewriter &rewriter,
781                                     tensor::PadOp padOp, OpTy op) const = 0;
782 };
783 
784 /// Rewrite use of tensor::PadOp result in TransferReadOp. E.g.:
785 /// ```
786 /// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32>
787 /// %r = vector.transfer_read %0[%c0, %c0], %cst
788 ///     {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32>
789 /// ```
790 /// is rewritten to:
791 /// ```
792 /// %r = vector.transfer_read %src[%c0, %c0], %padding
793 ///     {in_bounds = [true, true]}
794 ///     : tensor<?x?xf32>, vector<17x5xf32>
795 /// ```
796 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be
797 /// sure that the original padding value %cst was never used.
798 ///
799 /// This rewrite is possible if:
800 /// - `xferOp` has no out-of-bounds dims or mask.
801 /// - Low padding is static 0.
802 /// - Single, scalar padding value.
803 struct PadOpVectorizationWithTransferReadPattern
804     : public VectorizePadOpUserPattern<vector::TransferReadOp> {
805   using VectorizePadOpUserPattern<
806       vector::TransferReadOp>::VectorizePadOpUserPattern;
807 
rewriteUserPadOpVectorizationWithTransferReadPattern808   LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
809                             vector::TransferReadOp xferOp) const override {
810     // Low padding must be static 0.
811     if (!padOp.hasZeroLowPad())
812       return failure();
813     // Pad value must be a constant.
814     auto padValue = padOp.getConstantPaddingValue();
815     if (!padValue)
816       return failure();
817     // Padding value of existing `xferOp` is unused.
818     if (xferOp.hasOutOfBoundsDim() || xferOp.getMask())
819       return failure();
820 
821     rewriter.updateRootInPlace(xferOp, [&]() {
822       SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
823       xferOp->setAttr(xferOp.getInBoundsAttrName(),
824                       rewriter.getBoolArrayAttr(inBounds));
825       xferOp.getSourceMutable().assign(padOp.getSource());
826       xferOp.getPaddingMutable().assign(padValue);
827     });
828 
829     return success();
830   }
831 };
832 
833 /// Rewrite use of tensor::PadOp result in TransferWriteOp.
834 /// This pattern rewrites TransferWriteOps that write to a padded tensor
835 /// value, where the same amount of padding is immediately removed again after
836 /// the write. In such cases, the TransferWriteOp can write to the non-padded
837 /// tensor value and apply out-of-bounds masking. E.g.:
838 /// ```
839 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
840 ///     : tensor<...> to tensor<?x?xf32>
841 /// %1 = tensor.pad %0 ... : tensor<?x?xf32> to tensor<17x5xf32>
842 /// %2 = vector.transfer_write %vec, %1[...]
843 ///     : vector<17x5xf32>, tensor<17x5xf32>
844 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1]
845 ///     : tensor<17x5xf32> to tensor<?x?xf32>
846 /// ```
847 /// is rewritten to:
848 /// ```
849 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
850 ///     : tensor<...> to tensor<?x?xf32>
851 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>,
852 /// tensor<?x?xf32>
853 /// ```
854 /// Note: It is important that the ExtractSliceOp %r resizes the result of the
855 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an
856 /// even smaller size). Otherwise, %r's new (dynamic) dimensions would differ
857 /// from %r's old dimensions.
858 ///
859 /// This rewrite is possible if:
860 /// - Low padding is static 0.
861 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This
862 ///   ExtractSliceOp trims the same amount of padding that was added
863 ///   beforehand.
864 /// - Single, scalar padding value.
865 struct PadOpVectorizationWithTransferWritePattern
866     : public VectorizePadOpUserPattern<vector::TransferWriteOp> {
867   using VectorizePadOpUserPattern<
868       vector::TransferWriteOp>::VectorizePadOpUserPattern;
869 
rewriteUserPadOpVectorizationWithTransferWritePattern870   LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
871                             vector::TransferWriteOp xferOp) const override {
872     // TODO: support 0-d corner case.
873     if (xferOp.getTransferRank() == 0)
874       return failure();
875 
876     // Low padding must be static 0.
877     if (!padOp.hasZeroLowPad())
878       return failure();
879     // Pad value must be a constant.
880     auto padValue = padOp.getConstantPaddingValue();
881     if (!padValue)
882       return failure();
883     // TransferWriteOp result must be directly consumed by an ExtractSliceOp.
884     if (!xferOp->hasOneUse())
885       return failure();
886     auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin());
887     if (!trimPadding)
888       return failure();
889     // Only static zero offsets supported when trimming padding.
890     if (!trimPadding.hasZeroOffset())
891       return failure();
892     // trimPadding must remove the amount of padding that was added earlier.
893     if (!hasSameTensorSize(padOp.getSource(), trimPadding))
894       return failure();
895 
896     // Insert the new TransferWriteOp at position of the old TransferWriteOp.
897     rewriter.setInsertionPoint(xferOp);
898 
899     SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
900     auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
901         xferOp, padOp.getSource().getType(), xferOp.getVector(),
902         padOp.getSource(), xferOp.getIndices(), xferOp.getPermutationMapAttr(),
903         xferOp.getMask(), rewriter.getBoolArrayAttr(inBounds));
904     rewriter.replaceOp(trimPadding, newXferOp->getResult(0));
905 
906     return success();
907   }
908 
909   /// Check if `beforePadding` and `afterTrimming` have the same tensor size,
910   /// i.e., same dimensions.
911   ///
912   /// Dimensions may be static, dynamic or mix of both. In case of dynamic
913   /// dimensions, this function tries to infer the (static) tensor size by
914   /// looking at the defining op and utilizing op-specific knowledge.
915   ///
916   /// This is a conservative analysis. In case equal tensor sizes cannot be
917   /// proven statically, this analysis returns `false` even though the tensor
918   /// sizes may turn out to be equal at runtime.
hasSameTensorSizePadOpVectorizationWithTransferWritePattern919   bool hasSameTensorSize(Value beforePadding,
920                          tensor::ExtractSliceOp afterTrimming) const {
921     // If the input to tensor::PadOp is a CastOp, try with with both CastOp
922     // result and CastOp operand.
923     if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>())
924       if (hasSameTensorSize(castOp.getSource(), afterTrimming))
925         return true;
926 
927     auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>();
928     auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>();
929     // Only RankedTensorType supported.
930     if (!t1 || !t2)
931       return false;
932     // Rank of both values must be the same.
933     if (t1.getRank() != t2.getRank())
934       return false;
935 
936     // All static dimensions must be the same. Mixed cases (e.g., dimension
937     // static in `t1` but dynamic in `t2`) are not supported.
938     for (unsigned i = 0; i < t1.getRank(); ++i) {
939       if (t1.isDynamicDim(i) != t2.isDynamicDim(i))
940         return false;
941       if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i))
942         return false;
943     }
944 
945     // Nothing more to check if all dimensions are static.
946     if (t1.getNumDynamicDims() == 0)
947       return true;
948 
949     // All dynamic sizes must be the same. The only supported case at the
950     // moment is when `beforePadding` is an ExtractSliceOp (or a cast
951     // thereof).
952 
953     // Apart from CastOp, only ExtractSliceOp is supported.
954     auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>();
955     if (!beforeSlice)
956       return false;
957 
958     assert(static_cast<size_t>(t1.getRank()) ==
959            beforeSlice.getMixedSizes().size());
960     assert(static_cast<size_t>(t2.getRank()) ==
961            afterTrimming.getMixedSizes().size());
962 
963     for (unsigned i = 0; i < t1.getRank(); ++i) {
964       // Skip static dimensions.
965       if (!t1.isDynamicDim(i))
966         continue;
967       auto size1 = beforeSlice.getMixedSizes()[i];
968       auto size2 = afterTrimming.getMixedSizes()[i];
969 
970       // Case 1: Same value or same constant int.
971       if (isEqualConstantIntOrValue(size1, size2))
972         continue;
973 
974       // Other cases: Take a deeper look at defining ops of values.
975       auto v1 = size1.dyn_cast<Value>();
976       auto v2 = size2.dyn_cast<Value>();
977       if (!v1 || !v2)
978         return false;
979 
980       // Case 2: Both values are identical AffineMinOps. (Should not happen if
981       // CSE is run.)
982       auto minOp1 = v1.getDefiningOp<AffineMinOp>();
983       auto minOp2 = v2.getDefiningOp<AffineMinOp>();
984       if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() &&
985           minOp1.operands() == minOp2.operands())
986         continue;
987 
988       // Add additional cases as needed.
989     }
990 
991     // All tests passed.
992     return true;
993   }
994 };
995 
996 /// Rewrite use of tensor::PadOp result in InsertSliceOp. E.g.:
997 /// ```
998 /// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32>
999 /// %r = tensor.insert_slice %0
1000 ///     into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1]
1001 ///     : tensor<17x5xf32> into tensor<?x?x17x5xf32>
1002 /// ```
1003 /// is rewritten to:
1004 /// ```
1005 /// %0 = vector.transfer_read %src[%c0, %c0], %padding
1006 ///     : tensor<?x?xf32>, vector<17x5xf32>
1007 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0]
1008 ///     {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32>
1009 /// ```
1010 ///
1011 /// This rewrite is possible if:
1012 /// - Low padding is static 0.
1013 /// - `padOp` result shape is static.
1014 /// - The entire padded tensor is inserted.
1015 ///   (Implies that sizes of `insertOp` are all static.)
1016 /// - Only unit strides in `insertOp`.
1017 /// - Single, scalar padding value.
1018 /// - `padOp` result not used as destination.
1019 struct PadOpVectorizationWithInsertSlicePattern
1020     : public VectorizePadOpUserPattern<tensor::InsertSliceOp> {
1021   using VectorizePadOpUserPattern<
1022       tensor::InsertSliceOp>::VectorizePadOpUserPattern;
1023 
rewriteUserPadOpVectorizationWithInsertSlicePattern1024   LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp,
1025                             tensor::InsertSliceOp insertOp) const override {
1026     // Low padding must be static 0.
1027     if (!padOp.hasZeroLowPad())
1028       return failure();
1029     // Only unit stride supported.
1030     if (!insertOp.hasUnitStride())
1031       return failure();
1032     // Pad value must be a constant.
1033     auto padValue = padOp.getConstantPaddingValue();
1034     if (!padValue)
1035       return failure();
1036     // Dynamic shapes not supported.
1037     if (!padOp.getResult().getType().cast<ShapedType>().hasStaticShape())
1038       return failure();
1039     // Pad result not used as destination.
1040     if (insertOp.getDest() == padOp.getResult())
1041       return failure();
1042 
1043     auto vecType = VectorType::get(padOp.getType().getShape(),
1044                                    padOp.getType().getElementType());
1045     unsigned vecRank = vecType.getRank();
1046     unsigned tensorRank = insertOp.getType().getRank();
1047 
1048     // Check if sizes match: Insert the entire tensor into most minor dims.
1049     // (No permutations allowed.)
1050     SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1);
1051     expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end());
1052     if (!llvm::all_of(
1053             llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) {
1054               return getConstantIntValue(std::get<0>(it)) == std::get<1>(it);
1055             }))
1056       return failure();
1057 
1058     // Insert the TransferReadOp and TransferWriteOp at the position of the
1059     // InsertSliceOp.
1060     rewriter.setInsertionPoint(insertOp);
1061 
1062     // Generate TransferReadOp: Read entire source tensor and add high
1063     // padding.
1064     SmallVector<Value> readIndices(
1065         vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
1066     auto read = rewriter.create<vector::TransferReadOp>(
1067         padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue);
1068 
1069     // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at
1070     // specified offsets. Write is fully in-bounds because a InsertSliceOp's
1071     // source must fit into the destination at the specified offsets.
1072     auto writeIndices =
1073         ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets());
1074     SmallVector<bool> inBounds(vecRank, true);
1075     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
1076         insertOp, read, insertOp.getDest(), writeIndices,
1077         ArrayRef<bool>{inBounds});
1078 
1079     return success();
1080   }
1081 };
1082 
populatePadOpVectorizationPatterns(RewritePatternSet & patterns,PatternBenefit baseBenefit)1083 void mlir::linalg::populatePadOpVectorizationPatterns(
1084     RewritePatternSet &patterns, PatternBenefit baseBenefit) {
1085   patterns.add<GenericPadOpVectorizationPattern>(patterns.getContext(),
1086                                                  baseBenefit);
1087   // Try these specialized patterns first before resorting to the generic one.
1088   patterns.add<PadOpVectorizationWithTransferReadPattern,
1089                PadOpVectorizationWithTransferWritePattern,
1090                PadOpVectorizationWithInsertSlicePattern>(
1091       patterns.getContext(), baseBenefit.getBenefit() + 1);
1092 }
1093 
1094 //----------------------------------------------------------------------------//
1095 // Forwarding patterns
1096 //----------------------------------------------------------------------------//
1097 
1098 /// Check whether there is any interleaved use of any `values` between
1099 /// `firstOp` and `secondOp`. Conservatively return `true` if any op or value
1100 /// is in a different block.
mayExistInterleavedUses(Operation * firstOp,Operation * secondOp,ValueRange values)1101 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
1102                                     ValueRange values) {
1103   if (firstOp->getBlock() != secondOp->getBlock() ||
1104       !firstOp->isBeforeInBlock(secondOp)) {
1105     LDBG("interleavedUses precondition failed, firstOp: "
1106          << *firstOp << ", second op: " << *secondOp);
1107     return true;
1108   }
1109   for (auto v : values) {
1110     for (auto &u : v.getUses()) {
1111       Operation *owner = u.getOwner();
1112       if (owner == firstOp || owner == secondOp)
1113         continue;
1114       // TODO: this is too conservative, use dominance info in the future.
1115       if (owner->getBlock() == firstOp->getBlock() &&
1116           (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
1117         continue;
1118       LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp
1119                                     << ", second op: " << *secondOp);
1120       return true;
1121     }
1122   }
1123   return false;
1124 }
1125 
1126 /// Return the unique subview use of `v` if it is indeed unique, null
1127 /// otherwise.
getSubViewUseIfUnique(Value v)1128 static memref::SubViewOp getSubViewUseIfUnique(Value v) {
1129   memref::SubViewOp subViewOp;
1130   for (auto &u : v.getUses()) {
1131     if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) {
1132       if (subViewOp)
1133         return memref::SubViewOp();
1134       subViewOp = newSubViewOp;
1135     }
1136   }
1137   return subViewOp;
1138 }
1139 
1140 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1141 /// when available.
matchAndRewrite(vector::TransferReadOp xferOp,PatternRewriter & rewriter) const1142 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
1143     vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
1144 
1145   // TODO: support mask.
1146   if (xferOp.getMask())
1147     return failure();
1148 
1149   // Transfer into `view`.
1150   Value viewOrAlloc = xferOp.getSource();
1151   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1152       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1153     return failure();
1154 
1155   LDBG(viewOrAlloc);
1156 
1157   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1158   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1159   if (!subViewOp)
1160     return failure();
1161   Value subView = subViewOp.getResult();
1162   LDBG("with subView " << subView);
1163 
1164   // Find the copy into `subView` without interleaved uses.
1165   memref::CopyOp copyOp;
1166   for (auto &u : subView.getUses()) {
1167     if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) {
1168       assert(newCopyOp.getTarget().getType().isa<MemRefType>());
1169       if (newCopyOp.getTarget() != subView)
1170         continue;
1171       LDBG("copy candidate " << *newCopyOp);
1172       if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
1173         continue;
1174       copyOp = newCopyOp;
1175       break;
1176     }
1177   }
1178   if (!copyOp)
1179     return failure();
1180   LDBG("with copy " << *copyOp);
1181 
1182   // Find the fill into `viewOrAlloc` without interleaved uses before the
1183   // copy.
1184   FillOp maybeFillOp;
1185   for (auto &u : viewOrAlloc.getUses()) {
1186     if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
1187       assert(newFillOp.output().getType().isa<MemRefType>());
1188       if (newFillOp.output() != viewOrAlloc)
1189         continue;
1190       LDBG("fill candidate " << *newFillOp);
1191       if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
1192         continue;
1193       maybeFillOp = newFillOp;
1194       break;
1195     }
1196   }
1197   // Ensure padding matches.
1198   if (maybeFillOp && xferOp.getPadding() != maybeFillOp.value())
1199     return failure();
1200   if (maybeFillOp)
1201     LDBG("with maybeFillOp " << *maybeFillOp);
1202 
1203   // `in` is the subview that memref.copy reads. Replace it.
1204   Value in = copyOp.getSource();
1205 
1206   // memref.copy + linalg.fill can be used to create a padded local buffer.
1207   // The `masked` attribute is only valid on this padded buffer.
1208   // When forwarding to vector.transfer_read, the attribute must be reset
1209   // conservatively.
1210   Value res = rewriter.create<vector::TransferReadOp>(
1211       xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.getIndices(),
1212       xferOp.getPermutationMapAttr(), xferOp.getPadding(), xferOp.getMask(),
1213       // in_bounds is explicitly reset
1214       /*inBoundsAttr=*/ArrayAttr());
1215 
1216   if (maybeFillOp)
1217     rewriter.eraseOp(maybeFillOp);
1218   rewriter.eraseOp(copyOp);
1219   rewriter.replaceOp(xferOp, res);
1220 
1221   return success();
1222 }
1223 
1224 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1225 /// when available.
matchAndRewrite(vector::TransferWriteOp xferOp,PatternRewriter & rewriter) const1226 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
1227     vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
1228   // TODO: support mask.
1229   if (xferOp.getMask())
1230     return failure();
1231 
1232   // Transfer into `viewOrAlloc`.
1233   Value viewOrAlloc = xferOp.getSource();
1234   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1235       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1236     return failure();
1237 
1238   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1239   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1240   if (!subViewOp)
1241     return failure();
1242   Value subView = subViewOp.getResult();
1243 
1244   // Find the copy from `subView` without interleaved uses.
1245   memref::CopyOp copyOp;
1246   for (auto &u : subViewOp.getResult().getUses()) {
1247     if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) {
1248       if (newCopyOp.getSource() != subView)
1249         continue;
1250       if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
1251         continue;
1252       copyOp = newCopyOp;
1253       break;
1254     }
1255   }
1256   if (!copyOp)
1257     return failure();
1258 
1259   // `out` is the subview copied into that we replace.
1260   assert(copyOp.getTarget().getType().isa<MemRefType>());
1261   Value out = copyOp.getTarget();
1262 
1263   // Forward vector.transfer into copy.
1264   // memref.copy + linalg.fill can be used to create a padded local buffer.
1265   // The `masked` attribute is only valid on this padded buffer.
1266   // When forwarding to vector.transfer_write, the attribute must be reset
1267   // conservatively.
1268   rewriter.create<vector::TransferWriteOp>(
1269       xferOp.getLoc(), xferOp.getVector(), out, xferOp.getIndices(),
1270       xferOp.getPermutationMapAttr(), xferOp.getMask(),
1271       // in_bounds is explicitly reset
1272       /*inBoundsAttr=*/ArrayAttr());
1273 
1274   rewriter.eraseOp(copyOp);
1275   rewriter.eraseOp(xferOp);
1276 
1277   return success();
1278 }
1279 
1280 //===----------------------------------------------------------------------===//
1281 // Convolution vectorization patterns
1282 //===----------------------------------------------------------------------===//
1283 
1284 template <int N>
bindShapeDims(ShapedType shapedType)1285 static void bindShapeDims(ShapedType shapedType) {}
1286 
1287 template <int N, typename IntTy, typename... IntTy2>
bindShapeDims(ShapedType shapedType,IntTy & val,IntTy2 &...vals)1288 static void bindShapeDims(ShapedType shapedType, IntTy &val, IntTy2 &...vals) {
1289   val = shapedType.getShape()[N];
1290   bindShapeDims<N + 1, IntTy2 &...>(shapedType, vals...);
1291 }
1292 
1293 /// Bind a pack of int& to the leading dimensions of shapedType.getShape().
1294 template <typename... IntTy>
bindShapeDims(ShapedType shapedType,IntTy &...vals)1295 static void bindShapeDims(ShapedType shapedType, IntTy &...vals) {
1296   bindShapeDims<0>(shapedType, vals...);
1297 }
1298 
1299 namespace {
1300 /// Generate a vector implementation for either:
1301 /// ```
1302 ///   Op def: (     n,     w,     c,    kw,    f  )
1303 ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
1304 ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1305 /// ```
1306 /// kw is unrolled, w is unrolled iff dilationW > 1.
1307 ///
1308 /// or
1309 ///
1310 /// ```
1311 ///   Op def: (     n,     w,     c,    kw )
1312 ///    Iters: ({Par(), Par(), Par(), Red()})
1313 ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
1314 /// ```
1315 /// kw is unrolled, w is unrolled iff dilationW > 1.
1316 struct Conv1DNwcGenerator : public StructuredGenerator<LinalgOp> {
Conv1DNwcGenerator__anona007eb931511::Conv1DNwcGenerator1317   Conv1DNwcGenerator(OpBuilder &builder, LinalgOp linalgOp, int strideW,
1318                      int dilationW)
1319       : StructuredGenerator<LinalgOp>(builder, linalgOp), strideW(strideW),
1320         dilationW(dilationW) {
1321     // Determine whether `linalgOp` can be generated with this generator
1322     if (linalgOp.getNumInputs() != 2 || linalgOp.getNumOutputs() != 1)
1323       return;
1324     lhsShaped = linalgOp.inputs()[0];
1325     rhsShaped = linalgOp.inputs()[1];
1326     resShaped = linalgOp.outputs()[0];
1327     lhsShapedType = lhsShaped.getType().dyn_cast<ShapedType>();
1328     rhsShapedType = rhsShaped.getType().dyn_cast<ShapedType>();
1329     resShapedType = resShaped.getType().dyn_cast<ShapedType>();
1330     if (!lhsShapedType || !rhsShapedType || !resShapedType)
1331       return;
1332     if (lhsShapedType.getRank() != 3 ||
1333         (rhsShapedType.getRank() != 2 && rhsShapedType.getRank() != 3) ||
1334         resShapedType.getRank() != 3)
1335       return;
1336 
1337     // Check for reduction `add` preceded by `mul`.
1338     Operation *reduceOp = matchLinalgReduction(linalgOp.getOutputOperand(0));
1339     if (!reduceOp)
1340       return;
1341     llvm::Optional<vector::CombiningKind> maybeKind;
1342     maybeKind = getCombinerOpKind(reduceOp);
1343     if (!maybeKind || *maybeKind != vector::CombiningKind::ADD)
1344       return;
1345     // Check for single `mul` predecessor. The `mul` operands must be block
1346     // arguments or extension of block arguments.
1347     Operation *mulOp = nullptr;
1348     for (Value operand : reduceOp->getOperands()) {
1349       if (operand.isa<BlockArgument>())
1350         continue;
1351       if (mulOp)
1352         return;
1353       mulOp = operand.getDefiningOp();
1354       if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp))
1355         return;
1356     }
1357     if (!mulOp)
1358       return;
1359     for (Value operand : mulOp->getOperands()) {
1360       if (Operation *def = operand.getDefiningOp()) {
1361         if (!isa<arith::ExtFOp>(def))
1362           return;
1363         operand = def->getOperand(0);
1364       }
1365       if (!operand.isa<BlockArgument>())
1366         return;
1367     }
1368     // The op is now known to be valid.
1369     valid = true;
1370   }
1371 
1372   /// Generate a vector implementation for:
1373   /// ```
1374   ///   Op def: (     n,     w,     c,    kw,    f  )
1375   ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
1376   ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1377   /// ```
1378   /// kw is always unrolled.
1379   /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is
1380   /// > 1.
conv__anona007eb931511::Conv1DNwcGenerator1381   FailureOr<Operation *> conv() {
1382     if (!valid)
1383       return failure();
1384 
1385     int64_t nSize, wSize, cSize, kwSize, fSize;
1386     // kernel{kw, c, f}
1387     bindShapeDims(rhsShapedType, kwSize, cSize, fSize);
1388     // out{n, w, f}
1389     bindShapeDims(resShapedType, nSize, wSize);
1390 
1391     vector::TransferWriteOp write;
1392     Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
1393 
1394     // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
1395     // When strideW == 1, we can batch the contiguous loads and avoid
1396     // unrolling
1397     int64_t wSizeStep = strideW == 1 ? wSize : 1;
1398 
1399     Type lhsEltType = lhsShapedType.getElementType();
1400     Type rhsEltType = rhsShapedType.getElementType();
1401     Type resEltType = resShapedType.getElementType();
1402     VectorType lhsType = VectorType::get(
1403         {nSize,
1404          // iw = ow * sw + kw *  dw - 1
1405          //   (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
1406          // Perform the proper inclusive -> exclusive -> inclusive.
1407          ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1,
1408          cSize},
1409         lhsEltType);
1410     VectorType rhsType = VectorType::get({kwSize, cSize, fSize}, rhsEltType);
1411     VectorType resType = VectorType::get({nSize, wSize, fSize}, resEltType);
1412 
1413     // Read lhs slice of size {w * strideW + kw * dilationW, c, f} @ [0, 0,
1414     // 0].
1415     Value lhs = builder.create<vector::TransferReadOp>(
1416         loc, lhsType, lhsShaped, ValueRange{zero, zero, zero});
1417     // Read rhs slice of size {kw, c, f} @ [0, 0, 0].
1418     Value rhs = builder.create<vector::TransferReadOp>(
1419         loc, rhsType, rhsShaped, ValueRange{zero, zero, zero});
1420     // Read res slice of size {n, w, f} @ [0, 0, 0].
1421     Value res = builder.create<vector::TransferReadOp>(
1422         loc, resType, resShaped, ValueRange{zero, zero, zero});
1423 
1424     //===------------------------------------------------------------------===//
1425     // Begin vector-only rewrite part
1426     //===------------------------------------------------------------------===//
1427     // Unroll along kw and read slices of lhs and rhs.
1428     SmallVector<Value> lhsVals, rhsVals, resVals;
1429     // Extract lhs slice of size {n, wSizeStep, c} @ [0, sw * w + dw * kw, 0].
1430     for (int64_t kw = 0; kw < kwSize; ++kw) {
1431       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1432         lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1433             loc, lhs,
1434             /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
1435             /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1436             /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1437       }
1438     }
1439     // Extract rhs slice of size {c, f} @ [kw].
1440     for (int64_t kw = 0; kw < kwSize; ++kw) {
1441       rhsVals.push_back(builder.create<vector::ExtractOp>(
1442           loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw}));
1443     }
1444     // Extract res slice: {n, wSizeStep, f} @ [0, w, 0].
1445     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1446       resVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1447           loc, res,
1448           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1449           /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, fSize},
1450           /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1451     }
1452 
1453     auto linearIndex = [&](int64_t kw, int64_t w) {
1454       return kw * (wSize / wSizeStep) + w;
1455     };
1456 
1457     // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f}
1458     for (int64_t kw = 0; kw < kwSize; ++kw) {
1459       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1460         resVals[w] = conv1dSliceAsContraction(
1461             builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]);
1462       }
1463     }
1464 
1465     // Write back res slice: {n, wSizeStep, f} @ [0, w, 0].
1466     // This does not depend on kw.
1467     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1468       res = builder.create<vector::InsertStridedSliceOp>(
1469           loc, resVals[w], res,
1470           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1471           /*strides=*/ArrayRef<int64_t>{1, 1, 1});
1472     }
1473     //===------------------------------------------------------------------===//
1474     // End vector-only rewrite part
1475     //===------------------------------------------------------------------===//
1476 
1477     // Write back res slice of size {n, w, f} @ [0, 0, 0].
1478     return builder
1479         .create<vector::TransferWriteOp>(loc, res, resShaped,
1480                                          ValueRange{zero, zero, zero})
1481         .getOperation();
1482   }
1483 
1484   // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f}
conv1dSliceAsContraction__anona007eb931511::Conv1DNwcGenerator1485   Value conv1dSliceAsContraction(OpBuilder &b, Location loc, Value lhs,
1486                                  Value rhs, Value res) {
1487     StringRef par = Par().strRef, red = Red().strRef;
1488     AffineExpr n, w, f, c;
1489     bindDims(ctx, n, w, f, c);
1490     return builder.create<vector::ContractionOp>(
1491         loc, lhs, rhs, res,
1492         /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}},
1493         /*iteratorTypes=*/ArrayRef<StringRef>{par, par, par, red});
1494   }
1495 
1496   /// Generate a vector implementation for:
1497   /// ```
1498   ///   Op def: (     n,     w,     c,    kw)
1499   ///    Iters: ({Par(), Par(), Par(), Red()})
1500   ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
1501   /// ```
1502   /// kw is always unrolled.
1503   /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is
1504   /// > 1.
depthwiseConv__anona007eb931511::Conv1DNwcGenerator1505   FailureOr<Operation *> depthwiseConv() {
1506     if (!valid)
1507       return failure();
1508 
1509     int64_t nSize, wSize, cSize, kwSize;
1510     // kernel{kw, c}
1511     bindShapeDims(rhsShapedType, kwSize, cSize);
1512     // out{n, w, c}
1513     bindShapeDims(resShapedType, nSize, wSize);
1514 
1515     vector::TransferWriteOp write;
1516     Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
1517 
1518     // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
1519     // When strideW == 1, we can batch the contiguous loads and avoid
1520     // unrolling
1521     int64_t wSizeStep = strideW == 1 ? wSize : 1;
1522 
1523     Type lhsEltType = lhsShapedType.getElementType();
1524     Type rhsEltType = rhsShapedType.getElementType();
1525     Type resEltType = resShapedType.getElementType();
1526     VectorType lhsType = VectorType::get(
1527         {nSize,
1528          // iw = ow * sw + kw *  dw - 1
1529          //   (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
1530          ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1,
1531          cSize},
1532         lhsEltType);
1533     VectorType rhsType = VectorType::get({kwSize, cSize}, rhsEltType);
1534     VectorType resType = VectorType::get({nSize, wSize, cSize}, resEltType);
1535 
1536     // Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0,
1537     // 0].
1538     Value lhs = builder.create<vector::TransferReadOp>(
1539         loc, lhsType, lhsShaped, ValueRange{zero, zero, zero});
1540     // Read rhs slice of size {kw, c} @ [0, 0].
1541     Value rhs = builder.create<vector::TransferReadOp>(loc, rhsType, rhsShaped,
1542                                                        ValueRange{zero, zero});
1543     // Read res slice of size {n, w, c} @ [0, 0, 0].
1544     Value res = builder.create<vector::TransferReadOp>(
1545         loc, resType, resShaped, ValueRange{zero, zero, zero});
1546 
1547     //===------------------------------------------------------------------===//
1548     // Begin vector-only rewrite part
1549     //===------------------------------------------------------------------===//
1550     // Unroll along kw and read slices of lhs and rhs.
1551     SmallVector<Value> lhsVals, rhsVals, resVals;
1552     // Extract lhs slice of size {n, wSizeStep, c}
1553     //   @ [0, sw * w + dw * kw, 0].
1554     for (int64_t kw = 0; kw < kwSize; ++kw) {
1555       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1556         lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1557             loc, lhs,
1558             /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
1559             /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1560             /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1561       }
1562     }
1563     // Extract rhs slice of size {c} @ [kw].
1564     for (int64_t kw = 0; kw < kwSize; ++kw) {
1565       rhsVals.push_back(builder.create<vector::ExtractOp>(
1566           loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw}));
1567     }
1568     // Extract res slice: {n, wSizeStep, c} @ [0, w, 0].
1569     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1570       resVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1571           loc, res,
1572           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1573           /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1574           /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1575     }
1576 
1577     auto linearIndex = [&](int64_t kw, int64_t w) {
1578       return kw * (wSize / wSizeStep) + w;
1579     };
1580 
1581     // Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c}
1582     for (int64_t kw = 0; kw < kwSize; ++kw) {
1583       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1584         resVals[w] = depthwiseConv1dSliceAsFma(
1585             builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]);
1586       }
1587     }
1588 
1589     // Write back res slice: {n, wSizeStep, c} @ [0, w, 0].
1590     // This does not depend on kw.
1591     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1592       res = builder.create<vector::InsertStridedSliceOp>(
1593           loc, resVals[w], res,
1594           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1595           /*strides=*/ArrayRef<int64_t>{1, 1, 1});
1596     }
1597     //===------------------------------------------------------------------===//
1598     // End vector-only rewrite part
1599     //===------------------------------------------------------------------===//
1600 
1601     // Write back res slice of size {n, w, c} @ [0, 0, 0].
1602     return builder
1603         .create<vector::TransferWriteOp>(loc, res, resShaped,
1604                                          ValueRange{zero, zero, zero})
1605         .getOperation();
1606   }
1607 
1608   /// Lower lhs{n, w, c} * rhs{c} -> res{n, w, c} to fma.
depthwiseConv1dSliceAsFma__anona007eb931511::Conv1DNwcGenerator1609   Value depthwiseConv1dSliceAsFma(OpBuilder &b, Location loc, Value lhs,
1610                                   Value rhs, Value res) {
1611     Value bcast = builder.create<vector::BroadcastOp>(loc, res.getType(), rhs);
1612     return b.create<vector::FMAOp>(loc, lhs, bcast, res);
1613   }
1614 
1615   /// Entry point that transposes into the common form:
1616   ///   {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
generateConv__anona007eb931511::Conv1DNwcGenerator1617   FailureOr<Operation *> generateConv() {
1618     AffineExpr n, w, f, kw, c;
1619     bindDims(ctx, n, w, f, kw, c);
1620     if (!iters({Par(), Par(), Par(), Red(), Red()}))
1621       return failure();
1622 
1623     // No transposition needed.
1624     if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
1625                 /*rhsIndex*/ {kw, c, f},
1626                 /*resIndex*/ {n, w, f}}))
1627       return conv();
1628     return failure();
1629   }
1630 
1631   /// Entry point that transposes into the common form:
1632   ///   {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
generateDilatedConv__anona007eb931511::Conv1DNwcGenerator1633   FailureOr<Operation *> generateDilatedConv() {
1634     AffineExpr n, w, c, kw;
1635     bindDims(ctx, n, w, c, kw);
1636     if (!iters({Par(), Par(), Par(), Red()}))
1637       return failure();
1638 
1639     // No transposition needed.
1640     if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
1641                 /*rhsIndex*/ {kw, c},
1642                 /*resIndex*/ {n, w, c}}))
1643       return depthwiseConv();
1644     return failure();
1645   }
1646 
1647 private:
1648   bool valid = false;
1649   int strideW, dilationW;
1650   Value lhsShaped, rhsShaped, resShaped;
1651   ShapedType lhsShapedType, rhsShapedType, resShapedType;
1652 };
1653 } // namespace
1654 
1655 /// Helper function to vectorize a LinalgOp with convolution semantics.
1656 // TODO: extend the generic vectorization to support windows and drop this.
vectorizeConvolution(OpBuilder & b,LinalgOp op)1657 static FailureOr<Operation *> vectorizeConvolution(OpBuilder &b, LinalgOp op) {
1658   // The ConvolutionOpInterface gives us guarantees of existence for
1659   // strides/dilations. However, we do not need to rely on those, we can simply
1660   // use them if present, otherwise use the default and let the generic conv.
1661   // matcher in the ConvGenerator succeed or fail.
1662   auto strides = op->getAttrOfType<DenseIntElementsAttr>("strides");
1663   auto dilations = op->getAttrOfType<DenseIntElementsAttr>("dilations");
1664   auto stride = strides ? *strides.getValues<uint64_t>().begin() : 1;
1665   auto dilation = dilations ? *dilations.getValues<uint64_t>().begin() : 1;
1666   Conv1DNwcGenerator e(b, op, stride, dilation);
1667   auto res = e.generateConv();
1668   if (succeeded(res))
1669     return res;
1670   return e.generateDilatedConv();
1671 }
1672 
1673 struct VectorizeConvolution : public OpInterfaceRewritePattern<LinalgOp> {
1674   using OpInterfaceRewritePattern::OpInterfaceRewritePattern;
1675 
matchAndRewriteVectorizeConvolution1676   LogicalResult matchAndRewrite(LinalgOp op,
1677                                 PatternRewriter &rewriter) const override {
1678     FailureOr<Operation *> resultOrFail = vectorizeConvolution(rewriter, op);
1679     if (failed(resultOrFail))
1680       return failure();
1681     Operation *newOp = *resultOrFail;
1682     if (newOp->getNumResults() == 0) {
1683       rewriter.eraseOp(op.getOperation());
1684       return success();
1685     }
1686     assert(newOp->getNumResults() == 1 && "expected single result");
1687     rewriter.replaceOp(op.getOperation(), newOp->getResult(0));
1688     return success();
1689   }
1690 };
1691 
populateConvolutionVectorizationPatterns(RewritePatternSet & patterns,PatternBenefit benefit)1692 void mlir::linalg::populateConvolutionVectorizationPatterns(
1693     RewritePatternSet &patterns, PatternBenefit benefit) {
1694   patterns.add<VectorizeConvolution>(patterns.getContext(), benefit);
1695 }
1696