1 //===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the GPU kernel-related dialect and its operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/GPU/GPUDialect.h" 14 15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 16 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 17 #include "mlir/Dialect/MemRef/IR/MemRef.h" 18 #include "mlir/Dialect/StandardOps/IR/Ops.h" 19 #include "mlir/IR/Attributes.h" 20 #include "mlir/IR/Builders.h" 21 #include "mlir/IR/BuiltinOps.h" 22 #include "mlir/IR/BuiltinTypes.h" 23 #include "mlir/IR/DialectImplementation.h" 24 #include "mlir/IR/FunctionImplementation.h" 25 #include "mlir/IR/Matchers.h" 26 #include "mlir/IR/OpImplementation.h" 27 #include "mlir/IR/PatternMatch.h" 28 #include "mlir/IR/TypeUtilities.h" 29 #include "llvm/ADT/TypeSwitch.h" 30 31 using namespace mlir; 32 using namespace mlir::gpu; 33 34 #include "mlir/Dialect/GPU/GPUOpsDialect.cpp.inc" 35 36 //===----------------------------------------------------------------------===// 37 // MMAMatrixType 38 //===----------------------------------------------------------------------===// 39 40 MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType, 41 StringRef operand) { 42 return Base::get(elementType.getContext(), shape, elementType, operand); 43 } 44 45 MMAMatrixType 46 MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError, 47 ArrayRef<int64_t> shape, Type elementType, 48 StringRef operand) { 49 return Base::getChecked(emitError, elementType.getContext(), shape, 50 elementType, operand); 51 } 52 53 unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; } 54 55 ArrayRef<int64_t> MMAMatrixType::getShape() const { 56 return getImpl()->getShape(); 57 } 58 59 Type MMAMatrixType::getElementType() const { return getImpl()->elementType; } 60 61 StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); } 62 63 bool MMAMatrixType::isValidElementType(Type elementType) { 64 return elementType.isF16() || elementType.isF32(); 65 } 66 67 LogicalResult 68 MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError, 69 ArrayRef<int64_t> shape, Type elementType, 70 StringRef operand) { 71 if (!operand.equals("AOp") && !operand.equals("BOp") && 72 !operand.equals("COp")) 73 return emitError() << "operand expected to be one of AOp, BOp or COp"; 74 75 if (shape.size() != 2) 76 return emitError() << "MMAMatrixType must have exactly two dimensions"; 77 78 if (!MMAMatrixType::isValidElementType(elementType)) 79 return emitError() << "MMAMatrixType elements must be F16 or F32"; 80 81 return success(); 82 } 83 84 //===----------------------------------------------------------------------===// 85 // GPUDialect 86 //===----------------------------------------------------------------------===// 87 88 /// GPU memory space identifiers. 89 enum GPUMemorySpace { 90 /// Generic memory space identifier. 91 kGenericMemorySpace = 0, 92 93 /// Global memory space identifier. 94 kGlobalMemorySpace = 1, 95 96 /// Shared memory space identifier. 97 kSharedMemorySpace = 3 98 }; 99 100 bool GPUDialect::isKernel(Operation *op) { 101 UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName()); 102 return static_cast<bool>(isKernelAttr); 103 } 104 105 void GPUDialect::initialize() { 106 addTypes<AsyncTokenType>(); 107 addTypes<MMAMatrixType>(); 108 addOperations< 109 #define GET_OP_LIST 110 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 111 >(); 112 } 113 114 Type GPUDialect::parseType(DialectAsmParser &parser) const { 115 // Parse the main keyword for the type. 116 StringRef keyword; 117 if (parser.parseKeyword(&keyword)) 118 return Type(); 119 MLIRContext *context = getContext(); 120 121 // Handle 'async token' types. 122 if (keyword == "async.token") 123 return AsyncTokenType::get(context); 124 125 if (keyword == "mma_matrix") { 126 llvm::SMLoc beginLoc = parser.getNameLoc(); 127 128 // Parse '<'. 129 if (parser.parseLess()) 130 return nullptr; 131 132 // Parse the size and elementType. 133 SmallVector<int64_t> shape; 134 Type elementType; 135 if (parser.parseDimensionList(shape, /*allowDynamic=*/false) || 136 parser.parseType(elementType)) 137 return nullptr; 138 139 // Parse ',' 140 if (parser.parseComma()) 141 return nullptr; 142 143 // Parse operand. 144 std::string operand; 145 if (failed(parser.parseOptionalString(&operand))) 146 return nullptr; 147 148 // Parse '>'. 149 if (parser.parseGreater()) 150 return nullptr; 151 152 return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn( 153 parser.getEncodedSourceLoc(beginLoc)), 154 shape, elementType, operand); 155 } 156 157 parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword); 158 return Type(); 159 } 160 161 void GPUDialect::printType(Type type, DialectAsmPrinter &os) const { 162 TypeSwitch<Type>(type) 163 .Case<AsyncTokenType>([&](Type) { os << "async.token"; }) 164 .Case<MMAMatrixType>([&](MMAMatrixType fragTy) { 165 os << "mma_matrix<"; 166 auto shape = fragTy.getShape(); 167 for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim) 168 os << *dim << 'x'; 169 os << shape.back() << 'x' << fragTy.getElementType(); 170 os << ", \"" << fragTy.getOperand() << "\"" << '>'; 171 }) 172 .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); }); 173 } 174 175 LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, 176 NamedAttribute attr) { 177 if (!attr.second.isa<UnitAttr>() || 178 attr.first != getContainerModuleAttrName()) 179 return success(); 180 181 auto module = dyn_cast<ModuleOp>(op); 182 if (!module) 183 return op->emitError("expected '") 184 << getContainerModuleAttrName() << "' attribute to be attached to '" 185 << ModuleOp::getOperationName() << '\''; 186 187 auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { 188 // Ignore launches that are nested more or less deep than functions in the 189 // module we are currently checking. 190 if (!launchOp->getParentOp() || 191 launchOp->getParentOp()->getParentOp() != module) 192 return success(); 193 194 // Ignore launch ops with missing attributes here. The errors will be 195 // reported by the verifiers of those ops. 196 if (!launchOp->getAttrOfType<SymbolRefAttr>( 197 LaunchFuncOp::getKernelAttrName())) 198 return success(); 199 200 // Check that `launch_func` refers to a well-formed GPU kernel module. 201 StringAttr kernelModuleName = launchOp.getKernelModuleName(); 202 auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName); 203 if (!kernelModule) 204 return launchOp.emitOpError() 205 << "kernel module '" << kernelModuleName.getValue() 206 << "' is undefined"; 207 208 // Check that `launch_func` refers to a well-formed kernel function. 209 Operation *kernelFunc = module.lookupSymbol(launchOp.kernelAttr()); 210 auto kernelGPUFunction = dyn_cast_or_null<gpu::GPUFuncOp>(kernelFunc); 211 auto kernelLLVMFunction = dyn_cast_or_null<LLVM::LLVMFuncOp>(kernelFunc); 212 if (!kernelGPUFunction && !kernelLLVMFunction) 213 return launchOp.emitOpError("kernel function '") 214 << launchOp.kernel() << "' is undefined"; 215 if (!kernelFunc->getAttrOfType<mlir::UnitAttr>( 216 GPUDialect::getKernelFuncAttrName())) 217 return launchOp.emitOpError("kernel function is missing the '") 218 << GPUDialect::getKernelFuncAttrName() << "' attribute"; 219 220 // TODO: if the kernel function has been converted to 221 // the LLVM dialect but the caller hasn't (which happens during the 222 // separate compilation), do not check type correspondence as it would 223 // require the verifier to be aware of the LLVM type conversion. 224 if (kernelLLVMFunction) 225 return success(); 226 227 unsigned actualNumArguments = launchOp.getNumKernelOperands(); 228 unsigned expectedNumArguments = kernelGPUFunction.getNumArguments(); 229 if (expectedNumArguments != actualNumArguments) 230 return launchOp.emitOpError("got ") 231 << actualNumArguments << " kernel operands but expected " 232 << expectedNumArguments; 233 234 auto functionType = kernelGPUFunction.getType(); 235 for (unsigned i = 0; i < expectedNumArguments; ++i) { 236 if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) { 237 return launchOp.emitOpError("type of function argument ") 238 << i << " does not match"; 239 } 240 } 241 242 return success(); 243 }); 244 245 return walkResult.wasInterrupted() ? failure() : success(); 246 } 247 248 template <typename T> 249 static LogicalResult verifyIndexOp(T op) { 250 auto dimension = op.dimension(); 251 if (dimension != "x" && dimension != "y" && dimension != "z") 252 return op.emitError("dimension \"") << dimension << "\" is invalid"; 253 return success(); 254 } 255 256 static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) { 257 if (allReduce.body().empty() != allReduce.op().hasValue()) 258 return allReduce.emitError( 259 "expected either an op attribute or a non-empty body"); 260 if (!allReduce.body().empty()) { 261 if (allReduce.body().getNumArguments() != 2) 262 return allReduce.emitError("expected two region arguments"); 263 for (auto argument : allReduce.body().getArguments()) { 264 if (argument.getType() != allReduce.getType()) 265 return allReduce.emitError("incorrect region argument type"); 266 } 267 unsigned yieldCount = 0; 268 for (Block &block : allReduce.body()) { 269 if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) { 270 if (yield.getNumOperands() != 1) 271 return allReduce.emitError("expected one gpu.yield operand"); 272 if (yield.getOperand(0).getType() != allReduce.getType()) 273 return allReduce.emitError("incorrect gpu.yield type"); 274 ++yieldCount; 275 } 276 } 277 if (yieldCount == 0) 278 return allReduce.emitError("expected gpu.yield op in region"); 279 } else { 280 StringRef opName = *allReduce.op(); 281 if ((opName == "and" || opName == "or" || opName == "xor") && 282 !allReduce.getType().isa<IntegerType>()) { 283 return allReduce.emitError() 284 << '`' << opName << '`' 285 << " accumulator is only compatible with Integer type"; 286 } 287 } 288 return success(); 289 } 290 291 static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) { 292 auto type = shuffleOp.value().getType(); 293 if (shuffleOp.result().getType() != type) { 294 return shuffleOp.emitOpError() 295 << "requires the same type for value operand and result"; 296 } 297 if (!type.isSignlessIntOrFloat() || type.getIntOrFloatBitWidth() != 32) { 298 return shuffleOp.emitOpError() 299 << "requires value operand type to be f32 or i32"; 300 } 301 return success(); 302 } 303 304 static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) { 305 p << ' ' << op.getOperands() << ' ' << op.mode() << " : " 306 << op.value().getType(); 307 } 308 309 static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) { 310 SmallVector<OpAsmParser::OperandType, 3> operandInfo; 311 if (parser.parseOperandList(operandInfo, 3)) 312 return failure(); 313 314 StringRef mode; 315 if (parser.parseKeyword(&mode)) 316 return failure(); 317 state.addAttribute("mode", parser.getBuilder().getStringAttr(mode)); 318 319 Type valueType; 320 Type int32Type = parser.getBuilder().getIntegerType(32); 321 Type int1Type = parser.getBuilder().getI1Type(); 322 if (parser.parseColonType(valueType) || 323 parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type}, 324 parser.getCurrentLocation(), state.operands) || 325 parser.addTypesToList({valueType, int1Type}, state.types)) 326 return failure(); 327 return success(); 328 } 329 330 //===----------------------------------------------------------------------===// 331 // AsyncOpInterface 332 //===----------------------------------------------------------------------===// 333 334 void gpu::addAsyncDependency(Operation *op, Value token) { 335 op->insertOperands(0, {token}); 336 if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>()) 337 return; 338 auto attrName = 339 OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr(); 340 auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName); 341 342 // Async dependencies is the only variadic operand. 343 if (!sizeAttr) 344 return; 345 346 SmallVector<int32_t, 8> sizes(sizeAttr.getValues<int32_t>()); 347 ++sizes.front(); 348 op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes)); 349 } 350 351 //===----------------------------------------------------------------------===// 352 // LaunchOp 353 //===----------------------------------------------------------------------===// 354 355 void LaunchOp::build(OpBuilder &builder, OperationState &result, 356 Value gridSizeX, Value gridSizeY, Value gridSizeZ, 357 Value blockSizeX, Value blockSizeY, Value blockSizeZ, 358 Value dynamicSharedMemorySize) { 359 // Add grid and block sizes as op operands, followed by the data operands. 360 result.addOperands( 361 {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); 362 if (dynamicSharedMemorySize) 363 result.addOperands(dynamicSharedMemorySize); 364 365 // Create a kernel body region with kNumConfigRegionAttributes + N arguments, 366 // where the first kNumConfigRegionAttributes arguments have `index` type and 367 // the rest have the same types as the data operands. 368 Region *kernelRegion = result.addRegion(); 369 Block *body = new Block(); 370 body->addArguments( 371 std::vector<Type>(kNumConfigRegionAttributes, builder.getIndexType())); 372 kernelRegion->push_back(body); 373 } 374 375 KernelDim3 LaunchOp::getBlockIds() { 376 assert(!body().empty() && "LaunchOp body must not be empty."); 377 auto args = body().getArguments(); 378 return KernelDim3{args[0], args[1], args[2]}; 379 } 380 381 KernelDim3 LaunchOp::getThreadIds() { 382 assert(!body().empty() && "LaunchOp body must not be empty."); 383 auto args = body().getArguments(); 384 return KernelDim3{args[3], args[4], args[5]}; 385 } 386 387 KernelDim3 LaunchOp::getGridSize() { 388 assert(!body().empty() && "LaunchOp body must not be empty."); 389 auto args = body().getArguments(); 390 return KernelDim3{args[6], args[7], args[8]}; 391 } 392 393 KernelDim3 LaunchOp::getBlockSize() { 394 assert(!body().empty() && "LaunchOp body must not be empty."); 395 auto args = body().getArguments(); 396 return KernelDim3{args[9], args[10], args[11]}; 397 } 398 399 KernelDim3 LaunchOp::getGridSizeOperandValues() { 400 return KernelDim3{getOperand(0), getOperand(1), getOperand(2)}; 401 } 402 403 KernelDim3 LaunchOp::getBlockSizeOperandValues() { 404 return KernelDim3{getOperand(3), getOperand(4), getOperand(5)}; 405 } 406 407 static LogicalResult verify(LaunchOp op) { 408 // Kernel launch takes kNumConfigOperands leading operands for grid/block 409 // sizes and transforms them into kNumConfigRegionAttributes region arguments 410 // for block/thread identifiers and grid/block sizes. 411 if (!op.body().empty()) { 412 if (op.body().getNumArguments() != 413 LaunchOp::kNumConfigOperands + op.getNumOperands() - 414 (op.dynamicSharedMemorySize() ? 1 : 0)) 415 return op.emitOpError("unexpected number of region arguments"); 416 } 417 418 // Block terminators without successors are expected to exit the kernel region 419 // and must be `gpu.terminator`. 420 for (Block &block : op.body()) { 421 if (block.empty()) 422 continue; 423 if (block.back().getNumSuccessors() != 0) 424 continue; 425 if (!isa<gpu::TerminatorOp>(&block.back())) { 426 return block.back() 427 .emitError() 428 .append("expected '", gpu::TerminatorOp::getOperationName(), 429 "' or a terminator with successors") 430 .attachNote(op.getLoc()) 431 .append("in '", LaunchOp::getOperationName(), "' body region"); 432 } 433 } 434 435 return success(); 436 } 437 438 // Pretty-print the kernel grid/block size assignment as 439 // (%iter-x, %iter-y, %iter-z) in 440 // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) 441 // where %size-* and %iter-* will correspond to the body region arguments. 442 static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, 443 KernelDim3 operands, KernelDim3 ids) { 444 p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in ("; 445 p << size.x << " = " << operands.x << ", "; 446 p << size.y << " = " << operands.y << ", "; 447 p << size.z << " = " << operands.z << ')'; 448 } 449 450 static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) { 451 // Print the launch configuration. 452 p << ' ' << op.getBlocksKeyword(); 453 printSizeAssignment(p, op.getGridSize(), op.getGridSizeOperandValues(), 454 op.getBlockIds()); 455 p << ' ' << op.getThreadsKeyword(); 456 printSizeAssignment(p, op.getBlockSize(), op.getBlockSizeOperandValues(), 457 op.getThreadIds()); 458 if (op.dynamicSharedMemorySize()) 459 p << ' ' << op.getDynamicSharedMemorySizeKeyword() << ' ' 460 << op.dynamicSharedMemorySize(); 461 462 p.printRegion(op.body(), /*printEntryBlockArgs=*/false); 463 p.printOptionalAttrDict(op->getAttrs()); 464 } 465 466 // Parse the size assignment blocks for blocks and threads. These have the form 467 // (%region_arg, %region_arg, %region_arg) in 468 // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) 469 // where %region_arg are percent-identifiers for the region arguments to be 470 // introduced further (SSA defs), and %operand are percent-identifiers for the 471 // SSA value uses. 472 static ParseResult 473 parseSizeAssignment(OpAsmParser &parser, 474 MutableArrayRef<OpAsmParser::OperandType> sizes, 475 MutableArrayRef<OpAsmParser::OperandType> regionSizes, 476 MutableArrayRef<OpAsmParser::OperandType> indices) { 477 assert(indices.size() == 3 && "space for three indices expected"); 478 SmallVector<OpAsmParser::OperandType, 3> args; 479 if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3, 480 OpAsmParser::Delimiter::Paren) || 481 parser.parseKeyword("in") || parser.parseLParen()) 482 return failure(); 483 std::move(args.begin(), args.end(), indices.begin()); 484 485 for (int i = 0; i < 3; ++i) { 486 if (i != 0 && parser.parseComma()) 487 return failure(); 488 if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() || 489 parser.parseOperand(sizes[i])) 490 return failure(); 491 } 492 493 return parser.parseRParen(); 494 } 495 496 // Parses a Launch operation. 497 // operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment 498 // `threads` `(` ssa-id-list `)` `in` ssa-reassignment 499 // region attr-dict? 500 // ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` 501 static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) { 502 // Sizes of the grid and block. 503 SmallVector<OpAsmParser::OperandType, LaunchOp::kNumConfigOperands> sizes( 504 LaunchOp::kNumConfigOperands); 505 MutableArrayRef<OpAsmParser::OperandType> sizesRef(sizes); 506 507 // Actual (data) operands passed to the kernel. 508 SmallVector<OpAsmParser::OperandType, 4> dataOperands; 509 510 // Region arguments to be created. 511 SmallVector<OpAsmParser::OperandType, 16> regionArgs( 512 LaunchOp::kNumConfigRegionAttributes); 513 MutableArrayRef<OpAsmParser::OperandType> regionArgsRef(regionArgs); 514 515 // Parse the size assignment segments: the first segment assigns grid sizes 516 // and defines values for block identifiers; the second segment assigns block 517 // sizes and defines values for thread identifiers. In the region argument 518 // list, identifiers precede sizes, and block-related values precede 519 // thread-related values. 520 if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || 521 parseSizeAssignment(parser, sizesRef.take_front(3), 522 regionArgsRef.slice(6, 3), 523 regionArgsRef.slice(0, 3)) || 524 parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || 525 parseSizeAssignment(parser, sizesRef.drop_front(3), 526 regionArgsRef.slice(9, 3), 527 regionArgsRef.slice(3, 3)) || 528 parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), 529 result.operands)) 530 return failure(); 531 532 OpAsmParser::OperandType dynamicSharedMemorySize; 533 if (!parser.parseOptionalKeyword( 534 LaunchOp::getDynamicSharedMemorySizeKeyword())) 535 if (parser.parseOperand(dynamicSharedMemorySize) || 536 parser.resolveOperand(dynamicSharedMemorySize, 537 parser.getBuilder().getI32Type(), 538 result.operands)) 539 return failure(); 540 541 // Introduce the body region and parse it. The region has 542 // kNumConfigRegionAttributes arguments that correspond to 543 // block/thread identifiers and grid/block sizes, all of the `index` type. 544 Type index = parser.getBuilder().getIndexType(); 545 SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes( 546 LaunchOp::kNumConfigRegionAttributes, index); 547 Region *body = result.addRegion(); 548 return failure(parser.parseRegion(*body, regionArgs, dataTypes) || 549 parser.parseOptionalAttrDict(result.attributes)); 550 } 551 552 /// Simplify the gpu.launch when the range of a thread or block ID is 553 /// trivially known to be one. 554 struct FoldLaunchArguments : public OpRewritePattern<LaunchOp> { 555 using OpRewritePattern<LaunchOp>::OpRewritePattern; 556 LogicalResult matchAndRewrite(LaunchOp op, 557 PatternRewriter &rewriter) const override { 558 // If the range implies a single value for `id`, replace `id`'s uses by 559 // zero. 560 Value zero; 561 bool simplified = false; 562 auto constPropIdUses = [&](Value id, Value size) { 563 // Check if size is trivially one. 564 if (!matchPattern(size, m_One())) 565 return; 566 if (!simplified) { 567 // Create a zero value the first time. 568 OpBuilder::InsertionGuard guard(rewriter); 569 rewriter.setInsertionPointToStart(&op.body().front()); 570 zero = 571 rewriter.create<arith::ConstantIndexOp>(op.getLoc(), /*value=*/0); 572 } 573 id.replaceAllUsesWith(zero); 574 simplified = true; 575 }; 576 constPropIdUses(op.getBlockIds().x, op.gridSizeX()); 577 constPropIdUses(op.getBlockIds().y, op.gridSizeY()); 578 constPropIdUses(op.getBlockIds().z, op.gridSizeZ()); 579 constPropIdUses(op.getThreadIds().x, op.blockSizeX()); 580 constPropIdUses(op.getThreadIds().y, op.blockSizeY()); 581 constPropIdUses(op.getThreadIds().z, op.blockSizeZ()); 582 583 return success(simplified); 584 } 585 }; 586 587 void LaunchOp::getCanonicalizationPatterns(RewritePatternSet &rewrites, 588 MLIRContext *context) { 589 rewrites.add<FoldLaunchArguments>(context); 590 } 591 592 //===----------------------------------------------------------------------===// 593 // LaunchFuncOp 594 //===----------------------------------------------------------------------===// 595 596 void LaunchFuncOp::build(OpBuilder &builder, OperationState &result, 597 GPUFuncOp kernelFunc, KernelDim3 gridSize, 598 KernelDim3 blockSize, Value dynamicSharedMemorySize, 599 ValueRange kernelOperands) { 600 // Add grid and block sizes as op operands, followed by the data operands. 601 result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x, 602 blockSize.y, blockSize.z}); 603 if (dynamicSharedMemorySize) 604 result.addOperands(dynamicSharedMemorySize); 605 result.addOperands(kernelOperands); 606 auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>(); 607 auto kernelSymbol = 608 SymbolRefAttr::get(kernelModule.getNameAttr(), 609 {SymbolRefAttr::get(kernelFunc.getNameAttr())}); 610 result.addAttribute(getKernelAttrName(), kernelSymbol); 611 SmallVector<int32_t, 9> segmentSizes(9, 1); 612 segmentSizes.front() = 0; // Initially no async dependencies. 613 segmentSizes[segmentSizes.size() - 2] = dynamicSharedMemorySize ? 1 : 0; 614 segmentSizes.back() = static_cast<int32_t>(kernelOperands.size()); 615 result.addAttribute(getOperandSegmentSizeAttr(), 616 builder.getI32VectorAttr(segmentSizes)); 617 } 618 619 unsigned LaunchFuncOp::getNumKernelOperands() { 620 return getNumOperands() - asyncDependencies().size() - kNumConfigOperands - 621 (dynamicSharedMemorySize() ? 1 : 0); 622 } 623 624 StringAttr LaunchFuncOp::getKernelModuleName() { 625 return kernel().getRootReference(); 626 } 627 628 StringAttr LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); } 629 630 Value LaunchFuncOp::getKernelOperand(unsigned i) { 631 return getOperand(asyncDependencies().size() + kNumConfigOperands + 632 (dynamicSharedMemorySize() ? 1 : 0) + i); 633 } 634 635 KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { 636 auto operands = getOperands().drop_front(asyncDependencies().size()); 637 return KernelDim3{operands[0], operands[1], operands[2]}; 638 } 639 640 KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { 641 auto operands = getOperands().drop_front(asyncDependencies().size()); 642 return KernelDim3{operands[3], operands[4], operands[5]}; 643 } 644 645 static LogicalResult verify(LaunchFuncOp op) { 646 auto module = op->getParentOfType<ModuleOp>(); 647 if (!module) 648 return op.emitOpError("expected to belong to a module"); 649 650 if (!module->getAttrOfType<UnitAttr>( 651 GPUDialect::getContainerModuleAttrName())) 652 return op.emitOpError( 653 "expected the closest surrounding module to have the '" + 654 GPUDialect::getContainerModuleAttrName() + "' attribute"); 655 656 auto kernelAttr = op->getAttrOfType<SymbolRefAttr>(op.getKernelAttrName()); 657 if (!kernelAttr) 658 return op.emitOpError("symbol reference attribute '" + 659 op.getKernelAttrName() + "' must be specified"); 660 661 return success(); 662 } 663 664 static ParseResult 665 parseLaunchFuncOperands(OpAsmParser &parser, 666 SmallVectorImpl<OpAsmParser::OperandType> &argNames, 667 SmallVectorImpl<Type> &argTypes) { 668 if (parser.parseOptionalKeyword("args")) 669 return success(); 670 SmallVector<NamedAttrList, 4> argAttrs; 671 bool isVariadic = false; 672 return function_like_impl::parseFunctionArgumentList( 673 parser, /*allowAttributes=*/false, 674 /*allowVariadic=*/false, argNames, argTypes, argAttrs, isVariadic); 675 } 676 677 static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *, 678 OperandRange operands, TypeRange types) { 679 if (operands.empty()) 680 return; 681 printer << "args("; 682 llvm::interleaveComma(llvm::zip(operands, types), printer, 683 [&](const auto &pair) { 684 printer.printOperand(std::get<0>(pair)); 685 printer << " : "; 686 printer.printType(std::get<1>(pair)); 687 }); 688 printer << ")"; 689 } 690 691 //===----------------------------------------------------------------------===// 692 // GPUFuncOp 693 //===----------------------------------------------------------------------===// 694 695 /// Adds a new block argument that corresponds to buffers located in 696 /// workgroup memory. 697 BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type) { 698 auto attrName = getNumWorkgroupAttributionsAttrName(); 699 auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName); 700 (*this)->setAttr(attrName, 701 IntegerAttr::get(attr.getType(), attr.getValue() + 1)); 702 return getBody().insertArgument(getType().getNumInputs() + attr.getInt(), 703 type); 704 } 705 706 /// Adds a new block argument that corresponds to buffers located in 707 /// private memory. 708 BlockArgument GPUFuncOp::addPrivateAttribution(Type type) { 709 // Buffers on the private memory always come after buffers on the workgroup 710 // memory. 711 return getBody().addArgument(type); 712 } 713 714 void GPUFuncOp::build(OpBuilder &builder, OperationState &result, 715 StringRef name, FunctionType type, 716 TypeRange workgroupAttributions, 717 TypeRange privateAttributions, 718 ArrayRef<NamedAttribute> attrs) { 719 result.addAttribute(SymbolTable::getSymbolAttrName(), 720 builder.getStringAttr(name)); 721 result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); 722 result.addAttribute(getNumWorkgroupAttributionsAttrName(), 723 builder.getI64IntegerAttr(workgroupAttributions.size())); 724 result.addAttributes(attrs); 725 Region *body = result.addRegion(); 726 Block *entryBlock = new Block; 727 entryBlock->addArguments(type.getInputs()); 728 entryBlock->addArguments(workgroupAttributions); 729 entryBlock->addArguments(privateAttributions); 730 731 body->getBlocks().push_back(entryBlock); 732 } 733 734 /// Parses a GPU function memory attribution. 735 /// 736 /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? 737 /// (`private` `(` ssa-id-and-type-list `)`)? 738 /// 739 /// Note that this function parses only one of the two similar parts, with the 740 /// keyword provided as argument. 741 static ParseResult 742 parseAttributions(OpAsmParser &parser, StringRef keyword, 743 SmallVectorImpl<OpAsmParser::OperandType> &args, 744 SmallVectorImpl<Type> &argTypes) { 745 // If we could not parse the keyword, just assume empty list and succeed. 746 if (failed(parser.parseOptionalKeyword(keyword))) 747 return success(); 748 749 if (failed(parser.parseLParen())) 750 return failure(); 751 752 // Early exit for an empty list. 753 if (succeeded(parser.parseOptionalRParen())) 754 return success(); 755 756 do { 757 OpAsmParser::OperandType arg; 758 Type type; 759 760 if (parser.parseRegionArgument(arg) || parser.parseColonType(type)) 761 return failure(); 762 763 args.push_back(arg); 764 argTypes.push_back(type); 765 } while (succeeded(parser.parseOptionalComma())); 766 767 return parser.parseRParen(); 768 } 769 770 /// Parses a GPU function. 771 /// 772 /// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)` 773 /// (`->` function-result-list)? memory-attribution `kernel`? 774 /// function-attributes? region 775 static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) { 776 SmallVector<OpAsmParser::OperandType, 8> entryArgs; 777 SmallVector<NamedAttrList, 1> argAttrs; 778 SmallVector<NamedAttrList, 1> resultAttrs; 779 SmallVector<Type, 8> argTypes; 780 SmallVector<Type, 4> resultTypes; 781 bool isVariadic; 782 783 // Parse the function name. 784 StringAttr nameAttr; 785 if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), 786 result.attributes)) 787 return failure(); 788 789 auto signatureLocation = parser.getCurrentLocation(); 790 if (failed(function_like_impl::parseFunctionSignature( 791 parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs, 792 isVariadic, resultTypes, resultAttrs))) 793 return failure(); 794 795 if (entryArgs.empty() && !argTypes.empty()) 796 return parser.emitError(signatureLocation) 797 << "gpu.func requires named arguments"; 798 799 // Construct the function type. More types will be added to the region, but 800 // not to the function type. 801 Builder &builder = parser.getBuilder(); 802 auto type = builder.getFunctionType(argTypes, resultTypes); 803 result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); 804 805 // Parse workgroup memory attributions. 806 if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), 807 entryArgs, argTypes))) 808 return failure(); 809 810 // Store the number of operands we just parsed as the number of workgroup 811 // memory attributions. 812 unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs(); 813 result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), 814 builder.getI64IntegerAttr(numWorkgroupAttrs)); 815 816 // Parse private memory attributions. 817 if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), 818 entryArgs, argTypes))) 819 return failure(); 820 821 // Parse the kernel attribute if present. 822 if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) 823 result.addAttribute(GPUDialect::getKernelFuncAttrName(), 824 builder.getUnitAttr()); 825 826 // Parse attributes. 827 if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) 828 return failure(); 829 function_like_impl::addArgAndResultAttrs(builder, result, argAttrs, 830 resultAttrs); 831 832 // Parse the region. If no argument names were provided, take all names 833 // (including those of attributions) from the entry block. 834 auto *body = result.addRegion(); 835 return parser.parseRegion(*body, entryArgs, argTypes); 836 } 837 838 static void printAttributions(OpAsmPrinter &p, StringRef keyword, 839 ArrayRef<BlockArgument> values) { 840 if (values.empty()) 841 return; 842 843 p << ' ' << keyword << '('; 844 llvm::interleaveComma( 845 values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); }); 846 p << ')'; 847 } 848 849 /// Prints a GPU Func op. 850 static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) { 851 p << ' '; 852 p.printSymbolName(op.getName()); 853 854 FunctionType type = op.getType(); 855 function_like_impl::printFunctionSignature( 856 p, op.getOperation(), type.getInputs(), 857 /*isVariadic=*/false, type.getResults()); 858 859 printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions()); 860 printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions()); 861 if (op.isKernel()) 862 p << ' ' << op.getKernelKeyword(); 863 864 function_like_impl::printFunctionAttributes( 865 p, op.getOperation(), type.getNumInputs(), type.getNumResults(), 866 {op.getNumWorkgroupAttributionsAttrName(), 867 GPUDialect::getKernelFuncAttrName()}); 868 p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false); 869 } 870 871 /// Hook for FunctionLike verifier. 872 LogicalResult GPUFuncOp::verifyType() { 873 Type type = getTypeAttr().getValue(); 874 if (!type.isa<FunctionType>()) 875 return emitOpError("requires '" + getTypeAttrName() + 876 "' attribute of function type"); 877 878 if (isKernel() && getType().getNumResults() != 0) 879 return emitOpError() << "expected void return type for kernel function"; 880 881 return success(); 882 } 883 884 static LogicalResult verifyAttributions(Operation *op, 885 ArrayRef<BlockArgument> attributions, 886 unsigned memorySpace) { 887 for (Value v : attributions) { 888 auto type = v.getType().dyn_cast<MemRefType>(); 889 if (!type) 890 return op->emitOpError() << "expected memref type in attribution"; 891 892 if (type.getMemorySpaceAsInt() != memorySpace) { 893 return op->emitOpError() 894 << "expected memory space " << memorySpace << " in attribution"; 895 } 896 } 897 return success(); 898 } 899 900 /// Verifies the body of the function. 901 LogicalResult GPUFuncOp::verifyBody() { 902 unsigned numFuncArguments = getNumArguments(); 903 unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); 904 unsigned numBlockArguments = front().getNumArguments(); 905 if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) 906 return emitOpError() << "expected at least " 907 << numFuncArguments + numWorkgroupAttributions 908 << " arguments to body region"; 909 910 ArrayRef<Type> funcArgTypes = getType().getInputs(); 911 for (unsigned i = 0; i < numFuncArguments; ++i) { 912 Type blockArgType = front().getArgument(i).getType(); 913 if (funcArgTypes[i] != blockArgType) 914 return emitOpError() << "expected body region argument #" << i 915 << " to be of type " << funcArgTypes[i] << ", got " 916 << blockArgType; 917 } 918 919 if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(), 920 GPUDialect::getWorkgroupAddressSpace())) || 921 failed(verifyAttributions(getOperation(), getPrivateAttributions(), 922 GPUDialect::getPrivateAddressSpace()))) 923 return failure(); 924 925 return success(); 926 } 927 928 //===----------------------------------------------------------------------===// 929 // ReturnOp 930 //===----------------------------------------------------------------------===// 931 932 static LogicalResult verify(gpu::ReturnOp returnOp) { 933 GPUFuncOp function = returnOp->getParentOfType<GPUFuncOp>(); 934 935 FunctionType funType = function.getType(); 936 937 if (funType.getNumResults() != returnOp.operands().size()) 938 return returnOp.emitOpError() 939 .append("expected ", funType.getNumResults(), " result operands") 940 .attachNote(function.getLoc()) 941 .append("return type declared here"); 942 943 for (auto pair : llvm::enumerate( 944 llvm::zip(function.getType().getResults(), returnOp.operands()))) { 945 Type type; 946 Value operand; 947 std::tie(type, operand) = pair.value(); 948 if (type != operand.getType()) 949 return returnOp.emitOpError() << "unexpected type `" << operand.getType() 950 << "' for operand #" << pair.index(); 951 } 952 return success(); 953 } 954 955 //===----------------------------------------------------------------------===// 956 // GPUModuleOp 957 //===----------------------------------------------------------------------===// 958 959 void GPUModuleOp::build(OpBuilder &builder, OperationState &result, 960 StringRef name) { 961 ensureTerminator(*result.addRegion(), builder, result.location); 962 result.attributes.push_back(builder.getNamedAttr( 963 ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); 964 } 965 966 static ParseResult parseGPUModuleOp(OpAsmParser &parser, 967 OperationState &result) { 968 StringAttr nameAttr; 969 if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(), 970 result.attributes)) 971 return failure(); 972 973 // If module attributes are present, parse them. 974 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 975 return failure(); 976 977 // Parse the module body. 978 auto *body = result.addRegion(); 979 if (parser.parseRegion(*body, None, None)) 980 return failure(); 981 982 // Ensure that this module has a valid terminator. 983 GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location); 984 return success(); 985 } 986 987 static void print(OpAsmPrinter &p, GPUModuleOp op) { 988 p << ' '; 989 p.printSymbolName(op.getName()); 990 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 991 {SymbolTable::getSymbolAttrName()}); 992 p.printRegion(op->getRegion(0), /*printEntryBlockArgs=*/false, 993 /*printBlockTerminators=*/false); 994 } 995 996 //===----------------------------------------------------------------------===// 997 // GPUMemcpyOp 998 //===----------------------------------------------------------------------===// 999 1000 static LogicalResult verify(MemcpyOp op) { 1001 auto srcType = op.src().getType(); 1002 auto dstType = op.dst().getType(); 1003 1004 if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType)) 1005 return op.emitOpError("arguments have incompatible element type"); 1006 1007 if (failed(verifyCompatibleShape(srcType, dstType))) 1008 return op.emitOpError("arguments have incompatible shape"); 1009 1010 return success(); 1011 } 1012 1013 static ParseResult parseAsyncDependencies( 1014 OpAsmParser &parser, Type &asyncTokenType, 1015 SmallVectorImpl<OpAsmParser::OperandType> &asyncDependencies) { 1016 auto loc = parser.getCurrentLocation(); 1017 if (succeeded(parser.parseOptionalKeyword("async"))) { 1018 if (parser.getNumResults() == 0) 1019 return parser.emitError(loc, "needs to be named when marked 'async'"); 1020 asyncTokenType = parser.getBuilder().getType<AsyncTokenType>(); 1021 } 1022 return parser.parseOperandList(asyncDependencies, 1023 OpAsmParser::Delimiter::OptionalSquare); 1024 } 1025 1026 static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op, 1027 Type asyncTokenType, 1028 OperandRange asyncDependencies) { 1029 if (asyncTokenType) 1030 printer << "async "; 1031 if (asyncDependencies.empty()) 1032 return; 1033 printer << "["; 1034 llvm::interleaveComma(asyncDependencies, printer); 1035 printer << "]"; 1036 } 1037 1038 //===----------------------------------------------------------------------===// 1039 // GPU_SubgroupMmaLoadMatrixOp 1040 //===----------------------------------------------------------------------===// 1041 1042 static LogicalResult verify(SubgroupMmaLoadMatrixOp op) { 1043 auto srcType = op.srcMemref().getType(); 1044 auto resType = op.res().getType(); 1045 auto resMatrixType = resType.cast<gpu::MMAMatrixType>(); 1046 auto operand = resMatrixType.getOperand(); 1047 auto srcMemrefType = srcType.cast<MemRefType>(); 1048 auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt(); 1049 1050 if (!srcMemrefType.getLayout().isIdentity()) 1051 return op.emitError("expected identity layout map for source memref"); 1052 1053 if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace && 1054 srcMemSpace != kGlobalMemorySpace) 1055 return op.emitError( 1056 "source memorySpace kGenericMemorySpace, kSharedMemorySpace or " 1057 "kGlobalMemorySpace only allowed"); 1058 1059 if (!operand.equals("AOp") && !operand.equals("BOp") && 1060 !operand.equals("COp")) 1061 return op.emitError("only AOp, BOp and COp can be loaded"); 1062 1063 return success(); 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // GPU_SubgroupMmaStoreMatrixOp 1068 //===----------------------------------------------------------------------===// 1069 1070 static LogicalResult verify(SubgroupMmaStoreMatrixOp op) { 1071 auto srcType = op.src().getType(); 1072 auto dstType = op.dstMemref().getType(); 1073 auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>(); 1074 auto dstMemrefType = dstType.cast<MemRefType>(); 1075 auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt(); 1076 if (!dstMemrefType.getLayout().isIdentity()) 1077 return op.emitError("expected identity layout map for destination memref"); 1078 1079 if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace && 1080 dstMemSpace != kGlobalMemorySpace) 1081 return op.emitError( 1082 "destination memorySpace of kGenericMemorySpace, " 1083 "kGlobalMemorySpace or kSharedMemorySpace only allowed"); 1084 1085 if (!srcMatrixType.getOperand().equals("COp")) 1086 return op.emitError( 1087 "expected the operand matrix being stored to have 'COp' operand type"); 1088 1089 return success(); 1090 } 1091 1092 //===----------------------------------------------------------------------===// 1093 // GPU_SubgroupMmaComputeOp 1094 //===----------------------------------------------------------------------===// 1095 1096 static LogicalResult verify(SubgroupMmaComputeOp op) { 1097 enum OperandMap { A, B, C }; 1098 SmallVector<MMAMatrixType, 3> opTypes; 1099 1100 auto populateOpInfo = [&opTypes, &op]() { 1101 opTypes.push_back(op.opA().getType().cast<MMAMatrixType>()); 1102 opTypes.push_back(op.opB().getType().cast<MMAMatrixType>()); 1103 opTypes.push_back(op.opC().getType().cast<MMAMatrixType>()); 1104 }; 1105 populateOpInfo(); 1106 1107 if (!opTypes[A].getOperand().equals("AOp") || 1108 !opTypes[B].getOperand().equals("BOp") || 1109 !opTypes[C].getOperand().equals("COp")) 1110 return op.emitError("operands must be in the order AOp, BOp, COp"); 1111 1112 ArrayRef<int64_t> aShape, bShape, cShape; 1113 aShape = opTypes[A].getShape(); 1114 bShape = opTypes[B].getShape(); 1115 cShape = opTypes[C].getShape(); 1116 1117 if (aShape[1] != bShape[0] || aShape[0] != cShape[0] || 1118 bShape[1] != cShape[1]) 1119 return op.emitError("operand shapes do not satisfy matmul constraints"); 1120 1121 return success(); 1122 } 1123 1124 /// This is a common class used for patterns of the form 1125 /// "someop(memrefcast) -> someop". It folds the source of any memref.cast 1126 /// into the root operation directly. 1127 static LogicalResult foldMemRefCast(Operation *op) { 1128 bool folded = false; 1129 for (OpOperand &operand : op->getOpOperands()) { 1130 auto cast = operand.get().getDefiningOp<mlir::memref::CastOp>(); 1131 if (cast) { 1132 operand.set(cast.getOperand()); 1133 folded = true; 1134 } 1135 } 1136 return success(folded); 1137 } 1138 1139 LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands, 1140 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1141 return foldMemRefCast(*this); 1142 } 1143 1144 LogicalResult MemsetOp::fold(ArrayRef<Attribute> operands, 1145 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1146 return foldMemRefCast(*this); 1147 } 1148 1149 //===----------------------------------------------------------------------===// 1150 // GPU_AllocOp 1151 //===----------------------------------------------------------------------===// 1152 namespace { 1153 1154 /// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to 1155 /// `memref::AllocOp`. 1156 struct SimplifyDimOfAllocOp : public OpRewritePattern<memref::DimOp> { 1157 using OpRewritePattern<memref::DimOp>::OpRewritePattern; 1158 1159 LogicalResult matchAndRewrite(memref::DimOp dimOp, 1160 PatternRewriter &rewriter) const override { 1161 auto index = dimOp.index().getDefiningOp<arith::ConstantIndexOp>(); 1162 if (!index) 1163 return failure(); 1164 1165 auto memrefType = dimOp.source().getType().dyn_cast<MemRefType>(); 1166 if (!memrefType || !memrefType.isDynamicDim(index.value())) 1167 return failure(); 1168 1169 auto alloc = dimOp.source().getDefiningOp<AllocOp>(); 1170 if (!alloc) 1171 return failure(); 1172 1173 Value substituteOp = *(alloc.dynamicSizes().begin() + 1174 memrefType.getDynamicDimIndex(index.value())); 1175 rewriter.replaceOp(dimOp, substituteOp); 1176 return success(); 1177 } 1178 }; 1179 1180 } // end anonymous namespace. 1181 1182 void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results, 1183 MLIRContext *context) { 1184 results.add<SimplifyDimOfAllocOp>(context); 1185 } 1186 1187 #include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc" 1188 #include "mlir/Dialect/GPU/GPUOpsEnums.cpp.inc" 1189 1190 #define GET_OP_CLASSES 1191 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 1192