1 //===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the GPU kernel-related dialect and its operations.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "mlir/Dialect/GPU/IR/GPUDialect.h"
14
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/MemRef/IR/MemRef.h"
17 #include "mlir/IR/Attributes.h"
18 #include "mlir/IR/Builders.h"
19 #include "mlir/IR/BuiltinOps.h"
20 #include "mlir/IR/BuiltinTypes.h"
21 #include "mlir/IR/DialectImplementation.h"
22 #include "mlir/IR/FunctionImplementation.h"
23 #include "mlir/IR/Matchers.h"
24 #include "mlir/IR/OpImplementation.h"
25 #include "mlir/IR/PatternMatch.h"
26 #include "mlir/IR/TypeUtilities.h"
27 #include "mlir/Interfaces/SideEffectInterfaces.h"
28 #include "mlir/Transforms/InliningUtils.h"
29 #include "llvm/ADT/TypeSwitch.h"
30
31 using namespace mlir;
32 using namespace mlir::gpu;
33
34 #include "mlir/Dialect/GPU/IR/GPUOpsDialect.cpp.inc"
35
36 //===----------------------------------------------------------------------===//
37 // MMAMatrixType
38 //===----------------------------------------------------------------------===//
39
get(ArrayRef<int64_t> shape,Type elementType,StringRef operand)40 MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType,
41 StringRef operand) {
42 return Base::get(elementType.getContext(), shape, elementType, operand);
43 }
44
45 MMAMatrixType
getChecked(function_ref<InFlightDiagnostic ()> emitError,ArrayRef<int64_t> shape,Type elementType,StringRef operand)46 MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError,
47 ArrayRef<int64_t> shape, Type elementType,
48 StringRef operand) {
49 return Base::getChecked(emitError, elementType.getContext(), shape,
50 elementType, operand);
51 }
52
getNumDims() const53 unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; }
54
getShape() const55 ArrayRef<int64_t> MMAMatrixType::getShape() const {
56 return getImpl()->getShape();
57 }
58
getElementType() const59 Type MMAMatrixType::getElementType() const { return getImpl()->elementType; }
60
getOperand() const61 StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); }
62
isValidElementType(Type elementType)63 bool MMAMatrixType::isValidElementType(Type elementType) {
64 return elementType.isF16() || elementType.isF32();
65 }
66
67 LogicalResult
verify(function_ref<InFlightDiagnostic ()> emitError,ArrayRef<int64_t> shape,Type elementType,StringRef operand)68 MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError,
69 ArrayRef<int64_t> shape, Type elementType,
70 StringRef operand) {
71 if (!operand.equals("AOp") && !operand.equals("BOp") &&
72 !operand.equals("COp"))
73 return emitError() << "operand expected to be one of AOp, BOp or COp";
74
75 if (shape.size() != 2)
76 return emitError() << "MMAMatrixType must have exactly two dimensions";
77
78 if (!MMAMatrixType::isValidElementType(elementType))
79 return emitError() << "MMAMatrixType elements must be F16 or F32";
80
81 return success();
82 }
83
84 //===----------------------------------------------------------------------===//
85 // GPUDialect
86 //===----------------------------------------------------------------------===//
87
88 /// GPU memory space identifiers.
89 enum GPUMemorySpace {
90 /// Generic memory space identifier.
91 kGenericMemorySpace = 0,
92
93 /// Global memory space identifier.
94 kGlobalMemorySpace = 1,
95
96 /// Shared memory space identifier.
97 kSharedMemorySpace = 3
98 };
99
isKernel(Operation * op)100 bool GPUDialect::isKernel(Operation *op) {
101 UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName());
102 return static_cast<bool>(isKernelAttr);
103 }
104
105 namespace {
106 /// This class defines the interface for handling inlining with gpu
107 /// operations.
108 struct GPUInlinerInterface : public DialectInlinerInterface {
109 using DialectInlinerInterface::DialectInlinerInterface;
110
111 /// All gpu dialect ops can be inlined.
isLegalToInline__anonf220e5a50111::GPUInlinerInterface112 bool isLegalToInline(Operation *, Region *, bool,
113 BlockAndValueMapping &) const final {
114 return true;
115 }
116 };
117 } // namespace
118
initialize()119 void GPUDialect::initialize() {
120 addTypes<AsyncTokenType>();
121 addTypes<MMAMatrixType>();
122 addOperations<
123 #define GET_OP_LIST
124 #include "mlir/Dialect/GPU/IR/GPUOps.cpp.inc"
125 >();
126 addAttributes<
127 #define GET_ATTRDEF_LIST
128 #include "mlir/Dialect/GPU/IR/GPUOpsAttributes.cpp.inc"
129 >();
130 addInterfaces<GPUInlinerInterface>();
131 }
132
parseType(DialectAsmParser & parser) const133 Type GPUDialect::parseType(DialectAsmParser &parser) const {
134 // Parse the main keyword for the type.
135 StringRef keyword;
136 if (parser.parseKeyword(&keyword))
137 return Type();
138 MLIRContext *context = getContext();
139
140 // Handle 'async token' types.
141 if (keyword == "async.token")
142 return AsyncTokenType::get(context);
143
144 if (keyword == "mma_matrix") {
145 SMLoc beginLoc = parser.getNameLoc();
146
147 // Parse '<'.
148 if (parser.parseLess())
149 return nullptr;
150
151 // Parse the size and elementType.
152 SmallVector<int64_t> shape;
153 Type elementType;
154 if (parser.parseDimensionList(shape, /*allowDynamic=*/false) ||
155 parser.parseType(elementType))
156 return nullptr;
157
158 // Parse ','
159 if (parser.parseComma())
160 return nullptr;
161
162 // Parse operand.
163 std::string operand;
164 if (failed(parser.parseOptionalString(&operand)))
165 return nullptr;
166
167 // Parse '>'.
168 if (parser.parseGreater())
169 return nullptr;
170
171 return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn(
172 parser.getEncodedSourceLoc(beginLoc)),
173 shape, elementType, operand);
174 }
175
176 parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword);
177 return Type();
178 }
179
printType(Type type,DialectAsmPrinter & os) const180 void GPUDialect::printType(Type type, DialectAsmPrinter &os) const {
181 TypeSwitch<Type>(type)
182 .Case<AsyncTokenType>([&](Type) { os << "async.token"; })
183 .Case<MMAMatrixType>([&](MMAMatrixType fragTy) {
184 os << "mma_matrix<";
185 auto shape = fragTy.getShape();
186 for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim)
187 os << *dim << 'x';
188 os << shape.back() << 'x' << fragTy.getElementType();
189 os << ", \"" << fragTy.getOperand() << "\"" << '>';
190 })
191 .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); });
192 }
193
verifyOperationAttribute(Operation * op,NamedAttribute attr)194 LogicalResult GPUDialect::verifyOperationAttribute(Operation *op,
195 NamedAttribute attr) {
196 if (!attr.getValue().isa<UnitAttr>() ||
197 attr.getName() != getContainerModuleAttrName())
198 return success();
199
200 auto module = dyn_cast<ModuleOp>(op);
201 if (!module)
202 return op->emitError("expected '")
203 << getContainerModuleAttrName() << "' attribute to be attached to '"
204 << ModuleOp::getOperationName() << '\'';
205
206 auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult {
207 // Ignore launches that are nested more or less deep than functions in the
208 // module we are currently checking.
209 if (!launchOp->getParentOp() ||
210 launchOp->getParentOp()->getParentOp() != module)
211 return success();
212
213 // Ignore launch ops with missing attributes here. The errors will be
214 // reported by the verifiers of those ops.
215 if (!launchOp->getAttrOfType<SymbolRefAttr>(
216 LaunchFuncOp::getKernelAttrName()))
217 return success();
218
219 // Check that `launch_func` refers to a well-formed GPU kernel module.
220 StringAttr kernelModuleName = launchOp.getKernelModuleName();
221 auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName);
222 if (!kernelModule)
223 return launchOp.emitOpError()
224 << "kernel module '" << kernelModuleName.getValue()
225 << "' is undefined";
226
227 // Check that `launch_func` refers to a well-formed kernel function.
228 Operation *kernelFunc = module.lookupSymbol(launchOp.kernelAttr());
229 if (!kernelFunc)
230 return launchOp.emitOpError("kernel function '")
231 << launchOp.kernel() << "' is undefined";
232 auto kernelConvertedFunction = dyn_cast<FunctionOpInterface>(kernelFunc);
233 if (!kernelConvertedFunction) {
234 InFlightDiagnostic diag = launchOp.emitOpError()
235 << "referenced kernel '" << launchOp.kernel()
236 << "' is not a function";
237 diag.attachNote(kernelFunc->getLoc()) << "see the kernel definition here";
238 return diag;
239 }
240
241 if (!kernelFunc->getAttrOfType<mlir::UnitAttr>(
242 GPUDialect::getKernelFuncAttrName()))
243 return launchOp.emitOpError("kernel function is missing the '")
244 << GPUDialect::getKernelFuncAttrName() << "' attribute";
245
246 // TODO: If the kernel isn't a GPU function (which happens during separate
247 // compilation), do not check type correspondence as it would require the
248 // verifier to be aware of the type conversion.
249 auto kernelGPUFunction = dyn_cast<gpu::GPUFuncOp>(kernelFunc);
250 if (!kernelGPUFunction)
251 return success();
252
253 unsigned actualNumArguments = launchOp.getNumKernelOperands();
254 unsigned expectedNumArguments = kernelGPUFunction.getNumArguments();
255 if (expectedNumArguments != actualNumArguments)
256 return launchOp.emitOpError("got ")
257 << actualNumArguments << " kernel operands but expected "
258 << expectedNumArguments;
259
260 auto functionType = kernelGPUFunction.getFunctionType();
261 for (unsigned i = 0; i < expectedNumArguments; ++i) {
262 if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) {
263 return launchOp.emitOpError("type of function argument ")
264 << i << " does not match";
265 }
266 }
267
268 return success();
269 });
270
271 return walkResult.wasInterrupted() ? failure() : success();
272 }
273
274 /// Parses an optional list of async operands with an optional leading keyword.
275 /// (`async`)? (`[` ssa-id-list `]`)?
276 ///
277 /// This method is used by the tablegen assembly format for async ops as well.
parseAsyncDependencies(OpAsmParser & parser,Type & asyncTokenType,SmallVectorImpl<OpAsmParser::UnresolvedOperand> & asyncDependencies)278 static ParseResult parseAsyncDependencies(
279 OpAsmParser &parser, Type &asyncTokenType,
280 SmallVectorImpl<OpAsmParser::UnresolvedOperand> &asyncDependencies) {
281 auto loc = parser.getCurrentLocation();
282 if (succeeded(parser.parseOptionalKeyword("async"))) {
283 if (parser.getNumResults() == 0)
284 return parser.emitError(loc, "needs to be named when marked 'async'");
285 asyncTokenType = parser.getBuilder().getType<AsyncTokenType>();
286 }
287 return parser.parseOperandList(asyncDependencies,
288 OpAsmParser::Delimiter::OptionalSquare);
289 }
290
291 /// Prints optional async dependencies with its leading keyword.
292 /// (`async`)? (`[` ssa-id-list `]`)?
293 // Used by the tablegen assembly format for several async ops.
printAsyncDependencies(OpAsmPrinter & printer,Operation * op,Type asyncTokenType,OperandRange asyncDependencies)294 static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op,
295 Type asyncTokenType,
296 OperandRange asyncDependencies) {
297 if (asyncTokenType)
298 printer << "async";
299 if (asyncDependencies.empty())
300 return;
301 if (asyncTokenType)
302 printer << ' ';
303 printer << '[';
304 llvm::interleaveComma(asyncDependencies, printer);
305 printer << ']';
306 }
307
308 //===----------------------------------------------------------------------===//
309 // AllReduceOp
310 //===----------------------------------------------------------------------===//
311
verifyRegions()312 LogicalResult gpu::AllReduceOp::verifyRegions() {
313 if (body().empty() != op().has_value())
314 return emitError("expected either an op attribute or a non-empty body");
315 if (!body().empty()) {
316 if (body().getNumArguments() != 2)
317 return emitError("expected two region arguments");
318 for (auto argument : body().getArguments()) {
319 if (argument.getType() != getType())
320 return emitError("incorrect region argument type");
321 }
322 unsigned yieldCount = 0;
323 for (Block &block : body()) {
324 if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) {
325 if (yield.getNumOperands() != 1)
326 return emitError("expected one gpu.yield operand");
327 if (yield.getOperand(0).getType() != getType())
328 return emitError("incorrect gpu.yield type");
329 ++yieldCount;
330 }
331 }
332 if (yieldCount == 0)
333 return emitError("expected gpu.yield op in region");
334 } else {
335 gpu::AllReduceOperation opName = *op();
336 if ((opName == gpu::AllReduceOperation::AND ||
337 opName == gpu::AllReduceOperation::OR ||
338 opName == gpu::AllReduceOperation::XOR) &&
339 !getType().isa<IntegerType>()) {
340 return emitError()
341 << '`' << gpu::stringifyAllReduceOperation(opName)
342 << "` accumulator is only compatible with Integer type";
343 }
344 }
345 return success();
346 }
347
348 // TODO: Support optional custom attributes (without dialect prefix).
parseAllReduceOperation(AsmParser & parser,AllReduceOperationAttr & attr)349 static ParseResult parseAllReduceOperation(AsmParser &parser,
350 AllReduceOperationAttr &attr) {
351 StringRef enumStr;
352 if (!parser.parseOptionalKeyword(&enumStr)) {
353 Optional<AllReduceOperation> op = gpu::symbolizeAllReduceOperation(enumStr);
354 if (!op)
355 return parser.emitError(parser.getCurrentLocation(), "invalid op kind");
356 attr = AllReduceOperationAttr::get(parser.getContext(), *op);
357 }
358 return success();
359 }
360
printAllReduceOperation(AsmPrinter & printer,Operation * op,AllReduceOperationAttr attr)361 static void printAllReduceOperation(AsmPrinter &printer, Operation *op,
362 AllReduceOperationAttr attr) {
363 if (attr)
364 attr.print(printer);
365 }
366
367 //===----------------------------------------------------------------------===//
368 // AsyncOpInterface
369 //===----------------------------------------------------------------------===//
370
addAsyncDependency(Operation * op,Value token)371 void gpu::addAsyncDependency(Operation *op, Value token) {
372 op->insertOperands(0, {token});
373 if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>())
374 return;
375 auto attrName =
376 OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr();
377 auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName);
378
379 // Async dependencies is the only variadic operand.
380 if (!sizeAttr)
381 return;
382
383 SmallVector<int32_t, 8> sizes(sizeAttr.getValues<int32_t>());
384 ++sizes.front();
385 op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes));
386 }
387
388 //===----------------------------------------------------------------------===//
389 // LaunchOp
390 //===----------------------------------------------------------------------===//
391
build(OpBuilder & builder,OperationState & result,Value gridSizeX,Value gridSizeY,Value gridSizeZ,Value blockSizeX,Value blockSizeY,Value blockSizeZ,Value dynamicSharedMemorySize,Type asyncTokenType,ValueRange asyncDependencies)392 void LaunchOp::build(OpBuilder &builder, OperationState &result,
393 Value gridSizeX, Value gridSizeY, Value gridSizeZ,
394 Value blockSizeX, Value blockSizeY, Value blockSizeZ,
395 Value dynamicSharedMemorySize, Type asyncTokenType,
396 ValueRange asyncDependencies) {
397 result.addOperands(asyncDependencies);
398 if (asyncTokenType)
399 result.types.push_back(builder.getType<AsyncTokenType>());
400
401 // Add grid and block sizes as op operands, followed by the data operands.
402 result.addOperands(
403 {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ});
404 if (dynamicSharedMemorySize)
405 result.addOperands(dynamicSharedMemorySize);
406
407 // Create a kernel body region with kNumConfigRegionAttributes + N arguments,
408 // where the first kNumConfigRegionAttributes arguments have `index` type and
409 // the rest have the same types as the data operands.
410 Region *kernelRegion = result.addRegion();
411 Block *body = new Block();
412 for (unsigned i = 0; i < kNumConfigRegionAttributes; ++i)
413 body->addArgument(builder.getIndexType(), result.location);
414 kernelRegion->push_back(body);
415 SmallVector<int32_t, 8> segmentSizes(8, 1);
416 segmentSizes.front() = asyncDependencies.size();
417 segmentSizes.back() = dynamicSharedMemorySize ? 1 : 0;
418 result.addAttribute(getOperandSegmentSizeAttr(),
419 builder.getI32VectorAttr(segmentSizes));
420 }
421
getBlockIds()422 KernelDim3 LaunchOp::getBlockIds() {
423 assert(!body().empty() && "LaunchOp body must not be empty.");
424 auto args = body().getArguments();
425 return KernelDim3{args[0], args[1], args[2]};
426 }
427
getThreadIds()428 KernelDim3 LaunchOp::getThreadIds() {
429 assert(!body().empty() && "LaunchOp body must not be empty.");
430 auto args = body().getArguments();
431 return KernelDim3{args[3], args[4], args[5]};
432 }
433
getGridSize()434 KernelDim3 LaunchOp::getGridSize() {
435 assert(!body().empty() && "LaunchOp body must not be empty.");
436 auto args = body().getArguments();
437 return KernelDim3{args[6], args[7], args[8]};
438 }
439
getBlockSize()440 KernelDim3 LaunchOp::getBlockSize() {
441 assert(!body().empty() && "LaunchOp body must not be empty.");
442 auto args = body().getArguments();
443 return KernelDim3{args[9], args[10], args[11]};
444 }
445
getGridSizeOperandValues()446 KernelDim3 LaunchOp::getGridSizeOperandValues() {
447 auto operands = getOperands().drop_front(asyncDependencies().size());
448 return KernelDim3{operands[0], operands[1], operands[2]};
449 }
450
getBlockSizeOperandValues()451 KernelDim3 LaunchOp::getBlockSizeOperandValues() {
452 auto operands = getOperands().drop_front(asyncDependencies().size());
453 return KernelDim3{operands[3], operands[4], operands[5]};
454 }
455
verifyRegions()456 LogicalResult LaunchOp::verifyRegions() {
457 // Kernel launch takes kNumConfigOperands leading operands for grid/block
458 // sizes and transforms them into kNumConfigRegionAttributes region arguments
459 // for block/thread identifiers and grid/block sizes.
460 if (!body().empty()) {
461 if (body().getNumArguments() !=
462 LaunchOp::kNumConfigOperands + getNumOperands() -
463 (dynamicSharedMemorySize() ? 1 : 0) - asyncDependencies().size())
464 return emitOpError("unexpected number of region arguments");
465 }
466
467 // Block terminators without successors are expected to exit the kernel region
468 // and must be `gpu.terminator`.
469 for (Block &block : body()) {
470 if (block.empty())
471 continue;
472 if (block.back().getNumSuccessors() != 0)
473 continue;
474 if (!isa<gpu::TerminatorOp>(&block.back())) {
475 return block.back()
476 .emitError()
477 .append("expected '", gpu::TerminatorOp::getOperationName(),
478 "' or a terminator with successors")
479 .attachNote(getLoc())
480 .append("in '", LaunchOp::getOperationName(), "' body region");
481 }
482 }
483
484 if (getNumResults() == 0 && asyncToken())
485 return emitOpError("needs to be named when async keyword is specified");
486
487 return success();
488 }
489
490 // Pretty-print the kernel grid/block size assignment as
491 // (%iter-x, %iter-y, %iter-z) in
492 // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use)
493 // where %size-* and %iter-* will correspond to the body region arguments.
printSizeAssignment(OpAsmPrinter & p,KernelDim3 size,KernelDim3 operands,KernelDim3 ids)494 static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size,
495 KernelDim3 operands, KernelDim3 ids) {
496 p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in (";
497 p << size.x << " = " << operands.x << ", ";
498 p << size.y << " = " << operands.y << ", ";
499 p << size.z << " = " << operands.z << ')';
500 }
501
print(OpAsmPrinter & p)502 void LaunchOp::print(OpAsmPrinter &p) {
503 if (asyncToken()) {
504 p << " async";
505 if (!asyncDependencies().empty())
506 p << " [" << asyncDependencies() << ']';
507 }
508 // Print the launch configuration.
509 p << ' ' << getBlocksKeyword();
510 printSizeAssignment(p, getGridSize(), getGridSizeOperandValues(),
511 getBlockIds());
512 p << ' ' << getThreadsKeyword();
513 printSizeAssignment(p, getBlockSize(), getBlockSizeOperandValues(),
514 getThreadIds());
515 if (dynamicSharedMemorySize())
516 p << ' ' << getDynamicSharedMemorySizeKeyword() << ' '
517 << dynamicSharedMemorySize();
518
519 p << ' ';
520 p.printRegion(body(), /*printEntryBlockArgs=*/false);
521 p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{
522 LaunchOp::getOperandSegmentSizeAttr()});
523 }
524
525 // Parse the size assignment blocks for blocks and threads. These have the form
526 // (%region_arg, %region_arg, %region_arg) in
527 // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand)
528 // where %region_arg are percent-identifiers for the region arguments to be
529 // introduced further (SSA defs), and %operand are percent-identifiers for the
530 // SSA value uses.
531 static ParseResult
parseSizeAssignment(OpAsmParser & parser,MutableArrayRef<OpAsmParser::UnresolvedOperand> sizes,MutableArrayRef<OpAsmParser::UnresolvedOperand> regionSizes,MutableArrayRef<OpAsmParser::UnresolvedOperand> indices)532 parseSizeAssignment(OpAsmParser &parser,
533 MutableArrayRef<OpAsmParser::UnresolvedOperand> sizes,
534 MutableArrayRef<OpAsmParser::UnresolvedOperand> regionSizes,
535 MutableArrayRef<OpAsmParser::UnresolvedOperand> indices) {
536 assert(indices.size() == 3 && "space for three indices expected");
537 SmallVector<OpAsmParser::UnresolvedOperand, 3> args;
538 if (parser.parseOperandList(args, OpAsmParser::Delimiter::Paren,
539 /*allowResultNumber=*/false) ||
540 parser.parseKeyword("in") || parser.parseLParen())
541 return failure();
542 std::move(args.begin(), args.end(), indices.begin());
543
544 for (int i = 0; i < 3; ++i) {
545 if (i != 0 && parser.parseComma())
546 return failure();
547 if (parser.parseOperand(regionSizes[i], /*allowResultNumber=*/false) ||
548 parser.parseEqual() || parser.parseOperand(sizes[i]))
549 return failure();
550 }
551
552 return parser.parseRParen();
553 }
554
555 /// Parses a Launch operation.
556 /// operation ::= `gpu.launch` (`async` `[` ssa-id-list `]`)?
557 // `blocks` `(` ssa-id-list `)` `in` ssa-reassignment
558 /// `threads` `(` ssa-id-list `)` `in` ssa-reassignment
559 /// region attr-dict?
560 /// ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)`
parse(OpAsmParser & parser,OperationState & result)561 ParseResult LaunchOp::parse(OpAsmParser &parser, OperationState &result) {
562 // Sizes of the grid and block.
563 SmallVector<OpAsmParser::UnresolvedOperand, LaunchOp::kNumConfigOperands>
564 sizes(LaunchOp::kNumConfigOperands);
565 MutableArrayRef<OpAsmParser::UnresolvedOperand> sizesRef(sizes);
566
567 // Actual (data) operands passed to the kernel.
568 SmallVector<OpAsmParser::UnresolvedOperand, 4> dataOperands;
569
570 // Region arguments to be created.
571 SmallVector<OpAsmParser::UnresolvedOperand, 16> regionArgs(
572 LaunchOp::kNumConfigRegionAttributes);
573 MutableArrayRef<OpAsmParser::UnresolvedOperand> regionArgsRef(regionArgs);
574
575 // Parse optional async dependencies.
576 SmallVector<OpAsmParser::UnresolvedOperand, 4> asyncDependencies;
577 Type asyncTokenType;
578 if (failed(
579 parseAsyncDependencies(parser, asyncTokenType, asyncDependencies)) ||
580 parser.resolveOperands(asyncDependencies, asyncTokenType,
581 result.operands))
582 return failure();
583 if (parser.getNumResults() > 0)
584 result.types.push_back(asyncTokenType);
585
586 // Parse the size assignment segments: the first segment assigns grid sizes
587 // and defines values for block identifiers; the second segment assigns block
588 // sizes and defines values for thread identifiers. In the region argument
589 // list, identifiers precede sizes, and block-related values precede
590 // thread-related values.
591 if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) ||
592 parseSizeAssignment(parser, sizesRef.take_front(3),
593 regionArgsRef.slice(6, 3),
594 regionArgsRef.slice(0, 3)) ||
595 parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) ||
596 parseSizeAssignment(parser, sizesRef.drop_front(3),
597 regionArgsRef.slice(9, 3),
598 regionArgsRef.slice(3, 3)) ||
599 parser.resolveOperands(sizes, parser.getBuilder().getIndexType(),
600 result.operands))
601 return failure();
602
603 OpAsmParser::UnresolvedOperand dynamicSharedMemorySize;
604 bool hasDynamicSharedMemorySize = false;
605 if (!parser.parseOptionalKeyword(
606 LaunchOp::getDynamicSharedMemorySizeKeyword())) {
607 hasDynamicSharedMemorySize = true;
608 if (parser.parseOperand(dynamicSharedMemorySize) ||
609 parser.resolveOperand(dynamicSharedMemorySize,
610 parser.getBuilder().getI32Type(),
611 result.operands))
612 return failure();
613 }
614
615 // Introduce the body region and parse it. The region has
616 // kNumConfigRegionAttributes arguments that correspond to
617 // block/thread identifiers and grid/block sizes, all of the `index` type.
618 Type index = parser.getBuilder().getIndexType();
619 SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes(
620 LaunchOp::kNumConfigRegionAttributes, index);
621
622 SmallVector<OpAsmParser::Argument> regionArguments;
623 for (auto ssaValueAndType : llvm::zip(regionArgs, dataTypes)) {
624 OpAsmParser::Argument arg;
625 arg.ssaName = std::get<0>(ssaValueAndType);
626 arg.type = std::get<1>(ssaValueAndType);
627 regionArguments.push_back(arg);
628 }
629
630 Region *body = result.addRegion();
631 if (parser.parseRegion(*body, regionArguments) ||
632 parser.parseOptionalAttrDict(result.attributes))
633 return failure();
634
635 SmallVector<int32_t, 8> segmentSizes(8, 1);
636 segmentSizes.front() = asyncDependencies.size();
637 segmentSizes.back() = hasDynamicSharedMemorySize ? 1 : 0;
638 result.addAttribute(LaunchOp::getOperandSegmentSizeAttr(),
639 parser.getBuilder().getI32VectorAttr(segmentSizes));
640 return success();
641 }
642
643 /// Simplify the gpu.launch when the range of a thread or block ID is
644 /// trivially known to be one.
645 struct FoldLaunchArguments : public OpRewritePattern<LaunchOp> {
646 using OpRewritePattern<LaunchOp>::OpRewritePattern;
matchAndRewriteFoldLaunchArguments647 LogicalResult matchAndRewrite(LaunchOp op,
648 PatternRewriter &rewriter) const override {
649 // If the range implies a single value for `id`, replace `id`'s uses by
650 // zero.
651 Value zero;
652 bool simplified = false;
653 auto constPropIdUses = [&](Value id, Value size) {
654 // Check if size is trivially one.
655 if (!matchPattern(size, m_One()))
656 return;
657 if (!simplified) {
658 // Create a zero value the first time.
659 OpBuilder::InsertionGuard guard(rewriter);
660 rewriter.setInsertionPointToStart(&op.body().front());
661 zero =
662 rewriter.create<arith::ConstantIndexOp>(op.getLoc(), /*value=*/0);
663 }
664 id.replaceAllUsesWith(zero);
665 simplified = true;
666 };
667 constPropIdUses(op.getBlockIds().x, op.gridSizeX());
668 constPropIdUses(op.getBlockIds().y, op.gridSizeY());
669 constPropIdUses(op.getBlockIds().z, op.gridSizeZ());
670 constPropIdUses(op.getThreadIds().x, op.blockSizeX());
671 constPropIdUses(op.getThreadIds().y, op.blockSizeY());
672 constPropIdUses(op.getThreadIds().z, op.blockSizeZ());
673
674 return success(simplified);
675 }
676 };
677
getCanonicalizationPatterns(RewritePatternSet & rewrites,MLIRContext * context)678 void LaunchOp::getCanonicalizationPatterns(RewritePatternSet &rewrites,
679 MLIRContext *context) {
680 rewrites.add<FoldLaunchArguments>(context);
681 }
682
683 //===----------------------------------------------------------------------===//
684 // LaunchFuncOp
685 //===----------------------------------------------------------------------===//
686
build(OpBuilder & builder,OperationState & result,GPUFuncOp kernelFunc,KernelDim3 gridSize,KernelDim3 blockSize,Value dynamicSharedMemorySize,ValueRange kernelOperands,Type asyncTokenType,ValueRange asyncDependencies)687 void LaunchFuncOp::build(OpBuilder &builder, OperationState &result,
688 GPUFuncOp kernelFunc, KernelDim3 gridSize,
689 KernelDim3 blockSize, Value dynamicSharedMemorySize,
690 ValueRange kernelOperands, Type asyncTokenType,
691 ValueRange asyncDependencies) {
692 result.addOperands(asyncDependencies);
693 if (asyncTokenType)
694 result.types.push_back(builder.getType<AsyncTokenType>());
695
696 // Add grid and block sizes as op operands, followed by the data operands.
697 result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x,
698 blockSize.y, blockSize.z});
699 if (dynamicSharedMemorySize)
700 result.addOperands(dynamicSharedMemorySize);
701 result.addOperands(kernelOperands);
702 auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>();
703 auto kernelSymbol =
704 SymbolRefAttr::get(kernelModule.getNameAttr(),
705 {SymbolRefAttr::get(kernelFunc.getNameAttr())});
706 result.addAttribute(getKernelAttrName(), kernelSymbol);
707 SmallVector<int32_t, 9> segmentSizes(9, 1);
708 segmentSizes.front() = asyncDependencies.size();
709 segmentSizes[segmentSizes.size() - 2] = dynamicSharedMemorySize ? 1 : 0;
710 segmentSizes.back() = static_cast<int32_t>(kernelOperands.size());
711 result.addAttribute(getOperandSegmentSizeAttr(),
712 builder.getI32VectorAttr(segmentSizes));
713 }
714
getKernelModuleName()715 StringAttr LaunchFuncOp::getKernelModuleName() {
716 return kernel().getRootReference();
717 }
718
getKernelName()719 StringAttr LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); }
720
getNumKernelOperands()721 unsigned LaunchFuncOp::getNumKernelOperands() { return operands().size(); }
722
getKernelOperand(unsigned i)723 Value LaunchFuncOp::getKernelOperand(unsigned i) { return operands()[i]; }
724
getGridSizeOperandValues()725 KernelDim3 LaunchFuncOp::getGridSizeOperandValues() {
726 auto operands = getOperands().drop_front(asyncDependencies().size());
727 return KernelDim3{operands[0], operands[1], operands[2]};
728 }
729
getBlockSizeOperandValues()730 KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() {
731 auto operands = getOperands().drop_front(asyncDependencies().size());
732 return KernelDim3{operands[3], operands[4], operands[5]};
733 }
734
verify()735 LogicalResult LaunchFuncOp::verify() {
736 auto module = (*this)->getParentOfType<ModuleOp>();
737 if (!module)
738 return emitOpError("expected to belong to a module");
739
740 if (!module->getAttrOfType<UnitAttr>(
741 GPUDialect::getContainerModuleAttrName()))
742 return emitOpError("expected the closest surrounding module to have the '" +
743 GPUDialect::getContainerModuleAttrName() +
744 "' attribute");
745
746 auto kernelAttr = (*this)->getAttrOfType<SymbolRefAttr>(getKernelAttrName());
747 if (!kernelAttr)
748 return emitOpError("symbol reference attribute '" + getKernelAttrName() +
749 "' must be specified");
750
751 return success();
752 }
753
parseLaunchFuncOperands(OpAsmParser & parser,SmallVectorImpl<OpAsmParser::UnresolvedOperand> & argNames,SmallVectorImpl<Type> & argTypes)754 static ParseResult parseLaunchFuncOperands(
755 OpAsmParser &parser,
756 SmallVectorImpl<OpAsmParser::UnresolvedOperand> &argNames,
757 SmallVectorImpl<Type> &argTypes) {
758 if (parser.parseOptionalKeyword("args"))
759 return success();
760
761 SmallVector<OpAsmParser::Argument> args;
762 if (parser.parseArgumentList(args, OpAsmParser::Delimiter::Paren,
763 /*allowType=*/true))
764 return failure();
765 for (auto &arg : args) {
766 argNames.push_back(arg.ssaName);
767 argTypes.push_back(arg.type);
768 }
769 return success();
770 }
771
printLaunchFuncOperands(OpAsmPrinter & printer,Operation *,OperandRange operands,TypeRange types)772 static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *,
773 OperandRange operands, TypeRange types) {
774 if (operands.empty())
775 return;
776 printer << "args(";
777 llvm::interleaveComma(llvm::zip(operands, types), printer,
778 [&](const auto &pair) {
779 printer.printOperand(std::get<0>(pair));
780 printer << " : ";
781 printer.printType(std::get<1>(pair));
782 });
783 printer << ")";
784 }
785
786 //===----------------------------------------------------------------------===//
787 // ShuffleOp
788 //===----------------------------------------------------------------------===//
789
build(OpBuilder & builder,OperationState & result,Value value,int32_t offset,int32_t width,ShuffleMode mode)790 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value value,
791 int32_t offset, int32_t width, ShuffleMode mode) {
792 build(builder, result, value,
793 builder.create<arith::ConstantOp>(result.location,
794 builder.getI32IntegerAttr(offset)),
795 builder.create<arith::ConstantOp>(result.location,
796 builder.getI32IntegerAttr(width)),
797 mode);
798 }
799
800 //===----------------------------------------------------------------------===//
801 // GPUFuncOp
802 //===----------------------------------------------------------------------===//
803
804 /// Adds a new block argument that corresponds to buffers located in
805 /// workgroup memory.
addWorkgroupAttribution(Type type,Location loc)806 BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type, Location loc) {
807 auto attrName = getNumWorkgroupAttributionsAttrName();
808 auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName);
809 (*this)->setAttr(attrName,
810 IntegerAttr::get(attr.getType(), attr.getValue() + 1));
811 return getBody().insertArgument(
812 getFunctionType().getNumInputs() + attr.getInt(), type, loc);
813 }
814
815 /// Adds a new block argument that corresponds to buffers located in
816 /// private memory.
addPrivateAttribution(Type type,Location loc)817 BlockArgument GPUFuncOp::addPrivateAttribution(Type type, Location loc) {
818 // Buffers on the private memory always come after buffers on the workgroup
819 // memory.
820 return getBody().addArgument(type, loc);
821 }
822
build(OpBuilder & builder,OperationState & result,StringRef name,FunctionType type,TypeRange workgroupAttributions,TypeRange privateAttributions,ArrayRef<NamedAttribute> attrs)823 void GPUFuncOp::build(OpBuilder &builder, OperationState &result,
824 StringRef name, FunctionType type,
825 TypeRange workgroupAttributions,
826 TypeRange privateAttributions,
827 ArrayRef<NamedAttribute> attrs) {
828 result.addAttribute(SymbolTable::getSymbolAttrName(),
829 builder.getStringAttr(name));
830 result.addAttribute(getTypeAttrName(), TypeAttr::get(type));
831 result.addAttribute(getNumWorkgroupAttributionsAttrName(),
832 builder.getI64IntegerAttr(workgroupAttributions.size()));
833 result.addAttributes(attrs);
834 Region *body = result.addRegion();
835 Block *entryBlock = new Block;
836
837 // TODO: Allow passing in proper locations here.
838 for (Type argTy : type.getInputs())
839 entryBlock->addArgument(argTy, result.location);
840 for (Type argTy : workgroupAttributions)
841 entryBlock->addArgument(argTy, result.location);
842 for (Type argTy : privateAttributions)
843 entryBlock->addArgument(argTy, result.location);
844
845 body->getBlocks().push_back(entryBlock);
846 }
847
848 /// Parses a GPU function memory attribution.
849 ///
850 /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)?
851 /// (`private` `(` ssa-id-and-type-list `)`)?
852 ///
853 /// Note that this function parses only one of the two similar parts, with the
854 /// keyword provided as argument.
855 static ParseResult
parseAttributions(OpAsmParser & parser,StringRef keyword,SmallVectorImpl<OpAsmParser::Argument> & args)856 parseAttributions(OpAsmParser &parser, StringRef keyword,
857 SmallVectorImpl<OpAsmParser::Argument> &args) {
858 // If we could not parse the keyword, just assume empty list and succeed.
859 if (failed(parser.parseOptionalKeyword(keyword)))
860 return success();
861
862 return parser.parseArgumentList(args, OpAsmParser::Delimiter::Paren,
863 /*allowType=*/true);
864 }
865
866 /// Parses a GPU function.
867 ///
868 /// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)`
869 /// (`->` function-result-list)? memory-attribution `kernel`?
870 /// function-attributes? region
parse(OpAsmParser & parser,OperationState & result)871 ParseResult GPUFuncOp::parse(OpAsmParser &parser, OperationState &result) {
872 SmallVector<OpAsmParser::Argument> entryArgs;
873 SmallVector<DictionaryAttr> resultAttrs;
874 SmallVector<Type> resultTypes;
875 bool isVariadic;
876
877 // Parse the function name.
878 StringAttr nameAttr;
879 if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(),
880 result.attributes))
881 return failure();
882
883 auto signatureLocation = parser.getCurrentLocation();
884 if (failed(function_interface_impl::parseFunctionSignature(
885 parser, /*allowVariadic=*/false, entryArgs, isVariadic, resultTypes,
886 resultAttrs)))
887 return failure();
888
889 if (!entryArgs.empty() && entryArgs[0].ssaName.name.empty())
890 return parser.emitError(signatureLocation)
891 << "gpu.func requires named arguments";
892
893 // Construct the function type. More types will be added to the region, but
894 // not to the function type.
895 Builder &builder = parser.getBuilder();
896
897 SmallVector<Type> argTypes;
898 for (auto &arg : entryArgs)
899 argTypes.push_back(arg.type);
900 auto type = builder.getFunctionType(argTypes, resultTypes);
901 result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type));
902
903 function_interface_impl::addArgAndResultAttrs(builder, result, entryArgs,
904 resultAttrs);
905
906 // Parse workgroup memory attributions.
907 if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(),
908 entryArgs)))
909 return failure();
910
911 // Store the number of operands we just parsed as the number of workgroup
912 // memory attributions.
913 unsigned numWorkgroupAttrs = entryArgs.size() - type.getNumInputs();
914 result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(),
915 builder.getI64IntegerAttr(numWorkgroupAttrs));
916
917 // Parse private memory attributions.
918 if (failed(
919 parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), entryArgs)))
920 return failure();
921
922 // Parse the kernel attribute if present.
923 if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword())))
924 result.addAttribute(GPUDialect::getKernelFuncAttrName(),
925 builder.getUnitAttr());
926
927 // Parse attributes.
928 if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes)))
929 return failure();
930
931 // Parse the region. If no argument names were provided, take all names
932 // (including those of attributions) from the entry block.
933 auto *body = result.addRegion();
934 return parser.parseRegion(*body, entryArgs);
935 }
936
printAttributions(OpAsmPrinter & p,StringRef keyword,ArrayRef<BlockArgument> values)937 static void printAttributions(OpAsmPrinter &p, StringRef keyword,
938 ArrayRef<BlockArgument> values) {
939 if (values.empty())
940 return;
941
942 p << ' ' << keyword << '(';
943 llvm::interleaveComma(
944 values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); });
945 p << ')';
946 }
947
print(OpAsmPrinter & p)948 void GPUFuncOp::print(OpAsmPrinter &p) {
949 p << ' ';
950 p.printSymbolName(getName());
951
952 FunctionType type = getFunctionType();
953 function_interface_impl::printFunctionSignature(p, *this, type.getInputs(),
954 /*isVariadic=*/false,
955 type.getResults());
956
957 printAttributions(p, getWorkgroupKeyword(), getWorkgroupAttributions());
958 printAttributions(p, getPrivateKeyword(), getPrivateAttributions());
959 if (isKernel())
960 p << ' ' << getKernelKeyword();
961
962 function_interface_impl::printFunctionAttributes(
963 p, *this, type.getNumInputs(), type.getNumResults(),
964 {getNumWorkgroupAttributionsAttrName(),
965 GPUDialect::getKernelFuncAttrName()});
966 p << ' ';
967 p.printRegion(getBody(), /*printEntryBlockArgs=*/false);
968 }
969
verifyType()970 LogicalResult GPUFuncOp::verifyType() {
971 Type type = getFunctionTypeAttr().getValue();
972 if (!type.isa<FunctionType>())
973 return emitOpError("requires '" + getTypeAttrName() +
974 "' attribute of function type");
975
976 if (isKernel() && getFunctionType().getNumResults() != 0)
977 return emitOpError() << "expected void return type for kernel function";
978
979 return success();
980 }
981
verifyAttributions(Operation * op,ArrayRef<BlockArgument> attributions,unsigned memorySpace)982 static LogicalResult verifyAttributions(Operation *op,
983 ArrayRef<BlockArgument> attributions,
984 unsigned memorySpace) {
985 for (Value v : attributions) {
986 auto type = v.getType().dyn_cast<MemRefType>();
987 if (!type)
988 return op->emitOpError() << "expected memref type in attribution";
989
990 if (type.getMemorySpaceAsInt() != memorySpace) {
991 return op->emitOpError()
992 << "expected memory space " << memorySpace << " in attribution";
993 }
994 }
995 return success();
996 }
997
998 /// Verifies the body of the function.
verifyBody()999 LogicalResult GPUFuncOp::verifyBody() {
1000 unsigned numFuncArguments = getNumArguments();
1001 unsigned numWorkgroupAttributions = getNumWorkgroupAttributions();
1002 unsigned numBlockArguments = front().getNumArguments();
1003 if (numBlockArguments < numFuncArguments + numWorkgroupAttributions)
1004 return emitOpError() << "expected at least "
1005 << numFuncArguments + numWorkgroupAttributions
1006 << " arguments to body region";
1007
1008 ArrayRef<Type> funcArgTypes = getFunctionType().getInputs();
1009 for (unsigned i = 0; i < numFuncArguments; ++i) {
1010 Type blockArgType = front().getArgument(i).getType();
1011 if (funcArgTypes[i] != blockArgType)
1012 return emitOpError() << "expected body region argument #" << i
1013 << " to be of type " << funcArgTypes[i] << ", got "
1014 << blockArgType;
1015 }
1016
1017 if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(),
1018 GPUDialect::getWorkgroupAddressSpace())) ||
1019 failed(verifyAttributions(getOperation(), getPrivateAttributions(),
1020 GPUDialect::getPrivateAddressSpace())))
1021 return failure();
1022
1023 return success();
1024 }
1025
1026 //===----------------------------------------------------------------------===//
1027 // ReturnOp
1028 //===----------------------------------------------------------------------===//
1029
verify()1030 LogicalResult gpu::ReturnOp::verify() {
1031 GPUFuncOp function = (*this)->getParentOfType<GPUFuncOp>();
1032
1033 FunctionType funType = function.getFunctionType();
1034
1035 if (funType.getNumResults() != operands().size())
1036 return emitOpError()
1037 .append("expected ", funType.getNumResults(), " result operands")
1038 .attachNote(function.getLoc())
1039 .append("return type declared here");
1040
1041 for (const auto &pair : llvm::enumerate(
1042 llvm::zip(function.getFunctionType().getResults(), operands()))) {
1043 Type type;
1044 Value operand;
1045 std::tie(type, operand) = pair.value();
1046 if (type != operand.getType())
1047 return emitOpError() << "unexpected type `" << operand.getType()
1048 << "' for operand #" << pair.index();
1049 }
1050 return success();
1051 }
1052
1053 //===----------------------------------------------------------------------===//
1054 // GPUModuleOp
1055 //===----------------------------------------------------------------------===//
1056
build(OpBuilder & builder,OperationState & result,StringRef name)1057 void GPUModuleOp::build(OpBuilder &builder, OperationState &result,
1058 StringRef name) {
1059 ensureTerminator(*result.addRegion(), builder, result.location);
1060 result.attributes.push_back(builder.getNamedAttr(
1061 ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)));
1062 }
1063
parse(OpAsmParser & parser,OperationState & result)1064 ParseResult GPUModuleOp::parse(OpAsmParser &parser, OperationState &result) {
1065 StringAttr nameAttr;
1066 if (parser.parseSymbolName(nameAttr, mlir::SymbolTable::getSymbolAttrName(),
1067 result.attributes) ||
1068 // If module attributes are present, parse them.
1069 parser.parseOptionalAttrDictWithKeyword(result.attributes))
1070 return failure();
1071
1072 // Parse the module body.
1073 auto *body = result.addRegion();
1074 if (parser.parseRegion(*body, {}))
1075 return failure();
1076
1077 // Ensure that this module has a valid terminator.
1078 GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location);
1079 return success();
1080 }
1081
print(OpAsmPrinter & p)1082 void GPUModuleOp::print(OpAsmPrinter &p) {
1083 p << ' ';
1084 p.printSymbolName(getName());
1085 p.printOptionalAttrDictWithKeyword((*this)->getAttrs(),
1086 {mlir::SymbolTable::getSymbolAttrName()});
1087 p << ' ';
1088 p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
1089 /*printBlockTerminators=*/false);
1090 }
1091
1092 //===----------------------------------------------------------------------===//
1093 // GPUMemcpyOp
1094 //===----------------------------------------------------------------------===//
1095
verify()1096 LogicalResult MemcpyOp::verify() {
1097 auto srcType = src().getType();
1098 auto dstType = dst().getType();
1099
1100 if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType))
1101 return emitOpError("arguments have incompatible element type");
1102
1103 if (failed(verifyCompatibleShape(srcType, dstType)))
1104 return emitOpError("arguments have incompatible shape");
1105
1106 return success();
1107 }
1108
1109 namespace {
1110
1111 /// Erases a common case of copy ops where a destination value is used only by
1112 /// the copy op, alloc and dealloc ops.
1113 struct EraseTrivialCopyOp : public OpRewritePattern<MemcpyOp> {
1114 using OpRewritePattern<MemcpyOp>::OpRewritePattern;
1115
matchAndRewrite__anonf220e5a50911::EraseTrivialCopyOp1116 LogicalResult matchAndRewrite(MemcpyOp op,
1117 PatternRewriter &rewriter) const override {
1118 Value dest = op.dst();
1119 Operation *destDefOp = dest.getDefiningOp();
1120 // `dest` must be defined by an op having Allocate memory effect in order to
1121 // perform the folding.
1122 if (!destDefOp ||
1123 !hasSingleEffect<MemoryEffects::Allocate>(destDefOp, dest))
1124 return failure();
1125 // We can erase `op` iff `dest` has no other use apart from its
1126 // use by `op` and dealloc ops.
1127 if (llvm::any_of(dest.getUsers(), [op, dest](Operation *user) {
1128 return user != op &&
1129 !hasSingleEffect<MemoryEffects::Free>(user, dest);
1130 }))
1131 return failure();
1132 // We can perform the folding if and only if op has a single async
1133 // dependency and produces an async token as result, or if it does not have
1134 // any async dependency and does not produce any async token result.
1135 if (op.asyncDependencies().size() > 1 ||
1136 ((op.asyncDependencies().empty() && op.asyncToken()) ||
1137 (!op.asyncDependencies().empty() && !op.asyncToken())))
1138 return failure();
1139 rewriter.replaceOp(op, op.asyncDependencies());
1140 return success();
1141 }
1142 };
1143
1144 } // end anonymous namespace
1145
getCanonicalizationPatterns(RewritePatternSet & results,MLIRContext * context)1146 void MemcpyOp::getCanonicalizationPatterns(RewritePatternSet &results,
1147 MLIRContext *context) {
1148 results.add<EraseTrivialCopyOp>(context);
1149 }
1150
1151 //===----------------------------------------------------------------------===//
1152 // GPU_SubgroupMmaLoadMatrixOp
1153 //===----------------------------------------------------------------------===//
1154
1155 /// Return true if the last dimension of the MemRefType has unit stride. Also
1156 /// return true for memrefs with no strides.
isLastMemrefDimUnitStride(MemRefType type)1157 static bool isLastMemrefDimUnitStride(MemRefType type) {
1158 int64_t offset;
1159 SmallVector<int64_t> strides;
1160 if (failed(getStridesAndOffset(type, strides, offset))) {
1161 return false;
1162 }
1163 return strides.back() == 1;
1164 }
1165
verify()1166 LogicalResult SubgroupMmaLoadMatrixOp::verify() {
1167 auto srcType = srcMemref().getType();
1168 auto resType = res().getType();
1169 auto resMatrixType = resType.cast<gpu::MMAMatrixType>();
1170 auto operand = resMatrixType.getOperand();
1171 auto srcMemrefType = srcType.cast<MemRefType>();
1172 auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt();
1173
1174 if (!isLastMemrefDimUnitStride(srcMemrefType))
1175 return emitError(
1176 "expected source memref most minor dim must have unit stride");
1177
1178 if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace &&
1179 srcMemSpace != kGlobalMemorySpace)
1180 return emitError(
1181 "source memorySpace kGenericMemorySpace, kSharedMemorySpace or "
1182 "kGlobalMemorySpace only allowed");
1183
1184 if (!operand.equals("AOp") && !operand.equals("BOp") &&
1185 !operand.equals("COp"))
1186 return emitError("only AOp, BOp and COp can be loaded");
1187
1188 return success();
1189 }
1190
1191 //===----------------------------------------------------------------------===//
1192 // GPU_SubgroupMmaStoreMatrixOp
1193 //===----------------------------------------------------------------------===//
1194
verify()1195 LogicalResult SubgroupMmaStoreMatrixOp::verify() {
1196 auto srcType = src().getType();
1197 auto dstType = dstMemref().getType();
1198 auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>();
1199 auto dstMemrefType = dstType.cast<MemRefType>();
1200 auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt();
1201
1202 if (!isLastMemrefDimUnitStride(dstMemrefType))
1203 return emitError(
1204 "expected destination memref most minor dim must have unit stride");
1205
1206 if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace &&
1207 dstMemSpace != kGlobalMemorySpace)
1208 return emitError("destination memorySpace of kGenericMemorySpace, "
1209 "kGlobalMemorySpace or kSharedMemorySpace only allowed");
1210
1211 if (!srcMatrixType.getOperand().equals("COp"))
1212 return emitError(
1213 "expected the operand matrix being stored to have 'COp' operand type");
1214
1215 return success();
1216 }
1217
1218 //===----------------------------------------------------------------------===//
1219 // GPU_SubgroupMmaComputeOp
1220 //===----------------------------------------------------------------------===//
1221
verify()1222 LogicalResult SubgroupMmaComputeOp::verify() {
1223 enum OperandMap { A, B, C };
1224 SmallVector<MMAMatrixType, 3> opTypes;
1225 opTypes.push_back(opA().getType().cast<MMAMatrixType>());
1226 opTypes.push_back(opB().getType().cast<MMAMatrixType>());
1227 opTypes.push_back(opC().getType().cast<MMAMatrixType>());
1228
1229 if (!opTypes[A].getOperand().equals("AOp") ||
1230 !opTypes[B].getOperand().equals("BOp") ||
1231 !opTypes[C].getOperand().equals("COp"))
1232 return emitError("operands must be in the order AOp, BOp, COp");
1233
1234 ArrayRef<int64_t> aShape, bShape, cShape;
1235 aShape = opTypes[A].getShape();
1236 bShape = opTypes[B].getShape();
1237 cShape = opTypes[C].getShape();
1238
1239 if (aShape[1] != bShape[0] || aShape[0] != cShape[0] ||
1240 bShape[1] != cShape[1])
1241 return emitError("operand shapes do not satisfy matmul constraints");
1242
1243 return success();
1244 }
1245
1246 /// This is a common class used for patterns of the form
1247 /// "someop(memrefcast) -> someop". It folds the source of any memref.cast
1248 /// into the root operation directly.
foldMemRefCast(Operation * op)1249 static LogicalResult foldMemRefCast(Operation *op) {
1250 bool folded = false;
1251 for (OpOperand &operand : op->getOpOperands()) {
1252 auto cast = operand.get().getDefiningOp<mlir::memref::CastOp>();
1253 if (cast) {
1254 operand.set(cast.getOperand());
1255 folded = true;
1256 }
1257 }
1258 return success(folded);
1259 }
1260
fold(ArrayRef<Attribute> operands,SmallVectorImpl<::mlir::OpFoldResult> & results)1261 LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands,
1262 SmallVectorImpl<::mlir::OpFoldResult> &results) {
1263 return foldMemRefCast(*this);
1264 }
1265
fold(ArrayRef<Attribute> operands,SmallVectorImpl<::mlir::OpFoldResult> & results)1266 LogicalResult MemsetOp::fold(ArrayRef<Attribute> operands,
1267 SmallVectorImpl<::mlir::OpFoldResult> &results) {
1268 return foldMemRefCast(*this);
1269 }
1270
1271 //===----------------------------------------------------------------------===//
1272 // GPU_WaitOp
1273 //===----------------------------------------------------------------------===//
1274
1275 namespace {
1276
1277 /// Remove gpu.wait op use of gpu.wait op def without async dependencies.
1278 /// %t = gpu.wait async [] // No async dependencies.
1279 /// ... gpu.wait ... [%t, ...] // %t can be removed.
1280 struct EraseRedundantGpuWaitOpPairs : public OpRewritePattern<WaitOp> {
1281 public:
1282 using OpRewritePattern::OpRewritePattern;
1283
matchAndRewrite__anonf220e5a50b11::EraseRedundantGpuWaitOpPairs1284 LogicalResult matchAndRewrite(WaitOp op,
1285 PatternRewriter &rewriter) const final {
1286 auto predicate = [](Value value) {
1287 auto waitOp = value.getDefiningOp<WaitOp>();
1288 return waitOp && waitOp->getNumOperands() == 0;
1289 };
1290 if (llvm::none_of(op.asyncDependencies(), predicate))
1291 return failure();
1292 SmallVector<Value> validOperands;
1293 for (Value operand : op->getOperands()) {
1294 if (predicate(operand))
1295 continue;
1296 validOperands.push_back(operand);
1297 }
1298 op->setOperands(validOperands);
1299 return success();
1300 }
1301 };
1302
1303 /// Simplify trivial gpu.wait ops for the following patterns.
1304 /// 1. %t = gpu.wait async ... ops, where %t has no uses (regardless of async
1305 /// dependencies).
1306 /// 2. %t1 = gpu.wait async [%t0], in this case, we can replace uses of %t1 with
1307 /// %t0.
1308 /// 3. gpu.wait [] ops, i.e gpu.wait ops that neither have any async
1309 /// dependencies nor return any token.
1310 struct SimplifyGpuWaitOp : public OpRewritePattern<WaitOp> {
1311 public:
1312 using OpRewritePattern::OpRewritePattern;
1313
matchAndRewrite__anonf220e5a50b11::SimplifyGpuWaitOp1314 LogicalResult matchAndRewrite(WaitOp op,
1315 PatternRewriter &rewriter) const final {
1316 // Erase gpu.wait ops that neither have any async dependencies nor return
1317 // any async token.
1318 if (op.asyncDependencies().empty() && !op.asyncToken()) {
1319 rewriter.eraseOp(op);
1320 return success();
1321 }
1322 // Replace uses of %t1 = gpu.wait async [%t0] ops with %t0 and erase the op.
1323 if (llvm::hasSingleElement(op.asyncDependencies()) && op.asyncToken()) {
1324 rewriter.replaceOp(op, op.asyncDependencies());
1325 return success();
1326 }
1327 // Erase %t = gpu.wait async ... ops, where %t has no uses.
1328 if (op.asyncToken() && op.asyncToken().use_empty()) {
1329 rewriter.eraseOp(op);
1330 return success();
1331 }
1332 return failure();
1333 }
1334 };
1335
1336 } // end anonymous namespace
1337
getCanonicalizationPatterns(RewritePatternSet & results,MLIRContext * context)1338 void WaitOp::getCanonicalizationPatterns(RewritePatternSet &results,
1339 MLIRContext *context) {
1340 results.add<EraseRedundantGpuWaitOpPairs, SimplifyGpuWaitOp>(context);
1341 }
1342
1343 //===----------------------------------------------------------------------===//
1344 // GPU_AllocOp
1345 //===----------------------------------------------------------------------===//
1346
verify()1347 LogicalResult AllocOp::verify() {
1348 auto memRefType = memref().getType().cast<MemRefType>();
1349
1350 if (static_cast<int64_t>(dynamicSizes().size()) !=
1351 memRefType.getNumDynamicDims())
1352 return emitOpError("dimension operand count does not equal memref "
1353 "dynamic dimension count");
1354
1355 unsigned numSymbols = 0;
1356 if (!memRefType.getLayout().isIdentity())
1357 numSymbols = memRefType.getLayout().getAffineMap().getNumSymbols();
1358 if (symbolOperands().size() != numSymbols) {
1359 return emitOpError(
1360 "symbol operand count does not equal memref symbol count");
1361 }
1362
1363 return success();
1364 }
1365
1366 namespace {
1367
1368 /// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to
1369 /// `memref::AllocOp`.
1370 struct SimplifyDimOfAllocOp : public OpRewritePattern<memref::DimOp> {
1371 using OpRewritePattern<memref::DimOp>::OpRewritePattern;
1372
matchAndRewrite__anonf220e5a50d11::SimplifyDimOfAllocOp1373 LogicalResult matchAndRewrite(memref::DimOp dimOp,
1374 PatternRewriter &rewriter) const override {
1375 auto index = dimOp.getIndex().getDefiningOp<arith::ConstantIndexOp>();
1376 if (!index)
1377 return failure();
1378
1379 auto memrefType = dimOp.getSource().getType().dyn_cast<MemRefType>();
1380 if (!memrefType || !memrefType.isDynamicDim(index.value()))
1381 return failure();
1382
1383 auto alloc = dimOp.getSource().getDefiningOp<AllocOp>();
1384 if (!alloc)
1385 return failure();
1386
1387 Value substituteOp = *(alloc.dynamicSizes().begin() +
1388 memrefType.getDynamicDimIndex(index.value()));
1389 rewriter.replaceOp(dimOp, substituteOp);
1390 return success();
1391 }
1392 };
1393
1394 } // namespace
1395
getCanonicalizationPatterns(RewritePatternSet & results,MLIRContext * context)1396 void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results,
1397 MLIRContext *context) {
1398 results.add<SimplifyDimOfAllocOp>(context);
1399 }
1400
1401 #include "mlir/Dialect/GPU/IR/GPUOpInterfaces.cpp.inc"
1402 #include "mlir/Dialect/GPU/IR/GPUOpsEnums.cpp.inc"
1403
1404 #define GET_ATTRDEF_CLASSES
1405 #include "mlir/Dialect/GPU/IR/GPUOpsAttributes.cpp.inc"
1406
1407 #define GET_OP_CLASSES
1408 #include "mlir/Dialect/GPU/IR/GPUOps.cpp.inc"
1409