//===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the GPU kernel-related dialect and its operations. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/GPU/GPUDialect.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/DialectImplementation.h" #include "mlir/IR/FunctionImplementation.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "llvm/ADT/TypeSwitch.h" using namespace mlir; using namespace mlir::gpu; #include "mlir/Dialect/GPU/GPUOpsDialect.cpp.inc" //===----------------------------------------------------------------------===// // MMAMatrixType //===----------------------------------------------------------------------===// MMAMatrixType MMAMatrixType::get(ArrayRef shape, Type elementType, StringRef operand) { return Base::get(elementType.getContext(), shape, elementType, operand); } MMAMatrixType MMAMatrixType::getChecked(function_ref emitError, ArrayRef shape, Type elementType, StringRef operand) { return Base::getChecked(emitError, elementType.getContext(), shape, elementType, operand); } unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; } ArrayRef MMAMatrixType::getShape() const { return getImpl()->getShape(); } Type MMAMatrixType::getElementType() const { return getImpl()->elementType; } StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); } bool MMAMatrixType::isValidElementType(Type elementType) { return elementType.isF16() || elementType.isF32(); } LogicalResult MMAMatrixType::verify(function_ref emitError, ArrayRef shape, Type elementType, StringRef operand) { if (!operand.equals("AOp") && !operand.equals("BOp") && !operand.equals("COp")) return emitError() << "operand expected to be one of AOp, BOp or COp"; if (shape.size() != 2) return emitError() << "MMAMatrixType must have exactly two dimensions"; if (!MMAMatrixType::isValidElementType(elementType)) return emitError() << "MMAMatrixType elements must be F16 or F32"; return success(); } //===----------------------------------------------------------------------===// // GPUDialect //===----------------------------------------------------------------------===// /// GPU memory space identifiers. enum GPUMemorySpace { /// Generic memory space identifier. kGenericMemorySpace = 0, /// Global memory space identifier. kGlobalMemorySpace = 1, /// Shared memory space identifier. kSharedMemorySpace = 3 }; bool GPUDialect::isKernel(Operation *op) { UnitAttr isKernelAttr = op->getAttrOfType(getKernelFuncAttrName()); return static_cast(isKernelAttr); } void GPUDialect::initialize() { addTypes(); addTypes(); addOperations< #define GET_OP_LIST #include "mlir/Dialect/GPU/GPUOps.cpp.inc" >(); } Type GPUDialect::parseType(DialectAsmParser &parser) const { // Parse the main keyword for the type. StringRef keyword; if (parser.parseKeyword(&keyword)) return Type(); MLIRContext *context = getContext(); // Handle 'async token' types. if (keyword == "async.token") return AsyncTokenType::get(context); if (keyword == "mma_matrix") { llvm::SMLoc beginLoc = parser.getNameLoc(); // Parse '<'. if (parser.parseLess()) return nullptr; // Parse the size and elementType. SmallVector shape; Type elementType; if (parser.parseDimensionList(shape, /*allowDynamic=*/false) || parser.parseType(elementType)) return nullptr; // Parse ',' if (parser.parseComma()) return nullptr; // Parse operand. std::string operand; if (failed(parser.parseOptionalString(&operand))) return nullptr; // Parse '>'. if (parser.parseGreater()) return nullptr; return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn( parser.getEncodedSourceLoc(beginLoc)), shape, elementType, operand); } parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword); return Type(); } void GPUDialect::printType(Type type, DialectAsmPrinter &os) const { TypeSwitch(type) .Case([&](Type) { os << "async.token"; }) .Case([&](MMAMatrixType fragTy) { os << "mma_matrix<"; auto shape = fragTy.getShape(); for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim) os << *dim << 'x'; os << shape.back() << 'x' << fragTy.getElementType(); os << ", \"" << fragTy.getOperand() << "\"" << '>'; }) .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); }); } LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, NamedAttribute attr) { if (!attr.second.isa() || attr.first != getContainerModuleAttrName()) return success(); auto module = dyn_cast(op); if (!module) return op->emitError("expected '") << getContainerModuleAttrName() << "' attribute to be attached to '" << ModuleOp::getOperationName() << '\''; auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { // Ignore launches that are nested more or less deep than functions in the // module we are currently checking. if (!launchOp->getParentOp() || launchOp->getParentOp()->getParentOp() != module) return success(); // Ignore launch ops with missing attributes here. The errors will be // reported by the verifiers of those ops. if (!launchOp->getAttrOfType( LaunchFuncOp::getKernelAttrName())) return success(); // Check that `launch_func` refers to a well-formed GPU kernel module. StringAttr kernelModuleName = launchOp.getKernelModuleName(); auto kernelModule = module.lookupSymbol(kernelModuleName); if (!kernelModule) return launchOp.emitOpError() << "kernel module '" << kernelModuleName.getValue() << "' is undefined"; // Check that `launch_func` refers to a well-formed kernel function. Operation *kernelFunc = module.lookupSymbol(launchOp.kernelAttr()); auto kernelGPUFunction = dyn_cast_or_null(kernelFunc); auto kernelLLVMFunction = dyn_cast_or_null(kernelFunc); if (!kernelGPUFunction && !kernelLLVMFunction) return launchOp.emitOpError("kernel function '") << launchOp.kernel() << "' is undefined"; if (!kernelFunc->getAttrOfType( GPUDialect::getKernelFuncAttrName())) return launchOp.emitOpError("kernel function is missing the '") << GPUDialect::getKernelFuncAttrName() << "' attribute"; // TODO: if the kernel function has been converted to // the LLVM dialect but the caller hasn't (which happens during the // separate compilation), do not check type correspondence as it would // require the verifier to be aware of the LLVM type conversion. if (kernelLLVMFunction) return success(); unsigned actualNumArguments = launchOp.getNumKernelOperands(); unsigned expectedNumArguments = kernelGPUFunction.getNumArguments(); if (expectedNumArguments != actualNumArguments) return launchOp.emitOpError("got ") << actualNumArguments << " kernel operands but expected " << expectedNumArguments; auto functionType = kernelGPUFunction.getType(); for (unsigned i = 0; i < expectedNumArguments; ++i) { if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) { return launchOp.emitOpError("type of function argument ") << i << " does not match"; } } return success(); }); return walkResult.wasInterrupted() ? failure() : success(); } template static LogicalResult verifyIndexOp(T op) { auto dimension = op.dimension(); if (dimension != "x" && dimension != "y" && dimension != "z") return op.emitError("dimension \"") << dimension << "\" is invalid"; return success(); } static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) { if (allReduce.body().empty() != allReduce.op().hasValue()) return allReduce.emitError( "expected either an op attribute or a non-empty body"); if (!allReduce.body().empty()) { if (allReduce.body().getNumArguments() != 2) return allReduce.emitError("expected two region arguments"); for (auto argument : allReduce.body().getArguments()) { if (argument.getType() != allReduce.getType()) return allReduce.emitError("incorrect region argument type"); } unsigned yieldCount = 0; for (Block &block : allReduce.body()) { if (auto yield = dyn_cast(block.getTerminator())) { if (yield.getNumOperands() != 1) return allReduce.emitError("expected one gpu.yield operand"); if (yield.getOperand(0).getType() != allReduce.getType()) return allReduce.emitError("incorrect gpu.yield type"); ++yieldCount; } } if (yieldCount == 0) return allReduce.emitError("expected gpu.yield op in region"); } else { StringRef opName = *allReduce.op(); if ((opName == "and" || opName == "or" || opName == "xor") && !allReduce.getType().isa()) { return allReduce.emitError() << '`' << opName << '`' << " accumulator is only compatible with Integer type"; } } return success(); } static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) { auto type = shuffleOp.value().getType(); if (shuffleOp.result().getType() != type) { return shuffleOp.emitOpError() << "requires the same type for value operand and result"; } if (!type.isSignlessIntOrFloat() || type.getIntOrFloatBitWidth() != 32) { return shuffleOp.emitOpError() << "requires value operand type to be f32 or i32"; } return success(); } static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) { p << ' ' << op.getOperands() << ' ' << op.mode() << " : " << op.value().getType(); } static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) { SmallVector operandInfo; if (parser.parseOperandList(operandInfo, 3)) return failure(); StringRef mode; if (parser.parseKeyword(&mode)) return failure(); state.addAttribute("mode", parser.getBuilder().getStringAttr(mode)); Type valueType; Type int32Type = parser.getBuilder().getIntegerType(32); Type int1Type = parser.getBuilder().getI1Type(); if (parser.parseColonType(valueType) || parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type}, parser.getCurrentLocation(), state.operands) || parser.addTypesToList({valueType, int1Type}, state.types)) return failure(); return success(); } //===----------------------------------------------------------------------===// // AsyncOpInterface //===----------------------------------------------------------------------===// void gpu::addAsyncDependency(Operation *op, Value token) { op->insertOperands(0, {token}); if (!op->template hasTrait()) return; auto attrName = OpTrait::AttrSizedOperandSegments::getOperandSegmentSizeAttr(); auto sizeAttr = op->template getAttrOfType(attrName); // Async dependencies is the only variadic operand. if (!sizeAttr) return; SmallVector sizes(sizeAttr.getValues()); ++sizes.front(); op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes)); } //===----------------------------------------------------------------------===// // LaunchOp //===----------------------------------------------------------------------===// void LaunchOp::build(OpBuilder &builder, OperationState &result, Value gridSizeX, Value gridSizeY, Value gridSizeZ, Value blockSizeX, Value blockSizeY, Value blockSizeZ, Value dynamicSharedMemorySize) { // Add grid and block sizes as op operands, followed by the data operands. result.addOperands( {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); if (dynamicSharedMemorySize) result.addOperands(dynamicSharedMemorySize); // Create a kernel body region with kNumConfigRegionAttributes + N arguments, // where the first kNumConfigRegionAttributes arguments have `index` type and // the rest have the same types as the data operands. Region *kernelRegion = result.addRegion(); Block *body = new Block(); body->addArguments( std::vector(kNumConfigRegionAttributes, builder.getIndexType())); kernelRegion->push_back(body); } KernelDim3 LaunchOp::getBlockIds() { assert(!body().empty() && "LaunchOp body must not be empty."); auto args = body().getArguments(); return KernelDim3{args[0], args[1], args[2]}; } KernelDim3 LaunchOp::getThreadIds() { assert(!body().empty() && "LaunchOp body must not be empty."); auto args = body().getArguments(); return KernelDim3{args[3], args[4], args[5]}; } KernelDim3 LaunchOp::getGridSize() { assert(!body().empty() && "LaunchOp body must not be empty."); auto args = body().getArguments(); return KernelDim3{args[6], args[7], args[8]}; } KernelDim3 LaunchOp::getBlockSize() { assert(!body().empty() && "LaunchOp body must not be empty."); auto args = body().getArguments(); return KernelDim3{args[9], args[10], args[11]}; } KernelDim3 LaunchOp::getGridSizeOperandValues() { return KernelDim3{getOperand(0), getOperand(1), getOperand(2)}; } KernelDim3 LaunchOp::getBlockSizeOperandValues() { return KernelDim3{getOperand(3), getOperand(4), getOperand(5)}; } static LogicalResult verify(LaunchOp op) { // Kernel launch takes kNumConfigOperands leading operands for grid/block // sizes and transforms them into kNumConfigRegionAttributes region arguments // for block/thread identifiers and grid/block sizes. if (!op.body().empty()) { if (op.body().getNumArguments() != LaunchOp::kNumConfigOperands + op.getNumOperands() - (op.dynamicSharedMemorySize() ? 1 : 0)) return op.emitOpError("unexpected number of region arguments"); } // Block terminators without successors are expected to exit the kernel region // and must be `gpu.terminator`. for (Block &block : op.body()) { if (block.empty()) continue; if (block.back().getNumSuccessors() != 0) continue; if (!isa(&block.back())) { return block.back() .emitError() .append("expected '", gpu::TerminatorOp::getOperationName(), "' or a terminator with successors") .attachNote(op.getLoc()) .append("in '", LaunchOp::getOperationName(), "' body region"); } } return success(); } // Pretty-print the kernel grid/block size assignment as // (%iter-x, %iter-y, %iter-z) in // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) // where %size-* and %iter-* will correspond to the body region arguments. static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, KernelDim3 operands, KernelDim3 ids) { p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in ("; p << size.x << " = " << operands.x << ", "; p << size.y << " = " << operands.y << ", "; p << size.z << " = " << operands.z << ')'; } static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) { // Print the launch configuration. p << ' ' << op.getBlocksKeyword(); printSizeAssignment(p, op.getGridSize(), op.getGridSizeOperandValues(), op.getBlockIds()); p << ' ' << op.getThreadsKeyword(); printSizeAssignment(p, op.getBlockSize(), op.getBlockSizeOperandValues(), op.getThreadIds()); if (op.dynamicSharedMemorySize()) p << ' ' << op.getDynamicSharedMemorySizeKeyword() << ' ' << op.dynamicSharedMemorySize(); p.printRegion(op.body(), /*printEntryBlockArgs=*/false); p.printOptionalAttrDict(op->getAttrs()); } // Parse the size assignment blocks for blocks and threads. These have the form // (%region_arg, %region_arg, %region_arg) in // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) // where %region_arg are percent-identifiers for the region arguments to be // introduced further (SSA defs), and %operand are percent-identifiers for the // SSA value uses. static ParseResult parseSizeAssignment(OpAsmParser &parser, MutableArrayRef sizes, MutableArrayRef regionSizes, MutableArrayRef indices) { assert(indices.size() == 3 && "space for three indices expected"); SmallVector args; if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3, OpAsmParser::Delimiter::Paren) || parser.parseKeyword("in") || parser.parseLParen()) return failure(); std::move(args.begin(), args.end(), indices.begin()); for (int i = 0; i < 3; ++i) { if (i != 0 && parser.parseComma()) return failure(); if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() || parser.parseOperand(sizes[i])) return failure(); } return parser.parseRParen(); } // Parses a Launch operation. // operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment // `threads` `(` ssa-id-list `)` `in` ssa-reassignment // region attr-dict? // ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) { // Sizes of the grid and block. SmallVector sizes( LaunchOp::kNumConfigOperands); MutableArrayRef sizesRef(sizes); // Actual (data) operands passed to the kernel. SmallVector dataOperands; // Region arguments to be created. SmallVector regionArgs( LaunchOp::kNumConfigRegionAttributes); MutableArrayRef regionArgsRef(regionArgs); // Parse the size assignment segments: the first segment assigns grid sizes // and defines values for block identifiers; the second segment assigns block // sizes and defines values for thread identifiers. In the region argument // list, identifiers precede sizes, and block-related values precede // thread-related values. if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || parseSizeAssignment(parser, sizesRef.take_front(3), regionArgsRef.slice(6, 3), regionArgsRef.slice(0, 3)) || parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || parseSizeAssignment(parser, sizesRef.drop_front(3), regionArgsRef.slice(9, 3), regionArgsRef.slice(3, 3)) || parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), result.operands)) return failure(); OpAsmParser::OperandType dynamicSharedMemorySize; if (!parser.parseOptionalKeyword( LaunchOp::getDynamicSharedMemorySizeKeyword())) if (parser.parseOperand(dynamicSharedMemorySize) || parser.resolveOperand(dynamicSharedMemorySize, parser.getBuilder().getI32Type(), result.operands)) return failure(); // Introduce the body region and parse it. The region has // kNumConfigRegionAttributes arguments that correspond to // block/thread identifiers and grid/block sizes, all of the `index` type. Type index = parser.getBuilder().getIndexType(); SmallVector dataTypes( LaunchOp::kNumConfigRegionAttributes, index); Region *body = result.addRegion(); return failure(parser.parseRegion(*body, regionArgs, dataTypes) || parser.parseOptionalAttrDict(result.attributes)); } /// Simplify the gpu.launch when the range of a thread or block ID is /// trivially known to be one. struct FoldLaunchArguments : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(LaunchOp op, PatternRewriter &rewriter) const override { // If the range implies a single value for `id`, replace `id`'s uses by // zero. Value zero; bool simplified = false; auto constPropIdUses = [&](Value id, Value size) { // Check if size is trivially one. if (!matchPattern(size, m_One())) return; if (!simplified) { // Create a zero value the first time. OpBuilder::InsertionGuard guard(rewriter); rewriter.setInsertionPointToStart(&op.body().front()); zero = rewriter.create(op.getLoc(), /*value=*/0); } id.replaceAllUsesWith(zero); simplified = true; }; constPropIdUses(op.getBlockIds().x, op.gridSizeX()); constPropIdUses(op.getBlockIds().y, op.gridSizeY()); constPropIdUses(op.getBlockIds().z, op.gridSizeZ()); constPropIdUses(op.getThreadIds().x, op.blockSizeX()); constPropIdUses(op.getThreadIds().y, op.blockSizeY()); constPropIdUses(op.getThreadIds().z, op.blockSizeZ()); return success(simplified); } }; void LaunchOp::getCanonicalizationPatterns(RewritePatternSet &rewrites, MLIRContext *context) { rewrites.add(context); } //===----------------------------------------------------------------------===// // LaunchFuncOp //===----------------------------------------------------------------------===// void LaunchFuncOp::build(OpBuilder &builder, OperationState &result, GPUFuncOp kernelFunc, KernelDim3 gridSize, KernelDim3 blockSize, Value dynamicSharedMemorySize, ValueRange kernelOperands) { // Add grid and block sizes as op operands, followed by the data operands. result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x, blockSize.y, blockSize.z}); if (dynamicSharedMemorySize) result.addOperands(dynamicSharedMemorySize); result.addOperands(kernelOperands); auto kernelModule = kernelFunc->getParentOfType(); auto kernelSymbol = SymbolRefAttr::get(kernelModule.getNameAttr(), {SymbolRefAttr::get(kernelFunc.getNameAttr())}); result.addAttribute(getKernelAttrName(), kernelSymbol); SmallVector segmentSizes(9, 1); segmentSizes.front() = 0; // Initially no async dependencies. segmentSizes[segmentSizes.size() - 2] = dynamicSharedMemorySize ? 1 : 0; segmentSizes.back() = static_cast(kernelOperands.size()); result.addAttribute(getOperandSegmentSizeAttr(), builder.getI32VectorAttr(segmentSizes)); } unsigned LaunchFuncOp::getNumKernelOperands() { return getNumOperands() - asyncDependencies().size() - kNumConfigOperands - (dynamicSharedMemorySize() ? 1 : 0); } StringAttr LaunchFuncOp::getKernelModuleName() { return kernel().getRootReference(); } StringAttr LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); } Value LaunchFuncOp::getKernelOperand(unsigned i) { return getOperand(asyncDependencies().size() + kNumConfigOperands + (dynamicSharedMemorySize() ? 1 : 0) + i); } KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { auto operands = getOperands().drop_front(asyncDependencies().size()); return KernelDim3{operands[0], operands[1], operands[2]}; } KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { auto operands = getOperands().drop_front(asyncDependencies().size()); return KernelDim3{operands[3], operands[4], operands[5]}; } static LogicalResult verify(LaunchFuncOp op) { auto module = op->getParentOfType(); if (!module) return op.emitOpError("expected to belong to a module"); if (!module->getAttrOfType( GPUDialect::getContainerModuleAttrName())) return op.emitOpError( "expected the closest surrounding module to have the '" + GPUDialect::getContainerModuleAttrName() + "' attribute"); auto kernelAttr = op->getAttrOfType(op.getKernelAttrName()); if (!kernelAttr) return op.emitOpError("symbol reference attribute '" + op.getKernelAttrName() + "' must be specified"); return success(); } static ParseResult parseLaunchFuncOperands(OpAsmParser &parser, SmallVectorImpl &argNames, SmallVectorImpl &argTypes) { if (parser.parseOptionalKeyword("args")) return success(); SmallVector argAttrs; bool isVariadic = false; return function_like_impl::parseFunctionArgumentList( parser, /*allowAttributes=*/false, /*allowVariadic=*/false, argNames, argTypes, argAttrs, isVariadic); } static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *, OperandRange operands, TypeRange types) { if (operands.empty()) return; printer << "args("; llvm::interleaveComma(llvm::zip(operands, types), printer, [&](const auto &pair) { printer.printOperand(std::get<0>(pair)); printer << " : "; printer.printType(std::get<1>(pair)); }); printer << ")"; } //===----------------------------------------------------------------------===// // GPUFuncOp //===----------------------------------------------------------------------===// /// Adds a new block argument that corresponds to buffers located in /// workgroup memory. BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type) { auto attrName = getNumWorkgroupAttributionsAttrName(); auto attr = (*this)->getAttrOfType(attrName); (*this)->setAttr(attrName, IntegerAttr::get(attr.getType(), attr.getValue() + 1)); return getBody().insertArgument(getType().getNumInputs() + attr.getInt(), type); } /// Adds a new block argument that corresponds to buffers located in /// private memory. BlockArgument GPUFuncOp::addPrivateAttribution(Type type) { // Buffers on the private memory always come after buffers on the workgroup // memory. return getBody().addArgument(type); } void GPUFuncOp::build(OpBuilder &builder, OperationState &result, StringRef name, FunctionType type, TypeRange workgroupAttributions, TypeRange privateAttributions, ArrayRef attrs) { result.addAttribute(SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)); result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); result.addAttribute(getNumWorkgroupAttributionsAttrName(), builder.getI64IntegerAttr(workgroupAttributions.size())); result.addAttributes(attrs); Region *body = result.addRegion(); Block *entryBlock = new Block; entryBlock->addArguments(type.getInputs()); entryBlock->addArguments(workgroupAttributions); entryBlock->addArguments(privateAttributions); body->getBlocks().push_back(entryBlock); } /// Parses a GPU function memory attribution. /// /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? /// (`private` `(` ssa-id-and-type-list `)`)? /// /// Note that this function parses only one of the two similar parts, with the /// keyword provided as argument. static ParseResult parseAttributions(OpAsmParser &parser, StringRef keyword, SmallVectorImpl &args, SmallVectorImpl &argTypes) { // If we could not parse the keyword, just assume empty list and succeed. if (failed(parser.parseOptionalKeyword(keyword))) return success(); if (failed(parser.parseLParen())) return failure(); // Early exit for an empty list. if (succeeded(parser.parseOptionalRParen())) return success(); do { OpAsmParser::OperandType arg; Type type; if (parser.parseRegionArgument(arg) || parser.parseColonType(type)) return failure(); args.push_back(arg); argTypes.push_back(type); } while (succeeded(parser.parseOptionalComma())); return parser.parseRParen(); } /// Parses a GPU function. /// /// ::= `gpu.func` symbol-ref-id `(` argument-list `)` /// (`->` function-result-list)? memory-attribution `kernel`? /// function-attributes? region static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) { SmallVector entryArgs; SmallVector argAttrs; SmallVector resultAttrs; SmallVector argTypes; SmallVector resultTypes; bool isVariadic; // Parse the function name. StringAttr nameAttr; if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), result.attributes)) return failure(); auto signatureLocation = parser.getCurrentLocation(); if (failed(function_like_impl::parseFunctionSignature( parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs, isVariadic, resultTypes, resultAttrs))) return failure(); if (entryArgs.empty() && !argTypes.empty()) return parser.emitError(signatureLocation) << "gpu.func requires named arguments"; // Construct the function type. More types will be added to the region, but // not to the function type. Builder &builder = parser.getBuilder(); auto type = builder.getFunctionType(argTypes, resultTypes); result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); // Parse workgroup memory attributions. if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), entryArgs, argTypes))) return failure(); // Store the number of operands we just parsed as the number of workgroup // memory attributions. unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs(); result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), builder.getI64IntegerAttr(numWorkgroupAttrs)); // Parse private memory attributions. if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), entryArgs, argTypes))) return failure(); // Parse the kernel attribute if present. if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) result.addAttribute(GPUDialect::getKernelFuncAttrName(), builder.getUnitAttr()); // Parse attributes. if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) return failure(); function_like_impl::addArgAndResultAttrs(builder, result, argAttrs, resultAttrs); // Parse the region. If no argument names were provided, take all names // (including those of attributions) from the entry block. auto *body = result.addRegion(); return parser.parseRegion(*body, entryArgs, argTypes); } static void printAttributions(OpAsmPrinter &p, StringRef keyword, ArrayRef values) { if (values.empty()) return; p << ' ' << keyword << '('; llvm::interleaveComma( values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); }); p << ')'; } /// Prints a GPU Func op. static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) { p << ' '; p.printSymbolName(op.getName()); FunctionType type = op.getType(); function_like_impl::printFunctionSignature( p, op.getOperation(), type.getInputs(), /*isVariadic=*/false, type.getResults()); printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions()); printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions()); if (op.isKernel()) p << ' ' << op.getKernelKeyword(); function_like_impl::printFunctionAttributes( p, op.getOperation(), type.getNumInputs(), type.getNumResults(), {op.getNumWorkgroupAttributionsAttrName(), GPUDialect::getKernelFuncAttrName()}); p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false); } /// Hook for FunctionLike verifier. LogicalResult GPUFuncOp::verifyType() { Type type = getTypeAttr().getValue(); if (!type.isa()) return emitOpError("requires '" + getTypeAttrName() + "' attribute of function type"); if (isKernel() && getType().getNumResults() != 0) return emitOpError() << "expected void return type for kernel function"; return success(); } static LogicalResult verifyAttributions(Operation *op, ArrayRef attributions, unsigned memorySpace) { for (Value v : attributions) { auto type = v.getType().dyn_cast(); if (!type) return op->emitOpError() << "expected memref type in attribution"; if (type.getMemorySpaceAsInt() != memorySpace) { return op->emitOpError() << "expected memory space " << memorySpace << " in attribution"; } } return success(); } /// Verifies the body of the function. LogicalResult GPUFuncOp::verifyBody() { unsigned numFuncArguments = getNumArguments(); unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); unsigned numBlockArguments = front().getNumArguments(); if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) return emitOpError() << "expected at least " << numFuncArguments + numWorkgroupAttributions << " arguments to body region"; ArrayRef funcArgTypes = getType().getInputs(); for (unsigned i = 0; i < numFuncArguments; ++i) { Type blockArgType = front().getArgument(i).getType(); if (funcArgTypes[i] != blockArgType) return emitOpError() << "expected body region argument #" << i << " to be of type " << funcArgTypes[i] << ", got " << blockArgType; } if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(), GPUDialect::getWorkgroupAddressSpace())) || failed(verifyAttributions(getOperation(), getPrivateAttributions(), GPUDialect::getPrivateAddressSpace()))) return failure(); return success(); } //===----------------------------------------------------------------------===// // ReturnOp //===----------------------------------------------------------------------===// static LogicalResult verify(gpu::ReturnOp returnOp) { GPUFuncOp function = returnOp->getParentOfType(); FunctionType funType = function.getType(); if (funType.getNumResults() != returnOp.operands().size()) return returnOp.emitOpError() .append("expected ", funType.getNumResults(), " result operands") .attachNote(function.getLoc()) .append("return type declared here"); for (auto pair : llvm::enumerate( llvm::zip(function.getType().getResults(), returnOp.operands()))) { Type type; Value operand; std::tie(type, operand) = pair.value(); if (type != operand.getType()) return returnOp.emitOpError() << "unexpected type `" << operand.getType() << "' for operand #" << pair.index(); } return success(); } //===----------------------------------------------------------------------===// // GPUModuleOp //===----------------------------------------------------------------------===// void GPUModuleOp::build(OpBuilder &builder, OperationState &result, StringRef name) { ensureTerminator(*result.addRegion(), builder, result.location); result.attributes.push_back(builder.getNamedAttr( ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); } static ParseResult parseGPUModuleOp(OpAsmParser &parser, OperationState &result) { StringAttr nameAttr; if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(), result.attributes)) return failure(); // If module attributes are present, parse them. if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) return failure(); // Parse the module body. auto *body = result.addRegion(); if (parser.parseRegion(*body, None, None)) return failure(); // Ensure that this module has a valid terminator. GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location); return success(); } static void print(OpAsmPrinter &p, GPUModuleOp op) { p << ' '; p.printSymbolName(op.getName()); p.printOptionalAttrDictWithKeyword(op->getAttrs(), {SymbolTable::getSymbolAttrName()}); p.printRegion(op->getRegion(0), /*printEntryBlockArgs=*/false, /*printBlockTerminators=*/false); } //===----------------------------------------------------------------------===// // GPUMemcpyOp //===----------------------------------------------------------------------===// static LogicalResult verify(MemcpyOp op) { auto srcType = op.src().getType(); auto dstType = op.dst().getType(); if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType)) return op.emitOpError("arguments have incompatible element type"); if (failed(verifyCompatibleShape(srcType, dstType))) return op.emitOpError("arguments have incompatible shape"); return success(); } static ParseResult parseAsyncDependencies( OpAsmParser &parser, Type &asyncTokenType, SmallVectorImpl &asyncDependencies) { auto loc = parser.getCurrentLocation(); if (succeeded(parser.parseOptionalKeyword("async"))) { if (parser.getNumResults() == 0) return parser.emitError(loc, "needs to be named when marked 'async'"); asyncTokenType = parser.getBuilder().getType(); } return parser.parseOperandList(asyncDependencies, OpAsmParser::Delimiter::OptionalSquare); } static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op, Type asyncTokenType, OperandRange asyncDependencies) { if (asyncTokenType) printer << "async "; if (asyncDependencies.empty()) return; printer << "["; llvm::interleaveComma(asyncDependencies, printer); printer << "]"; } //===----------------------------------------------------------------------===// // GPU_SubgroupMmaLoadMatrixOp //===----------------------------------------------------------------------===// static LogicalResult verify(SubgroupMmaLoadMatrixOp op) { auto srcType = op.srcMemref().getType(); auto resType = op.res().getType(); auto resMatrixType = resType.cast(); auto operand = resMatrixType.getOperand(); auto srcMemrefType = srcType.cast(); auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt(); if (!srcMemrefType.getLayout().isIdentity()) return op.emitError("expected identity layout map for source memref"); if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace && srcMemSpace != kGlobalMemorySpace) return op.emitError( "source memorySpace kGenericMemorySpace, kSharedMemorySpace or " "kGlobalMemorySpace only allowed"); if (!operand.equals("AOp") && !operand.equals("BOp") && !operand.equals("COp")) return op.emitError("only AOp, BOp and COp can be loaded"); return success(); } //===----------------------------------------------------------------------===// // GPU_SubgroupMmaStoreMatrixOp //===----------------------------------------------------------------------===// static LogicalResult verify(SubgroupMmaStoreMatrixOp op) { auto srcType = op.src().getType(); auto dstType = op.dstMemref().getType(); auto srcMatrixType = srcType.cast(); auto dstMemrefType = dstType.cast(); auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt(); if (!dstMemrefType.getLayout().isIdentity()) return op.emitError("expected identity layout map for destination memref"); if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace && dstMemSpace != kGlobalMemorySpace) return op.emitError( "destination memorySpace of kGenericMemorySpace, " "kGlobalMemorySpace or kSharedMemorySpace only allowed"); if (!srcMatrixType.getOperand().equals("COp")) return op.emitError( "expected the operand matrix being stored to have 'COp' operand type"); return success(); } //===----------------------------------------------------------------------===// // GPU_SubgroupMmaComputeOp //===----------------------------------------------------------------------===// static LogicalResult verify(SubgroupMmaComputeOp op) { enum OperandMap { A, B, C }; SmallVector opTypes; auto populateOpInfo = [&opTypes, &op]() { opTypes.push_back(op.opA().getType().cast()); opTypes.push_back(op.opB().getType().cast()); opTypes.push_back(op.opC().getType().cast()); }; populateOpInfo(); if (!opTypes[A].getOperand().equals("AOp") || !opTypes[B].getOperand().equals("BOp") || !opTypes[C].getOperand().equals("COp")) return op.emitError("operands must be in the order AOp, BOp, COp"); ArrayRef aShape, bShape, cShape; aShape = opTypes[A].getShape(); bShape = opTypes[B].getShape(); cShape = opTypes[C].getShape(); if (aShape[1] != bShape[0] || aShape[0] != cShape[0] || bShape[1] != cShape[1]) return op.emitError("operand shapes do not satisfy matmul constraints"); return success(); } /// This is a common class used for patterns of the form /// "someop(memrefcast) -> someop". It folds the source of any memref.cast /// into the root operation directly. static LogicalResult foldMemRefCast(Operation *op) { bool folded = false; for (OpOperand &operand : op->getOpOperands()) { auto cast = operand.get().getDefiningOp(); if (cast) { operand.set(cast.getOperand()); folded = true; } } return success(folded); } LogicalResult MemcpyOp::fold(ArrayRef operands, SmallVectorImpl<::mlir::OpFoldResult> &results) { return foldMemRefCast(*this); } LogicalResult MemsetOp::fold(ArrayRef operands, SmallVectorImpl<::mlir::OpFoldResult> &results) { return foldMemRefCast(*this); } //===----------------------------------------------------------------------===// // GPU_AllocOp //===----------------------------------------------------------------------===// namespace { /// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to /// `memref::AllocOp`. struct SimplifyDimOfAllocOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(memref::DimOp dimOp, PatternRewriter &rewriter) const override { auto index = dimOp.index().getDefiningOp(); if (!index) return failure(); auto memrefType = dimOp.source().getType().dyn_cast(); if (!memrefType || !memrefType.isDynamicDim(index.value())) return failure(); auto alloc = dimOp.source().getDefiningOp(); if (!alloc) return failure(); Value substituteOp = *(alloc.dynamicSizes().begin() + memrefType.getDynamicDimIndex(index.value())); rewriter.replaceOp(dimOp, substituteOp); return success(); } }; } // end anonymous namespace. void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } #include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc" #include "mlir/Dialect/GPU/GPUOpsEnums.cpp.inc" #define GET_OP_CLASSES #include "mlir/Dialect/GPU/GPUOps.cpp.inc"