1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/GetElementPtrTypeIterator.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnes(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isZero()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == MaxAnalysisRecursionDepth) 131 return nullptr; 132 133 if (isa<ScalableVectorType>(VTy)) 134 return nullptr; 135 136 Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) { 138 computeKnownBits(V, Known, Depth, CxtI); 139 return nullptr; // Only analyze instructions. 140 } 141 142 // If there are multiple uses of this value and we aren't at the root, then 143 // we can't do any simplifications of the operands, because DemandedMask 144 // only reflects the bits demanded by *one* of the users. 145 if (Depth != 0 && !I->hasOneUse()) 146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 147 148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 149 150 // If this is the root being simplified, allow it to have multiple uses, 151 // just set the DemandedMask to all bits so that we can try to simplify the 152 // operands. This allows visitTruncInst (for example) to simplify the 153 // operand of a trunc without duplicating all the logic below. 154 if (Depth == 0 && !V->hasOneUse()) 155 DemandedMask.setAllBits(); 156 157 // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care 158 // about the high bits of the operands. 159 auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) { 160 unsigned NLZ = DemandedMask.countLeadingZeros(); 161 // Right fill the mask of bits for the operands to demand the most 162 // significant bit and all those below it. 163 DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 164 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 165 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 166 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 167 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 168 if (NLZ > 0) { 169 // Disable the nsw and nuw flags here: We can no longer guarantee that 170 // we won't wrap after simplification. Removing the nsw/nuw flags is 171 // legal here because the top bit is not demanded. 172 I->setHasNoSignedWrap(false); 173 I->setHasNoUnsignedWrap(false); 174 } 175 return true; 176 } 177 return false; 178 }; 179 180 switch (I->getOpcode()) { 181 default: 182 computeKnownBits(I, Known, Depth, CxtI); 183 break; 184 case Instruction::And: { 185 // If either the LHS or the RHS are Zero, the result is zero. 186 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 187 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 188 Depth + 1)) 189 return I; 190 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 191 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 192 193 Known = LHSKnown & RHSKnown; 194 195 // If the client is only demanding bits that we know, return the known 196 // constant. 197 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 198 return Constant::getIntegerValue(VTy, Known.One); 199 200 // If all of the demanded bits are known 1 on one side, return the other. 201 // These bits cannot contribute to the result of the 'and'. 202 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 203 return I->getOperand(0); 204 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 205 return I->getOperand(1); 206 207 // If the RHS is a constant, see if we can simplify it. 208 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 209 return I; 210 211 break; 212 } 213 case Instruction::Or: { 214 // If either the LHS or the RHS are One, the result is One. 215 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 216 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 217 Depth + 1)) 218 return I; 219 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 220 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 221 222 Known = LHSKnown | RHSKnown; 223 224 // If the client is only demanding bits that we know, return the known 225 // constant. 226 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 227 return Constant::getIntegerValue(VTy, Known.One); 228 229 // If all of the demanded bits are known zero on one side, return the other. 230 // These bits cannot contribute to the result of the 'or'. 231 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 232 return I->getOperand(0); 233 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 234 return I->getOperand(1); 235 236 // If the RHS is a constant, see if we can simplify it. 237 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 238 return I; 239 240 break; 241 } 242 case Instruction::Xor: { 243 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 244 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 245 return I; 246 Value *LHS, *RHS; 247 if (DemandedMask == 1 && 248 match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) && 249 match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) { 250 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1 251 IRBuilderBase::InsertPointGuard Guard(Builder); 252 Builder.SetInsertPoint(I); 253 auto *Xor = Builder.CreateXor(LHS, RHS); 254 return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor); 255 } 256 257 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 258 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 259 260 Known = LHSKnown ^ RHSKnown; 261 262 // If the client is only demanding bits that we know, return the known 263 // constant. 264 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 265 return Constant::getIntegerValue(VTy, Known.One); 266 267 // If all of the demanded bits are known zero on one side, return the other. 268 // These bits cannot contribute to the result of the 'xor'. 269 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 270 return I->getOperand(0); 271 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 272 return I->getOperand(1); 273 274 // If all of the demanded bits are known to be zero on one side or the 275 // other, turn this into an *inclusive* or. 276 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 277 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 278 Instruction *Or = 279 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 280 I->getName()); 281 return InsertNewInstWith(Or, *I); 282 } 283 284 // If all of the demanded bits on one side are known, and all of the set 285 // bits on that side are also known to be set on the other side, turn this 286 // into an AND, as we know the bits will be cleared. 287 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 288 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 289 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 290 Constant *AndC = Constant::getIntegerValue(VTy, 291 ~RHSKnown.One & DemandedMask); 292 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 293 return InsertNewInstWith(And, *I); 294 } 295 296 // If the RHS is a constant, see if we can change it. Don't alter a -1 297 // constant because that's a canonical 'not' op, and that is better for 298 // combining, SCEV, and codegen. 299 const APInt *C; 300 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) { 301 if ((*C | ~DemandedMask).isAllOnes()) { 302 // Force bits to 1 to create a 'not' op. 303 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 304 return I; 305 } 306 // If we can't turn this into a 'not', try to shrink the constant. 307 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 308 return I; 309 } 310 311 // If our LHS is an 'and' and if it has one use, and if any of the bits we 312 // are flipping are known to be set, then the xor is just resetting those 313 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 314 // simplifying both of them. 315 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 316 ConstantInt *AndRHS, *XorRHS; 317 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 318 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 319 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 320 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 321 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 322 323 Constant *AndC = 324 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 325 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 326 InsertNewInstWith(NewAnd, *I); 327 328 Constant *XorC = 329 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 330 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 331 return InsertNewInstWith(NewXor, *I); 332 } 333 } 334 break; 335 } 336 case Instruction::Select: { 337 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 338 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 339 return I; 340 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 341 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 342 343 // If the operands are constants, see if we can simplify them. 344 // This is similar to ShrinkDemandedConstant, but for a select we want to 345 // try to keep the selected constants the same as icmp value constants, if 346 // we can. This helps not break apart (or helps put back together) 347 // canonical patterns like min and max. 348 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 349 const APInt &DemandedMask) { 350 const APInt *SelC; 351 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 352 return false; 353 354 // Get the constant out of the ICmp, if there is one. 355 // Only try this when exactly 1 operand is a constant (if both operands 356 // are constant, the icmp should eventually simplify). Otherwise, we may 357 // invert the transform that reduces set bits and infinite-loop. 358 Value *X; 359 const APInt *CmpC; 360 ICmpInst::Predicate Pred; 361 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 362 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 363 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 364 365 // If the constant is already the same as the ICmp, leave it as-is. 366 if (*CmpC == *SelC) 367 return false; 368 // If the constants are not already the same, but can be with the demand 369 // mask, use the constant value from the ICmp. 370 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 371 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 372 return true; 373 } 374 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 375 }; 376 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 377 CanonicalizeSelectConstant(I, 2, DemandedMask)) 378 return I; 379 380 // Only known if known in both the LHS and RHS. 381 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 382 break; 383 } 384 case Instruction::Trunc: { 385 // If we do not demand the high bits of a right-shifted and truncated value, 386 // then we may be able to truncate it before the shift. 387 Value *X; 388 const APInt *C; 389 if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 390 // The shift amount must be valid (not poison) in the narrow type, and 391 // it must not be greater than the high bits demanded of the result. 392 if (C->ult(I->getType()->getScalarSizeInBits()) && 393 C->ule(DemandedMask.countLeadingZeros())) { 394 // trunc (lshr X, C) --> lshr (trunc X), C 395 IRBuilderBase::InsertPointGuard Guard(Builder); 396 Builder.SetInsertPoint(I); 397 Value *Trunc = Builder.CreateTrunc(X, I->getType()); 398 return Builder.CreateLShr(Trunc, C->getZExtValue()); 399 } 400 } 401 } 402 LLVM_FALLTHROUGH; 403 case Instruction::ZExt: { 404 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 405 406 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 407 KnownBits InputKnown(SrcBitWidth); 408 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 409 return I; 410 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 411 Known = InputKnown.zextOrTrunc(BitWidth); 412 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 413 break; 414 } 415 case Instruction::BitCast: 416 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 417 return nullptr; // vector->int or fp->int? 418 419 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 420 if (VectorType *SrcVTy = 421 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 422 if (cast<FixedVectorType>(DstVTy)->getNumElements() != 423 cast<FixedVectorType>(SrcVTy)->getNumElements()) 424 // Don't touch a bitcast between vectors of different element counts. 425 return nullptr; 426 } else 427 // Don't touch a scalar-to-vector bitcast. 428 return nullptr; 429 } else if (I->getOperand(0)->getType()->isVectorTy()) 430 // Don't touch a vector-to-scalar bitcast. 431 return nullptr; 432 433 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 434 return I; 435 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 436 break; 437 case Instruction::SExt: { 438 // Compute the bits in the result that are not present in the input. 439 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 440 441 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 442 443 // If any of the sign extended bits are demanded, we know that the sign 444 // bit is demanded. 445 if (DemandedMask.getActiveBits() > SrcBitWidth) 446 InputDemandedBits.setBit(SrcBitWidth-1); 447 448 KnownBits InputKnown(SrcBitWidth); 449 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 450 return I; 451 452 // If the input sign bit is known zero, or if the NewBits are not demanded 453 // convert this into a zero extension. 454 if (InputKnown.isNonNegative() || 455 DemandedMask.getActiveBits() <= SrcBitWidth) { 456 // Convert to ZExt cast. 457 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 458 return InsertNewInstWith(NewCast, *I); 459 } 460 461 // If the sign bit of the input is known set or clear, then we know the 462 // top bits of the result. 463 Known = InputKnown.sext(BitWidth); 464 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 465 break; 466 } 467 case Instruction::Add: 468 if ((DemandedMask & 1) == 0) { 469 // If we do not need the low bit, try to convert bool math to logic: 470 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 471 Value *X, *Y; 472 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 473 m_OneUse(m_SExt(m_Value(Y))))) && 474 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 475 // Truth table for inputs and output signbits: 476 // X:0 | X:1 477 // ---------- 478 // Y:0 | 0 | 0 | 479 // Y:1 | -1 | 0 | 480 // ---------- 481 IRBuilderBase::InsertPointGuard Guard(Builder); 482 Builder.SetInsertPoint(I); 483 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 484 return Builder.CreateSExt(AndNot, VTy); 485 } 486 487 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 488 // TODO: Relax the one-use checks because we are removing an instruction? 489 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 490 m_OneUse(m_SExt(m_Value(Y))))) && 491 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 492 // Truth table for inputs and output signbits: 493 // X:0 | X:1 494 // ----------- 495 // Y:0 | -1 | -1 | 496 // Y:1 | -1 | 0 | 497 // ----------- 498 IRBuilderBase::InsertPointGuard Guard(Builder); 499 Builder.SetInsertPoint(I); 500 Value *Or = Builder.CreateOr(X, Y); 501 return Builder.CreateSExt(Or, VTy); 502 } 503 } 504 LLVM_FALLTHROUGH; 505 case Instruction::Sub: { 506 APInt DemandedFromOps; 507 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps)) 508 return I; 509 510 // If we are known to be adding/subtracting zeros to every bit below 511 // the highest demanded bit, we just return the other side. 512 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 513 return I->getOperand(0); 514 // We can't do this with the LHS for subtraction, unless we are only 515 // demanding the LSB. 516 if ((I->getOpcode() == Instruction::Add || DemandedFromOps.isOne()) && 517 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 518 return I->getOperand(1); 519 520 // Otherwise just compute the known bits of the result. 521 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 522 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 523 NSW, LHSKnown, RHSKnown); 524 break; 525 } 526 case Instruction::Mul: { 527 APInt DemandedFromOps; 528 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps)) 529 return I; 530 531 if (DemandedMask.isPowerOf2()) { 532 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 533 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 534 // odd (has LSB set), then the left-shifted low bit of X is the answer. 535 unsigned CTZ = DemandedMask.countTrailingZeros(); 536 const APInt *C; 537 if (match(I->getOperand(1), m_APInt(C)) && 538 C->countTrailingZeros() == CTZ) { 539 Constant *ShiftC = ConstantInt::get(I->getType(), CTZ); 540 Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC); 541 return InsertNewInstWith(Shl, *I); 542 } 543 } 544 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 545 // X * X is odd iff X is odd. 546 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 547 if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) { 548 Constant *One = ConstantInt::get(VTy, 1); 549 Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One); 550 return InsertNewInstWith(And1, *I); 551 } 552 553 computeKnownBits(I, Known, Depth, CxtI); 554 break; 555 } 556 case Instruction::Shl: { 557 const APInt *SA; 558 if (match(I->getOperand(1), m_APInt(SA))) { 559 const APInt *ShrAmt; 560 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 561 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 562 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 563 DemandedMask, Known)) 564 return R; 565 566 // TODO: If we only want bits that already match the signbit then we don't 567 // need to shift. 568 569 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 570 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 571 572 // If the shift is NUW/NSW, then it does demand the high bits. 573 ShlOperator *IOp = cast<ShlOperator>(I); 574 if (IOp->hasNoSignedWrap()) 575 DemandedMaskIn.setHighBits(ShiftAmt+1); 576 else if (IOp->hasNoUnsignedWrap()) 577 DemandedMaskIn.setHighBits(ShiftAmt); 578 579 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 580 return I; 581 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 582 583 bool SignBitZero = Known.Zero.isSignBitSet(); 584 bool SignBitOne = Known.One.isSignBitSet(); 585 Known.Zero <<= ShiftAmt; 586 Known.One <<= ShiftAmt; 587 // low bits known zero. 588 if (ShiftAmt) 589 Known.Zero.setLowBits(ShiftAmt); 590 591 // If this shift has "nsw" keyword, then the result is either a poison 592 // value or has the same sign bit as the first operand. 593 if (IOp->hasNoSignedWrap()) { 594 if (SignBitZero) 595 Known.Zero.setSignBit(); 596 else if (SignBitOne) 597 Known.One.setSignBit(); 598 if (Known.hasConflict()) 599 return UndefValue::get(I->getType()); 600 } 601 } else { 602 // This is a variable shift, so we can't shift the demand mask by a known 603 // amount. But if we are not demanding high bits, then we are not 604 // demanding those bits from the pre-shifted operand either. 605 if (unsigned CTLZ = DemandedMask.countLeadingZeros()) { 606 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 607 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) { 608 // We can't guarantee that nsw/nuw hold after simplifying the operand. 609 I->dropPoisonGeneratingFlags(); 610 return I; 611 } 612 } 613 computeKnownBits(I, Known, Depth, CxtI); 614 } 615 break; 616 } 617 case Instruction::LShr: { 618 const APInt *SA; 619 if (match(I->getOperand(1), m_APInt(SA))) { 620 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 621 622 // If we are just demanding the shifted sign bit and below, then this can 623 // be treated as an ASHR in disguise. 624 if (DemandedMask.countLeadingZeros() >= ShiftAmt) { 625 // If we only want bits that already match the signbit then we don't 626 // need to shift. 627 unsigned NumHiDemandedBits = 628 BitWidth - DemandedMask.countTrailingZeros(); 629 unsigned SignBits = 630 ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 631 if (SignBits >= NumHiDemandedBits) 632 return I->getOperand(0); 633 } 634 635 // Unsigned shift right. 636 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 637 638 // If the shift is exact, then it does demand the low bits (and knows that 639 // they are zero). 640 if (cast<LShrOperator>(I)->isExact()) 641 DemandedMaskIn.setLowBits(ShiftAmt); 642 643 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 644 return I; 645 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 646 Known.Zero.lshrInPlace(ShiftAmt); 647 Known.One.lshrInPlace(ShiftAmt); 648 if (ShiftAmt) 649 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 650 } else { 651 computeKnownBits(I, Known, Depth, CxtI); 652 } 653 break; 654 } 655 case Instruction::AShr: { 656 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 657 658 // If we only want bits that already match the signbit then we don't need 659 // to shift. 660 unsigned NumHiDemandedBits = BitWidth - DemandedMask.countTrailingZeros(); 661 if (SignBits >= NumHiDemandedBits) 662 return I->getOperand(0); 663 664 // If this is an arithmetic shift right and only the low-bit is set, we can 665 // always convert this into a logical shr, even if the shift amount is 666 // variable. The low bit of the shift cannot be an input sign bit unless 667 // the shift amount is >= the size of the datatype, which is undefined. 668 if (DemandedMask.isOne()) { 669 // Perform the logical shift right. 670 Instruction *NewVal = BinaryOperator::CreateLShr( 671 I->getOperand(0), I->getOperand(1), I->getName()); 672 return InsertNewInstWith(NewVal, *I); 673 } 674 675 const APInt *SA; 676 if (match(I->getOperand(1), m_APInt(SA))) { 677 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 678 679 // Signed shift right. 680 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 681 // If any of the high bits are demanded, we should set the sign bit as 682 // demanded. 683 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 684 DemandedMaskIn.setSignBit(); 685 686 // If the shift is exact, then it does demand the low bits (and knows that 687 // they are zero). 688 if (cast<AShrOperator>(I)->isExact()) 689 DemandedMaskIn.setLowBits(ShiftAmt); 690 691 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 692 return I; 693 694 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 695 // Compute the new bits that are at the top now plus sign bits. 696 APInt HighBits(APInt::getHighBitsSet( 697 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 698 Known.Zero.lshrInPlace(ShiftAmt); 699 Known.One.lshrInPlace(ShiftAmt); 700 701 // If the input sign bit is known to be zero, or if none of the top bits 702 // are demanded, turn this into an unsigned shift right. 703 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 704 if (Known.Zero[BitWidth-ShiftAmt-1] || 705 !DemandedMask.intersects(HighBits)) { 706 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 707 I->getOperand(1)); 708 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 709 return InsertNewInstWith(LShr, *I); 710 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 711 Known.One |= HighBits; 712 } 713 } else { 714 computeKnownBits(I, Known, Depth, CxtI); 715 } 716 break; 717 } 718 case Instruction::UDiv: { 719 // UDiv doesn't demand low bits that are zero in the divisor. 720 const APInt *SA; 721 if (match(I->getOperand(1), m_APInt(SA))) { 722 // If the shift is exact, then it does demand the low bits. 723 if (cast<UDivOperator>(I)->isExact()) 724 break; 725 726 // FIXME: Take the demanded mask of the result into account. 727 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 728 APInt DemandedMaskIn = 729 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 730 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 731 return I; 732 733 // Propagate zero bits from the input. 734 Known.Zero.setHighBits(std::min( 735 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 736 } else { 737 computeKnownBits(I, Known, Depth, CxtI); 738 } 739 break; 740 } 741 case Instruction::SRem: { 742 const APInt *Rem; 743 if (match(I->getOperand(1), m_APInt(Rem))) { 744 // X % -1 demands all the bits because we don't want to introduce 745 // INT_MIN % -1 (== undef) by accident. 746 if (Rem->isAllOnes()) 747 break; 748 APInt RA = Rem->abs(); 749 if (RA.isPowerOf2()) { 750 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 751 return I->getOperand(0); 752 753 APInt LowBits = RA - 1; 754 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 755 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 756 return I; 757 758 // The low bits of LHS are unchanged by the srem. 759 Known.Zero = LHSKnown.Zero & LowBits; 760 Known.One = LHSKnown.One & LowBits; 761 762 // If LHS is non-negative or has all low bits zero, then the upper bits 763 // are all zero. 764 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 765 Known.Zero |= ~LowBits; 766 767 // If LHS is negative and not all low bits are zero, then the upper bits 768 // are all one. 769 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 770 Known.One |= ~LowBits; 771 772 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 773 break; 774 } 775 } 776 777 // The sign bit is the LHS's sign bit, except when the result of the 778 // remainder is zero. 779 if (DemandedMask.isSignBitSet()) { 780 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 781 // If it's known zero, our sign bit is also zero. 782 if (LHSKnown.isNonNegative()) 783 Known.makeNonNegative(); 784 } 785 break; 786 } 787 case Instruction::URem: { 788 KnownBits Known2(BitWidth); 789 APInt AllOnes = APInt::getAllOnes(BitWidth); 790 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 791 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 792 return I; 793 794 unsigned Leaders = Known2.countMinLeadingZeros(); 795 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 796 break; 797 } 798 case Instruction::Call: { 799 bool KnownBitsComputed = false; 800 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 801 switch (II->getIntrinsicID()) { 802 case Intrinsic::abs: { 803 if (DemandedMask == 1) 804 return II->getArgOperand(0); 805 break; 806 } 807 case Intrinsic::ctpop: { 808 // Checking if the number of clear bits is odd (parity)? If the type has 809 // an even number of bits, that's the same as checking if the number of 810 // set bits is odd, so we can eliminate the 'not' op. 811 Value *X; 812 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && 813 match(II->getArgOperand(0), m_Not(m_Value(X)))) { 814 Function *Ctpop = Intrinsic::getDeclaration( 815 II->getModule(), Intrinsic::ctpop, II->getType()); 816 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I); 817 } 818 break; 819 } 820 case Intrinsic::bswap: { 821 // If the only bits demanded come from one byte of the bswap result, 822 // just shift the input byte into position to eliminate the bswap. 823 unsigned NLZ = DemandedMask.countLeadingZeros(); 824 unsigned NTZ = DemandedMask.countTrailingZeros(); 825 826 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 827 // we need all the bits down to bit 8. Likewise, round NLZ. If we 828 // have 14 leading zeros, round to 8. 829 NLZ = alignDown(NLZ, 8); 830 NTZ = alignDown(NTZ, 8); 831 // If we need exactly one byte, we can do this transformation. 832 if (BitWidth - NLZ - NTZ == 8) { 833 // Replace this with either a left or right shift to get the byte into 834 // the right place. 835 Instruction *NewVal; 836 if (NLZ > NTZ) 837 NewVal = BinaryOperator::CreateLShr( 838 II->getArgOperand(0), 839 ConstantInt::get(I->getType(), NLZ - NTZ)); 840 else 841 NewVal = BinaryOperator::CreateShl( 842 II->getArgOperand(0), 843 ConstantInt::get(I->getType(), NTZ - NLZ)); 844 NewVal->takeName(I); 845 return InsertNewInstWith(NewVal, *I); 846 } 847 break; 848 } 849 case Intrinsic::fshr: 850 case Intrinsic::fshl: { 851 const APInt *SA; 852 if (!match(I->getOperand(2), m_APInt(SA))) 853 break; 854 855 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 856 // defined, so no need to special-case zero shifts here. 857 uint64_t ShiftAmt = SA->urem(BitWidth); 858 if (II->getIntrinsicID() == Intrinsic::fshr) 859 ShiftAmt = BitWidth - ShiftAmt; 860 861 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 862 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 863 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 864 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 865 return I; 866 867 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 868 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 869 Known.One = LHSKnown.One.shl(ShiftAmt) | 870 RHSKnown.One.lshr(BitWidth - ShiftAmt); 871 KnownBitsComputed = true; 872 break; 873 } 874 case Intrinsic::umax: { 875 // UMax(A, C) == A if ... 876 // The lowest non-zero bit of DemandMask is higher than the highest 877 // non-zero bit of C. 878 const APInt *C; 879 unsigned CTZ = DemandedMask.countTrailingZeros(); 880 if (match(II->getArgOperand(1), m_APInt(C)) && 881 CTZ >= C->getActiveBits()) 882 return II->getArgOperand(0); 883 break; 884 } 885 case Intrinsic::umin: { 886 // UMin(A, C) == A if ... 887 // The lowest non-zero bit of DemandMask is higher than the highest 888 // non-one bit of C. 889 // This comes from using DeMorgans on the above umax example. 890 const APInt *C; 891 unsigned CTZ = DemandedMask.countTrailingZeros(); 892 if (match(II->getArgOperand(1), m_APInt(C)) && 893 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 894 return II->getArgOperand(0); 895 break; 896 } 897 default: { 898 // Handle target specific intrinsics 899 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 900 *II, DemandedMask, Known, KnownBitsComputed); 901 if (V.hasValue()) 902 return V.getValue(); 903 break; 904 } 905 } 906 } 907 908 if (!KnownBitsComputed) 909 computeKnownBits(V, Known, Depth, CxtI); 910 break; 911 } 912 } 913 914 // If the client is only demanding bits that we know, return the known 915 // constant. 916 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 917 return Constant::getIntegerValue(VTy, Known.One); 918 return nullptr; 919 } 920 921 /// Helper routine of SimplifyDemandedUseBits. It computes Known 922 /// bits. It also tries to handle simplifications that can be done based on 923 /// DemandedMask, but without modifying the Instruction. 924 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 925 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 926 Instruction *CxtI) { 927 unsigned BitWidth = DemandedMask.getBitWidth(); 928 Type *ITy = I->getType(); 929 930 KnownBits LHSKnown(BitWidth); 931 KnownBits RHSKnown(BitWidth); 932 933 // Despite the fact that we can't simplify this instruction in all User's 934 // context, we can at least compute the known bits, and we can 935 // do simplifications that apply to *just* the one user if we know that 936 // this instruction has a simpler value in that context. 937 switch (I->getOpcode()) { 938 case Instruction::And: { 939 // If either the LHS or the RHS are Zero, the result is zero. 940 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 941 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 942 CxtI); 943 944 Known = LHSKnown & RHSKnown; 945 946 // If the client is only demanding bits that we know, return the known 947 // constant. 948 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 949 return Constant::getIntegerValue(ITy, Known.One); 950 951 // If all of the demanded bits are known 1 on one side, return the other. 952 // These bits cannot contribute to the result of the 'and' in this 953 // context. 954 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 955 return I->getOperand(0); 956 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 957 return I->getOperand(1); 958 959 break; 960 } 961 case Instruction::Or: { 962 // We can simplify (X|Y) -> X or Y in the user's context if we know that 963 // only bits from X or Y are demanded. 964 965 // If either the LHS or the RHS are One, the result is One. 966 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 967 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 968 CxtI); 969 970 Known = LHSKnown | RHSKnown; 971 972 // If the client is only demanding bits that we know, return the known 973 // constant. 974 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 975 return Constant::getIntegerValue(ITy, Known.One); 976 977 // If all of the demanded bits are known zero on one side, return the 978 // other. These bits cannot contribute to the result of the 'or' in this 979 // context. 980 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 981 return I->getOperand(0); 982 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 983 return I->getOperand(1); 984 985 break; 986 } 987 case Instruction::Xor: { 988 // We can simplify (X^Y) -> X or Y in the user's context if we know that 989 // only bits from X or Y are demanded. 990 991 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 992 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 993 CxtI); 994 995 Known = LHSKnown ^ RHSKnown; 996 997 // If the client is only demanding bits that we know, return the known 998 // constant. 999 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1000 return Constant::getIntegerValue(ITy, Known.One); 1001 1002 // If all of the demanded bits are known zero on one side, return the 1003 // other. 1004 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 1005 return I->getOperand(0); 1006 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 1007 return I->getOperand(1); 1008 1009 break; 1010 } 1011 case Instruction::AShr: { 1012 // Compute the Known bits to simplify things downstream. 1013 computeKnownBits(I, Known, Depth, CxtI); 1014 1015 // If this user is only demanding bits that we know, return the known 1016 // constant. 1017 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1018 return Constant::getIntegerValue(ITy, Known.One); 1019 1020 // If the right shift operand 0 is a result of a left shift by the same 1021 // amount, this is probably a zero/sign extension, which may be unnecessary, 1022 // if we do not demand any of the new sign bits. So, return the original 1023 // operand instead. 1024 const APInt *ShiftRC; 1025 const APInt *ShiftLC; 1026 Value *X; 1027 unsigned BitWidth = DemandedMask.getBitWidth(); 1028 if (match(I, 1029 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 1030 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && 1031 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 1032 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 1033 return X; 1034 } 1035 1036 break; 1037 } 1038 default: 1039 // Compute the Known bits to simplify things downstream. 1040 computeKnownBits(I, Known, Depth, CxtI); 1041 1042 // If this user is only demanding bits that we know, return the known 1043 // constant. 1044 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 1045 return Constant::getIntegerValue(ITy, Known.One); 1046 1047 break; 1048 } 1049 1050 return nullptr; 1051 } 1052 1053 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 1054 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 1055 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 1056 /// of "C2-C1". 1057 /// 1058 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 1059 /// ..., bn}, without considering the specific value X is holding. 1060 /// This transformation is legal iff one of following conditions is hold: 1061 /// 1) All the bit in S are 0, in this case E1 == E2. 1062 /// 2) We don't care those bits in S, per the input DemandedMask. 1063 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 1064 /// rest bits. 1065 /// 1066 /// Currently we only test condition 2). 1067 /// 1068 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 1069 /// not successful. 1070 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 1071 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 1072 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 1073 if (!ShlOp1 || !ShrOp1) 1074 return nullptr; // No-op. 1075 1076 Value *VarX = Shr->getOperand(0); 1077 Type *Ty = VarX->getType(); 1078 unsigned BitWidth = Ty->getScalarSizeInBits(); 1079 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1080 return nullptr; // Undef. 1081 1082 unsigned ShlAmt = ShlOp1.getZExtValue(); 1083 unsigned ShrAmt = ShrOp1.getZExtValue(); 1084 1085 Known.One.clearAllBits(); 1086 Known.Zero.setLowBits(ShlAmt - 1); 1087 Known.Zero &= DemandedMask; 1088 1089 APInt BitMask1(APInt::getAllOnes(BitWidth)); 1090 APInt BitMask2(APInt::getAllOnes(BitWidth)); 1091 1092 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1093 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1094 (BitMask1.ashr(ShrAmt) << ShlAmt); 1095 1096 if (ShrAmt <= ShlAmt) { 1097 BitMask2 <<= (ShlAmt - ShrAmt); 1098 } else { 1099 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1100 BitMask2.ashr(ShrAmt - ShlAmt); 1101 } 1102 1103 // Check if condition-2 (see the comment to this function) is satified. 1104 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1105 if (ShrAmt == ShlAmt) 1106 return VarX; 1107 1108 if (!Shr->hasOneUse()) 1109 return nullptr; 1110 1111 BinaryOperator *New; 1112 if (ShrAmt < ShlAmt) { 1113 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1114 New = BinaryOperator::CreateShl(VarX, Amt); 1115 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1116 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1117 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1118 } else { 1119 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1120 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1121 BinaryOperator::CreateAShr(VarX, Amt); 1122 if (cast<BinaryOperator>(Shr)->isExact()) 1123 New->setIsExact(true); 1124 } 1125 1126 return InsertNewInstWith(New, *Shl); 1127 } 1128 1129 return nullptr; 1130 } 1131 1132 /// The specified value produces a vector with any number of elements. 1133 /// This method analyzes which elements of the operand are undef or poison and 1134 /// returns that information in UndefElts. 1135 /// 1136 /// DemandedElts contains the set of elements that are actually used by the 1137 /// caller, and by default (AllowMultipleUsers equals false) the value is 1138 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1139 /// to true, DemandedElts refers to the union of sets of elements that are 1140 /// used by all callers. 1141 /// 1142 /// If the information about demanded elements can be used to simplify the 1143 /// operation, the operation is simplified, then the resultant value is 1144 /// returned. This returns null if no change was made. 1145 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1146 APInt DemandedElts, 1147 APInt &UndefElts, 1148 unsigned Depth, 1149 bool AllowMultipleUsers) { 1150 // Cannot analyze scalable type. The number of vector elements is not a 1151 // compile-time constant. 1152 if (isa<ScalableVectorType>(V->getType())) 1153 return nullptr; 1154 1155 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1156 APInt EltMask(APInt::getAllOnes(VWidth)); 1157 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1158 1159 if (match(V, m_Undef())) { 1160 // If the entire vector is undef or poison, just return this info. 1161 UndefElts = EltMask; 1162 return nullptr; 1163 } 1164 1165 if (DemandedElts.isZero()) { // If nothing is demanded, provide poison. 1166 UndefElts = EltMask; 1167 return PoisonValue::get(V->getType()); 1168 } 1169 1170 UndefElts = 0; 1171 1172 if (auto *C = dyn_cast<Constant>(V)) { 1173 // Check if this is identity. If so, return 0 since we are not simplifying 1174 // anything. 1175 if (DemandedElts.isAllOnes()) 1176 return nullptr; 1177 1178 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1179 Constant *Poison = PoisonValue::get(EltTy); 1180 SmallVector<Constant*, 16> Elts; 1181 for (unsigned i = 0; i != VWidth; ++i) { 1182 if (!DemandedElts[i]) { // If not demanded, set to poison. 1183 Elts.push_back(Poison); 1184 UndefElts.setBit(i); 1185 continue; 1186 } 1187 1188 Constant *Elt = C->getAggregateElement(i); 1189 if (!Elt) return nullptr; 1190 1191 Elts.push_back(Elt); 1192 if (isa<UndefValue>(Elt)) // Already undef or poison. 1193 UndefElts.setBit(i); 1194 } 1195 1196 // If we changed the constant, return it. 1197 Constant *NewCV = ConstantVector::get(Elts); 1198 return NewCV != C ? NewCV : nullptr; 1199 } 1200 1201 // Limit search depth. 1202 if (Depth == 10) 1203 return nullptr; 1204 1205 if (!AllowMultipleUsers) { 1206 // If multiple users are using the root value, proceed with 1207 // simplification conservatively assuming that all elements 1208 // are needed. 1209 if (!V->hasOneUse()) { 1210 // Quit if we find multiple users of a non-root value though. 1211 // They'll be handled when it's their turn to be visited by 1212 // the main instcombine process. 1213 if (Depth != 0) 1214 // TODO: Just compute the UndefElts information recursively. 1215 return nullptr; 1216 1217 // Conservatively assume that all elements are needed. 1218 DemandedElts = EltMask; 1219 } 1220 } 1221 1222 Instruction *I = dyn_cast<Instruction>(V); 1223 if (!I) return nullptr; // Only analyze instructions. 1224 1225 bool MadeChange = false; 1226 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1227 APInt Demanded, APInt &Undef) { 1228 auto *II = dyn_cast<IntrinsicInst>(Inst); 1229 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1230 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1231 replaceOperand(*Inst, OpNum, V); 1232 MadeChange = true; 1233 } 1234 }; 1235 1236 APInt UndefElts2(VWidth, 0); 1237 APInt UndefElts3(VWidth, 0); 1238 switch (I->getOpcode()) { 1239 default: break; 1240 1241 case Instruction::GetElementPtr: { 1242 // The LangRef requires that struct geps have all constant indices. As 1243 // such, we can't convert any operand to partial undef. 1244 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1245 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1246 I != E; I++) 1247 if (I.isStruct()) 1248 return true; 1249 return false; 1250 }; 1251 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1252 break; 1253 1254 // Conservatively track the demanded elements back through any vector 1255 // operands we may have. We know there must be at least one, or we 1256 // wouldn't have a vector result to get here. Note that we intentionally 1257 // merge the undef bits here since gepping with either an poison base or 1258 // index results in poison. 1259 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1260 if (i == 0 ? match(I->getOperand(i), m_Undef()) 1261 : match(I->getOperand(i), m_Poison())) { 1262 // If the entire vector is undefined, just return this info. 1263 UndefElts = EltMask; 1264 return nullptr; 1265 } 1266 if (I->getOperand(i)->getType()->isVectorTy()) { 1267 APInt UndefEltsOp(VWidth, 0); 1268 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1269 // gep(x, undef) is not undef, so skip considering idx ops here 1270 // Note that we could propagate poison, but we can't distinguish between 1271 // undef & poison bits ATM 1272 if (i == 0) 1273 UndefElts |= UndefEltsOp; 1274 } 1275 } 1276 1277 break; 1278 } 1279 case Instruction::InsertElement: { 1280 // If this is a variable index, we don't know which element it overwrites. 1281 // demand exactly the same input as we produce. 1282 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1283 if (!Idx) { 1284 // Note that we can't propagate undef elt info, because we don't know 1285 // which elt is getting updated. 1286 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1287 break; 1288 } 1289 1290 // The element inserted overwrites whatever was there, so the input demanded 1291 // set is simpler than the output set. 1292 unsigned IdxNo = Idx->getZExtValue(); 1293 APInt PreInsertDemandedElts = DemandedElts; 1294 if (IdxNo < VWidth) 1295 PreInsertDemandedElts.clearBit(IdxNo); 1296 1297 // If we only demand the element that is being inserted and that element 1298 // was extracted from the same index in another vector with the same type, 1299 // replace this insert with that other vector. 1300 // Note: This is attempted before the call to simplifyAndSetOp because that 1301 // may change UndefElts to a value that does not match with Vec. 1302 Value *Vec; 1303 if (PreInsertDemandedElts == 0 && 1304 match(I->getOperand(1), 1305 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1306 Vec->getType() == I->getType()) { 1307 return Vec; 1308 } 1309 1310 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1311 1312 // If this is inserting an element that isn't demanded, remove this 1313 // insertelement. 1314 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1315 Worklist.push(I); 1316 return I->getOperand(0); 1317 } 1318 1319 // The inserted element is defined. 1320 UndefElts.clearBit(IdxNo); 1321 break; 1322 } 1323 case Instruction::ShuffleVector: { 1324 auto *Shuffle = cast<ShuffleVectorInst>(I); 1325 assert(Shuffle->getOperand(0)->getType() == 1326 Shuffle->getOperand(1)->getType() && 1327 "Expected shuffle operands to have same type"); 1328 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1329 ->getNumElements(); 1330 // Handle trivial case of a splat. Only check the first element of LHS 1331 // operand. 1332 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1333 DemandedElts.isAllOnes()) { 1334 if (!match(I->getOperand(1), m_Undef())) { 1335 I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType())); 1336 MadeChange = true; 1337 } 1338 APInt LeftDemanded(OpWidth, 1); 1339 APInt LHSUndefElts(OpWidth, 0); 1340 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1341 if (LHSUndefElts[0]) 1342 UndefElts = EltMask; 1343 else 1344 UndefElts.clearAllBits(); 1345 break; 1346 } 1347 1348 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1349 for (unsigned i = 0; i < VWidth; i++) { 1350 if (DemandedElts[i]) { 1351 unsigned MaskVal = Shuffle->getMaskValue(i); 1352 if (MaskVal != -1u) { 1353 assert(MaskVal < OpWidth * 2 && 1354 "shufflevector mask index out of range!"); 1355 if (MaskVal < OpWidth) 1356 LeftDemanded.setBit(MaskVal); 1357 else 1358 RightDemanded.setBit(MaskVal - OpWidth); 1359 } 1360 } 1361 } 1362 1363 APInt LHSUndefElts(OpWidth, 0); 1364 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1365 1366 APInt RHSUndefElts(OpWidth, 0); 1367 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1368 1369 // If this shuffle does not change the vector length and the elements 1370 // demanded by this shuffle are an identity mask, then this shuffle is 1371 // unnecessary. 1372 // 1373 // We are assuming canonical form for the mask, so the source vector is 1374 // operand 0 and operand 1 is not used. 1375 // 1376 // Note that if an element is demanded and this shuffle mask is undefined 1377 // for that element, then the shuffle is not considered an identity 1378 // operation. The shuffle prevents poison from the operand vector from 1379 // leaking to the result by replacing poison with an undefined value. 1380 if (VWidth == OpWidth) { 1381 bool IsIdentityShuffle = true; 1382 for (unsigned i = 0; i < VWidth; i++) { 1383 unsigned MaskVal = Shuffle->getMaskValue(i); 1384 if (DemandedElts[i] && i != MaskVal) { 1385 IsIdentityShuffle = false; 1386 break; 1387 } 1388 } 1389 if (IsIdentityShuffle) 1390 return Shuffle->getOperand(0); 1391 } 1392 1393 bool NewUndefElts = false; 1394 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1395 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1396 bool LHSUniform = true; 1397 bool RHSUniform = true; 1398 for (unsigned i = 0; i < VWidth; i++) { 1399 unsigned MaskVal = Shuffle->getMaskValue(i); 1400 if (MaskVal == -1u) { 1401 UndefElts.setBit(i); 1402 } else if (!DemandedElts[i]) { 1403 NewUndefElts = true; 1404 UndefElts.setBit(i); 1405 } else if (MaskVal < OpWidth) { 1406 if (LHSUndefElts[MaskVal]) { 1407 NewUndefElts = true; 1408 UndefElts.setBit(i); 1409 } else { 1410 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1411 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1412 LHSUniform = LHSUniform && (MaskVal == i); 1413 } 1414 } else { 1415 if (RHSUndefElts[MaskVal - OpWidth]) { 1416 NewUndefElts = true; 1417 UndefElts.setBit(i); 1418 } else { 1419 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1420 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1421 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1422 } 1423 } 1424 } 1425 1426 // Try to transform shuffle with constant vector and single element from 1427 // this constant vector to single insertelement instruction. 1428 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1429 // insertelement V, C[ci], ci-n 1430 if (OpWidth == 1431 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1432 Value *Op = nullptr; 1433 Constant *Value = nullptr; 1434 unsigned Idx = -1u; 1435 1436 // Find constant vector with the single element in shuffle (LHS or RHS). 1437 if (LHSIdx < OpWidth && RHSUniform) { 1438 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1439 Op = Shuffle->getOperand(1); 1440 Value = CV->getOperand(LHSValIdx); 1441 Idx = LHSIdx; 1442 } 1443 } 1444 if (RHSIdx < OpWidth && LHSUniform) { 1445 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1446 Op = Shuffle->getOperand(0); 1447 Value = CV->getOperand(RHSValIdx); 1448 Idx = RHSIdx; 1449 } 1450 } 1451 // Found constant vector with single element - convert to insertelement. 1452 if (Op && Value) { 1453 Instruction *New = InsertElementInst::Create( 1454 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1455 Shuffle->getName()); 1456 InsertNewInstWith(New, *Shuffle); 1457 return New; 1458 } 1459 } 1460 if (NewUndefElts) { 1461 // Add additional discovered undefs. 1462 SmallVector<int, 16> Elts; 1463 for (unsigned i = 0; i < VWidth; ++i) { 1464 if (UndefElts[i]) 1465 Elts.push_back(UndefMaskElem); 1466 else 1467 Elts.push_back(Shuffle->getMaskValue(i)); 1468 } 1469 Shuffle->setShuffleMask(Elts); 1470 MadeChange = true; 1471 } 1472 break; 1473 } 1474 case Instruction::Select: { 1475 // If this is a vector select, try to transform the select condition based 1476 // on the current demanded elements. 1477 SelectInst *Sel = cast<SelectInst>(I); 1478 if (Sel->getCondition()->getType()->isVectorTy()) { 1479 // TODO: We are not doing anything with UndefElts based on this call. 1480 // It is overwritten below based on the other select operands. If an 1481 // element of the select condition is known undef, then we are free to 1482 // choose the output value from either arm of the select. If we know that 1483 // one of those values is undef, then the output can be undef. 1484 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1485 } 1486 1487 // Next, see if we can transform the arms of the select. 1488 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1489 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1490 for (unsigned i = 0; i < VWidth; i++) { 1491 // isNullValue() always returns false when called on a ConstantExpr. 1492 // Skip constant expressions to avoid propagating incorrect information. 1493 Constant *CElt = CV->getAggregateElement(i); 1494 if (isa<ConstantExpr>(CElt)) 1495 continue; 1496 // TODO: If a select condition element is undef, we can demand from 1497 // either side. If one side is known undef, choosing that side would 1498 // propagate undef. 1499 if (CElt->isNullValue()) 1500 DemandedLHS.clearBit(i); 1501 else 1502 DemandedRHS.clearBit(i); 1503 } 1504 } 1505 1506 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1507 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1508 1509 // Output elements are undefined if the element from each arm is undefined. 1510 // TODO: This can be improved. See comment in select condition handling. 1511 UndefElts = UndefElts2 & UndefElts3; 1512 break; 1513 } 1514 case Instruction::BitCast: { 1515 // Vector->vector casts only. 1516 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1517 if (!VTy) break; 1518 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1519 APInt InputDemandedElts(InVWidth, 0); 1520 UndefElts2 = APInt(InVWidth, 0); 1521 unsigned Ratio; 1522 1523 if (VWidth == InVWidth) { 1524 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1525 // elements as are demanded of us. 1526 Ratio = 1; 1527 InputDemandedElts = DemandedElts; 1528 } else if ((VWidth % InVWidth) == 0) { 1529 // If the number of elements in the output is a multiple of the number of 1530 // elements in the input then an input element is live if any of the 1531 // corresponding output elements are live. 1532 Ratio = VWidth / InVWidth; 1533 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1534 if (DemandedElts[OutIdx]) 1535 InputDemandedElts.setBit(OutIdx / Ratio); 1536 } else if ((InVWidth % VWidth) == 0) { 1537 // If the number of elements in the input is a multiple of the number of 1538 // elements in the output then an input element is live if the 1539 // corresponding output element is live. 1540 Ratio = InVWidth / VWidth; 1541 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1542 if (DemandedElts[InIdx / Ratio]) 1543 InputDemandedElts.setBit(InIdx); 1544 } else { 1545 // Unsupported so far. 1546 break; 1547 } 1548 1549 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1550 1551 if (VWidth == InVWidth) { 1552 UndefElts = UndefElts2; 1553 } else if ((VWidth % InVWidth) == 0) { 1554 // If the number of elements in the output is a multiple of the number of 1555 // elements in the input then an output element is undef if the 1556 // corresponding input element is undef. 1557 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1558 if (UndefElts2[OutIdx / Ratio]) 1559 UndefElts.setBit(OutIdx); 1560 } else if ((InVWidth % VWidth) == 0) { 1561 // If the number of elements in the input is a multiple of the number of 1562 // elements in the output then an output element is undef if all of the 1563 // corresponding input elements are undef. 1564 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1565 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1566 if (SubUndef.countPopulation() == Ratio) 1567 UndefElts.setBit(OutIdx); 1568 } 1569 } else { 1570 llvm_unreachable("Unimp"); 1571 } 1572 break; 1573 } 1574 case Instruction::FPTrunc: 1575 case Instruction::FPExt: 1576 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1577 break; 1578 1579 case Instruction::Call: { 1580 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1581 if (!II) break; 1582 switch (II->getIntrinsicID()) { 1583 case Intrinsic::masked_gather: // fallthrough 1584 case Intrinsic::masked_load: { 1585 // Subtlety: If we load from a pointer, the pointer must be valid 1586 // regardless of whether the element is demanded. Doing otherwise risks 1587 // segfaults which didn't exist in the original program. 1588 APInt DemandedPtrs(APInt::getAllOnes(VWidth)), 1589 DemandedPassThrough(DemandedElts); 1590 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1591 for (unsigned i = 0; i < VWidth; i++) { 1592 Constant *CElt = CV->getAggregateElement(i); 1593 if (CElt->isNullValue()) 1594 DemandedPtrs.clearBit(i); 1595 else if (CElt->isAllOnesValue()) 1596 DemandedPassThrough.clearBit(i); 1597 } 1598 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1599 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1600 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1601 1602 // Output elements are undefined if the element from both sources are. 1603 // TODO: can strengthen via mask as well. 1604 UndefElts = UndefElts2 & UndefElts3; 1605 break; 1606 } 1607 default: { 1608 // Handle target specific intrinsics 1609 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1610 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1611 simplifyAndSetOp); 1612 if (V.hasValue()) 1613 return V.getValue(); 1614 break; 1615 } 1616 } // switch on IntrinsicID 1617 break; 1618 } // case Call 1619 } // switch on Opcode 1620 1621 // TODO: We bail completely on integer div/rem and shifts because they have 1622 // UB/poison potential, but that should be refined. 1623 BinaryOperator *BO; 1624 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1625 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1626 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1627 1628 // Output elements are undefined if both are undefined. Consider things 1629 // like undef & 0. The result is known zero, not undef. 1630 UndefElts &= UndefElts2; 1631 } 1632 1633 // If we've proven all of the lanes undef, return an undef value. 1634 // TODO: Intersect w/demanded lanes 1635 if (UndefElts.isAllOnes()) 1636 return UndefValue::get(I->getType());; 1637 1638 return MadeChange ? I : nullptr; 1639 } 1640