1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/GetElementPtrTypeIterator.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21
22 using namespace llvm;
23 using namespace llvm::PatternMatch;
24
25 #define DEBUG_TYPE "instcombine"
26
27 /// Check to see if the specified operand of the specified instruction is a
28 /// constant integer. If so, check to see if there are any bits set in the
29 /// constant that are not demanded. If so, shrink the constant and return true.
ShrinkDemandedConstant(Instruction * I,unsigned OpNo,const APInt & Demanded)30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
31 const APInt &Demanded) {
32 assert(I && "No instruction?");
33 assert(OpNo < I->getNumOperands() && "Operand index too large");
34
35 // The operand must be a constant integer or splat integer.
36 Value *Op = I->getOperand(OpNo);
37 const APInt *C;
38 if (!match(Op, m_APInt(C)))
39 return false;
40
41 // If there are no bits set that aren't demanded, nothing to do.
42 if (C->isSubsetOf(Demanded))
43 return false;
44
45 // This instruction is producing bits that are not demanded. Shrink the RHS.
46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
47
48 return true;
49 }
50
51
52
53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54 /// the instruction has any properties that allow us to simplify its operands.
SimplifyDemandedInstructionBits(Instruction & Inst)55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57 KnownBits Known(BitWidth);
58 APInt DemandedMask(APInt::getAllOnes(BitWidth));
59
60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
61 0, &Inst);
62 if (!V) return false;
63 if (V == &Inst) return true;
64 replaceInstUsesWith(Inst, V);
65 return true;
66 }
67
68 /// This form of SimplifyDemandedBits simplifies the specified instruction
69 /// operand if possible, updating it in place. It returns true if it made any
70 /// change and false otherwise.
SimplifyDemandedBits(Instruction * I,unsigned OpNo,const APInt & DemandedMask,KnownBits & Known,unsigned Depth)71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
72 const APInt &DemandedMask,
73 KnownBits &Known, unsigned Depth) {
74 Use &U = I->getOperandUse(OpNo);
75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
76 Depth, I);
77 if (!NewVal) return false;
78 if (Instruction* OpInst = dyn_cast<Instruction>(U))
79 salvageDebugInfo(*OpInst);
80
81 replaceUse(U, NewVal);
82 return true;
83 }
84
85 /// This function attempts to replace V with a simpler value based on the
86 /// demanded bits. When this function is called, it is known that only the bits
87 /// set in DemandedMask of the result of V are ever used downstream.
88 /// Consequently, depending on the mask and V, it may be possible to replace V
89 /// with a constant or one of its operands. In such cases, this function does
90 /// the replacement and returns true. In all other cases, it returns false after
91 /// analyzing the expression and setting KnownOne and known to be one in the
92 /// expression. Known.Zero contains all the bits that are known to be zero in
93 /// the expression. These are provided to potentially allow the caller (which
94 /// might recursively be SimplifyDemandedBits itself) to simplify the
95 /// expression.
96 /// Known.One and Known.Zero always follow the invariant that:
97 /// Known.One & Known.Zero == 0.
98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
101 /// be the same.
102 ///
103 /// This returns null if it did not change anything and it permits no
104 /// simplification. This returns V itself if it did some simplification of V's
105 /// operands based on the information about what bits are demanded. This returns
106 /// some other non-null value if it found out that V is equal to another value
107 /// in the context where the specified bits are demanded, but not for all users.
SimplifyDemandedUseBits(Value * V,APInt DemandedMask,KnownBits & Known,unsigned Depth,Instruction * CxtI)108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
109 KnownBits &Known,
110 unsigned Depth,
111 Instruction *CxtI) {
112 assert(V != nullptr && "Null pointer of Value???");
113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
114 uint32_t BitWidth = DemandedMask.getBitWidth();
115 Type *VTy = V->getType();
116 assert(
117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
118 Known.getBitWidth() == BitWidth &&
119 "Value *V, DemandedMask and Known must have same BitWidth");
120
121 if (isa<Constant>(V)) {
122 computeKnownBits(V, Known, Depth, CxtI);
123 return nullptr;
124 }
125
126 Known.resetAll();
127 if (DemandedMask.isZero()) // Not demanding any bits from V.
128 return UndefValue::get(VTy);
129
130 if (Depth == MaxAnalysisRecursionDepth)
131 return nullptr;
132
133 if (isa<ScalableVectorType>(VTy))
134 return nullptr;
135
136 Instruction *I = dyn_cast<Instruction>(V);
137 if (!I) {
138 computeKnownBits(V, Known, Depth, CxtI);
139 return nullptr; // Only analyze instructions.
140 }
141
142 // If there are multiple uses of this value and we aren't at the root, then
143 // we can't do any simplifications of the operands, because DemandedMask
144 // only reflects the bits demanded by *one* of the users.
145 if (Depth != 0 && !I->hasOneUse())
146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
147
148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
149
150 // If this is the root being simplified, allow it to have multiple uses,
151 // just set the DemandedMask to all bits so that we can try to simplify the
152 // operands. This allows visitTruncInst (for example) to simplify the
153 // operand of a trunc without duplicating all the logic below.
154 if (Depth == 0 && !V->hasOneUse())
155 DemandedMask.setAllBits();
156
157 // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care
158 // about the high bits of the operands.
159 auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) {
160 unsigned NLZ = DemandedMask.countLeadingZeros();
161 // Right fill the mask of bits for the operands to demand the most
162 // significant bit and all those below it.
163 DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
164 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
165 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
166 ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
167 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
168 if (NLZ > 0) {
169 // Disable the nsw and nuw flags here: We can no longer guarantee that
170 // we won't wrap after simplification. Removing the nsw/nuw flags is
171 // legal here because the top bit is not demanded.
172 I->setHasNoSignedWrap(false);
173 I->setHasNoUnsignedWrap(false);
174 }
175 return true;
176 }
177 return false;
178 };
179
180 switch (I->getOpcode()) {
181 default:
182 computeKnownBits(I, Known, Depth, CxtI);
183 break;
184 case Instruction::And: {
185 // If either the LHS or the RHS are Zero, the result is zero.
186 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
187 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
188 Depth + 1))
189 return I;
190 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
191 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
192
193 Known = LHSKnown & RHSKnown;
194
195 // If the client is only demanding bits that we know, return the known
196 // constant.
197 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
198 return Constant::getIntegerValue(VTy, Known.One);
199
200 // If all of the demanded bits are known 1 on one side, return the other.
201 // These bits cannot contribute to the result of the 'and'.
202 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
203 return I->getOperand(0);
204 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
205 return I->getOperand(1);
206
207 // If the RHS is a constant, see if we can simplify it.
208 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
209 return I;
210
211 break;
212 }
213 case Instruction::Or: {
214 // If either the LHS or the RHS are One, the result is One.
215 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
216 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
217 Depth + 1))
218 return I;
219 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
220 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
221
222 Known = LHSKnown | RHSKnown;
223
224 // If the client is only demanding bits that we know, return the known
225 // constant.
226 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
227 return Constant::getIntegerValue(VTy, Known.One);
228
229 // If all of the demanded bits are known zero on one side, return the other.
230 // These bits cannot contribute to the result of the 'or'.
231 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
232 return I->getOperand(0);
233 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
234 return I->getOperand(1);
235
236 // If the RHS is a constant, see if we can simplify it.
237 if (ShrinkDemandedConstant(I, 1, DemandedMask))
238 return I;
239
240 break;
241 }
242 case Instruction::Xor: {
243 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
244 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
245 return I;
246 Value *LHS, *RHS;
247 if (DemandedMask == 1 &&
248 match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) &&
249 match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) {
250 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1
251 IRBuilderBase::InsertPointGuard Guard(Builder);
252 Builder.SetInsertPoint(I);
253 auto *Xor = Builder.CreateXor(LHS, RHS);
254 return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor);
255 }
256
257 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
258 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
259
260 Known = LHSKnown ^ RHSKnown;
261
262 // If the client is only demanding bits that we know, return the known
263 // constant.
264 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
265 return Constant::getIntegerValue(VTy, Known.One);
266
267 // If all of the demanded bits are known zero on one side, return the other.
268 // These bits cannot contribute to the result of the 'xor'.
269 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
270 return I->getOperand(0);
271 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
272 return I->getOperand(1);
273
274 // If all of the demanded bits are known to be zero on one side or the
275 // other, turn this into an *inclusive* or.
276 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
277 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
278 Instruction *Or =
279 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
280 I->getName());
281 return InsertNewInstWith(Or, *I);
282 }
283
284 // If all of the demanded bits on one side are known, and all of the set
285 // bits on that side are also known to be set on the other side, turn this
286 // into an AND, as we know the bits will be cleared.
287 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
288 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
289 RHSKnown.One.isSubsetOf(LHSKnown.One)) {
290 Constant *AndC = Constant::getIntegerValue(VTy,
291 ~RHSKnown.One & DemandedMask);
292 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
293 return InsertNewInstWith(And, *I);
294 }
295
296 // If the RHS is a constant, see if we can change it. Don't alter a -1
297 // constant because that's a canonical 'not' op, and that is better for
298 // combining, SCEV, and codegen.
299 const APInt *C;
300 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) {
301 if ((*C | ~DemandedMask).isAllOnes()) {
302 // Force bits to 1 to create a 'not' op.
303 I->setOperand(1, ConstantInt::getAllOnesValue(VTy));
304 return I;
305 }
306 // If we can't turn this into a 'not', try to shrink the constant.
307 if (ShrinkDemandedConstant(I, 1, DemandedMask))
308 return I;
309 }
310
311 // If our LHS is an 'and' and if it has one use, and if any of the bits we
312 // are flipping are known to be set, then the xor is just resetting those
313 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
314 // simplifying both of them.
315 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) {
316 ConstantInt *AndRHS, *XorRHS;
317 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
318 match(I->getOperand(1), m_ConstantInt(XorRHS)) &&
319 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) &&
320 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
321 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
322
323 Constant *AndC = ConstantInt::get(VTy, NewMask & AndRHS->getValue());
324 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
325 InsertNewInstWith(NewAnd, *I);
326
327 Constant *XorC = ConstantInt::get(VTy, NewMask & XorRHS->getValue());
328 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
329 return InsertNewInstWith(NewXor, *I);
330 }
331 }
332 break;
333 }
334 case Instruction::Select: {
335 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
336 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
337 return I;
338 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
339 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
340
341 // If the operands are constants, see if we can simplify them.
342 // This is similar to ShrinkDemandedConstant, but for a select we want to
343 // try to keep the selected constants the same as icmp value constants, if
344 // we can. This helps not break apart (or helps put back together)
345 // canonical patterns like min and max.
346 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
347 const APInt &DemandedMask) {
348 const APInt *SelC;
349 if (!match(I->getOperand(OpNo), m_APInt(SelC)))
350 return false;
351
352 // Get the constant out of the ICmp, if there is one.
353 // Only try this when exactly 1 operand is a constant (if both operands
354 // are constant, the icmp should eventually simplify). Otherwise, we may
355 // invert the transform that reduces set bits and infinite-loop.
356 Value *X;
357 const APInt *CmpC;
358 ICmpInst::Predicate Pred;
359 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) ||
360 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth())
361 return ShrinkDemandedConstant(I, OpNo, DemandedMask);
362
363 // If the constant is already the same as the ICmp, leave it as-is.
364 if (*CmpC == *SelC)
365 return false;
366 // If the constants are not already the same, but can be with the demand
367 // mask, use the constant value from the ICmp.
368 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
369 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
370 return true;
371 }
372 return ShrinkDemandedConstant(I, OpNo, DemandedMask);
373 };
374 if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
375 CanonicalizeSelectConstant(I, 2, DemandedMask))
376 return I;
377
378 // Only known if known in both the LHS and RHS.
379 Known = KnownBits::commonBits(LHSKnown, RHSKnown);
380 break;
381 }
382 case Instruction::Trunc: {
383 // If we do not demand the high bits of a right-shifted and truncated value,
384 // then we may be able to truncate it before the shift.
385 Value *X;
386 const APInt *C;
387 if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
388 // The shift amount must be valid (not poison) in the narrow type, and
389 // it must not be greater than the high bits demanded of the result.
390 if (C->ult(VTy->getScalarSizeInBits()) &&
391 C->ule(DemandedMask.countLeadingZeros())) {
392 // trunc (lshr X, C) --> lshr (trunc X), C
393 IRBuilderBase::InsertPointGuard Guard(Builder);
394 Builder.SetInsertPoint(I);
395 Value *Trunc = Builder.CreateTrunc(X, VTy);
396 return Builder.CreateLShr(Trunc, C->getZExtValue());
397 }
398 }
399 }
400 LLVM_FALLTHROUGH;
401 case Instruction::ZExt: {
402 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
403
404 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
405 KnownBits InputKnown(SrcBitWidth);
406 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
407 return I;
408 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
409 Known = InputKnown.zextOrTrunc(BitWidth);
410 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
411 break;
412 }
413 case Instruction::BitCast:
414 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
415 return nullptr; // vector->int or fp->int?
416
417 if (auto *DstVTy = dyn_cast<VectorType>(VTy)) {
418 if (auto *SrcVTy = dyn_cast<VectorType>(I->getOperand(0)->getType())) {
419 if (cast<FixedVectorType>(DstVTy)->getNumElements() !=
420 cast<FixedVectorType>(SrcVTy)->getNumElements())
421 // Don't touch a bitcast between vectors of different element counts.
422 return nullptr;
423 } else
424 // Don't touch a scalar-to-vector bitcast.
425 return nullptr;
426 } else if (I->getOperand(0)->getType()->isVectorTy())
427 // Don't touch a vector-to-scalar bitcast.
428 return nullptr;
429
430 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
431 return I;
432 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
433 break;
434 case Instruction::SExt: {
435 // Compute the bits in the result that are not present in the input.
436 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
437
438 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
439
440 // If any of the sign extended bits are demanded, we know that the sign
441 // bit is demanded.
442 if (DemandedMask.getActiveBits() > SrcBitWidth)
443 InputDemandedBits.setBit(SrcBitWidth-1);
444
445 KnownBits InputKnown(SrcBitWidth);
446 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
447 return I;
448
449 // If the input sign bit is known zero, or if the NewBits are not demanded
450 // convert this into a zero extension.
451 if (InputKnown.isNonNegative() ||
452 DemandedMask.getActiveBits() <= SrcBitWidth) {
453 // Convert to ZExt cast.
454 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
455 return InsertNewInstWith(NewCast, *I);
456 }
457
458 // If the sign bit of the input is known set or clear, then we know the
459 // top bits of the result.
460 Known = InputKnown.sext(BitWidth);
461 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
462 break;
463 }
464 case Instruction::Add:
465 if ((DemandedMask & 1) == 0) {
466 // If we do not need the low bit, try to convert bool math to logic:
467 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
468 Value *X, *Y;
469 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
470 m_OneUse(m_SExt(m_Value(Y))))) &&
471 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
472 // Truth table for inputs and output signbits:
473 // X:0 | X:1
474 // ----------
475 // Y:0 | 0 | 0 |
476 // Y:1 | -1 | 0 |
477 // ----------
478 IRBuilderBase::InsertPointGuard Guard(Builder);
479 Builder.SetInsertPoint(I);
480 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
481 return Builder.CreateSExt(AndNot, VTy);
482 }
483
484 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
485 // TODO: Relax the one-use checks because we are removing an instruction?
486 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))),
487 m_OneUse(m_SExt(m_Value(Y))))) &&
488 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
489 // Truth table for inputs and output signbits:
490 // X:0 | X:1
491 // -----------
492 // Y:0 | -1 | -1 |
493 // Y:1 | -1 | 0 |
494 // -----------
495 IRBuilderBase::InsertPointGuard Guard(Builder);
496 Builder.SetInsertPoint(I);
497 Value *Or = Builder.CreateOr(X, Y);
498 return Builder.CreateSExt(Or, VTy);
499 }
500 }
501 LLVM_FALLTHROUGH;
502 case Instruction::Sub: {
503 APInt DemandedFromOps;
504 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps))
505 return I;
506
507 // If we are known to be adding/subtracting zeros to every bit below
508 // the highest demanded bit, we just return the other side.
509 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
510 return I->getOperand(0);
511 // We can't do this with the LHS for subtraction, unless we are only
512 // demanding the LSB.
513 if ((I->getOpcode() == Instruction::Add || DemandedFromOps.isOne()) &&
514 DemandedFromOps.isSubsetOf(LHSKnown.Zero))
515 return I->getOperand(1);
516
517 // Otherwise just compute the known bits of the result.
518 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
519 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
520 NSW, LHSKnown, RHSKnown);
521 break;
522 }
523 case Instruction::Mul: {
524 APInt DemandedFromOps;
525 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps))
526 return I;
527
528 if (DemandedMask.isPowerOf2()) {
529 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
530 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
531 // odd (has LSB set), then the left-shifted low bit of X is the answer.
532 unsigned CTZ = DemandedMask.countTrailingZeros();
533 const APInt *C;
534 if (match(I->getOperand(1), m_APInt(C)) &&
535 C->countTrailingZeros() == CTZ) {
536 Constant *ShiftC = ConstantInt::get(VTy, CTZ);
537 Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC);
538 return InsertNewInstWith(Shl, *I);
539 }
540 }
541 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
542 // X * X is odd iff X is odd.
543 // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
544 if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) {
545 Constant *One = ConstantInt::get(VTy, 1);
546 Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One);
547 return InsertNewInstWith(And1, *I);
548 }
549
550 computeKnownBits(I, Known, Depth, CxtI);
551 break;
552 }
553 case Instruction::Shl: {
554 const APInt *SA;
555 if (match(I->getOperand(1), m_APInt(SA))) {
556 const APInt *ShrAmt;
557 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
558 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
559 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
560 DemandedMask, Known))
561 return R;
562
563 // TODO: If we only want bits that already match the signbit then we don't
564 // need to shift.
565
566 // If we can pre-shift a right-shifted constant to the left without
567 // losing any high bits amd we don't demand the low bits, then eliminate
568 // the left-shift:
569 // (C >> X) << LeftShiftAmtC --> (C << RightShiftAmtC) >> X
570 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
571 Value *X;
572 Constant *C;
573 if (DemandedMask.countTrailingZeros() >= ShiftAmt &&
574 match(I->getOperand(0), m_LShr(m_ImmConstant(C), m_Value(X)))) {
575 Constant *LeftShiftAmtC = ConstantInt::get(VTy, ShiftAmt);
576 Constant *NewC = ConstantExpr::getShl(C, LeftShiftAmtC);
577 if (ConstantExpr::getLShr(NewC, LeftShiftAmtC) == C) {
578 Instruction *Lshr = BinaryOperator::CreateLShr(NewC, X);
579 return InsertNewInstWith(Lshr, *I);
580 }
581 }
582
583 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
584
585 // If the shift is NUW/NSW, then it does demand the high bits.
586 ShlOperator *IOp = cast<ShlOperator>(I);
587 if (IOp->hasNoSignedWrap())
588 DemandedMaskIn.setHighBits(ShiftAmt+1);
589 else if (IOp->hasNoUnsignedWrap())
590 DemandedMaskIn.setHighBits(ShiftAmt);
591
592 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
593 return I;
594 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
595
596 bool SignBitZero = Known.Zero.isSignBitSet();
597 bool SignBitOne = Known.One.isSignBitSet();
598 Known.Zero <<= ShiftAmt;
599 Known.One <<= ShiftAmt;
600 // low bits known zero.
601 if (ShiftAmt)
602 Known.Zero.setLowBits(ShiftAmt);
603
604 // If this shift has "nsw" keyword, then the result is either a poison
605 // value or has the same sign bit as the first operand.
606 if (IOp->hasNoSignedWrap()) {
607 if (SignBitZero)
608 Known.Zero.setSignBit();
609 else if (SignBitOne)
610 Known.One.setSignBit();
611 if (Known.hasConflict())
612 return UndefValue::get(VTy);
613 }
614 } else {
615 // This is a variable shift, so we can't shift the demand mask by a known
616 // amount. But if we are not demanding high bits, then we are not
617 // demanding those bits from the pre-shifted operand either.
618 if (unsigned CTLZ = DemandedMask.countLeadingZeros()) {
619 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
620 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) {
621 // We can't guarantee that nsw/nuw hold after simplifying the operand.
622 I->dropPoisonGeneratingFlags();
623 return I;
624 }
625 }
626 computeKnownBits(I, Known, Depth, CxtI);
627 }
628 break;
629 }
630 case Instruction::LShr: {
631 const APInt *SA;
632 if (match(I->getOperand(1), m_APInt(SA))) {
633 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
634
635 // If we are just demanding the shifted sign bit and below, then this can
636 // be treated as an ASHR in disguise.
637 if (DemandedMask.countLeadingZeros() >= ShiftAmt) {
638 // If we only want bits that already match the signbit then we don't
639 // need to shift.
640 unsigned NumHiDemandedBits =
641 BitWidth - DemandedMask.countTrailingZeros();
642 unsigned SignBits =
643 ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
644 if (SignBits >= NumHiDemandedBits)
645 return I->getOperand(0);
646
647 // If we can pre-shift a left-shifted constant to the right without
648 // losing any low bits (we already know we don't demand the high bits),
649 // then eliminate the right-shift:
650 // (C << X) >> RightShiftAmtC --> (C >> RightShiftAmtC) << X
651 Value *X;
652 Constant *C;
653 if (match(I->getOperand(0), m_Shl(m_ImmConstant(C), m_Value(X)))) {
654 Constant *RightShiftAmtC = ConstantInt::get(VTy, ShiftAmt);
655 Constant *NewC = ConstantExpr::getLShr(C, RightShiftAmtC);
656 if (ConstantExpr::getShl(NewC, RightShiftAmtC) == C) {
657 Instruction *Shl = BinaryOperator::CreateShl(NewC, X);
658 return InsertNewInstWith(Shl, *I);
659 }
660 }
661 }
662
663 // Unsigned shift right.
664 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
665
666 // If the shift is exact, then it does demand the low bits (and knows that
667 // they are zero).
668 if (cast<LShrOperator>(I)->isExact())
669 DemandedMaskIn.setLowBits(ShiftAmt);
670
671 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
672 return I;
673 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
674 Known.Zero.lshrInPlace(ShiftAmt);
675 Known.One.lshrInPlace(ShiftAmt);
676 if (ShiftAmt)
677 Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
678 } else {
679 computeKnownBits(I, Known, Depth, CxtI);
680 }
681 break;
682 }
683 case Instruction::AShr: {
684 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
685
686 // If we only want bits that already match the signbit then we don't need
687 // to shift.
688 unsigned NumHiDemandedBits = BitWidth - DemandedMask.countTrailingZeros();
689 if (SignBits >= NumHiDemandedBits)
690 return I->getOperand(0);
691
692 // If this is an arithmetic shift right and only the low-bit is set, we can
693 // always convert this into a logical shr, even if the shift amount is
694 // variable. The low bit of the shift cannot be an input sign bit unless
695 // the shift amount is >= the size of the datatype, which is undefined.
696 if (DemandedMask.isOne()) {
697 // Perform the logical shift right.
698 Instruction *NewVal = BinaryOperator::CreateLShr(
699 I->getOperand(0), I->getOperand(1), I->getName());
700 return InsertNewInstWith(NewVal, *I);
701 }
702
703 const APInt *SA;
704 if (match(I->getOperand(1), m_APInt(SA))) {
705 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
706
707 // Signed shift right.
708 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
709 // If any of the high bits are demanded, we should set the sign bit as
710 // demanded.
711 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
712 DemandedMaskIn.setSignBit();
713
714 // If the shift is exact, then it does demand the low bits (and knows that
715 // they are zero).
716 if (cast<AShrOperator>(I)->isExact())
717 DemandedMaskIn.setLowBits(ShiftAmt);
718
719 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
720 return I;
721
722 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
723 // Compute the new bits that are at the top now plus sign bits.
724 APInt HighBits(APInt::getHighBitsSet(
725 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
726 Known.Zero.lshrInPlace(ShiftAmt);
727 Known.One.lshrInPlace(ShiftAmt);
728
729 // If the input sign bit is known to be zero, or if none of the top bits
730 // are demanded, turn this into an unsigned shift right.
731 assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
732 if (Known.Zero[BitWidth-ShiftAmt-1] ||
733 !DemandedMask.intersects(HighBits)) {
734 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
735 I->getOperand(1));
736 LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
737 return InsertNewInstWith(LShr, *I);
738 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
739 Known.One |= HighBits;
740 }
741 } else {
742 computeKnownBits(I, Known, Depth, CxtI);
743 }
744 break;
745 }
746 case Instruction::UDiv: {
747 // UDiv doesn't demand low bits that are zero in the divisor.
748 const APInt *SA;
749 if (match(I->getOperand(1), m_APInt(SA))) {
750 // If the shift is exact, then it does demand the low bits.
751 if (cast<UDivOperator>(I)->isExact())
752 break;
753
754 // FIXME: Take the demanded mask of the result into account.
755 unsigned RHSTrailingZeros = SA->countTrailingZeros();
756 APInt DemandedMaskIn =
757 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
758 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
759 return I;
760
761 // Propagate zero bits from the input.
762 Known.Zero.setHighBits(std::min(
763 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
764 } else {
765 computeKnownBits(I, Known, Depth, CxtI);
766 }
767 break;
768 }
769 case Instruction::SRem: {
770 const APInt *Rem;
771 if (match(I->getOperand(1), m_APInt(Rem))) {
772 // X % -1 demands all the bits because we don't want to introduce
773 // INT_MIN % -1 (== undef) by accident.
774 if (Rem->isAllOnes())
775 break;
776 APInt RA = Rem->abs();
777 if (RA.isPowerOf2()) {
778 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
779 return I->getOperand(0);
780
781 APInt LowBits = RA - 1;
782 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
783 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
784 return I;
785
786 // The low bits of LHS are unchanged by the srem.
787 Known.Zero = LHSKnown.Zero & LowBits;
788 Known.One = LHSKnown.One & LowBits;
789
790 // If LHS is non-negative or has all low bits zero, then the upper bits
791 // are all zero.
792 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
793 Known.Zero |= ~LowBits;
794
795 // If LHS is negative and not all low bits are zero, then the upper bits
796 // are all one.
797 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
798 Known.One |= ~LowBits;
799
800 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
801 break;
802 }
803 }
804
805 // The sign bit is the LHS's sign bit, except when the result of the
806 // remainder is zero.
807 if (DemandedMask.isSignBitSet()) {
808 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
809 // If it's known zero, our sign bit is also zero.
810 if (LHSKnown.isNonNegative())
811 Known.makeNonNegative();
812 }
813 break;
814 }
815 case Instruction::URem: {
816 KnownBits Known2(BitWidth);
817 APInt AllOnes = APInt::getAllOnes(BitWidth);
818 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
819 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
820 return I;
821
822 unsigned Leaders = Known2.countMinLeadingZeros();
823 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
824 break;
825 }
826 case Instruction::Call: {
827 bool KnownBitsComputed = false;
828 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
829 switch (II->getIntrinsicID()) {
830 case Intrinsic::abs: {
831 if (DemandedMask == 1)
832 return II->getArgOperand(0);
833 break;
834 }
835 case Intrinsic::ctpop: {
836 // Checking if the number of clear bits is odd (parity)? If the type has
837 // an even number of bits, that's the same as checking if the number of
838 // set bits is odd, so we can eliminate the 'not' op.
839 Value *X;
840 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 &&
841 match(II->getArgOperand(0), m_Not(m_Value(X)))) {
842 Function *Ctpop = Intrinsic::getDeclaration(
843 II->getModule(), Intrinsic::ctpop, VTy);
844 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I);
845 }
846 break;
847 }
848 case Intrinsic::bswap: {
849 // If the only bits demanded come from one byte of the bswap result,
850 // just shift the input byte into position to eliminate the bswap.
851 unsigned NLZ = DemandedMask.countLeadingZeros();
852 unsigned NTZ = DemandedMask.countTrailingZeros();
853
854 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
855 // we need all the bits down to bit 8. Likewise, round NLZ. If we
856 // have 14 leading zeros, round to 8.
857 NLZ = alignDown(NLZ, 8);
858 NTZ = alignDown(NTZ, 8);
859 // If we need exactly one byte, we can do this transformation.
860 if (BitWidth - NLZ - NTZ == 8) {
861 // Replace this with either a left or right shift to get the byte into
862 // the right place.
863 Instruction *NewVal;
864 if (NLZ > NTZ)
865 NewVal = BinaryOperator::CreateLShr(
866 II->getArgOperand(0), ConstantInt::get(VTy, NLZ - NTZ));
867 else
868 NewVal = BinaryOperator::CreateShl(
869 II->getArgOperand(0), ConstantInt::get(VTy, NTZ - NLZ));
870 NewVal->takeName(I);
871 return InsertNewInstWith(NewVal, *I);
872 }
873 break;
874 }
875 case Intrinsic::fshr:
876 case Intrinsic::fshl: {
877 const APInt *SA;
878 if (!match(I->getOperand(2), m_APInt(SA)))
879 break;
880
881 // Normalize to funnel shift left. APInt shifts of BitWidth are well-
882 // defined, so no need to special-case zero shifts here.
883 uint64_t ShiftAmt = SA->urem(BitWidth);
884 if (II->getIntrinsicID() == Intrinsic::fshr)
885 ShiftAmt = BitWidth - ShiftAmt;
886
887 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
888 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
889 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
890 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
891 return I;
892
893 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
894 RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
895 Known.One = LHSKnown.One.shl(ShiftAmt) |
896 RHSKnown.One.lshr(BitWidth - ShiftAmt);
897 KnownBitsComputed = true;
898 break;
899 }
900 case Intrinsic::umax: {
901 // UMax(A, C) == A if ...
902 // The lowest non-zero bit of DemandMask is higher than the highest
903 // non-zero bit of C.
904 const APInt *C;
905 unsigned CTZ = DemandedMask.countTrailingZeros();
906 if (match(II->getArgOperand(1), m_APInt(C)) &&
907 CTZ >= C->getActiveBits())
908 return II->getArgOperand(0);
909 break;
910 }
911 case Intrinsic::umin: {
912 // UMin(A, C) == A if ...
913 // The lowest non-zero bit of DemandMask is higher than the highest
914 // non-one bit of C.
915 // This comes from using DeMorgans on the above umax example.
916 const APInt *C;
917 unsigned CTZ = DemandedMask.countTrailingZeros();
918 if (match(II->getArgOperand(1), m_APInt(C)) &&
919 CTZ >= C->getBitWidth() - C->countLeadingOnes())
920 return II->getArgOperand(0);
921 break;
922 }
923 default: {
924 // Handle target specific intrinsics
925 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
926 *II, DemandedMask, Known, KnownBitsComputed);
927 if (V)
928 return V.value();
929 break;
930 }
931 }
932 }
933
934 if (!KnownBitsComputed)
935 computeKnownBits(V, Known, Depth, CxtI);
936 break;
937 }
938 }
939
940 // If the client is only demanding bits that we know, return the known
941 // constant.
942 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
943 return Constant::getIntegerValue(VTy, Known.One);
944 return nullptr;
945 }
946
947 /// Helper routine of SimplifyDemandedUseBits. It computes Known
948 /// bits. It also tries to handle simplifications that can be done based on
949 /// DemandedMask, but without modifying the Instruction.
SimplifyMultipleUseDemandedBits(Instruction * I,const APInt & DemandedMask,KnownBits & Known,unsigned Depth,Instruction * CxtI)950 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
951 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
952 Instruction *CxtI) {
953 unsigned BitWidth = DemandedMask.getBitWidth();
954 Type *ITy = I->getType();
955
956 KnownBits LHSKnown(BitWidth);
957 KnownBits RHSKnown(BitWidth);
958
959 // Despite the fact that we can't simplify this instruction in all User's
960 // context, we can at least compute the known bits, and we can
961 // do simplifications that apply to *just* the one user if we know that
962 // this instruction has a simpler value in that context.
963 switch (I->getOpcode()) {
964 case Instruction::And: {
965 // If either the LHS or the RHS are Zero, the result is zero.
966 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
967 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
968 CxtI);
969
970 Known = LHSKnown & RHSKnown;
971
972 // If the client is only demanding bits that we know, return the known
973 // constant.
974 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
975 return Constant::getIntegerValue(ITy, Known.One);
976
977 // If all of the demanded bits are known 1 on one side, return the other.
978 // These bits cannot contribute to the result of the 'and' in this
979 // context.
980 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
981 return I->getOperand(0);
982 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
983 return I->getOperand(1);
984
985 break;
986 }
987 case Instruction::Or: {
988 // We can simplify (X|Y) -> X or Y in the user's context if we know that
989 // only bits from X or Y are demanded.
990
991 // If either the LHS or the RHS are One, the result is One.
992 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
993 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
994 CxtI);
995
996 Known = LHSKnown | RHSKnown;
997
998 // If the client is only demanding bits that we know, return the known
999 // constant.
1000 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1001 return Constant::getIntegerValue(ITy, Known.One);
1002
1003 // If all of the demanded bits are known zero on one side, return the
1004 // other. These bits cannot contribute to the result of the 'or' in this
1005 // context.
1006 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
1007 return I->getOperand(0);
1008 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
1009 return I->getOperand(1);
1010
1011 break;
1012 }
1013 case Instruction::Xor: {
1014 // We can simplify (X^Y) -> X or Y in the user's context if we know that
1015 // only bits from X or Y are demanded.
1016
1017 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
1018 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
1019 CxtI);
1020
1021 Known = LHSKnown ^ RHSKnown;
1022
1023 // If the client is only demanding bits that we know, return the known
1024 // constant.
1025 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1026 return Constant::getIntegerValue(ITy, Known.One);
1027
1028 // If all of the demanded bits are known zero on one side, return the
1029 // other.
1030 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
1031 return I->getOperand(0);
1032 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
1033 return I->getOperand(1);
1034
1035 break;
1036 }
1037 case Instruction::AShr: {
1038 // Compute the Known bits to simplify things downstream.
1039 computeKnownBits(I, Known, Depth, CxtI);
1040
1041 // If this user is only demanding bits that we know, return the known
1042 // constant.
1043 if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1044 return Constant::getIntegerValue(ITy, Known.One);
1045
1046 // If the right shift operand 0 is a result of a left shift by the same
1047 // amount, this is probably a zero/sign extension, which may be unnecessary,
1048 // if we do not demand any of the new sign bits. So, return the original
1049 // operand instead.
1050 const APInt *ShiftRC;
1051 const APInt *ShiftLC;
1052 Value *X;
1053 unsigned BitWidth = DemandedMask.getBitWidth();
1054 if (match(I,
1055 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) &&
1056 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) &&
1057 DemandedMask.isSubsetOf(APInt::getLowBitsSet(
1058 BitWidth, BitWidth - ShiftRC->getZExtValue()))) {
1059 return X;
1060 }
1061
1062 break;
1063 }
1064 default:
1065 // Compute the Known bits to simplify things downstream.
1066 computeKnownBits(I, Known, Depth, CxtI);
1067
1068 // If this user is only demanding bits that we know, return the known
1069 // constant.
1070 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
1071 return Constant::getIntegerValue(ITy, Known.One);
1072
1073 break;
1074 }
1075
1076 return nullptr;
1077 }
1078
1079 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
1080 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
1081 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
1082 /// of "C2-C1".
1083 ///
1084 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
1085 /// ..., bn}, without considering the specific value X is holding.
1086 /// This transformation is legal iff one of following conditions is hold:
1087 /// 1) All the bit in S are 0, in this case E1 == E2.
1088 /// 2) We don't care those bits in S, per the input DemandedMask.
1089 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
1090 /// rest bits.
1091 ///
1092 /// Currently we only test condition 2).
1093 ///
1094 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
1095 /// not successful.
simplifyShrShlDemandedBits(Instruction * Shr,const APInt & ShrOp1,Instruction * Shl,const APInt & ShlOp1,const APInt & DemandedMask,KnownBits & Known)1096 Value *InstCombinerImpl::simplifyShrShlDemandedBits(
1097 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
1098 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
1099 if (!ShlOp1 || !ShrOp1)
1100 return nullptr; // No-op.
1101
1102 Value *VarX = Shr->getOperand(0);
1103 Type *Ty = VarX->getType();
1104 unsigned BitWidth = Ty->getScalarSizeInBits();
1105 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
1106 return nullptr; // Undef.
1107
1108 unsigned ShlAmt = ShlOp1.getZExtValue();
1109 unsigned ShrAmt = ShrOp1.getZExtValue();
1110
1111 Known.One.clearAllBits();
1112 Known.Zero.setLowBits(ShlAmt - 1);
1113 Known.Zero &= DemandedMask;
1114
1115 APInt BitMask1(APInt::getAllOnes(BitWidth));
1116 APInt BitMask2(APInt::getAllOnes(BitWidth));
1117
1118 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
1119 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
1120 (BitMask1.ashr(ShrAmt) << ShlAmt);
1121
1122 if (ShrAmt <= ShlAmt) {
1123 BitMask2 <<= (ShlAmt - ShrAmt);
1124 } else {
1125 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
1126 BitMask2.ashr(ShrAmt - ShlAmt);
1127 }
1128
1129 // Check if condition-2 (see the comment to this function) is satified.
1130 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
1131 if (ShrAmt == ShlAmt)
1132 return VarX;
1133
1134 if (!Shr->hasOneUse())
1135 return nullptr;
1136
1137 BinaryOperator *New;
1138 if (ShrAmt < ShlAmt) {
1139 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
1140 New = BinaryOperator::CreateShl(VarX, Amt);
1141 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
1142 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
1143 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
1144 } else {
1145 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
1146 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
1147 BinaryOperator::CreateAShr(VarX, Amt);
1148 if (cast<BinaryOperator>(Shr)->isExact())
1149 New->setIsExact(true);
1150 }
1151
1152 return InsertNewInstWith(New, *Shl);
1153 }
1154
1155 return nullptr;
1156 }
1157
1158 /// The specified value produces a vector with any number of elements.
1159 /// This method analyzes which elements of the operand are undef or poison and
1160 /// returns that information in UndefElts.
1161 ///
1162 /// DemandedElts contains the set of elements that are actually used by the
1163 /// caller, and by default (AllowMultipleUsers equals false) the value is
1164 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1165 /// to true, DemandedElts refers to the union of sets of elements that are
1166 /// used by all callers.
1167 ///
1168 /// If the information about demanded elements can be used to simplify the
1169 /// operation, the operation is simplified, then the resultant value is
1170 /// returned. This returns null if no change was made.
SimplifyDemandedVectorElts(Value * V,APInt DemandedElts,APInt & UndefElts,unsigned Depth,bool AllowMultipleUsers)1171 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
1172 APInt DemandedElts,
1173 APInt &UndefElts,
1174 unsigned Depth,
1175 bool AllowMultipleUsers) {
1176 // Cannot analyze scalable type. The number of vector elements is not a
1177 // compile-time constant.
1178 if (isa<ScalableVectorType>(V->getType()))
1179 return nullptr;
1180
1181 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
1182 APInt EltMask(APInt::getAllOnes(VWidth));
1183 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1184
1185 if (match(V, m_Undef())) {
1186 // If the entire vector is undef or poison, just return this info.
1187 UndefElts = EltMask;
1188 return nullptr;
1189 }
1190
1191 if (DemandedElts.isZero()) { // If nothing is demanded, provide poison.
1192 UndefElts = EltMask;
1193 return PoisonValue::get(V->getType());
1194 }
1195
1196 UndefElts = 0;
1197
1198 if (auto *C = dyn_cast<Constant>(V)) {
1199 // Check if this is identity. If so, return 0 since we are not simplifying
1200 // anything.
1201 if (DemandedElts.isAllOnes())
1202 return nullptr;
1203
1204 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1205 Constant *Poison = PoisonValue::get(EltTy);
1206 SmallVector<Constant*, 16> Elts;
1207 for (unsigned i = 0; i != VWidth; ++i) {
1208 if (!DemandedElts[i]) { // If not demanded, set to poison.
1209 Elts.push_back(Poison);
1210 UndefElts.setBit(i);
1211 continue;
1212 }
1213
1214 Constant *Elt = C->getAggregateElement(i);
1215 if (!Elt) return nullptr;
1216
1217 Elts.push_back(Elt);
1218 if (isa<UndefValue>(Elt)) // Already undef or poison.
1219 UndefElts.setBit(i);
1220 }
1221
1222 // If we changed the constant, return it.
1223 Constant *NewCV = ConstantVector::get(Elts);
1224 return NewCV != C ? NewCV : nullptr;
1225 }
1226
1227 // Limit search depth.
1228 if (Depth == 10)
1229 return nullptr;
1230
1231 if (!AllowMultipleUsers) {
1232 // If multiple users are using the root value, proceed with
1233 // simplification conservatively assuming that all elements
1234 // are needed.
1235 if (!V->hasOneUse()) {
1236 // Quit if we find multiple users of a non-root value though.
1237 // They'll be handled when it's their turn to be visited by
1238 // the main instcombine process.
1239 if (Depth != 0)
1240 // TODO: Just compute the UndefElts information recursively.
1241 return nullptr;
1242
1243 // Conservatively assume that all elements are needed.
1244 DemandedElts = EltMask;
1245 }
1246 }
1247
1248 Instruction *I = dyn_cast<Instruction>(V);
1249 if (!I) return nullptr; // Only analyze instructions.
1250
1251 bool MadeChange = false;
1252 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1253 APInt Demanded, APInt &Undef) {
1254 auto *II = dyn_cast<IntrinsicInst>(Inst);
1255 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1256 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1257 replaceOperand(*Inst, OpNum, V);
1258 MadeChange = true;
1259 }
1260 };
1261
1262 APInt UndefElts2(VWidth, 0);
1263 APInt UndefElts3(VWidth, 0);
1264 switch (I->getOpcode()) {
1265 default: break;
1266
1267 case Instruction::GetElementPtr: {
1268 // The LangRef requires that struct geps have all constant indices. As
1269 // such, we can't convert any operand to partial undef.
1270 auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1271 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1272 I != E; I++)
1273 if (I.isStruct())
1274 return true;
1275 return false;
1276 };
1277 if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1278 break;
1279
1280 // Conservatively track the demanded elements back through any vector
1281 // operands we may have. We know there must be at least one, or we
1282 // wouldn't have a vector result to get here. Note that we intentionally
1283 // merge the undef bits here since gepping with either an poison base or
1284 // index results in poison.
1285 for (unsigned i = 0; i < I->getNumOperands(); i++) {
1286 if (i == 0 ? match(I->getOperand(i), m_Undef())
1287 : match(I->getOperand(i), m_Poison())) {
1288 // If the entire vector is undefined, just return this info.
1289 UndefElts = EltMask;
1290 return nullptr;
1291 }
1292 if (I->getOperand(i)->getType()->isVectorTy()) {
1293 APInt UndefEltsOp(VWidth, 0);
1294 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1295 // gep(x, undef) is not undef, so skip considering idx ops here
1296 // Note that we could propagate poison, but we can't distinguish between
1297 // undef & poison bits ATM
1298 if (i == 0)
1299 UndefElts |= UndefEltsOp;
1300 }
1301 }
1302
1303 break;
1304 }
1305 case Instruction::InsertElement: {
1306 // If this is a variable index, we don't know which element it overwrites.
1307 // demand exactly the same input as we produce.
1308 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1309 if (!Idx) {
1310 // Note that we can't propagate undef elt info, because we don't know
1311 // which elt is getting updated.
1312 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1313 break;
1314 }
1315
1316 // The element inserted overwrites whatever was there, so the input demanded
1317 // set is simpler than the output set.
1318 unsigned IdxNo = Idx->getZExtValue();
1319 APInt PreInsertDemandedElts = DemandedElts;
1320 if (IdxNo < VWidth)
1321 PreInsertDemandedElts.clearBit(IdxNo);
1322
1323 // If we only demand the element that is being inserted and that element
1324 // was extracted from the same index in another vector with the same type,
1325 // replace this insert with that other vector.
1326 // Note: This is attempted before the call to simplifyAndSetOp because that
1327 // may change UndefElts to a value that does not match with Vec.
1328 Value *Vec;
1329 if (PreInsertDemandedElts == 0 &&
1330 match(I->getOperand(1),
1331 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) &&
1332 Vec->getType() == I->getType()) {
1333 return Vec;
1334 }
1335
1336 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1337
1338 // If this is inserting an element that isn't demanded, remove this
1339 // insertelement.
1340 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1341 Worklist.push(I);
1342 return I->getOperand(0);
1343 }
1344
1345 // The inserted element is defined.
1346 UndefElts.clearBit(IdxNo);
1347 break;
1348 }
1349 case Instruction::ShuffleVector: {
1350 auto *Shuffle = cast<ShuffleVectorInst>(I);
1351 assert(Shuffle->getOperand(0)->getType() ==
1352 Shuffle->getOperand(1)->getType() &&
1353 "Expected shuffle operands to have same type");
1354 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType())
1355 ->getNumElements();
1356 // Handle trivial case of a splat. Only check the first element of LHS
1357 // operand.
1358 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
1359 DemandedElts.isAllOnes()) {
1360 if (!match(I->getOperand(1), m_Undef())) {
1361 I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType()));
1362 MadeChange = true;
1363 }
1364 APInt LeftDemanded(OpWidth, 1);
1365 APInt LHSUndefElts(OpWidth, 0);
1366 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1367 if (LHSUndefElts[0])
1368 UndefElts = EltMask;
1369 else
1370 UndefElts.clearAllBits();
1371 break;
1372 }
1373
1374 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1375 for (unsigned i = 0; i < VWidth; i++) {
1376 if (DemandedElts[i]) {
1377 unsigned MaskVal = Shuffle->getMaskValue(i);
1378 if (MaskVal != -1u) {
1379 assert(MaskVal < OpWidth * 2 &&
1380 "shufflevector mask index out of range!");
1381 if (MaskVal < OpWidth)
1382 LeftDemanded.setBit(MaskVal);
1383 else
1384 RightDemanded.setBit(MaskVal - OpWidth);
1385 }
1386 }
1387 }
1388
1389 APInt LHSUndefElts(OpWidth, 0);
1390 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1391
1392 APInt RHSUndefElts(OpWidth, 0);
1393 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1394
1395 // If this shuffle does not change the vector length and the elements
1396 // demanded by this shuffle are an identity mask, then this shuffle is
1397 // unnecessary.
1398 //
1399 // We are assuming canonical form for the mask, so the source vector is
1400 // operand 0 and operand 1 is not used.
1401 //
1402 // Note that if an element is demanded and this shuffle mask is undefined
1403 // for that element, then the shuffle is not considered an identity
1404 // operation. The shuffle prevents poison from the operand vector from
1405 // leaking to the result by replacing poison with an undefined value.
1406 if (VWidth == OpWidth) {
1407 bool IsIdentityShuffle = true;
1408 for (unsigned i = 0; i < VWidth; i++) {
1409 unsigned MaskVal = Shuffle->getMaskValue(i);
1410 if (DemandedElts[i] && i != MaskVal) {
1411 IsIdentityShuffle = false;
1412 break;
1413 }
1414 }
1415 if (IsIdentityShuffle)
1416 return Shuffle->getOperand(0);
1417 }
1418
1419 bool NewUndefElts = false;
1420 unsigned LHSIdx = -1u, LHSValIdx = -1u;
1421 unsigned RHSIdx = -1u, RHSValIdx = -1u;
1422 bool LHSUniform = true;
1423 bool RHSUniform = true;
1424 for (unsigned i = 0; i < VWidth; i++) {
1425 unsigned MaskVal = Shuffle->getMaskValue(i);
1426 if (MaskVal == -1u) {
1427 UndefElts.setBit(i);
1428 } else if (!DemandedElts[i]) {
1429 NewUndefElts = true;
1430 UndefElts.setBit(i);
1431 } else if (MaskVal < OpWidth) {
1432 if (LHSUndefElts[MaskVal]) {
1433 NewUndefElts = true;
1434 UndefElts.setBit(i);
1435 } else {
1436 LHSIdx = LHSIdx == -1u ? i : OpWidth;
1437 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1438 LHSUniform = LHSUniform && (MaskVal == i);
1439 }
1440 } else {
1441 if (RHSUndefElts[MaskVal - OpWidth]) {
1442 NewUndefElts = true;
1443 UndefElts.setBit(i);
1444 } else {
1445 RHSIdx = RHSIdx == -1u ? i : OpWidth;
1446 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1447 RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1448 }
1449 }
1450 }
1451
1452 // Try to transform shuffle with constant vector and single element from
1453 // this constant vector to single insertelement instruction.
1454 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1455 // insertelement V, C[ci], ci-n
1456 if (OpWidth ==
1457 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) {
1458 Value *Op = nullptr;
1459 Constant *Value = nullptr;
1460 unsigned Idx = -1u;
1461
1462 // Find constant vector with the single element in shuffle (LHS or RHS).
1463 if (LHSIdx < OpWidth && RHSUniform) {
1464 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1465 Op = Shuffle->getOperand(1);
1466 Value = CV->getOperand(LHSValIdx);
1467 Idx = LHSIdx;
1468 }
1469 }
1470 if (RHSIdx < OpWidth && LHSUniform) {
1471 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1472 Op = Shuffle->getOperand(0);
1473 Value = CV->getOperand(RHSValIdx);
1474 Idx = RHSIdx;
1475 }
1476 }
1477 // Found constant vector with single element - convert to insertelement.
1478 if (Op && Value) {
1479 Instruction *New = InsertElementInst::Create(
1480 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1481 Shuffle->getName());
1482 InsertNewInstWith(New, *Shuffle);
1483 return New;
1484 }
1485 }
1486 if (NewUndefElts) {
1487 // Add additional discovered undefs.
1488 SmallVector<int, 16> Elts;
1489 for (unsigned i = 0; i < VWidth; ++i) {
1490 if (UndefElts[i])
1491 Elts.push_back(UndefMaskElem);
1492 else
1493 Elts.push_back(Shuffle->getMaskValue(i));
1494 }
1495 Shuffle->setShuffleMask(Elts);
1496 MadeChange = true;
1497 }
1498 break;
1499 }
1500 case Instruction::Select: {
1501 // If this is a vector select, try to transform the select condition based
1502 // on the current demanded elements.
1503 SelectInst *Sel = cast<SelectInst>(I);
1504 if (Sel->getCondition()->getType()->isVectorTy()) {
1505 // TODO: We are not doing anything with UndefElts based on this call.
1506 // It is overwritten below based on the other select operands. If an
1507 // element of the select condition is known undef, then we are free to
1508 // choose the output value from either arm of the select. If we know that
1509 // one of those values is undef, then the output can be undef.
1510 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1511 }
1512
1513 // Next, see if we can transform the arms of the select.
1514 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1515 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1516 for (unsigned i = 0; i < VWidth; i++) {
1517 // isNullValue() always returns false when called on a ConstantExpr.
1518 // Skip constant expressions to avoid propagating incorrect information.
1519 Constant *CElt = CV->getAggregateElement(i);
1520 if (isa<ConstantExpr>(CElt))
1521 continue;
1522 // TODO: If a select condition element is undef, we can demand from
1523 // either side. If one side is known undef, choosing that side would
1524 // propagate undef.
1525 if (CElt->isNullValue())
1526 DemandedLHS.clearBit(i);
1527 else
1528 DemandedRHS.clearBit(i);
1529 }
1530 }
1531
1532 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1533 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1534
1535 // Output elements are undefined if the element from each arm is undefined.
1536 // TODO: This can be improved. See comment in select condition handling.
1537 UndefElts = UndefElts2 & UndefElts3;
1538 break;
1539 }
1540 case Instruction::BitCast: {
1541 // Vector->vector casts only.
1542 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1543 if (!VTy) break;
1544 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements();
1545 APInt InputDemandedElts(InVWidth, 0);
1546 UndefElts2 = APInt(InVWidth, 0);
1547 unsigned Ratio;
1548
1549 if (VWidth == InVWidth) {
1550 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1551 // elements as are demanded of us.
1552 Ratio = 1;
1553 InputDemandedElts = DemandedElts;
1554 } else if ((VWidth % InVWidth) == 0) {
1555 // If the number of elements in the output is a multiple of the number of
1556 // elements in the input then an input element is live if any of the
1557 // corresponding output elements are live.
1558 Ratio = VWidth / InVWidth;
1559 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1560 if (DemandedElts[OutIdx])
1561 InputDemandedElts.setBit(OutIdx / Ratio);
1562 } else if ((InVWidth % VWidth) == 0) {
1563 // If the number of elements in the input is a multiple of the number of
1564 // elements in the output then an input element is live if the
1565 // corresponding output element is live.
1566 Ratio = InVWidth / VWidth;
1567 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1568 if (DemandedElts[InIdx / Ratio])
1569 InputDemandedElts.setBit(InIdx);
1570 } else {
1571 // Unsupported so far.
1572 break;
1573 }
1574
1575 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1576
1577 if (VWidth == InVWidth) {
1578 UndefElts = UndefElts2;
1579 } else if ((VWidth % InVWidth) == 0) {
1580 // If the number of elements in the output is a multiple of the number of
1581 // elements in the input then an output element is undef if the
1582 // corresponding input element is undef.
1583 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1584 if (UndefElts2[OutIdx / Ratio])
1585 UndefElts.setBit(OutIdx);
1586 } else if ((InVWidth % VWidth) == 0) {
1587 // If the number of elements in the input is a multiple of the number of
1588 // elements in the output then an output element is undef if all of the
1589 // corresponding input elements are undef.
1590 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1591 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1592 if (SubUndef.countPopulation() == Ratio)
1593 UndefElts.setBit(OutIdx);
1594 }
1595 } else {
1596 llvm_unreachable("Unimp");
1597 }
1598 break;
1599 }
1600 case Instruction::FPTrunc:
1601 case Instruction::FPExt:
1602 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1603 break;
1604
1605 case Instruction::Call: {
1606 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1607 if (!II) break;
1608 switch (II->getIntrinsicID()) {
1609 case Intrinsic::masked_gather: // fallthrough
1610 case Intrinsic::masked_load: {
1611 // Subtlety: If we load from a pointer, the pointer must be valid
1612 // regardless of whether the element is demanded. Doing otherwise risks
1613 // segfaults which didn't exist in the original program.
1614 APInt DemandedPtrs(APInt::getAllOnes(VWidth)),
1615 DemandedPassThrough(DemandedElts);
1616 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1617 for (unsigned i = 0; i < VWidth; i++) {
1618 Constant *CElt = CV->getAggregateElement(i);
1619 if (CElt->isNullValue())
1620 DemandedPtrs.clearBit(i);
1621 else if (CElt->isAllOnesValue())
1622 DemandedPassThrough.clearBit(i);
1623 }
1624 if (II->getIntrinsicID() == Intrinsic::masked_gather)
1625 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1626 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1627
1628 // Output elements are undefined if the element from both sources are.
1629 // TODO: can strengthen via mask as well.
1630 UndefElts = UndefElts2 & UndefElts3;
1631 break;
1632 }
1633 default: {
1634 // Handle target specific intrinsics
1635 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
1636 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
1637 simplifyAndSetOp);
1638 if (V)
1639 return V.value();
1640 break;
1641 }
1642 } // switch on IntrinsicID
1643 break;
1644 } // case Call
1645 } // switch on Opcode
1646
1647 // TODO: We bail completely on integer div/rem and shifts because they have
1648 // UB/poison potential, but that should be refined.
1649 BinaryOperator *BO;
1650 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1651 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1652 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1653
1654 // Output elements are undefined if both are undefined. Consider things
1655 // like undef & 0. The result is known zero, not undef.
1656 UndefElts &= UndefElts2;
1657 }
1658
1659 // If we've proven all of the lanes undef, return an undef value.
1660 // TODO: Intersect w/demanded lanes
1661 if (UndefElts.isAllOnes())
1662 return UndefValue::get(I->getType());;
1663
1664 return MadeChange ? I : nullptr;
1665 }
1666