1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/TargetTransformInfo.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnes(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isZero()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == MaxAnalysisRecursionDepth) 131 return nullptr; 132 133 if (isa<ScalableVectorType>(VTy)) 134 return nullptr; 135 136 Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) { 138 computeKnownBits(V, Known, Depth, CxtI); 139 return nullptr; // Only analyze instructions. 140 } 141 142 // If there are multiple uses of this value and we aren't at the root, then 143 // we can't do any simplifications of the operands, because DemandedMask 144 // only reflects the bits demanded by *one* of the users. 145 if (Depth != 0 && !I->hasOneUse()) 146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 147 148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 149 150 // If this is the root being simplified, allow it to have multiple uses, 151 // just set the DemandedMask to all bits so that we can try to simplify the 152 // operands. This allows visitTruncInst (for example) to simplify the 153 // operand of a trunc without duplicating all the logic below. 154 if (Depth == 0 && !V->hasOneUse()) 155 DemandedMask.setAllBits(); 156 157 switch (I->getOpcode()) { 158 default: 159 computeKnownBits(I, Known, Depth, CxtI); 160 break; 161 case Instruction::And: { 162 // If either the LHS or the RHS are Zero, the result is zero. 163 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 164 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 165 Depth + 1)) 166 return I; 167 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 168 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 169 170 Known = LHSKnown & RHSKnown; 171 172 // If the client is only demanding bits that we know, return the known 173 // constant. 174 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 175 return Constant::getIntegerValue(VTy, Known.One); 176 177 // If all of the demanded bits are known 1 on one side, return the other. 178 // These bits cannot contribute to the result of the 'and'. 179 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 180 return I->getOperand(0); 181 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 182 return I->getOperand(1); 183 184 // If the RHS is a constant, see if we can simplify it. 185 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 186 return I; 187 188 break; 189 } 190 case Instruction::Or: { 191 // If either the LHS or the RHS are One, the result is One. 192 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 193 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 194 Depth + 1)) 195 return I; 196 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 197 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 198 199 Known = LHSKnown | RHSKnown; 200 201 // If the client is only demanding bits that we know, return the known 202 // constant. 203 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 204 return Constant::getIntegerValue(VTy, Known.One); 205 206 // If all of the demanded bits are known zero on one side, return the other. 207 // These bits cannot contribute to the result of the 'or'. 208 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 209 return I->getOperand(0); 210 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 211 return I->getOperand(1); 212 213 // If the RHS is a constant, see if we can simplify it. 214 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 215 return I; 216 217 break; 218 } 219 case Instruction::Xor: { 220 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 221 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 222 return I; 223 Value *LHS, *RHS; 224 if (DemandedMask == 1 && 225 match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) && 226 match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) { 227 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1 228 IRBuilderBase::InsertPointGuard Guard(Builder); 229 Builder.SetInsertPoint(I); 230 auto *Xor = Builder.CreateXor(LHS, RHS); 231 return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor); 232 } 233 234 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 235 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 236 237 Known = LHSKnown ^ RHSKnown; 238 239 // If the client is only demanding bits that we know, return the known 240 // constant. 241 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 242 return Constant::getIntegerValue(VTy, Known.One); 243 244 // If all of the demanded bits are known zero on one side, return the other. 245 // These bits cannot contribute to the result of the 'xor'. 246 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 247 return I->getOperand(0); 248 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 249 return I->getOperand(1); 250 251 // If all of the demanded bits are known to be zero on one side or the 252 // other, turn this into an *inclusive* or. 253 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 254 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 255 Instruction *Or = 256 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 257 I->getName()); 258 return InsertNewInstWith(Or, *I); 259 } 260 261 // If all of the demanded bits on one side are known, and all of the set 262 // bits on that side are also known to be set on the other side, turn this 263 // into an AND, as we know the bits will be cleared. 264 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 265 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 266 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 267 Constant *AndC = Constant::getIntegerValue(VTy, 268 ~RHSKnown.One & DemandedMask); 269 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 270 return InsertNewInstWith(And, *I); 271 } 272 273 // If the RHS is a constant, see if we can change it. Don't alter a -1 274 // constant because that's a canonical 'not' op, and that is better for 275 // combining, SCEV, and codegen. 276 const APInt *C; 277 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) { 278 if ((*C | ~DemandedMask).isAllOnes()) { 279 // Force bits to 1 to create a 'not' op. 280 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 281 return I; 282 } 283 // If we can't turn this into a 'not', try to shrink the constant. 284 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 285 return I; 286 } 287 288 // If our LHS is an 'and' and if it has one use, and if any of the bits we 289 // are flipping are known to be set, then the xor is just resetting those 290 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 291 // simplifying both of them. 292 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 293 ConstantInt *AndRHS, *XorRHS; 294 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 295 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 296 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 297 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 298 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 299 300 Constant *AndC = 301 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 302 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 303 InsertNewInstWith(NewAnd, *I); 304 305 Constant *XorC = 306 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 307 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 308 return InsertNewInstWith(NewXor, *I); 309 } 310 } 311 break; 312 } 313 case Instruction::Select: { 314 Value *LHS, *RHS; 315 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 316 if (SPF == SPF_UMAX) { 317 // UMax(A, C) == A if ... 318 // The lowest non-zero bit of DemandMask is higher than the highest 319 // non-zero bit of C. 320 const APInt *C; 321 unsigned CTZ = DemandedMask.countTrailingZeros(); 322 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 323 return LHS; 324 } else if (SPF == SPF_UMIN) { 325 // UMin(A, C) == A if ... 326 // The lowest non-zero bit of DemandMask is higher than the highest 327 // non-one bit of C. 328 // This comes from using DeMorgans on the above umax example. 329 const APInt *C; 330 unsigned CTZ = DemandedMask.countTrailingZeros(); 331 if (match(RHS, m_APInt(C)) && 332 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 333 return LHS; 334 } 335 336 // If this is a select as part of any other min/max pattern, don't simplify 337 // any further in case we break the structure. 338 if (SPF != SPF_UNKNOWN) 339 return nullptr; 340 341 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 342 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 343 return I; 344 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 345 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 346 347 // If the operands are constants, see if we can simplify them. 348 // This is similar to ShrinkDemandedConstant, but for a select we want to 349 // try to keep the selected constants the same as icmp value constants, if 350 // we can. This helps not break apart (or helps put back together) 351 // canonical patterns like min and max. 352 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 353 const APInt &DemandedMask) { 354 const APInt *SelC; 355 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 356 return false; 357 358 // Get the constant out of the ICmp, if there is one. 359 // Only try this when exactly 1 operand is a constant (if both operands 360 // are constant, the icmp should eventually simplify). Otherwise, we may 361 // invert the transform that reduces set bits and infinite-loop. 362 Value *X; 363 const APInt *CmpC; 364 ICmpInst::Predicate Pred; 365 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 366 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 367 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 368 369 // If the constant is already the same as the ICmp, leave it as-is. 370 if (*CmpC == *SelC) 371 return false; 372 // If the constants are not already the same, but can be with the demand 373 // mask, use the constant value from the ICmp. 374 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 375 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 376 return true; 377 } 378 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 379 }; 380 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 381 CanonicalizeSelectConstant(I, 2, DemandedMask)) 382 return I; 383 384 // Only known if known in both the LHS and RHS. 385 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 386 break; 387 } 388 case Instruction::Trunc: { 389 // If we do not demand the high bits of a right-shifted and truncated value, 390 // then we may be able to truncate it before the shift. 391 Value *X; 392 const APInt *C; 393 if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 394 // The shift amount must be valid (not poison) in the narrow type, and 395 // it must not be greater than the high bits demanded of the result. 396 if (C->ult(I->getType()->getScalarSizeInBits()) && 397 C->ule(DemandedMask.countLeadingZeros())) { 398 // trunc (lshr X, C) --> lshr (trunc X), C 399 IRBuilderBase::InsertPointGuard Guard(Builder); 400 Builder.SetInsertPoint(I); 401 Value *Trunc = Builder.CreateTrunc(X, I->getType()); 402 return Builder.CreateLShr(Trunc, C->getZExtValue()); 403 } 404 } 405 } 406 LLVM_FALLTHROUGH; 407 case Instruction::ZExt: { 408 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 409 410 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 411 KnownBits InputKnown(SrcBitWidth); 412 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 413 return I; 414 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 415 Known = InputKnown.zextOrTrunc(BitWidth); 416 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 417 break; 418 } 419 case Instruction::BitCast: 420 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 421 return nullptr; // vector->int or fp->int? 422 423 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 424 if (VectorType *SrcVTy = 425 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 426 if (cast<FixedVectorType>(DstVTy)->getNumElements() != 427 cast<FixedVectorType>(SrcVTy)->getNumElements()) 428 // Don't touch a bitcast between vectors of different element counts. 429 return nullptr; 430 } else 431 // Don't touch a scalar-to-vector bitcast. 432 return nullptr; 433 } else if (I->getOperand(0)->getType()->isVectorTy()) 434 // Don't touch a vector-to-scalar bitcast. 435 return nullptr; 436 437 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 438 return I; 439 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 440 break; 441 case Instruction::SExt: { 442 // Compute the bits in the result that are not present in the input. 443 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 444 445 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 446 447 // If any of the sign extended bits are demanded, we know that the sign 448 // bit is demanded. 449 if (DemandedMask.getActiveBits() > SrcBitWidth) 450 InputDemandedBits.setBit(SrcBitWidth-1); 451 452 KnownBits InputKnown(SrcBitWidth); 453 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 454 return I; 455 456 // If the input sign bit is known zero, or if the NewBits are not demanded 457 // convert this into a zero extension. 458 if (InputKnown.isNonNegative() || 459 DemandedMask.getActiveBits() <= SrcBitWidth) { 460 // Convert to ZExt cast. 461 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 462 return InsertNewInstWith(NewCast, *I); 463 } 464 465 // If the sign bit of the input is known set or clear, then we know the 466 // top bits of the result. 467 Known = InputKnown.sext(BitWidth); 468 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 469 break; 470 } 471 case Instruction::Add: 472 if ((DemandedMask & 1) == 0) { 473 // If we do not need the low bit, try to convert bool math to logic: 474 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 475 Value *X, *Y; 476 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 477 m_OneUse(m_SExt(m_Value(Y))))) && 478 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 479 // Truth table for inputs and output signbits: 480 // X:0 | X:1 481 // ---------- 482 // Y:0 | 0 | 0 | 483 // Y:1 | -1 | 0 | 484 // ---------- 485 IRBuilderBase::InsertPointGuard Guard(Builder); 486 Builder.SetInsertPoint(I); 487 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 488 return Builder.CreateSExt(AndNot, VTy); 489 } 490 491 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 492 // TODO: Relax the one-use checks because we are removing an instruction? 493 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 494 m_OneUse(m_SExt(m_Value(Y))))) && 495 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 496 // Truth table for inputs and output signbits: 497 // X:0 | X:1 498 // ----------- 499 // Y:0 | -1 | -1 | 500 // Y:1 | -1 | 0 | 501 // ----------- 502 IRBuilderBase::InsertPointGuard Guard(Builder); 503 Builder.SetInsertPoint(I); 504 Value *Or = Builder.CreateOr(X, Y); 505 return Builder.CreateSExt(Or, VTy); 506 } 507 } 508 LLVM_FALLTHROUGH; 509 case Instruction::Sub: { 510 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 511 /// about the high bits of the operands. 512 unsigned NLZ = DemandedMask.countLeadingZeros(); 513 // Right fill the mask of bits for this ADD/SUB to demand the most 514 // significant bit and all those below it. 515 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 516 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 517 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 518 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 519 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 520 if (NLZ > 0) { 521 // Disable the nsw and nuw flags here: We can no longer guarantee that 522 // we won't wrap after simplification. Removing the nsw/nuw flags is 523 // legal here because the top bit is not demanded. 524 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 525 BinOP.setHasNoSignedWrap(false); 526 BinOP.setHasNoUnsignedWrap(false); 527 } 528 return I; 529 } 530 531 // If we are known to be adding/subtracting zeros to every bit below 532 // the highest demanded bit, we just return the other side. 533 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 534 return I->getOperand(0); 535 // We can't do this with the LHS for subtraction, unless we are only 536 // demanding the LSB. 537 if ((I->getOpcode() == Instruction::Add || DemandedFromOps.isOne()) && 538 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 539 return I->getOperand(1); 540 541 // Otherwise just compute the known bits of the result. 542 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 543 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 544 NSW, LHSKnown, RHSKnown); 545 break; 546 } 547 case Instruction::Mul: { 548 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 549 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 550 // odd (has LSB set), then the left-shifted low bit of X is the answer. 551 if (DemandedMask.isPowerOf2()) { 552 unsigned CTZ = DemandedMask.countTrailingZeros(); 553 const APInt *C; 554 if (match(I->getOperand(1), m_APInt(C)) && 555 C->countTrailingZeros() == CTZ) { 556 Constant *ShiftC = ConstantInt::get(I->getType(), CTZ); 557 Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC); 558 return InsertNewInstWith(Shl, *I); 559 } 560 } 561 computeKnownBits(I, Known, Depth, CxtI); 562 break; 563 } 564 case Instruction::Shl: { 565 const APInt *SA; 566 if (match(I->getOperand(1), m_APInt(SA))) { 567 const APInt *ShrAmt; 568 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 569 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 570 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 571 DemandedMask, Known)) 572 return R; 573 574 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 575 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 576 577 // If the shift is NUW/NSW, then it does demand the high bits. 578 ShlOperator *IOp = cast<ShlOperator>(I); 579 if (IOp->hasNoSignedWrap()) 580 DemandedMaskIn.setHighBits(ShiftAmt+1); 581 else if (IOp->hasNoUnsignedWrap()) 582 DemandedMaskIn.setHighBits(ShiftAmt); 583 584 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 585 return I; 586 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 587 588 bool SignBitZero = Known.Zero.isSignBitSet(); 589 bool SignBitOne = Known.One.isSignBitSet(); 590 Known.Zero <<= ShiftAmt; 591 Known.One <<= ShiftAmt; 592 // low bits known zero. 593 if (ShiftAmt) 594 Known.Zero.setLowBits(ShiftAmt); 595 596 // If this shift has "nsw" keyword, then the result is either a poison 597 // value or has the same sign bit as the first operand. 598 if (IOp->hasNoSignedWrap()) { 599 if (SignBitZero) 600 Known.Zero.setSignBit(); 601 else if (SignBitOne) 602 Known.One.setSignBit(); 603 if (Known.hasConflict()) 604 return UndefValue::get(I->getType()); 605 } 606 } else { 607 // This is a variable shift, so we can't shift the demand mask by a known 608 // amount. But if we are not demanding high bits, then we are not 609 // demanding those bits from the pre-shifted operand either. 610 if (unsigned CTLZ = DemandedMask.countLeadingZeros()) { 611 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 612 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) { 613 // We can't guarantee that nsw/nuw hold after simplifying the operand. 614 I->dropPoisonGeneratingFlags(); 615 return I; 616 } 617 } 618 computeKnownBits(I, Known, Depth, CxtI); 619 } 620 break; 621 } 622 case Instruction::LShr: { 623 const APInt *SA; 624 if (match(I->getOperand(1), m_APInt(SA))) { 625 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 626 627 // Unsigned shift right. 628 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 629 630 // If the shift is exact, then it does demand the low bits (and knows that 631 // they are zero). 632 if (cast<LShrOperator>(I)->isExact()) 633 DemandedMaskIn.setLowBits(ShiftAmt); 634 635 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 636 return I; 637 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 638 Known.Zero.lshrInPlace(ShiftAmt); 639 Known.One.lshrInPlace(ShiftAmt); 640 if (ShiftAmt) 641 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 642 } else { 643 computeKnownBits(I, Known, Depth, CxtI); 644 } 645 break; 646 } 647 case Instruction::AShr: { 648 // If this is an arithmetic shift right and only the low-bit is set, we can 649 // always convert this into a logical shr, even if the shift amount is 650 // variable. The low bit of the shift cannot be an input sign bit unless 651 // the shift amount is >= the size of the datatype, which is undefined. 652 if (DemandedMask.isOne()) { 653 // Perform the logical shift right. 654 Instruction *NewVal = BinaryOperator::CreateLShr( 655 I->getOperand(0), I->getOperand(1), I->getName()); 656 return InsertNewInstWith(NewVal, *I); 657 } 658 659 // If the sign bit is the only bit demanded by this ashr, then there is no 660 // need to do it, the shift doesn't change the high bit. 661 if (DemandedMask.isSignMask()) 662 return I->getOperand(0); 663 664 const APInt *SA; 665 if (match(I->getOperand(1), m_APInt(SA))) { 666 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 667 668 // Signed shift right. 669 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 670 // If any of the high bits are demanded, we should set the sign bit as 671 // demanded. 672 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 673 DemandedMaskIn.setSignBit(); 674 675 // If the shift is exact, then it does demand the low bits (and knows that 676 // they are zero). 677 if (cast<AShrOperator>(I)->isExact()) 678 DemandedMaskIn.setLowBits(ShiftAmt); 679 680 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 681 return I; 682 683 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 684 685 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 686 // Compute the new bits that are at the top now plus sign bits. 687 APInt HighBits(APInt::getHighBitsSet( 688 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 689 Known.Zero.lshrInPlace(ShiftAmt); 690 Known.One.lshrInPlace(ShiftAmt); 691 692 // If the input sign bit is known to be zero, or if none of the top bits 693 // are demanded, turn this into an unsigned shift right. 694 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 695 if (Known.Zero[BitWidth-ShiftAmt-1] || 696 !DemandedMask.intersects(HighBits)) { 697 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 698 I->getOperand(1)); 699 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 700 return InsertNewInstWith(LShr, *I); 701 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 702 Known.One |= HighBits; 703 } 704 } else { 705 computeKnownBits(I, Known, Depth, CxtI); 706 } 707 break; 708 } 709 case Instruction::UDiv: { 710 // UDiv doesn't demand low bits that are zero in the divisor. 711 const APInt *SA; 712 if (match(I->getOperand(1), m_APInt(SA))) { 713 // If the shift is exact, then it does demand the low bits. 714 if (cast<UDivOperator>(I)->isExact()) 715 break; 716 717 // FIXME: Take the demanded mask of the result into account. 718 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 719 APInt DemandedMaskIn = 720 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 721 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 722 return I; 723 724 // Propagate zero bits from the input. 725 Known.Zero.setHighBits(std::min( 726 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 727 } else { 728 computeKnownBits(I, Known, Depth, CxtI); 729 } 730 break; 731 } 732 case Instruction::SRem: { 733 ConstantInt *Rem; 734 if (match(I->getOperand(1), m_ConstantInt(Rem))) { 735 // X % -1 demands all the bits because we don't want to introduce 736 // INT_MIN % -1 (== undef) by accident. 737 if (Rem->isMinusOne()) 738 break; 739 APInt RA = Rem->getValue().abs(); 740 if (RA.isPowerOf2()) { 741 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 742 return I->getOperand(0); 743 744 APInt LowBits = RA - 1; 745 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 746 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 747 return I; 748 749 // The low bits of LHS are unchanged by the srem. 750 Known.Zero = LHSKnown.Zero & LowBits; 751 Known.One = LHSKnown.One & LowBits; 752 753 // If LHS is non-negative or has all low bits zero, then the upper bits 754 // are all zero. 755 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 756 Known.Zero |= ~LowBits; 757 758 // If LHS is negative and not all low bits are zero, then the upper bits 759 // are all one. 760 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 761 Known.One |= ~LowBits; 762 763 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 764 break; 765 } 766 } 767 768 // The sign bit is the LHS's sign bit, except when the result of the 769 // remainder is zero. 770 if (DemandedMask.isSignBitSet()) { 771 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 772 // If it's known zero, our sign bit is also zero. 773 if (LHSKnown.isNonNegative()) 774 Known.makeNonNegative(); 775 } 776 break; 777 } 778 case Instruction::URem: { 779 KnownBits Known2(BitWidth); 780 APInt AllOnes = APInt::getAllOnes(BitWidth); 781 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 782 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 783 return I; 784 785 unsigned Leaders = Known2.countMinLeadingZeros(); 786 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 787 break; 788 } 789 case Instruction::Call: { 790 bool KnownBitsComputed = false; 791 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 792 switch (II->getIntrinsicID()) { 793 case Intrinsic::abs: { 794 if (DemandedMask == 1) 795 return II->getArgOperand(0); 796 break; 797 } 798 case Intrinsic::ctpop: { 799 // Checking if the number of clear bits is odd (parity)? If the type has 800 // an even number of bits, that's the same as checking if the number of 801 // set bits is odd, so we can eliminate the 'not' op. 802 Value *X; 803 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && 804 match(II->getArgOperand(0), m_Not(m_Value(X)))) { 805 Function *Ctpop = Intrinsic::getDeclaration( 806 II->getModule(), Intrinsic::ctpop, II->getType()); 807 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I); 808 } 809 break; 810 } 811 case Intrinsic::bswap: { 812 // If the only bits demanded come from one byte of the bswap result, 813 // just shift the input byte into position to eliminate the bswap. 814 unsigned NLZ = DemandedMask.countLeadingZeros(); 815 unsigned NTZ = DemandedMask.countTrailingZeros(); 816 817 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 818 // we need all the bits down to bit 8. Likewise, round NLZ. If we 819 // have 14 leading zeros, round to 8. 820 NLZ = alignDown(NLZ, 8); 821 NTZ = alignDown(NTZ, 8); 822 // If we need exactly one byte, we can do this transformation. 823 if (BitWidth - NLZ - NTZ == 8) { 824 // Replace this with either a left or right shift to get the byte into 825 // the right place. 826 Instruction *NewVal; 827 if (NLZ > NTZ) 828 NewVal = BinaryOperator::CreateLShr( 829 II->getArgOperand(0), 830 ConstantInt::get(I->getType(), NLZ - NTZ)); 831 else 832 NewVal = BinaryOperator::CreateShl( 833 II->getArgOperand(0), 834 ConstantInt::get(I->getType(), NTZ - NLZ)); 835 NewVal->takeName(I); 836 return InsertNewInstWith(NewVal, *I); 837 } 838 break; 839 } 840 case Intrinsic::fshr: 841 case Intrinsic::fshl: { 842 const APInt *SA; 843 if (!match(I->getOperand(2), m_APInt(SA))) 844 break; 845 846 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 847 // defined, so no need to special-case zero shifts here. 848 uint64_t ShiftAmt = SA->urem(BitWidth); 849 if (II->getIntrinsicID() == Intrinsic::fshr) 850 ShiftAmt = BitWidth - ShiftAmt; 851 852 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 853 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 854 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 855 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 856 return I; 857 858 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 859 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 860 Known.One = LHSKnown.One.shl(ShiftAmt) | 861 RHSKnown.One.lshr(BitWidth - ShiftAmt); 862 KnownBitsComputed = true; 863 break; 864 } 865 case Intrinsic::umax: { 866 // UMax(A, C) == A if ... 867 // The lowest non-zero bit of DemandMask is higher than the highest 868 // non-zero bit of C. 869 const APInt *C; 870 unsigned CTZ = DemandedMask.countTrailingZeros(); 871 if (match(II->getArgOperand(1), m_APInt(C)) && 872 CTZ >= C->getActiveBits()) 873 return II->getArgOperand(0); 874 break; 875 } 876 case Intrinsic::umin: { 877 // UMin(A, C) == A if ... 878 // The lowest non-zero bit of DemandMask is higher than the highest 879 // non-one bit of C. 880 // This comes from using DeMorgans on the above umax example. 881 const APInt *C; 882 unsigned CTZ = DemandedMask.countTrailingZeros(); 883 if (match(II->getArgOperand(1), m_APInt(C)) && 884 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 885 return II->getArgOperand(0); 886 break; 887 } 888 default: { 889 // Handle target specific intrinsics 890 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 891 *II, DemandedMask, Known, KnownBitsComputed); 892 if (V.hasValue()) 893 return V.getValue(); 894 break; 895 } 896 } 897 } 898 899 if (!KnownBitsComputed) 900 computeKnownBits(V, Known, Depth, CxtI); 901 break; 902 } 903 } 904 905 // If the client is only demanding bits that we know, return the known 906 // constant. 907 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 908 return Constant::getIntegerValue(VTy, Known.One); 909 return nullptr; 910 } 911 912 /// Helper routine of SimplifyDemandedUseBits. It computes Known 913 /// bits. It also tries to handle simplifications that can be done based on 914 /// DemandedMask, but without modifying the Instruction. 915 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 916 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 917 Instruction *CxtI) { 918 unsigned BitWidth = DemandedMask.getBitWidth(); 919 Type *ITy = I->getType(); 920 921 KnownBits LHSKnown(BitWidth); 922 KnownBits RHSKnown(BitWidth); 923 924 // Despite the fact that we can't simplify this instruction in all User's 925 // context, we can at least compute the known bits, and we can 926 // do simplifications that apply to *just* the one user if we know that 927 // this instruction has a simpler value in that context. 928 switch (I->getOpcode()) { 929 case Instruction::And: { 930 // If either the LHS or the RHS are Zero, the result is zero. 931 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 932 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 933 CxtI); 934 935 Known = LHSKnown & RHSKnown; 936 937 // If the client is only demanding bits that we know, return the known 938 // constant. 939 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 940 return Constant::getIntegerValue(ITy, Known.One); 941 942 // If all of the demanded bits are known 1 on one side, return the other. 943 // These bits cannot contribute to the result of the 'and' in this 944 // context. 945 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 946 return I->getOperand(0); 947 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 948 return I->getOperand(1); 949 950 break; 951 } 952 case Instruction::Or: { 953 // We can simplify (X|Y) -> X or Y in the user's context if we know that 954 // only bits from X or Y are demanded. 955 956 // If either the LHS or the RHS are One, the result is One. 957 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 958 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 959 CxtI); 960 961 Known = LHSKnown | RHSKnown; 962 963 // If the client is only demanding bits that we know, return the known 964 // constant. 965 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 966 return Constant::getIntegerValue(ITy, Known.One); 967 968 // If all of the demanded bits are known zero on one side, return the 969 // other. These bits cannot contribute to the result of the 'or' in this 970 // context. 971 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 972 return I->getOperand(0); 973 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 974 return I->getOperand(1); 975 976 break; 977 } 978 case Instruction::Xor: { 979 // We can simplify (X^Y) -> X or Y in the user's context if we know that 980 // only bits from X or Y are demanded. 981 982 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 983 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 984 CxtI); 985 986 Known = LHSKnown ^ RHSKnown; 987 988 // If the client is only demanding bits that we know, return the known 989 // constant. 990 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 991 return Constant::getIntegerValue(ITy, Known.One); 992 993 // If all of the demanded bits are known zero on one side, return the 994 // other. 995 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 996 return I->getOperand(0); 997 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 998 return I->getOperand(1); 999 1000 break; 1001 } 1002 case Instruction::AShr: { 1003 // Compute the Known bits to simplify things downstream. 1004 computeKnownBits(I, Known, Depth, CxtI); 1005 1006 // If this user is only demanding bits that we know, return the known 1007 // constant. 1008 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1009 return Constant::getIntegerValue(ITy, Known.One); 1010 1011 // If the right shift operand 0 is a result of a left shift by the same 1012 // amount, this is probably a zero/sign extension, which may be unnecessary, 1013 // if we do not demand any of the new sign bits. So, return the original 1014 // operand instead. 1015 const APInt *ShiftRC; 1016 const APInt *ShiftLC; 1017 Value *X; 1018 unsigned BitWidth = DemandedMask.getBitWidth(); 1019 if (match(I, 1020 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 1021 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && 1022 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 1023 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 1024 return X; 1025 } 1026 1027 break; 1028 } 1029 default: 1030 // Compute the Known bits to simplify things downstream. 1031 computeKnownBits(I, Known, Depth, CxtI); 1032 1033 // If this user is only demanding bits that we know, return the known 1034 // constant. 1035 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 1036 return Constant::getIntegerValue(ITy, Known.One); 1037 1038 break; 1039 } 1040 1041 return nullptr; 1042 } 1043 1044 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 1045 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 1046 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 1047 /// of "C2-C1". 1048 /// 1049 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 1050 /// ..., bn}, without considering the specific value X is holding. 1051 /// This transformation is legal iff one of following conditions is hold: 1052 /// 1) All the bit in S are 0, in this case E1 == E2. 1053 /// 2) We don't care those bits in S, per the input DemandedMask. 1054 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 1055 /// rest bits. 1056 /// 1057 /// Currently we only test condition 2). 1058 /// 1059 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 1060 /// not successful. 1061 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 1062 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 1063 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 1064 if (!ShlOp1 || !ShrOp1) 1065 return nullptr; // No-op. 1066 1067 Value *VarX = Shr->getOperand(0); 1068 Type *Ty = VarX->getType(); 1069 unsigned BitWidth = Ty->getScalarSizeInBits(); 1070 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1071 return nullptr; // Undef. 1072 1073 unsigned ShlAmt = ShlOp1.getZExtValue(); 1074 unsigned ShrAmt = ShrOp1.getZExtValue(); 1075 1076 Known.One.clearAllBits(); 1077 Known.Zero.setLowBits(ShlAmt - 1); 1078 Known.Zero &= DemandedMask; 1079 1080 APInt BitMask1(APInt::getAllOnes(BitWidth)); 1081 APInt BitMask2(APInt::getAllOnes(BitWidth)); 1082 1083 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1084 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1085 (BitMask1.ashr(ShrAmt) << ShlAmt); 1086 1087 if (ShrAmt <= ShlAmt) { 1088 BitMask2 <<= (ShlAmt - ShrAmt); 1089 } else { 1090 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1091 BitMask2.ashr(ShrAmt - ShlAmt); 1092 } 1093 1094 // Check if condition-2 (see the comment to this function) is satified. 1095 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1096 if (ShrAmt == ShlAmt) 1097 return VarX; 1098 1099 if (!Shr->hasOneUse()) 1100 return nullptr; 1101 1102 BinaryOperator *New; 1103 if (ShrAmt < ShlAmt) { 1104 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1105 New = BinaryOperator::CreateShl(VarX, Amt); 1106 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1107 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1108 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1109 } else { 1110 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1111 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1112 BinaryOperator::CreateAShr(VarX, Amt); 1113 if (cast<BinaryOperator>(Shr)->isExact()) 1114 New->setIsExact(true); 1115 } 1116 1117 return InsertNewInstWith(New, *Shl); 1118 } 1119 1120 return nullptr; 1121 } 1122 1123 /// The specified value produces a vector with any number of elements. 1124 /// This method analyzes which elements of the operand are undef or poison and 1125 /// returns that information in UndefElts. 1126 /// 1127 /// DemandedElts contains the set of elements that are actually used by the 1128 /// caller, and by default (AllowMultipleUsers equals false) the value is 1129 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1130 /// to true, DemandedElts refers to the union of sets of elements that are 1131 /// used by all callers. 1132 /// 1133 /// If the information about demanded elements can be used to simplify the 1134 /// operation, the operation is simplified, then the resultant value is 1135 /// returned. This returns null if no change was made. 1136 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1137 APInt DemandedElts, 1138 APInt &UndefElts, 1139 unsigned Depth, 1140 bool AllowMultipleUsers) { 1141 // Cannot analyze scalable type. The number of vector elements is not a 1142 // compile-time constant. 1143 if (isa<ScalableVectorType>(V->getType())) 1144 return nullptr; 1145 1146 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1147 APInt EltMask(APInt::getAllOnes(VWidth)); 1148 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1149 1150 if (match(V, m_Undef())) { 1151 // If the entire vector is undef or poison, just return this info. 1152 UndefElts = EltMask; 1153 return nullptr; 1154 } 1155 1156 if (DemandedElts.isZero()) { // If nothing is demanded, provide poison. 1157 UndefElts = EltMask; 1158 return PoisonValue::get(V->getType()); 1159 } 1160 1161 UndefElts = 0; 1162 1163 if (auto *C = dyn_cast<Constant>(V)) { 1164 // Check if this is identity. If so, return 0 since we are not simplifying 1165 // anything. 1166 if (DemandedElts.isAllOnes()) 1167 return nullptr; 1168 1169 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1170 Constant *Poison = PoisonValue::get(EltTy); 1171 SmallVector<Constant*, 16> Elts; 1172 for (unsigned i = 0; i != VWidth; ++i) { 1173 if (!DemandedElts[i]) { // If not demanded, set to poison. 1174 Elts.push_back(Poison); 1175 UndefElts.setBit(i); 1176 continue; 1177 } 1178 1179 Constant *Elt = C->getAggregateElement(i); 1180 if (!Elt) return nullptr; 1181 1182 Elts.push_back(Elt); 1183 if (isa<UndefValue>(Elt)) // Already undef or poison. 1184 UndefElts.setBit(i); 1185 } 1186 1187 // If we changed the constant, return it. 1188 Constant *NewCV = ConstantVector::get(Elts); 1189 return NewCV != C ? NewCV : nullptr; 1190 } 1191 1192 // Limit search depth. 1193 if (Depth == 10) 1194 return nullptr; 1195 1196 if (!AllowMultipleUsers) { 1197 // If multiple users are using the root value, proceed with 1198 // simplification conservatively assuming that all elements 1199 // are needed. 1200 if (!V->hasOneUse()) { 1201 // Quit if we find multiple users of a non-root value though. 1202 // They'll be handled when it's their turn to be visited by 1203 // the main instcombine process. 1204 if (Depth != 0) 1205 // TODO: Just compute the UndefElts information recursively. 1206 return nullptr; 1207 1208 // Conservatively assume that all elements are needed. 1209 DemandedElts = EltMask; 1210 } 1211 } 1212 1213 Instruction *I = dyn_cast<Instruction>(V); 1214 if (!I) return nullptr; // Only analyze instructions. 1215 1216 bool MadeChange = false; 1217 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1218 APInt Demanded, APInt &Undef) { 1219 auto *II = dyn_cast<IntrinsicInst>(Inst); 1220 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1221 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1222 replaceOperand(*Inst, OpNum, V); 1223 MadeChange = true; 1224 } 1225 }; 1226 1227 APInt UndefElts2(VWidth, 0); 1228 APInt UndefElts3(VWidth, 0); 1229 switch (I->getOpcode()) { 1230 default: break; 1231 1232 case Instruction::GetElementPtr: { 1233 // The LangRef requires that struct geps have all constant indices. As 1234 // such, we can't convert any operand to partial undef. 1235 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1236 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1237 I != E; I++) 1238 if (I.isStruct()) 1239 return true; 1240 return false; 1241 }; 1242 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1243 break; 1244 1245 // Conservatively track the demanded elements back through any vector 1246 // operands we may have. We know there must be at least one, or we 1247 // wouldn't have a vector result to get here. Note that we intentionally 1248 // merge the undef bits here since gepping with either an poison base or 1249 // index results in poison. 1250 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1251 if (i == 0 ? match(I->getOperand(i), m_Undef()) 1252 : match(I->getOperand(i), m_Poison())) { 1253 // If the entire vector is undefined, just return this info. 1254 UndefElts = EltMask; 1255 return nullptr; 1256 } 1257 if (I->getOperand(i)->getType()->isVectorTy()) { 1258 APInt UndefEltsOp(VWidth, 0); 1259 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1260 // gep(x, undef) is not undef, so skip considering idx ops here 1261 // Note that we could propagate poison, but we can't distinguish between 1262 // undef & poison bits ATM 1263 if (i == 0) 1264 UndefElts |= UndefEltsOp; 1265 } 1266 } 1267 1268 break; 1269 } 1270 case Instruction::InsertElement: { 1271 // If this is a variable index, we don't know which element it overwrites. 1272 // demand exactly the same input as we produce. 1273 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1274 if (!Idx) { 1275 // Note that we can't propagate undef elt info, because we don't know 1276 // which elt is getting updated. 1277 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1278 break; 1279 } 1280 1281 // The element inserted overwrites whatever was there, so the input demanded 1282 // set is simpler than the output set. 1283 unsigned IdxNo = Idx->getZExtValue(); 1284 APInt PreInsertDemandedElts = DemandedElts; 1285 if (IdxNo < VWidth) 1286 PreInsertDemandedElts.clearBit(IdxNo); 1287 1288 // If we only demand the element that is being inserted and that element 1289 // was extracted from the same index in another vector with the same type, 1290 // replace this insert with that other vector. 1291 // Note: This is attempted before the call to simplifyAndSetOp because that 1292 // may change UndefElts to a value that does not match with Vec. 1293 Value *Vec; 1294 if (PreInsertDemandedElts == 0 && 1295 match(I->getOperand(1), 1296 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1297 Vec->getType() == I->getType()) { 1298 return Vec; 1299 } 1300 1301 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1302 1303 // If this is inserting an element that isn't demanded, remove this 1304 // insertelement. 1305 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1306 Worklist.push(I); 1307 return I->getOperand(0); 1308 } 1309 1310 // The inserted element is defined. 1311 UndefElts.clearBit(IdxNo); 1312 break; 1313 } 1314 case Instruction::ShuffleVector: { 1315 auto *Shuffle = cast<ShuffleVectorInst>(I); 1316 assert(Shuffle->getOperand(0)->getType() == 1317 Shuffle->getOperand(1)->getType() && 1318 "Expected shuffle operands to have same type"); 1319 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1320 ->getNumElements(); 1321 // Handle trivial case of a splat. Only check the first element of LHS 1322 // operand. 1323 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1324 DemandedElts.isAllOnes()) { 1325 if (!match(I->getOperand(1), m_Undef())) { 1326 I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType())); 1327 MadeChange = true; 1328 } 1329 APInt LeftDemanded(OpWidth, 1); 1330 APInt LHSUndefElts(OpWidth, 0); 1331 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1332 if (LHSUndefElts[0]) 1333 UndefElts = EltMask; 1334 else 1335 UndefElts.clearAllBits(); 1336 break; 1337 } 1338 1339 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1340 for (unsigned i = 0; i < VWidth; i++) { 1341 if (DemandedElts[i]) { 1342 unsigned MaskVal = Shuffle->getMaskValue(i); 1343 if (MaskVal != -1u) { 1344 assert(MaskVal < OpWidth * 2 && 1345 "shufflevector mask index out of range!"); 1346 if (MaskVal < OpWidth) 1347 LeftDemanded.setBit(MaskVal); 1348 else 1349 RightDemanded.setBit(MaskVal - OpWidth); 1350 } 1351 } 1352 } 1353 1354 APInt LHSUndefElts(OpWidth, 0); 1355 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1356 1357 APInt RHSUndefElts(OpWidth, 0); 1358 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1359 1360 // If this shuffle does not change the vector length and the elements 1361 // demanded by this shuffle are an identity mask, then this shuffle is 1362 // unnecessary. 1363 // 1364 // We are assuming canonical form for the mask, so the source vector is 1365 // operand 0 and operand 1 is not used. 1366 // 1367 // Note that if an element is demanded and this shuffle mask is undefined 1368 // for that element, then the shuffle is not considered an identity 1369 // operation. The shuffle prevents poison from the operand vector from 1370 // leaking to the result by replacing poison with an undefined value. 1371 if (VWidth == OpWidth) { 1372 bool IsIdentityShuffle = true; 1373 for (unsigned i = 0; i < VWidth; i++) { 1374 unsigned MaskVal = Shuffle->getMaskValue(i); 1375 if (DemandedElts[i] && i != MaskVal) { 1376 IsIdentityShuffle = false; 1377 break; 1378 } 1379 } 1380 if (IsIdentityShuffle) 1381 return Shuffle->getOperand(0); 1382 } 1383 1384 bool NewUndefElts = false; 1385 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1386 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1387 bool LHSUniform = true; 1388 bool RHSUniform = true; 1389 for (unsigned i = 0; i < VWidth; i++) { 1390 unsigned MaskVal = Shuffle->getMaskValue(i); 1391 if (MaskVal == -1u) { 1392 UndefElts.setBit(i); 1393 } else if (!DemandedElts[i]) { 1394 NewUndefElts = true; 1395 UndefElts.setBit(i); 1396 } else if (MaskVal < OpWidth) { 1397 if (LHSUndefElts[MaskVal]) { 1398 NewUndefElts = true; 1399 UndefElts.setBit(i); 1400 } else { 1401 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1402 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1403 LHSUniform = LHSUniform && (MaskVal == i); 1404 } 1405 } else { 1406 if (RHSUndefElts[MaskVal - OpWidth]) { 1407 NewUndefElts = true; 1408 UndefElts.setBit(i); 1409 } else { 1410 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1411 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1412 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1413 } 1414 } 1415 } 1416 1417 // Try to transform shuffle with constant vector and single element from 1418 // this constant vector to single insertelement instruction. 1419 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1420 // insertelement V, C[ci], ci-n 1421 if (OpWidth == 1422 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1423 Value *Op = nullptr; 1424 Constant *Value = nullptr; 1425 unsigned Idx = -1u; 1426 1427 // Find constant vector with the single element in shuffle (LHS or RHS). 1428 if (LHSIdx < OpWidth && RHSUniform) { 1429 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1430 Op = Shuffle->getOperand(1); 1431 Value = CV->getOperand(LHSValIdx); 1432 Idx = LHSIdx; 1433 } 1434 } 1435 if (RHSIdx < OpWidth && LHSUniform) { 1436 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1437 Op = Shuffle->getOperand(0); 1438 Value = CV->getOperand(RHSValIdx); 1439 Idx = RHSIdx; 1440 } 1441 } 1442 // Found constant vector with single element - convert to insertelement. 1443 if (Op && Value) { 1444 Instruction *New = InsertElementInst::Create( 1445 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1446 Shuffle->getName()); 1447 InsertNewInstWith(New, *Shuffle); 1448 return New; 1449 } 1450 } 1451 if (NewUndefElts) { 1452 // Add additional discovered undefs. 1453 SmallVector<int, 16> Elts; 1454 for (unsigned i = 0; i < VWidth; ++i) { 1455 if (UndefElts[i]) 1456 Elts.push_back(UndefMaskElem); 1457 else 1458 Elts.push_back(Shuffle->getMaskValue(i)); 1459 } 1460 Shuffle->setShuffleMask(Elts); 1461 MadeChange = true; 1462 } 1463 break; 1464 } 1465 case Instruction::Select: { 1466 // If this is a vector select, try to transform the select condition based 1467 // on the current demanded elements. 1468 SelectInst *Sel = cast<SelectInst>(I); 1469 if (Sel->getCondition()->getType()->isVectorTy()) { 1470 // TODO: We are not doing anything with UndefElts based on this call. 1471 // It is overwritten below based on the other select operands. If an 1472 // element of the select condition is known undef, then we are free to 1473 // choose the output value from either arm of the select. If we know that 1474 // one of those values is undef, then the output can be undef. 1475 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1476 } 1477 1478 // Next, see if we can transform the arms of the select. 1479 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1480 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1481 for (unsigned i = 0; i < VWidth; i++) { 1482 // isNullValue() always returns false when called on a ConstantExpr. 1483 // Skip constant expressions to avoid propagating incorrect information. 1484 Constant *CElt = CV->getAggregateElement(i); 1485 if (isa<ConstantExpr>(CElt)) 1486 continue; 1487 // TODO: If a select condition element is undef, we can demand from 1488 // either side. If one side is known undef, choosing that side would 1489 // propagate undef. 1490 if (CElt->isNullValue()) 1491 DemandedLHS.clearBit(i); 1492 else 1493 DemandedRHS.clearBit(i); 1494 } 1495 } 1496 1497 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1498 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1499 1500 // Output elements are undefined if the element from each arm is undefined. 1501 // TODO: This can be improved. See comment in select condition handling. 1502 UndefElts = UndefElts2 & UndefElts3; 1503 break; 1504 } 1505 case Instruction::BitCast: { 1506 // Vector->vector casts only. 1507 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1508 if (!VTy) break; 1509 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1510 APInt InputDemandedElts(InVWidth, 0); 1511 UndefElts2 = APInt(InVWidth, 0); 1512 unsigned Ratio; 1513 1514 if (VWidth == InVWidth) { 1515 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1516 // elements as are demanded of us. 1517 Ratio = 1; 1518 InputDemandedElts = DemandedElts; 1519 } else if ((VWidth % InVWidth) == 0) { 1520 // If the number of elements in the output is a multiple of the number of 1521 // elements in the input then an input element is live if any of the 1522 // corresponding output elements are live. 1523 Ratio = VWidth / InVWidth; 1524 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1525 if (DemandedElts[OutIdx]) 1526 InputDemandedElts.setBit(OutIdx / Ratio); 1527 } else if ((InVWidth % VWidth) == 0) { 1528 // If the number of elements in the input is a multiple of the number of 1529 // elements in the output then an input element is live if the 1530 // corresponding output element is live. 1531 Ratio = InVWidth / VWidth; 1532 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1533 if (DemandedElts[InIdx / Ratio]) 1534 InputDemandedElts.setBit(InIdx); 1535 } else { 1536 // Unsupported so far. 1537 break; 1538 } 1539 1540 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1541 1542 if (VWidth == InVWidth) { 1543 UndefElts = UndefElts2; 1544 } else if ((VWidth % InVWidth) == 0) { 1545 // If the number of elements in the output is a multiple of the number of 1546 // elements in the input then an output element is undef if the 1547 // corresponding input element is undef. 1548 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1549 if (UndefElts2[OutIdx / Ratio]) 1550 UndefElts.setBit(OutIdx); 1551 } else if ((InVWidth % VWidth) == 0) { 1552 // If the number of elements in the input is a multiple of the number of 1553 // elements in the output then an output element is undef if all of the 1554 // corresponding input elements are undef. 1555 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1556 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1557 if (SubUndef.countPopulation() == Ratio) 1558 UndefElts.setBit(OutIdx); 1559 } 1560 } else { 1561 llvm_unreachable("Unimp"); 1562 } 1563 break; 1564 } 1565 case Instruction::FPTrunc: 1566 case Instruction::FPExt: 1567 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1568 break; 1569 1570 case Instruction::Call: { 1571 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1572 if (!II) break; 1573 switch (II->getIntrinsicID()) { 1574 case Intrinsic::masked_gather: // fallthrough 1575 case Intrinsic::masked_load: { 1576 // Subtlety: If we load from a pointer, the pointer must be valid 1577 // regardless of whether the element is demanded. Doing otherwise risks 1578 // segfaults which didn't exist in the original program. 1579 APInt DemandedPtrs(APInt::getAllOnes(VWidth)), 1580 DemandedPassThrough(DemandedElts); 1581 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1582 for (unsigned i = 0; i < VWidth; i++) { 1583 Constant *CElt = CV->getAggregateElement(i); 1584 if (CElt->isNullValue()) 1585 DemandedPtrs.clearBit(i); 1586 else if (CElt->isAllOnesValue()) 1587 DemandedPassThrough.clearBit(i); 1588 } 1589 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1590 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1591 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1592 1593 // Output elements are undefined if the element from both sources are. 1594 // TODO: can strengthen via mask as well. 1595 UndefElts = UndefElts2 & UndefElts3; 1596 break; 1597 } 1598 default: { 1599 // Handle target specific intrinsics 1600 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1601 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1602 simplifyAndSetOp); 1603 if (V.hasValue()) 1604 return V.getValue(); 1605 break; 1606 } 1607 } // switch on IntrinsicID 1608 break; 1609 } // case Call 1610 } // switch on Opcode 1611 1612 // TODO: We bail completely on integer div/rem and shifts because they have 1613 // UB/poison potential, but that should be refined. 1614 BinaryOperator *BO; 1615 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1616 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1617 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1618 1619 // Output elements are undefined if both are undefined. Consider things 1620 // like undef & 0. The result is known zero, not undef. 1621 UndefElts &= UndefElts2; 1622 } 1623 1624 // If we've proven all of the lanes undef, return an undef value. 1625 // TODO: Intersect w/demanded lanes 1626 if (UndefElts.isAllOnes()) 1627 return UndefValue::get(I->getType());; 1628 1629 return MadeChange ? I : nullptr; 1630 } 1631