1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/IntrinsicsAMDGPU.h" 18 #include "llvm/IR/IntrinsicsX86.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 namespace { 28 29 struct AMDGPUImageDMaskIntrinsic { 30 unsigned Intr; 31 }; 32 33 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 34 #include "InstCombineTables.inc" 35 36 } // end anonymous namespace 37 38 /// Check to see if the specified operand of the specified instruction is a 39 /// constant integer. If so, check to see if there are any bits set in the 40 /// constant that are not demanded. If so, shrink the constant and return true. 41 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 42 const APInt &Demanded) { 43 assert(I && "No instruction?"); 44 assert(OpNo < I->getNumOperands() && "Operand index too large"); 45 46 // The operand must be a constant integer or splat integer. 47 Value *Op = I->getOperand(OpNo); 48 const APInt *C; 49 if (!match(Op, m_APInt(C))) 50 return false; 51 52 // If there are no bits set that aren't demanded, nothing to do. 53 if (C->isSubsetOf(Demanded)) 54 return false; 55 56 // This instruction is producing bits that are not demanded. Shrink the RHS. 57 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 58 59 return true; 60 } 61 62 63 64 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 65 /// the instruction has any properties that allow us to simplify its operands. 66 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 67 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 68 KnownBits Known(BitWidth); 69 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 70 71 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 72 0, &Inst); 73 if (!V) return false; 74 if (V == &Inst) return true; 75 replaceInstUsesWith(Inst, V); 76 return true; 77 } 78 79 /// This form of SimplifyDemandedBits simplifies the specified instruction 80 /// operand if possible, updating it in place. It returns true if it made any 81 /// change and false otherwise. 82 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 83 const APInt &DemandedMask, 84 KnownBits &Known, 85 unsigned Depth) { 86 Use &U = I->getOperandUse(OpNo); 87 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 88 Depth, I); 89 if (!NewVal) return false; 90 // Add the old operand back to the worklist. 91 Worklist.addValue(U.get()); 92 U = NewVal; 93 return true; 94 } 95 96 97 /// This function attempts to replace V with a simpler value based on the 98 /// demanded bits. When this function is called, it is known that only the bits 99 /// set in DemandedMask of the result of V are ever used downstream. 100 /// Consequently, depending on the mask and V, it may be possible to replace V 101 /// with a constant or one of its operands. In such cases, this function does 102 /// the replacement and returns true. In all other cases, it returns false after 103 /// analyzing the expression and setting KnownOne and known to be one in the 104 /// expression. Known.Zero contains all the bits that are known to be zero in 105 /// the expression. These are provided to potentially allow the caller (which 106 /// might recursively be SimplifyDemandedBits itself) to simplify the 107 /// expression. 108 /// Known.One and Known.Zero always follow the invariant that: 109 /// Known.One & Known.Zero == 0. 110 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 111 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 112 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 113 /// be the same. 114 /// 115 /// This returns null if it did not change anything and it permits no 116 /// simplification. This returns V itself if it did some simplification of V's 117 /// operands based on the information about what bits are demanded. This returns 118 /// some other non-null value if it found out that V is equal to another value 119 /// in the context where the specified bits are demanded, but not for all users. 120 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 121 KnownBits &Known, unsigned Depth, 122 Instruction *CxtI) { 123 assert(V != nullptr && "Null pointer of Value???"); 124 assert(Depth <= 6 && "Limit Search Depth"); 125 uint32_t BitWidth = DemandedMask.getBitWidth(); 126 Type *VTy = V->getType(); 127 assert( 128 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 129 Known.getBitWidth() == BitWidth && 130 "Value *V, DemandedMask and Known must have same BitWidth"); 131 132 if (isa<Constant>(V)) { 133 computeKnownBits(V, Known, Depth, CxtI); 134 return nullptr; 135 } 136 137 Known.resetAll(); 138 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 139 return UndefValue::get(VTy); 140 141 if (Depth == 6) // Limit search depth. 142 return nullptr; 143 144 Instruction *I = dyn_cast<Instruction>(V); 145 if (!I) { 146 computeKnownBits(V, Known, Depth, CxtI); 147 return nullptr; // Only analyze instructions. 148 } 149 150 // If there are multiple uses of this value and we aren't at the root, then 151 // we can't do any simplifications of the operands, because DemandedMask 152 // only reflects the bits demanded by *one* of the users. 153 if (Depth != 0 && !I->hasOneUse()) 154 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 155 156 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 157 158 // If this is the root being simplified, allow it to have multiple uses, 159 // just set the DemandedMask to all bits so that we can try to simplify the 160 // operands. This allows visitTruncInst (for example) to simplify the 161 // operand of a trunc without duplicating all the logic below. 162 if (Depth == 0 && !V->hasOneUse()) 163 DemandedMask.setAllBits(); 164 165 switch (I->getOpcode()) { 166 default: 167 computeKnownBits(I, Known, Depth, CxtI); 168 break; 169 case Instruction::And: { 170 // If either the LHS or the RHS are Zero, the result is zero. 171 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 172 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 173 Depth + 1)) 174 return I; 175 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 176 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 177 178 // Output known-0 are known to be clear if zero in either the LHS | RHS. 179 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 180 // Output known-1 bits are only known if set in both the LHS & RHS. 181 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 182 183 // If the client is only demanding bits that we know, return the known 184 // constant. 185 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 186 return Constant::getIntegerValue(VTy, IKnownOne); 187 188 // If all of the demanded bits are known 1 on one side, return the other. 189 // These bits cannot contribute to the result of the 'and'. 190 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 191 return I->getOperand(0); 192 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 193 return I->getOperand(1); 194 195 // If the RHS is a constant, see if we can simplify it. 196 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 197 return I; 198 199 Known.Zero = std::move(IKnownZero); 200 Known.One = std::move(IKnownOne); 201 break; 202 } 203 case Instruction::Or: { 204 // If either the LHS or the RHS are One, the result is One. 205 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 206 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 207 Depth + 1)) 208 return I; 209 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 210 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 211 212 // Output known-0 bits are only known if clear in both the LHS & RHS. 213 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 214 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 215 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 216 217 // If the client is only demanding bits that we know, return the known 218 // constant. 219 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 220 return Constant::getIntegerValue(VTy, IKnownOne); 221 222 // If all of the demanded bits are known zero on one side, return the other. 223 // These bits cannot contribute to the result of the 'or'. 224 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 225 return I->getOperand(0); 226 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 227 return I->getOperand(1); 228 229 // If the RHS is a constant, see if we can simplify it. 230 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 231 return I; 232 233 Known.Zero = std::move(IKnownZero); 234 Known.One = std::move(IKnownOne); 235 break; 236 } 237 case Instruction::Xor: { 238 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 239 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 240 return I; 241 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 242 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 243 244 // Output known-0 bits are known if clear or set in both the LHS & RHS. 245 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 246 (RHSKnown.One & LHSKnown.One); 247 // Output known-1 are known to be set if set in only one of the LHS, RHS. 248 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 249 (RHSKnown.One & LHSKnown.Zero); 250 251 // If the client is only demanding bits that we know, return the known 252 // constant. 253 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 254 return Constant::getIntegerValue(VTy, IKnownOne); 255 256 // If all of the demanded bits are known zero on one side, return the other. 257 // These bits cannot contribute to the result of the 'xor'. 258 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 259 return I->getOperand(0); 260 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 261 return I->getOperand(1); 262 263 // If all of the demanded bits are known to be zero on one side or the 264 // other, turn this into an *inclusive* or. 265 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 266 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 267 Instruction *Or = 268 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 269 I->getName()); 270 return InsertNewInstWith(Or, *I); 271 } 272 273 // If all of the demanded bits on one side are known, and all of the set 274 // bits on that side are also known to be set on the other side, turn this 275 // into an AND, as we know the bits will be cleared. 276 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 277 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 278 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 279 Constant *AndC = Constant::getIntegerValue(VTy, 280 ~RHSKnown.One & DemandedMask); 281 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 282 return InsertNewInstWith(And, *I); 283 } 284 285 // If the RHS is a constant, see if we can simplify it. 286 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 287 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 288 return I; 289 290 // If our LHS is an 'and' and if it has one use, and if any of the bits we 291 // are flipping are known to be set, then the xor is just resetting those 292 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 293 // simplifying both of them. 294 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 295 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 296 isa<ConstantInt>(I->getOperand(1)) && 297 isa<ConstantInt>(LHSInst->getOperand(1)) && 298 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 299 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 300 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 301 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 302 303 Constant *AndC = 304 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 305 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 306 InsertNewInstWith(NewAnd, *I); 307 308 Constant *XorC = 309 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 310 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 311 return InsertNewInstWith(NewXor, *I); 312 } 313 314 // Output known-0 bits are known if clear or set in both the LHS & RHS. 315 Known.Zero = std::move(IKnownZero); 316 // Output known-1 are known to be set if set in only one of the LHS, RHS. 317 Known.One = std::move(IKnownOne); 318 break; 319 } 320 case Instruction::Select: { 321 Value *LHS, *RHS; 322 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 323 if (SPF == SPF_UMAX) { 324 // UMax(A, C) == A if ... 325 // The lowest non-zero bit of DemandMask is higher than the highest 326 // non-zero bit of C. 327 const APInt *C; 328 unsigned CTZ = DemandedMask.countTrailingZeros(); 329 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 330 return LHS; 331 } else if (SPF == SPF_UMIN) { 332 // UMin(A, C) == A if ... 333 // The lowest non-zero bit of DemandMask is higher than the highest 334 // non-one bit of C. 335 // This comes from using DeMorgans on the above umax example. 336 const APInt *C; 337 unsigned CTZ = DemandedMask.countTrailingZeros(); 338 if (match(RHS, m_APInt(C)) && 339 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 340 return LHS; 341 } 342 343 // If this is a select as part of any other min/max pattern, don't simplify 344 // any further in case we break the structure. 345 if (SPF != SPF_UNKNOWN) 346 return nullptr; 347 348 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 349 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 350 return I; 351 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 352 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 353 354 // If the operands are constants, see if we can simplify them. 355 // This is similar to ShrinkDemandedConstant, but for a select we want to 356 // try to keep the selected constants the same as icmp value constants, if 357 // we can. This helps not break apart (or helps put back together) 358 // canonical patterns like min and max. 359 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 360 APInt DemandedMask) { 361 const APInt *SelC; 362 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 363 return false; 364 365 // Get the constant out of the ICmp, if there is one. 366 const APInt *CmpC; 367 ICmpInst::Predicate Pred; 368 if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) || 369 CmpC->getBitWidth() != SelC->getBitWidth()) 370 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 371 372 // If the constant is already the same as the ICmp, leave it as-is. 373 if (*CmpC == *SelC) 374 return false; 375 // If the constants are not already the same, but can be with the demand 376 // mask, use the constant value from the ICmp. 377 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 378 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 379 return true; 380 } 381 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 382 }; 383 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 384 CanonicalizeSelectConstant(I, 2, DemandedMask)) 385 return I; 386 387 // Only known if known in both the LHS and RHS. 388 Known.One = RHSKnown.One & LHSKnown.One; 389 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 390 break; 391 } 392 case Instruction::ZExt: 393 case Instruction::Trunc: { 394 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 395 396 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 397 KnownBits InputKnown(SrcBitWidth); 398 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 399 return I; 400 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 401 Known = InputKnown.zextOrTrunc(BitWidth); 402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 403 break; 404 } 405 case Instruction::BitCast: 406 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 407 return nullptr; // vector->int or fp->int? 408 409 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 410 if (VectorType *SrcVTy = 411 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 412 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 413 // Don't touch a bitcast between vectors of different element counts. 414 return nullptr; 415 } else 416 // Don't touch a scalar-to-vector bitcast. 417 return nullptr; 418 } else if (I->getOperand(0)->getType()->isVectorTy()) 419 // Don't touch a vector-to-scalar bitcast. 420 return nullptr; 421 422 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 423 return I; 424 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 425 break; 426 case Instruction::SExt: { 427 // Compute the bits in the result that are not present in the input. 428 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 429 430 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 431 432 // If any of the sign extended bits are demanded, we know that the sign 433 // bit is demanded. 434 if (DemandedMask.getActiveBits() > SrcBitWidth) 435 InputDemandedBits.setBit(SrcBitWidth-1); 436 437 KnownBits InputKnown(SrcBitWidth); 438 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 439 return I; 440 441 // If the input sign bit is known zero, or if the NewBits are not demanded 442 // convert this into a zero extension. 443 if (InputKnown.isNonNegative() || 444 DemandedMask.getActiveBits() <= SrcBitWidth) { 445 // Convert to ZExt cast. 446 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 447 return InsertNewInstWith(NewCast, *I); 448 } 449 450 // If the sign bit of the input is known set or clear, then we know the 451 // top bits of the result. 452 Known = InputKnown.sext(BitWidth); 453 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 454 break; 455 } 456 case Instruction::Add: 457 if ((DemandedMask & 1) == 0) { 458 // If we do not need the low bit, try to convert bool math to logic: 459 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 460 // Truth table for inputs and output signbits: 461 // X:0 | X:1 462 // ---------- 463 // Y:0 | 0 | 0 | 464 // Y:1 | -1 | 0 | 465 // ---------- 466 Value *X, *Y; 467 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 468 m_OneUse(m_SExt(m_Value(Y))))) && 469 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 470 IRBuilderBase::InsertPointGuard Guard(Builder); 471 Builder.SetInsertPoint(I); 472 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 473 return Builder.CreateSExt(AndNot, VTy); 474 } 475 } 476 LLVM_FALLTHROUGH; 477 case Instruction::Sub: { 478 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 479 /// about the high bits of the operands. 480 unsigned NLZ = DemandedMask.countLeadingZeros(); 481 // Right fill the mask of bits for this ADD/SUB to demand the most 482 // significant bit and all those below it. 483 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 484 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 485 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 486 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 487 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 488 if (NLZ > 0) { 489 // Disable the nsw and nuw flags here: We can no longer guarantee that 490 // we won't wrap after simplification. Removing the nsw/nuw flags is 491 // legal here because the top bit is not demanded. 492 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 493 BinOP.setHasNoSignedWrap(false); 494 BinOP.setHasNoUnsignedWrap(false); 495 } 496 return I; 497 } 498 499 // If we are known to be adding/subtracting zeros to every bit below 500 // the highest demanded bit, we just return the other side. 501 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 502 return I->getOperand(0); 503 // We can't do this with the LHS for subtraction, unless we are only 504 // demanding the LSB. 505 if ((I->getOpcode() == Instruction::Add || 506 DemandedFromOps.isOneValue()) && 507 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 508 return I->getOperand(1); 509 510 // Otherwise just compute the known bits of the result. 511 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 512 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 513 NSW, LHSKnown, RHSKnown); 514 break; 515 } 516 case Instruction::Shl: { 517 const APInt *SA; 518 if (match(I->getOperand(1), m_APInt(SA))) { 519 const APInt *ShrAmt; 520 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 521 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 522 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 523 DemandedMask, Known)) 524 return R; 525 526 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 527 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 528 529 // If the shift is NUW/NSW, then it does demand the high bits. 530 ShlOperator *IOp = cast<ShlOperator>(I); 531 if (IOp->hasNoSignedWrap()) 532 DemandedMaskIn.setHighBits(ShiftAmt+1); 533 else if (IOp->hasNoUnsignedWrap()) 534 DemandedMaskIn.setHighBits(ShiftAmt); 535 536 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 537 return I; 538 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 539 Known.Zero <<= ShiftAmt; 540 Known.One <<= ShiftAmt; 541 // low bits known zero. 542 if (ShiftAmt) 543 Known.Zero.setLowBits(ShiftAmt); 544 } else { 545 computeKnownBits(I, Known, Depth, CxtI); 546 } 547 break; 548 } 549 case Instruction::LShr: { 550 const APInt *SA; 551 if (match(I->getOperand(1), m_APInt(SA))) { 552 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 553 554 // Unsigned shift right. 555 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 556 557 // If the shift is exact, then it does demand the low bits (and knows that 558 // they are zero). 559 if (cast<LShrOperator>(I)->isExact()) 560 DemandedMaskIn.setLowBits(ShiftAmt); 561 562 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 563 return I; 564 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 565 Known.Zero.lshrInPlace(ShiftAmt); 566 Known.One.lshrInPlace(ShiftAmt); 567 if (ShiftAmt) 568 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 569 } else { 570 computeKnownBits(I, Known, Depth, CxtI); 571 } 572 break; 573 } 574 case Instruction::AShr: { 575 // If this is an arithmetic shift right and only the low-bit is set, we can 576 // always convert this into a logical shr, even if the shift amount is 577 // variable. The low bit of the shift cannot be an input sign bit unless 578 // the shift amount is >= the size of the datatype, which is undefined. 579 if (DemandedMask.isOneValue()) { 580 // Perform the logical shift right. 581 Instruction *NewVal = BinaryOperator::CreateLShr( 582 I->getOperand(0), I->getOperand(1), I->getName()); 583 return InsertNewInstWith(NewVal, *I); 584 } 585 586 // If the sign bit is the only bit demanded by this ashr, then there is no 587 // need to do it, the shift doesn't change the high bit. 588 if (DemandedMask.isSignMask()) 589 return I->getOperand(0); 590 591 const APInt *SA; 592 if (match(I->getOperand(1), m_APInt(SA))) { 593 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 594 595 // Signed shift right. 596 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 597 // If any of the high bits are demanded, we should set the sign bit as 598 // demanded. 599 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 600 DemandedMaskIn.setSignBit(); 601 602 // If the shift is exact, then it does demand the low bits (and knows that 603 // they are zero). 604 if (cast<AShrOperator>(I)->isExact()) 605 DemandedMaskIn.setLowBits(ShiftAmt); 606 607 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 608 return I; 609 610 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 611 612 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 613 // Compute the new bits that are at the top now plus sign bits. 614 APInt HighBits(APInt::getHighBitsSet( 615 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 616 Known.Zero.lshrInPlace(ShiftAmt); 617 Known.One.lshrInPlace(ShiftAmt); 618 619 // If the input sign bit is known to be zero, or if none of the top bits 620 // are demanded, turn this into an unsigned shift right. 621 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 622 if (Known.Zero[BitWidth-ShiftAmt-1] || 623 !DemandedMask.intersects(HighBits)) { 624 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 625 I->getOperand(1)); 626 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 627 return InsertNewInstWith(LShr, *I); 628 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 629 Known.One |= HighBits; 630 } 631 } else { 632 computeKnownBits(I, Known, Depth, CxtI); 633 } 634 break; 635 } 636 case Instruction::UDiv: { 637 // UDiv doesn't demand low bits that are zero in the divisor. 638 const APInt *SA; 639 if (match(I->getOperand(1), m_APInt(SA))) { 640 // If the shift is exact, then it does demand the low bits. 641 if (cast<UDivOperator>(I)->isExact()) 642 break; 643 644 // FIXME: Take the demanded mask of the result into account. 645 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 646 APInt DemandedMaskIn = 647 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 648 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 649 return I; 650 651 // Propagate zero bits from the input. 652 Known.Zero.setHighBits(std::min( 653 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 654 } else { 655 computeKnownBits(I, Known, Depth, CxtI); 656 } 657 break; 658 } 659 case Instruction::SRem: 660 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 661 // X % -1 demands all the bits because we don't want to introduce 662 // INT_MIN % -1 (== undef) by accident. 663 if (Rem->isMinusOne()) 664 break; 665 APInt RA = Rem->getValue().abs(); 666 if (RA.isPowerOf2()) { 667 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 668 return I->getOperand(0); 669 670 APInt LowBits = RA - 1; 671 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 672 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 673 return I; 674 675 // The low bits of LHS are unchanged by the srem. 676 Known.Zero = LHSKnown.Zero & LowBits; 677 Known.One = LHSKnown.One & LowBits; 678 679 // If LHS is non-negative or has all low bits zero, then the upper bits 680 // are all zero. 681 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 682 Known.Zero |= ~LowBits; 683 684 // If LHS is negative and not all low bits are zero, then the upper bits 685 // are all one. 686 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 687 Known.One |= ~LowBits; 688 689 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 690 break; 691 } 692 } 693 694 // The sign bit is the LHS's sign bit, except when the result of the 695 // remainder is zero. 696 if (DemandedMask.isSignBitSet()) { 697 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 698 // If it's known zero, our sign bit is also zero. 699 if (LHSKnown.isNonNegative()) 700 Known.makeNonNegative(); 701 } 702 break; 703 case Instruction::URem: { 704 KnownBits Known2(BitWidth); 705 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 706 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 707 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 708 return I; 709 710 unsigned Leaders = Known2.countMinLeadingZeros(); 711 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 712 break; 713 } 714 case Instruction::Call: { 715 bool KnownBitsComputed = false; 716 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 717 switch (II->getIntrinsicID()) { 718 default: break; 719 case Intrinsic::bswap: { 720 // If the only bits demanded come from one byte of the bswap result, 721 // just shift the input byte into position to eliminate the bswap. 722 unsigned NLZ = DemandedMask.countLeadingZeros(); 723 unsigned NTZ = DemandedMask.countTrailingZeros(); 724 725 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 726 // we need all the bits down to bit 8. Likewise, round NLZ. If we 727 // have 14 leading zeros, round to 8. 728 NLZ &= ~7; 729 NTZ &= ~7; 730 // If we need exactly one byte, we can do this transformation. 731 if (BitWidth-NLZ-NTZ == 8) { 732 unsigned ResultBit = NTZ; 733 unsigned InputBit = BitWidth-NTZ-8; 734 735 // Replace this with either a left or right shift to get the byte into 736 // the right place. 737 Instruction *NewVal; 738 if (InputBit > ResultBit) 739 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 740 ConstantInt::get(I->getType(), InputBit-ResultBit)); 741 else 742 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 743 ConstantInt::get(I->getType(), ResultBit-InputBit)); 744 NewVal->takeName(I); 745 return InsertNewInstWith(NewVal, *I); 746 } 747 break; 748 } 749 case Intrinsic::fshr: 750 case Intrinsic::fshl: { 751 const APInt *SA; 752 if (!match(I->getOperand(2), m_APInt(SA))) 753 break; 754 755 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 756 // defined, so no need to special-case zero shifts here. 757 uint64_t ShiftAmt = SA->urem(BitWidth); 758 if (II->getIntrinsicID() == Intrinsic::fshr) 759 ShiftAmt = BitWidth - ShiftAmt; 760 761 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 762 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 763 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 764 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 765 return I; 766 767 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 768 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 769 Known.One = LHSKnown.One.shl(ShiftAmt) | 770 RHSKnown.One.lshr(BitWidth - ShiftAmt); 771 KnownBitsComputed = true; 772 break; 773 } 774 case Intrinsic::x86_mmx_pmovmskb: 775 case Intrinsic::x86_sse_movmsk_ps: 776 case Intrinsic::x86_sse2_movmsk_pd: 777 case Intrinsic::x86_sse2_pmovmskb_128: 778 case Intrinsic::x86_avx_movmsk_ps_256: 779 case Intrinsic::x86_avx_movmsk_pd_256: 780 case Intrinsic::x86_avx2_pmovmskb: { 781 // MOVMSK copies the vector elements' sign bits to the low bits 782 // and zeros the high bits. 783 unsigned ArgWidth; 784 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 785 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 786 } else { 787 auto Arg = II->getArgOperand(0); 788 auto ArgType = cast<VectorType>(Arg->getType()); 789 ArgWidth = ArgType->getNumElements(); 790 } 791 792 // If we don't need any of low bits then return zero, 793 // we know that DemandedMask is non-zero already. 794 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 795 if (DemandedElts.isNullValue()) 796 return ConstantInt::getNullValue(VTy); 797 798 // We know that the upper bits are set to zero. 799 Known.Zero.setBitsFrom(ArgWidth); 800 KnownBitsComputed = true; 801 break; 802 } 803 case Intrinsic::x86_sse42_crc32_64_64: 804 Known.Zero.setBitsFrom(32); 805 KnownBitsComputed = true; 806 break; 807 } 808 } 809 810 if (!KnownBitsComputed) 811 computeKnownBits(V, Known, Depth, CxtI); 812 break; 813 } 814 } 815 816 // If the client is only demanding bits that we know, return the known 817 // constant. 818 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 819 return Constant::getIntegerValue(VTy, Known.One); 820 return nullptr; 821 } 822 823 /// Helper routine of SimplifyDemandedUseBits. It computes Known 824 /// bits. It also tries to handle simplifications that can be done based on 825 /// DemandedMask, but without modifying the Instruction. 826 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 827 const APInt &DemandedMask, 828 KnownBits &Known, 829 unsigned Depth, 830 Instruction *CxtI) { 831 unsigned BitWidth = DemandedMask.getBitWidth(); 832 Type *ITy = I->getType(); 833 834 KnownBits LHSKnown(BitWidth); 835 KnownBits RHSKnown(BitWidth); 836 837 // Despite the fact that we can't simplify this instruction in all User's 838 // context, we can at least compute the known bits, and we can 839 // do simplifications that apply to *just* the one user if we know that 840 // this instruction has a simpler value in that context. 841 switch (I->getOpcode()) { 842 case Instruction::And: { 843 // If either the LHS or the RHS are Zero, the result is zero. 844 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 845 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 846 CxtI); 847 848 // Output known-0 are known to be clear if zero in either the LHS | RHS. 849 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 850 // Output known-1 bits are only known if set in both the LHS & RHS. 851 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 852 853 // If the client is only demanding bits that we know, return the known 854 // constant. 855 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 856 return Constant::getIntegerValue(ITy, IKnownOne); 857 858 // If all of the demanded bits are known 1 on one side, return the other. 859 // These bits cannot contribute to the result of the 'and' in this 860 // context. 861 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 862 return I->getOperand(0); 863 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 864 return I->getOperand(1); 865 866 Known.Zero = std::move(IKnownZero); 867 Known.One = std::move(IKnownOne); 868 break; 869 } 870 case Instruction::Or: { 871 // We can simplify (X|Y) -> X or Y in the user's context if we know that 872 // only bits from X or Y are demanded. 873 874 // If either the LHS or the RHS are One, the result is One. 875 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 876 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 877 CxtI); 878 879 // Output known-0 bits are only known if clear in both the LHS & RHS. 880 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 881 // Output known-1 are known to be set if set in either the LHS | RHS. 882 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 883 884 // If the client is only demanding bits that we know, return the known 885 // constant. 886 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 887 return Constant::getIntegerValue(ITy, IKnownOne); 888 889 // If all of the demanded bits are known zero on one side, return the 890 // other. These bits cannot contribute to the result of the 'or' in this 891 // context. 892 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 893 return I->getOperand(0); 894 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 895 return I->getOperand(1); 896 897 Known.Zero = std::move(IKnownZero); 898 Known.One = std::move(IKnownOne); 899 break; 900 } 901 case Instruction::Xor: { 902 // We can simplify (X^Y) -> X or Y in the user's context if we know that 903 // only bits from X or Y are demanded. 904 905 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 906 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 907 CxtI); 908 909 // Output known-0 bits are known if clear or set in both the LHS & RHS. 910 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 911 (RHSKnown.One & LHSKnown.One); 912 // Output known-1 are known to be set if set in only one of the LHS, RHS. 913 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 914 (RHSKnown.One & LHSKnown.Zero); 915 916 // If the client is only demanding bits that we know, return the known 917 // constant. 918 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 919 return Constant::getIntegerValue(ITy, IKnownOne); 920 921 // If all of the demanded bits are known zero on one side, return the 922 // other. 923 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 924 return I->getOperand(0); 925 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 926 return I->getOperand(1); 927 928 // Output known-0 bits are known if clear or set in both the LHS & RHS. 929 Known.Zero = std::move(IKnownZero); 930 // Output known-1 are known to be set if set in only one of the LHS, RHS. 931 Known.One = std::move(IKnownOne); 932 break; 933 } 934 default: 935 // Compute the Known bits to simplify things downstream. 936 computeKnownBits(I, Known, Depth, CxtI); 937 938 // If this user is only demanding bits that we know, return the known 939 // constant. 940 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 941 return Constant::getIntegerValue(ITy, Known.One); 942 943 break; 944 } 945 946 return nullptr; 947 } 948 949 950 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 951 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 952 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 953 /// of "C2-C1". 954 /// 955 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 956 /// ..., bn}, without considering the specific value X is holding. 957 /// This transformation is legal iff one of following conditions is hold: 958 /// 1) All the bit in S are 0, in this case E1 == E2. 959 /// 2) We don't care those bits in S, per the input DemandedMask. 960 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 961 /// rest bits. 962 /// 963 /// Currently we only test condition 2). 964 /// 965 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 966 /// not successful. 967 Value * 968 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 969 Instruction *Shl, const APInt &ShlOp1, 970 const APInt &DemandedMask, 971 KnownBits &Known) { 972 if (!ShlOp1 || !ShrOp1) 973 return nullptr; // No-op. 974 975 Value *VarX = Shr->getOperand(0); 976 Type *Ty = VarX->getType(); 977 unsigned BitWidth = Ty->getScalarSizeInBits(); 978 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 979 return nullptr; // Undef. 980 981 unsigned ShlAmt = ShlOp1.getZExtValue(); 982 unsigned ShrAmt = ShrOp1.getZExtValue(); 983 984 Known.One.clearAllBits(); 985 Known.Zero.setLowBits(ShlAmt - 1); 986 Known.Zero &= DemandedMask; 987 988 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 989 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 990 991 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 992 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 993 (BitMask1.ashr(ShrAmt) << ShlAmt); 994 995 if (ShrAmt <= ShlAmt) { 996 BitMask2 <<= (ShlAmt - ShrAmt); 997 } else { 998 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 999 BitMask2.ashr(ShrAmt - ShlAmt); 1000 } 1001 1002 // Check if condition-2 (see the comment to this function) is satified. 1003 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1004 if (ShrAmt == ShlAmt) 1005 return VarX; 1006 1007 if (!Shr->hasOneUse()) 1008 return nullptr; 1009 1010 BinaryOperator *New; 1011 if (ShrAmt < ShlAmt) { 1012 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1013 New = BinaryOperator::CreateShl(VarX, Amt); 1014 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1015 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1016 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1017 } else { 1018 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1019 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1020 BinaryOperator::CreateAShr(VarX, Amt); 1021 if (cast<BinaryOperator>(Shr)->isExact()) 1022 New->setIsExact(true); 1023 } 1024 1025 return InsertNewInstWith(New, *Shl); 1026 } 1027 1028 return nullptr; 1029 } 1030 1031 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 1032 /// 1033 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 1034 /// struct returns. 1035 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, 1036 APInt DemandedElts, 1037 int DMaskIdx) { 1038 1039 // FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported. 1040 if (DMaskIdx < 0 && 1041 II->getType()->getScalarSizeInBits() != 32 && 1042 DemandedElts.getActiveBits() == 3) 1043 return nullptr; 1044 1045 unsigned VWidth = II->getType()->getVectorNumElements(); 1046 if (VWidth == 1) 1047 return nullptr; 1048 1049 IRBuilderBase::InsertPointGuard Guard(Builder); 1050 Builder.SetInsertPoint(II); 1051 1052 // Assume the arguments are unchanged and later override them, if needed. 1053 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 1054 1055 if (DMaskIdx < 0) { 1056 // Buffer case. 1057 1058 const unsigned ActiveBits = DemandedElts.getActiveBits(); 1059 const unsigned UnusedComponentsAtFront = DemandedElts.countTrailingZeros(); 1060 1061 // Start assuming the prefix of elements is demanded, but possibly clear 1062 // some other bits if there are trailing zeros (unused components at front) 1063 // and update offset. 1064 DemandedElts = (1 << ActiveBits) - 1; 1065 1066 if (UnusedComponentsAtFront > 0) { 1067 static const unsigned InvalidOffsetIdx = 0xf; 1068 1069 unsigned OffsetIdx; 1070 switch (II->getIntrinsicID()) { 1071 case Intrinsic::amdgcn_raw_buffer_load: 1072 OffsetIdx = 1; 1073 break; 1074 case Intrinsic::amdgcn_s_buffer_load: 1075 // If resulting type is vec3, there is no point in trimming the 1076 // load with updated offset, as the vec3 would most likely be widened to 1077 // vec4 anyway during lowering. 1078 if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1079 OffsetIdx = InvalidOffsetIdx; 1080 else 1081 OffsetIdx = 1; 1082 break; 1083 case Intrinsic::amdgcn_struct_buffer_load: 1084 OffsetIdx = 2; 1085 break; 1086 default: 1087 // TODO: handle tbuffer* intrinsics. 1088 OffsetIdx = InvalidOffsetIdx; 1089 break; 1090 } 1091 1092 if (OffsetIdx != InvalidOffsetIdx) { 1093 // Clear demanded bits and update the offset. 1094 DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1095 auto *Offset = II->getArgOperand(OffsetIdx); 1096 unsigned SingleComponentSizeInBits = 1097 getDataLayout().getTypeSizeInBits(II->getType()->getScalarType()); 1098 unsigned OffsetAdd = 1099 UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1100 auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1101 Args[OffsetIdx] = Builder.CreateAdd(Offset, OffsetAddVal); 1102 } 1103 } 1104 } else { 1105 // Image case. 1106 1107 ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx)); 1108 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1109 1110 // Mask off values that are undefined because the dmask doesn't cover them 1111 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; 1112 1113 unsigned NewDMaskVal = 0; 1114 unsigned OrigLoadIdx = 0; 1115 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1116 const unsigned Bit = 1 << SrcIdx; 1117 if (!!(DMaskVal & Bit)) { 1118 if (!!DemandedElts[OrigLoadIdx]) 1119 NewDMaskVal |= Bit; 1120 OrigLoadIdx++; 1121 } 1122 } 1123 1124 if (DMaskVal != NewDMaskVal) 1125 Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1126 } 1127 1128 unsigned NewNumElts = DemandedElts.countPopulation(); 1129 if (!NewNumElts) 1130 return UndefValue::get(II->getType()); 1131 1132 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1133 if (DMaskIdx >= 0) 1134 II->setArgOperand(DMaskIdx, Args[DMaskIdx]); 1135 return nullptr; 1136 } 1137 1138 // Determine the overload types of the original intrinsic. 1139 auto IID = II->getIntrinsicID(); 1140 SmallVector<Intrinsic::IITDescriptor, 16> Table; 1141 getIntrinsicInfoTableEntries(IID, Table); 1142 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1143 1144 // Validate function argument and return types, extracting overloaded types 1145 // along the way. 1146 FunctionType *FTy = II->getCalledFunction()->getFunctionType(); 1147 SmallVector<Type *, 6> OverloadTys; 1148 Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys); 1149 1150 Module *M = II->getParent()->getParent()->getParent(); 1151 Type *EltTy = II->getType()->getVectorElementType(); 1152 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts); 1153 1154 OverloadTys[0] = NewTy; 1155 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys); 1156 1157 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); 1158 NewCall->takeName(II); 1159 NewCall->copyMetadata(*II); 1160 1161 if (NewNumElts == 1) { 1162 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall, 1163 DemandedElts.countTrailingZeros()); 1164 } 1165 1166 SmallVector<uint32_t, 8> EltMask; 1167 unsigned NewLoadIdx = 0; 1168 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1169 if (!!DemandedElts[OrigLoadIdx]) 1170 EltMask.push_back(NewLoadIdx++); 1171 else 1172 EltMask.push_back(NewNumElts); 1173 } 1174 1175 Value *Shuffle = 1176 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask); 1177 1178 return Shuffle; 1179 } 1180 1181 /// The specified value produces a vector with any number of elements. 1182 /// This method analyzes which elements of the operand are undef and returns 1183 /// that information in UndefElts. 1184 /// 1185 /// DemandedElts contains the set of elements that are actually used by the 1186 /// caller, and by default (AllowMultipleUsers equals false) the value is 1187 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1188 /// to true, DemandedElts refers to the union of sets of elements that are 1189 /// used by all callers. 1190 /// 1191 /// If the information about demanded elements can be used to simplify the 1192 /// operation, the operation is simplified, then the resultant value is 1193 /// returned. This returns null if no change was made. 1194 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 1195 APInt &UndefElts, 1196 unsigned Depth, 1197 bool AllowMultipleUsers) { 1198 unsigned VWidth = V->getType()->getVectorNumElements(); 1199 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1200 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1201 1202 if (isa<UndefValue>(V)) { 1203 // If the entire vector is undefined, just return this info. 1204 UndefElts = EltMask; 1205 return nullptr; 1206 } 1207 1208 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 1209 UndefElts = EltMask; 1210 return UndefValue::get(V->getType()); 1211 } 1212 1213 UndefElts = 0; 1214 1215 if (auto *C = dyn_cast<Constant>(V)) { 1216 // Check if this is identity. If so, return 0 since we are not simplifying 1217 // anything. 1218 if (DemandedElts.isAllOnesValue()) 1219 return nullptr; 1220 1221 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1222 Constant *Undef = UndefValue::get(EltTy); 1223 SmallVector<Constant*, 16> Elts; 1224 for (unsigned i = 0; i != VWidth; ++i) { 1225 if (!DemandedElts[i]) { // If not demanded, set to undef. 1226 Elts.push_back(Undef); 1227 UndefElts.setBit(i); 1228 continue; 1229 } 1230 1231 Constant *Elt = C->getAggregateElement(i); 1232 if (!Elt) return nullptr; 1233 1234 if (isa<UndefValue>(Elt)) { // Already undef. 1235 Elts.push_back(Undef); 1236 UndefElts.setBit(i); 1237 } else { // Otherwise, defined. 1238 Elts.push_back(Elt); 1239 } 1240 } 1241 1242 // If we changed the constant, return it. 1243 Constant *NewCV = ConstantVector::get(Elts); 1244 return NewCV != C ? NewCV : nullptr; 1245 } 1246 1247 // Limit search depth. 1248 if (Depth == 10) 1249 return nullptr; 1250 1251 if (!AllowMultipleUsers) { 1252 // If multiple users are using the root value, proceed with 1253 // simplification conservatively assuming that all elements 1254 // are needed. 1255 if (!V->hasOneUse()) { 1256 // Quit if we find multiple users of a non-root value though. 1257 // They'll be handled when it's their turn to be visited by 1258 // the main instcombine process. 1259 if (Depth != 0) 1260 // TODO: Just compute the UndefElts information recursively. 1261 return nullptr; 1262 1263 // Conservatively assume that all elements are needed. 1264 DemandedElts = EltMask; 1265 } 1266 } 1267 1268 Instruction *I = dyn_cast<Instruction>(V); 1269 if (!I) return nullptr; // Only analyze instructions. 1270 1271 bool MadeChange = false; 1272 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1273 APInt Demanded, APInt &Undef) { 1274 auto *II = dyn_cast<IntrinsicInst>(Inst); 1275 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1276 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1277 if (II) 1278 II->setArgOperand(OpNum, V); 1279 else 1280 Inst->setOperand(OpNum, V); 1281 MadeChange = true; 1282 } 1283 }; 1284 1285 APInt UndefElts2(VWidth, 0); 1286 APInt UndefElts3(VWidth, 0); 1287 switch (I->getOpcode()) { 1288 default: break; 1289 1290 case Instruction::GetElementPtr: { 1291 // The LangRef requires that struct geps have all constant indices. As 1292 // such, we can't convert any operand to partial undef. 1293 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1294 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1295 I != E; I++) 1296 if (I.isStruct()) 1297 return true;; 1298 return false; 1299 }; 1300 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1301 break; 1302 1303 // Conservatively track the demanded elements back through any vector 1304 // operands we may have. We know there must be at least one, or we 1305 // wouldn't have a vector result to get here. Note that we intentionally 1306 // merge the undef bits here since gepping with either an undef base or 1307 // index results in undef. 1308 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1309 if (isa<UndefValue>(I->getOperand(i))) { 1310 // If the entire vector is undefined, just return this info. 1311 UndefElts = EltMask; 1312 return nullptr; 1313 } 1314 if (I->getOperand(i)->getType()->isVectorTy()) { 1315 APInt UndefEltsOp(VWidth, 0); 1316 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1317 UndefElts |= UndefEltsOp; 1318 } 1319 } 1320 1321 break; 1322 } 1323 case Instruction::InsertElement: { 1324 // If this is a variable index, we don't know which element it overwrites. 1325 // demand exactly the same input as we produce. 1326 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1327 if (!Idx) { 1328 // Note that we can't propagate undef elt info, because we don't know 1329 // which elt is getting updated. 1330 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1331 break; 1332 } 1333 1334 // The element inserted overwrites whatever was there, so the input demanded 1335 // set is simpler than the output set. 1336 unsigned IdxNo = Idx->getZExtValue(); 1337 APInt PreInsertDemandedElts = DemandedElts; 1338 if (IdxNo < VWidth) 1339 PreInsertDemandedElts.clearBit(IdxNo); 1340 1341 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1342 1343 // If this is inserting an element that isn't demanded, remove this 1344 // insertelement. 1345 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1346 Worklist.push(I); 1347 return I->getOperand(0); 1348 } 1349 1350 // The inserted element is defined. 1351 UndefElts.clearBit(IdxNo); 1352 break; 1353 } 1354 case Instruction::ShuffleVector: { 1355 auto *Shuffle = cast<ShuffleVectorInst>(I); 1356 assert(Shuffle->getOperand(0)->getType() == 1357 Shuffle->getOperand(1)->getType() && 1358 "Expected shuffle operands to have same type"); 1359 unsigned OpWidth = 1360 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1361 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1362 for (unsigned i = 0; i < VWidth; i++) { 1363 if (DemandedElts[i]) { 1364 unsigned MaskVal = Shuffle->getMaskValue(i); 1365 if (MaskVal != -1u) { 1366 assert(MaskVal < OpWidth * 2 && 1367 "shufflevector mask index out of range!"); 1368 if (MaskVal < OpWidth) 1369 LeftDemanded.setBit(MaskVal); 1370 else 1371 RightDemanded.setBit(MaskVal - OpWidth); 1372 } 1373 } 1374 } 1375 1376 APInt LHSUndefElts(OpWidth, 0); 1377 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1378 1379 APInt RHSUndefElts(OpWidth, 0); 1380 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1381 1382 // If this shuffle does not change the vector length and the elements 1383 // demanded by this shuffle are an identity mask, then this shuffle is 1384 // unnecessary. 1385 // 1386 // We are assuming canonical form for the mask, so the source vector is 1387 // operand 0 and operand 1 is not used. 1388 // 1389 // Note that if an element is demanded and this shuffle mask is undefined 1390 // for that element, then the shuffle is not considered an identity 1391 // operation. The shuffle prevents poison from the operand vector from 1392 // leaking to the result by replacing poison with an undefined value. 1393 if (VWidth == OpWidth) { 1394 bool IsIdentityShuffle = true; 1395 for (unsigned i = 0; i < VWidth; i++) { 1396 unsigned MaskVal = Shuffle->getMaskValue(i); 1397 if (DemandedElts[i] && i != MaskVal) { 1398 IsIdentityShuffle = false; 1399 break; 1400 } 1401 } 1402 if (IsIdentityShuffle) 1403 return Shuffle->getOperand(0); 1404 } 1405 1406 bool NewUndefElts = false; 1407 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1408 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1409 bool LHSUniform = true; 1410 bool RHSUniform = true; 1411 for (unsigned i = 0; i < VWidth; i++) { 1412 unsigned MaskVal = Shuffle->getMaskValue(i); 1413 if (MaskVal == -1u) { 1414 UndefElts.setBit(i); 1415 } else if (!DemandedElts[i]) { 1416 NewUndefElts = true; 1417 UndefElts.setBit(i); 1418 } else if (MaskVal < OpWidth) { 1419 if (LHSUndefElts[MaskVal]) { 1420 NewUndefElts = true; 1421 UndefElts.setBit(i); 1422 } else { 1423 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1424 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1425 LHSUniform = LHSUniform && (MaskVal == i); 1426 } 1427 } else { 1428 if (RHSUndefElts[MaskVal - OpWidth]) { 1429 NewUndefElts = true; 1430 UndefElts.setBit(i); 1431 } else { 1432 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1433 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1434 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1435 } 1436 } 1437 } 1438 1439 // Try to transform shuffle with constant vector and single element from 1440 // this constant vector to single insertelement instruction. 1441 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1442 // insertelement V, C[ci], ci-n 1443 if (OpWidth == Shuffle->getType()->getNumElements()) { 1444 Value *Op = nullptr; 1445 Constant *Value = nullptr; 1446 unsigned Idx = -1u; 1447 1448 // Find constant vector with the single element in shuffle (LHS or RHS). 1449 if (LHSIdx < OpWidth && RHSUniform) { 1450 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1451 Op = Shuffle->getOperand(1); 1452 Value = CV->getOperand(LHSValIdx); 1453 Idx = LHSIdx; 1454 } 1455 } 1456 if (RHSIdx < OpWidth && LHSUniform) { 1457 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1458 Op = Shuffle->getOperand(0); 1459 Value = CV->getOperand(RHSValIdx); 1460 Idx = RHSIdx; 1461 } 1462 } 1463 // Found constant vector with single element - convert to insertelement. 1464 if (Op && Value) { 1465 Instruction *New = InsertElementInst::Create( 1466 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1467 Shuffle->getName()); 1468 InsertNewInstWith(New, *Shuffle); 1469 return New; 1470 } 1471 } 1472 if (NewUndefElts) { 1473 // Add additional discovered undefs. 1474 SmallVector<Constant*, 16> Elts; 1475 for (unsigned i = 0; i < VWidth; ++i) { 1476 if (UndefElts[i]) 1477 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1478 else 1479 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1480 Shuffle->getMaskValue(i))); 1481 } 1482 I->setOperand(2, ConstantVector::get(Elts)); 1483 MadeChange = true; 1484 } 1485 break; 1486 } 1487 case Instruction::Select: { 1488 // If this is a vector select, try to transform the select condition based 1489 // on the current demanded elements. 1490 SelectInst *Sel = cast<SelectInst>(I); 1491 if (Sel->getCondition()->getType()->isVectorTy()) { 1492 // TODO: We are not doing anything with UndefElts based on this call. 1493 // It is overwritten below based on the other select operands. If an 1494 // element of the select condition is known undef, then we are free to 1495 // choose the output value from either arm of the select. If we know that 1496 // one of those values is undef, then the output can be undef. 1497 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1498 } 1499 1500 // Next, see if we can transform the arms of the select. 1501 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1502 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1503 for (unsigned i = 0; i < VWidth; i++) { 1504 // isNullValue() always returns false when called on a ConstantExpr. 1505 // Skip constant expressions to avoid propagating incorrect information. 1506 Constant *CElt = CV->getAggregateElement(i); 1507 if (isa<ConstantExpr>(CElt)) 1508 continue; 1509 // TODO: If a select condition element is undef, we can demand from 1510 // either side. If one side is known undef, choosing that side would 1511 // propagate undef. 1512 if (CElt->isNullValue()) 1513 DemandedLHS.clearBit(i); 1514 else 1515 DemandedRHS.clearBit(i); 1516 } 1517 } 1518 1519 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1520 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1521 1522 // Output elements are undefined if the element from each arm is undefined. 1523 // TODO: This can be improved. See comment in select condition handling. 1524 UndefElts = UndefElts2 & UndefElts3; 1525 break; 1526 } 1527 case Instruction::BitCast: { 1528 // Vector->vector casts only. 1529 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1530 if (!VTy) break; 1531 unsigned InVWidth = VTy->getNumElements(); 1532 APInt InputDemandedElts(InVWidth, 0); 1533 UndefElts2 = APInt(InVWidth, 0); 1534 unsigned Ratio; 1535 1536 if (VWidth == InVWidth) { 1537 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1538 // elements as are demanded of us. 1539 Ratio = 1; 1540 InputDemandedElts = DemandedElts; 1541 } else if ((VWidth % InVWidth) == 0) { 1542 // If the number of elements in the output is a multiple of the number of 1543 // elements in the input then an input element is live if any of the 1544 // corresponding output elements are live. 1545 Ratio = VWidth / InVWidth; 1546 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1547 if (DemandedElts[OutIdx]) 1548 InputDemandedElts.setBit(OutIdx / Ratio); 1549 } else if ((InVWidth % VWidth) == 0) { 1550 // If the number of elements in the input is a multiple of the number of 1551 // elements in the output then an input element is live if the 1552 // corresponding output element is live. 1553 Ratio = InVWidth / VWidth; 1554 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1555 if (DemandedElts[InIdx / Ratio]) 1556 InputDemandedElts.setBit(InIdx); 1557 } else { 1558 // Unsupported so far. 1559 break; 1560 } 1561 1562 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1563 1564 if (VWidth == InVWidth) { 1565 UndefElts = UndefElts2; 1566 } else if ((VWidth % InVWidth) == 0) { 1567 // If the number of elements in the output is a multiple of the number of 1568 // elements in the input then an output element is undef if the 1569 // corresponding input element is undef. 1570 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1571 if (UndefElts2[OutIdx / Ratio]) 1572 UndefElts.setBit(OutIdx); 1573 } else if ((InVWidth % VWidth) == 0) { 1574 // If the number of elements in the input is a multiple of the number of 1575 // elements in the output then an output element is undef if all of the 1576 // corresponding input elements are undef. 1577 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1578 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1579 if (SubUndef.countPopulation() == Ratio) 1580 UndefElts.setBit(OutIdx); 1581 } 1582 } else { 1583 llvm_unreachable("Unimp"); 1584 } 1585 break; 1586 } 1587 case Instruction::FPTrunc: 1588 case Instruction::FPExt: 1589 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1590 break; 1591 1592 case Instruction::Call: { 1593 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1594 if (!II) break; 1595 switch (II->getIntrinsicID()) { 1596 case Intrinsic::masked_gather: // fallthrough 1597 case Intrinsic::masked_load: { 1598 // Subtlety: If we load from a pointer, the pointer must be valid 1599 // regardless of whether the element is demanded. Doing otherwise risks 1600 // segfaults which didn't exist in the original program. 1601 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1602 DemandedPassThrough(DemandedElts); 1603 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1604 for (unsigned i = 0; i < VWidth; i++) { 1605 Constant *CElt = CV->getAggregateElement(i); 1606 if (CElt->isNullValue()) 1607 DemandedPtrs.clearBit(i); 1608 else if (CElt->isAllOnesValue()) 1609 DemandedPassThrough.clearBit(i); 1610 } 1611 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1612 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1613 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1614 1615 // Output elements are undefined if the element from both sources are. 1616 // TODO: can strengthen via mask as well. 1617 UndefElts = UndefElts2 & UndefElts3; 1618 break; 1619 } 1620 case Intrinsic::x86_xop_vfrcz_ss: 1621 case Intrinsic::x86_xop_vfrcz_sd: 1622 // The instructions for these intrinsics are speced to zero upper bits not 1623 // pass them through like other scalar intrinsics. So we shouldn't just 1624 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1625 // Instead we should return a zero vector. 1626 if (!DemandedElts[0]) { 1627 Worklist.push(II); 1628 return ConstantAggregateZero::get(II->getType()); 1629 } 1630 1631 // Only the lower element is used. 1632 DemandedElts = 1; 1633 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1634 1635 // Only the lower element is undefined. The high elements are zero. 1636 UndefElts = UndefElts[0]; 1637 break; 1638 1639 // Unary scalar-as-vector operations that work column-wise. 1640 case Intrinsic::x86_sse_rcp_ss: 1641 case Intrinsic::x86_sse_rsqrt_ss: 1642 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1643 1644 // If lowest element of a scalar op isn't used then use Arg0. 1645 if (!DemandedElts[0]) { 1646 Worklist.push(II); 1647 return II->getArgOperand(0); 1648 } 1649 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1650 // checks). 1651 break; 1652 1653 // Binary scalar-as-vector operations that work column-wise. The high 1654 // elements come from operand 0. The low element is a function of both 1655 // operands. 1656 case Intrinsic::x86_sse_min_ss: 1657 case Intrinsic::x86_sse_max_ss: 1658 case Intrinsic::x86_sse_cmp_ss: 1659 case Intrinsic::x86_sse2_min_sd: 1660 case Intrinsic::x86_sse2_max_sd: 1661 case Intrinsic::x86_sse2_cmp_sd: { 1662 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1663 1664 // If lowest element of a scalar op isn't used then use Arg0. 1665 if (!DemandedElts[0]) { 1666 Worklist.push(II); 1667 return II->getArgOperand(0); 1668 } 1669 1670 // Only lower element is used for operand 1. 1671 DemandedElts = 1; 1672 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1673 1674 // Lower element is undefined if both lower elements are undefined. 1675 // Consider things like undef&0. The result is known zero, not undef. 1676 if (!UndefElts2[0]) 1677 UndefElts.clearBit(0); 1678 1679 break; 1680 } 1681 1682 // Binary scalar-as-vector operations that work column-wise. The high 1683 // elements come from operand 0 and the low element comes from operand 1. 1684 case Intrinsic::x86_sse41_round_ss: 1685 case Intrinsic::x86_sse41_round_sd: { 1686 // Don't use the low element of operand 0. 1687 APInt DemandedElts2 = DemandedElts; 1688 DemandedElts2.clearBit(0); 1689 simplifyAndSetOp(II, 0, DemandedElts2, UndefElts); 1690 1691 // If lowest element of a scalar op isn't used then use Arg0. 1692 if (!DemandedElts[0]) { 1693 Worklist.push(II); 1694 return II->getArgOperand(0); 1695 } 1696 1697 // Only lower element is used for operand 1. 1698 DemandedElts = 1; 1699 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1700 1701 // Take the high undef elements from operand 0 and take the lower element 1702 // from operand 1. 1703 UndefElts.clearBit(0); 1704 UndefElts |= UndefElts2[0]; 1705 break; 1706 } 1707 1708 // Three input scalar-as-vector operations that work column-wise. The high 1709 // elements come from operand 0 and the low element is a function of all 1710 // three inputs. 1711 case Intrinsic::x86_avx512_mask_add_ss_round: 1712 case Intrinsic::x86_avx512_mask_div_ss_round: 1713 case Intrinsic::x86_avx512_mask_mul_ss_round: 1714 case Intrinsic::x86_avx512_mask_sub_ss_round: 1715 case Intrinsic::x86_avx512_mask_max_ss_round: 1716 case Intrinsic::x86_avx512_mask_min_ss_round: 1717 case Intrinsic::x86_avx512_mask_add_sd_round: 1718 case Intrinsic::x86_avx512_mask_div_sd_round: 1719 case Intrinsic::x86_avx512_mask_mul_sd_round: 1720 case Intrinsic::x86_avx512_mask_sub_sd_round: 1721 case Intrinsic::x86_avx512_mask_max_sd_round: 1722 case Intrinsic::x86_avx512_mask_min_sd_round: 1723 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1724 1725 // If lowest element of a scalar op isn't used then use Arg0. 1726 if (!DemandedElts[0]) { 1727 Worklist.push(II); 1728 return II->getArgOperand(0); 1729 } 1730 1731 // Only lower element is used for operand 1 and 2. 1732 DemandedElts = 1; 1733 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1734 simplifyAndSetOp(II, 2, DemandedElts, UndefElts3); 1735 1736 // Lower element is undefined if all three lower elements are undefined. 1737 // Consider things like undef&0. The result is known zero, not undef. 1738 if (!UndefElts2[0] || !UndefElts3[0]) 1739 UndefElts.clearBit(0); 1740 1741 break; 1742 1743 case Intrinsic::x86_sse2_packssdw_128: 1744 case Intrinsic::x86_sse2_packsswb_128: 1745 case Intrinsic::x86_sse2_packuswb_128: 1746 case Intrinsic::x86_sse41_packusdw: 1747 case Intrinsic::x86_avx2_packssdw: 1748 case Intrinsic::x86_avx2_packsswb: 1749 case Intrinsic::x86_avx2_packusdw: 1750 case Intrinsic::x86_avx2_packuswb: 1751 case Intrinsic::x86_avx512_packssdw_512: 1752 case Intrinsic::x86_avx512_packsswb_512: 1753 case Intrinsic::x86_avx512_packusdw_512: 1754 case Intrinsic::x86_avx512_packuswb_512: { 1755 auto *Ty0 = II->getArgOperand(0)->getType(); 1756 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1757 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1758 1759 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1760 unsigned VWidthPerLane = VWidth / NumLanes; 1761 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1762 1763 // Per lane, pack the elements of the first input and then the second. 1764 // e.g. 1765 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1766 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1767 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1768 APInt OpDemandedElts(InnerVWidth, 0); 1769 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1770 unsigned LaneIdx = Lane * VWidthPerLane; 1771 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1772 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1773 if (DemandedElts[Idx]) 1774 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1775 } 1776 } 1777 1778 // Demand elements from the operand. 1779 APInt OpUndefElts(InnerVWidth, 0); 1780 simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts); 1781 1782 // Pack the operand's UNDEF elements, one lane at a time. 1783 OpUndefElts = OpUndefElts.zext(VWidth); 1784 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1785 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1786 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1787 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1788 UndefElts |= LaneElts; 1789 } 1790 } 1791 break; 1792 } 1793 1794 // PSHUFB 1795 case Intrinsic::x86_ssse3_pshuf_b_128: 1796 case Intrinsic::x86_avx2_pshuf_b: 1797 case Intrinsic::x86_avx512_pshuf_b_512: 1798 // PERMILVAR 1799 case Intrinsic::x86_avx_vpermilvar_ps: 1800 case Intrinsic::x86_avx_vpermilvar_ps_256: 1801 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1802 case Intrinsic::x86_avx_vpermilvar_pd: 1803 case Intrinsic::x86_avx_vpermilvar_pd_256: 1804 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1805 // PERMV 1806 case Intrinsic::x86_avx2_permd: 1807 case Intrinsic::x86_avx2_permps: { 1808 simplifyAndSetOp(II, 1, DemandedElts, UndefElts); 1809 break; 1810 } 1811 1812 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1813 // in an undefined state. 1814 case Intrinsic::x86_sse4a_extrq: 1815 case Intrinsic::x86_sse4a_extrqi: 1816 case Intrinsic::x86_sse4a_insertq: 1817 case Intrinsic::x86_sse4a_insertqi: 1818 UndefElts.setHighBits(VWidth / 2); 1819 break; 1820 case Intrinsic::amdgcn_buffer_load: 1821 case Intrinsic::amdgcn_buffer_load_format: 1822 case Intrinsic::amdgcn_raw_buffer_load: 1823 case Intrinsic::amdgcn_raw_buffer_load_format: 1824 case Intrinsic::amdgcn_raw_tbuffer_load: 1825 case Intrinsic::amdgcn_s_buffer_load: 1826 case Intrinsic::amdgcn_struct_buffer_load: 1827 case Intrinsic::amdgcn_struct_buffer_load_format: 1828 case Intrinsic::amdgcn_struct_tbuffer_load: 1829 case Intrinsic::amdgcn_tbuffer_load: 1830 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts); 1831 default: { 1832 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) 1833 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0); 1834 1835 break; 1836 } 1837 } // switch on IntrinsicID 1838 break; 1839 } // case Call 1840 } // switch on Opcode 1841 1842 // TODO: We bail completely on integer div/rem and shifts because they have 1843 // UB/poison potential, but that should be refined. 1844 BinaryOperator *BO; 1845 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1846 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1847 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1848 1849 // Any change to an instruction with potential poison must clear those flags 1850 // because we can not guarantee those constraints now. Other analysis may 1851 // determine that it is safe to re-apply the flags. 1852 if (MadeChange) 1853 BO->dropPoisonGeneratingFlags(); 1854 1855 // Output elements are undefined if both are undefined. Consider things 1856 // like undef & 0. The result is known zero, not undef. 1857 UndefElts &= UndefElts2; 1858 } 1859 1860 // If we've proven all of the lanes undef, return an undef value. 1861 // TODO: Intersect w/demanded lanes 1862 if (UndefElts.isAllOnesValue()) 1863 return UndefValue::get(I->getType());; 1864 1865 return MadeChange ? I : nullptr; 1866 } 1867