1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/GetElementPtrTypeIterator.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 
23 using namespace llvm;
24 using namespace llvm::PatternMatch;
25 
26 #define DEBUG_TYPE "instcombine"
27 
28 /// Check to see if the specified operand of the specified instruction is a
29 /// constant integer. If so, check to see if there are any bits set in the
30 /// constant that are not demanded. If so, shrink the constant and return true.
31 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
32                                    const APInt &Demanded) {
33   assert(I && "No instruction?");
34   assert(OpNo < I->getNumOperands() && "Operand index too large");
35 
36   // The operand must be a constant integer or splat integer.
37   Value *Op = I->getOperand(OpNo);
38   const APInt *C;
39   if (!match(Op, m_APInt(C)))
40     return false;
41 
42   // If there are no bits set that aren't demanded, nothing to do.
43   if (C->isSubsetOf(Demanded))
44     return false;
45 
46   // This instruction is producing bits that are not demanded. Shrink the RHS.
47   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
48 
49   return true;
50 }
51 
52 
53 
54 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
55 /// the instruction has any properties that allow us to simplify its operands.
56 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
57   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
58   KnownBits Known(BitWidth);
59   APInt DemandedMask(APInt::getAllOnes(BitWidth));
60 
61   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
62                                      0, &Inst);
63   if (!V) return false;
64   if (V == &Inst) return true;
65   replaceInstUsesWith(Inst, V);
66   return true;
67 }
68 
69 /// This form of SimplifyDemandedBits simplifies the specified instruction
70 /// operand if possible, updating it in place. It returns true if it made any
71 /// change and false otherwise.
72 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
73                                             const APInt &DemandedMask,
74                                             KnownBits &Known, unsigned Depth) {
75   Use &U = I->getOperandUse(OpNo);
76   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
77                                           Depth, I);
78   if (!NewVal) return false;
79   if (Instruction* OpInst = dyn_cast<Instruction>(U))
80     salvageDebugInfo(*OpInst);
81 
82   replaceUse(U, NewVal);
83   return true;
84 }
85 
86 /// This function attempts to replace V with a simpler value based on the
87 /// demanded bits. When this function is called, it is known that only the bits
88 /// set in DemandedMask of the result of V are ever used downstream.
89 /// Consequently, depending on the mask and V, it may be possible to replace V
90 /// with a constant or one of its operands. In such cases, this function does
91 /// the replacement and returns true. In all other cases, it returns false after
92 /// analyzing the expression and setting KnownOne and known to be one in the
93 /// expression. Known.Zero contains all the bits that are known to be zero in
94 /// the expression. These are provided to potentially allow the caller (which
95 /// might recursively be SimplifyDemandedBits itself) to simplify the
96 /// expression.
97 /// Known.One and Known.Zero always follow the invariant that:
98 ///   Known.One & Known.Zero == 0.
99 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
100 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
101 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
102 /// be the same.
103 ///
104 /// This returns null if it did not change anything and it permits no
105 /// simplification.  This returns V itself if it did some simplification of V's
106 /// operands based on the information about what bits are demanded. This returns
107 /// some other non-null value if it found out that V is equal to another value
108 /// in the context where the specified bits are demanded, but not for all users.
109 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
110                                                  KnownBits &Known,
111                                                  unsigned Depth,
112                                                  Instruction *CxtI) {
113   assert(V != nullptr && "Null pointer of Value???");
114   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
115   uint32_t BitWidth = DemandedMask.getBitWidth();
116   Type *VTy = V->getType();
117   assert(
118       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
119       Known.getBitWidth() == BitWidth &&
120       "Value *V, DemandedMask and Known must have same BitWidth");
121 
122   if (isa<Constant>(V)) {
123     computeKnownBits(V, Known, Depth, CxtI);
124     return nullptr;
125   }
126 
127   Known.resetAll();
128   if (DemandedMask.isZero()) // Not demanding any bits from V.
129     return UndefValue::get(VTy);
130 
131   if (Depth == MaxAnalysisRecursionDepth)
132     return nullptr;
133 
134   if (isa<ScalableVectorType>(VTy))
135     return nullptr;
136 
137   Instruction *I = dyn_cast<Instruction>(V);
138   if (!I) {
139     computeKnownBits(V, Known, Depth, CxtI);
140     return nullptr;        // Only analyze instructions.
141   }
142 
143   // If there are multiple uses of this value and we aren't at the root, then
144   // we can't do any simplifications of the operands, because DemandedMask
145   // only reflects the bits demanded by *one* of the users.
146   if (Depth != 0 && !I->hasOneUse())
147     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
148 
149   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
150 
151   // If this is the root being simplified, allow it to have multiple uses,
152   // just set the DemandedMask to all bits so that we can try to simplify the
153   // operands.  This allows visitTruncInst (for example) to simplify the
154   // operand of a trunc without duplicating all the logic below.
155   if (Depth == 0 && !V->hasOneUse())
156     DemandedMask.setAllBits();
157 
158   // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care
159   // about the high bits of the operands.
160   auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) {
161     unsigned NLZ = DemandedMask.countLeadingZeros();
162     // Right fill the mask of bits for the operands to demand the most
163     // significant bit and all those below it.
164     DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
165     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
166         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
167         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
168         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
169       if (NLZ > 0) {
170         // Disable the nsw and nuw flags here: We can no longer guarantee that
171         // we won't wrap after simplification. Removing the nsw/nuw flags is
172         // legal here because the top bit is not demanded.
173         I->setHasNoSignedWrap(false);
174         I->setHasNoUnsignedWrap(false);
175       }
176       return true;
177     }
178     return false;
179   };
180 
181   switch (I->getOpcode()) {
182   default:
183     computeKnownBits(I, Known, Depth, CxtI);
184     break;
185   case Instruction::And: {
186     // If either the LHS or the RHS are Zero, the result is zero.
187     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
188         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
189                              Depth + 1))
190       return I;
191     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
192     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
193 
194     Known = LHSKnown & RHSKnown;
195 
196     // If the client is only demanding bits that we know, return the known
197     // constant.
198     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
199       return Constant::getIntegerValue(VTy, Known.One);
200 
201     // If all of the demanded bits are known 1 on one side, return the other.
202     // These bits cannot contribute to the result of the 'and'.
203     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
204       return I->getOperand(0);
205     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
206       return I->getOperand(1);
207 
208     // If the RHS is a constant, see if we can simplify it.
209     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
210       return I;
211 
212     break;
213   }
214   case Instruction::Or: {
215     // If either the LHS or the RHS are One, the result is One.
216     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
217         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
218                              Depth + 1))
219       return I;
220     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
221     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
222 
223     Known = LHSKnown | RHSKnown;
224 
225     // If the client is only demanding bits that we know, return the known
226     // constant.
227     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
228       return Constant::getIntegerValue(VTy, Known.One);
229 
230     // If all of the demanded bits are known zero on one side, return the other.
231     // These bits cannot contribute to the result of the 'or'.
232     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
233       return I->getOperand(0);
234     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
235       return I->getOperand(1);
236 
237     // If the RHS is a constant, see if we can simplify it.
238     if (ShrinkDemandedConstant(I, 1, DemandedMask))
239       return I;
240 
241     break;
242   }
243   case Instruction::Xor: {
244     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
245         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
246       return I;
247     Value *LHS, *RHS;
248     if (DemandedMask == 1 &&
249         match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) &&
250         match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) {
251       // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1
252       IRBuilderBase::InsertPointGuard Guard(Builder);
253       Builder.SetInsertPoint(I);
254       auto *Xor = Builder.CreateXor(LHS, RHS);
255       return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor);
256     }
257 
258     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
259     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
260 
261     Known = LHSKnown ^ RHSKnown;
262 
263     // If the client is only demanding bits that we know, return the known
264     // constant.
265     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
266       return Constant::getIntegerValue(VTy, Known.One);
267 
268     // If all of the demanded bits are known zero on one side, return the other.
269     // These bits cannot contribute to the result of the 'xor'.
270     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
271       return I->getOperand(0);
272     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
273       return I->getOperand(1);
274 
275     // If all of the demanded bits are known to be zero on one side or the
276     // other, turn this into an *inclusive* or.
277     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
278     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
279       Instruction *Or =
280         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
281                                  I->getName());
282       return InsertNewInstWith(Or, *I);
283     }
284 
285     // If all of the demanded bits on one side are known, and all of the set
286     // bits on that side are also known to be set on the other side, turn this
287     // into an AND, as we know the bits will be cleared.
288     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
289     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
290         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
291       Constant *AndC = Constant::getIntegerValue(VTy,
292                                                  ~RHSKnown.One & DemandedMask);
293       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
294       return InsertNewInstWith(And, *I);
295     }
296 
297     // If the RHS is a constant, see if we can change it. Don't alter a -1
298     // constant because that's a canonical 'not' op, and that is better for
299     // combining, SCEV, and codegen.
300     const APInt *C;
301     if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) {
302       if ((*C | ~DemandedMask).isAllOnes()) {
303         // Force bits to 1 to create a 'not' op.
304         I->setOperand(1, ConstantInt::getAllOnesValue(VTy));
305         return I;
306       }
307       // If we can't turn this into a 'not', try to shrink the constant.
308       if (ShrinkDemandedConstant(I, 1, DemandedMask))
309         return I;
310     }
311 
312     // If our LHS is an 'and' and if it has one use, and if any of the bits we
313     // are flipping are known to be set, then the xor is just resetting those
314     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
315     // simplifying both of them.
316     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) {
317       ConstantInt *AndRHS, *XorRHS;
318       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
319           match(I->getOperand(1), m_ConstantInt(XorRHS)) &&
320           match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) &&
321           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
322         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
323 
324         Constant *AndC =
325             ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
326         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
327         InsertNewInstWith(NewAnd, *I);
328 
329         Constant *XorC =
330             ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
331         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
332         return InsertNewInstWith(NewXor, *I);
333       }
334     }
335     break;
336   }
337   case Instruction::Select: {
338     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
339         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
340       return I;
341     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
342     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
343 
344     // If the operands are constants, see if we can simplify them.
345     // This is similar to ShrinkDemandedConstant, but for a select we want to
346     // try to keep the selected constants the same as icmp value constants, if
347     // we can. This helps not break apart (or helps put back together)
348     // canonical patterns like min and max.
349     auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
350                                          const APInt &DemandedMask) {
351       const APInt *SelC;
352       if (!match(I->getOperand(OpNo), m_APInt(SelC)))
353         return false;
354 
355       // Get the constant out of the ICmp, if there is one.
356       // Only try this when exactly 1 operand is a constant (if both operands
357       // are constant, the icmp should eventually simplify). Otherwise, we may
358       // invert the transform that reduces set bits and infinite-loop.
359       Value *X;
360       const APInt *CmpC;
361       ICmpInst::Predicate Pred;
362       if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) ||
363           isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth())
364         return ShrinkDemandedConstant(I, OpNo, DemandedMask);
365 
366       // If the constant is already the same as the ICmp, leave it as-is.
367       if (*CmpC == *SelC)
368         return false;
369       // If the constants are not already the same, but can be with the demand
370       // mask, use the constant value from the ICmp.
371       if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
372         I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
373         return true;
374       }
375       return ShrinkDemandedConstant(I, OpNo, DemandedMask);
376     };
377     if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
378         CanonicalizeSelectConstant(I, 2, DemandedMask))
379       return I;
380 
381     // Only known if known in both the LHS and RHS.
382     Known = KnownBits::commonBits(LHSKnown, RHSKnown);
383     break;
384   }
385   case Instruction::Trunc: {
386     // If we do not demand the high bits of a right-shifted and truncated value,
387     // then we may be able to truncate it before the shift.
388     Value *X;
389     const APInt *C;
390     if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
391       // The shift amount must be valid (not poison) in the narrow type, and
392       // it must not be greater than the high bits demanded of the result.
393       if (C->ult(I->getType()->getScalarSizeInBits()) &&
394           C->ule(DemandedMask.countLeadingZeros())) {
395         // trunc (lshr X, C) --> lshr (trunc X), C
396         IRBuilderBase::InsertPointGuard Guard(Builder);
397         Builder.SetInsertPoint(I);
398         Value *Trunc = Builder.CreateTrunc(X, I->getType());
399         return Builder.CreateLShr(Trunc, C->getZExtValue());
400       }
401     }
402   }
403     LLVM_FALLTHROUGH;
404   case Instruction::ZExt: {
405     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
406 
407     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
408     KnownBits InputKnown(SrcBitWidth);
409     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
410       return I;
411     assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
412     Known = InputKnown.zextOrTrunc(BitWidth);
413     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
414     break;
415   }
416   case Instruction::BitCast:
417     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
418       return nullptr;  // vector->int or fp->int?
419 
420     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
421       if (VectorType *SrcVTy =
422             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
423         if (cast<FixedVectorType>(DstVTy)->getNumElements() !=
424             cast<FixedVectorType>(SrcVTy)->getNumElements())
425           // Don't touch a bitcast between vectors of different element counts.
426           return nullptr;
427       } else
428         // Don't touch a scalar-to-vector bitcast.
429         return nullptr;
430     } else if (I->getOperand(0)->getType()->isVectorTy())
431       // Don't touch a vector-to-scalar bitcast.
432       return nullptr;
433 
434     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
435       return I;
436     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
437     break;
438   case Instruction::SExt: {
439     // Compute the bits in the result that are not present in the input.
440     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
441 
442     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
443 
444     // If any of the sign extended bits are demanded, we know that the sign
445     // bit is demanded.
446     if (DemandedMask.getActiveBits() > SrcBitWidth)
447       InputDemandedBits.setBit(SrcBitWidth-1);
448 
449     KnownBits InputKnown(SrcBitWidth);
450     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
451       return I;
452 
453     // If the input sign bit is known zero, or if the NewBits are not demanded
454     // convert this into a zero extension.
455     if (InputKnown.isNonNegative() ||
456         DemandedMask.getActiveBits() <= SrcBitWidth) {
457       // Convert to ZExt cast.
458       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
459       return InsertNewInstWith(NewCast, *I);
460      }
461 
462     // If the sign bit of the input is known set or clear, then we know the
463     // top bits of the result.
464     Known = InputKnown.sext(BitWidth);
465     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
466     break;
467   }
468   case Instruction::Add:
469     if ((DemandedMask & 1) == 0) {
470       // If we do not need the low bit, try to convert bool math to logic:
471       // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
472       Value *X, *Y;
473       if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
474                            m_OneUse(m_SExt(m_Value(Y))))) &&
475           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
476         // Truth table for inputs and output signbits:
477         //       X:0 | X:1
478         //      ----------
479         // Y:0  |  0 | 0 |
480         // Y:1  | -1 | 0 |
481         //      ----------
482         IRBuilderBase::InsertPointGuard Guard(Builder);
483         Builder.SetInsertPoint(I);
484         Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
485         return Builder.CreateSExt(AndNot, VTy);
486       }
487 
488       // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
489       // TODO: Relax the one-use checks because we are removing an instruction?
490       if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))),
491                          m_OneUse(m_SExt(m_Value(Y))))) &&
492           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
493         // Truth table for inputs and output signbits:
494         //       X:0 | X:1
495         //      -----------
496         // Y:0  | -1 | -1 |
497         // Y:1  | -1 |  0 |
498         //      -----------
499         IRBuilderBase::InsertPointGuard Guard(Builder);
500         Builder.SetInsertPoint(I);
501         Value *Or = Builder.CreateOr(X, Y);
502         return Builder.CreateSExt(Or, VTy);
503       }
504     }
505     LLVM_FALLTHROUGH;
506   case Instruction::Sub: {
507     APInt DemandedFromOps;
508     if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps))
509       return I;
510 
511     // If we are known to be adding/subtracting zeros to every bit below
512     // the highest demanded bit, we just return the other side.
513     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
514       return I->getOperand(0);
515     // We can't do this with the LHS for subtraction, unless we are only
516     // demanding the LSB.
517     if ((I->getOpcode() == Instruction::Add || DemandedFromOps.isOne()) &&
518         DemandedFromOps.isSubsetOf(LHSKnown.Zero))
519       return I->getOperand(1);
520 
521     // Otherwise just compute the known bits of the result.
522     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
523     Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
524                                         NSW, LHSKnown, RHSKnown);
525     break;
526   }
527   case Instruction::Mul: {
528     APInt DemandedFromOps;
529     if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps))
530       return I;
531 
532     if (DemandedMask.isPowerOf2()) {
533       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
534       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
535       // odd (has LSB set), then the left-shifted low bit of X is the answer.
536       unsigned CTZ = DemandedMask.countTrailingZeros();
537       const APInt *C;
538       if (match(I->getOperand(1), m_APInt(C)) &&
539           C->countTrailingZeros() == CTZ) {
540         Constant *ShiftC = ConstantInt::get(I->getType(), CTZ);
541         Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC);
542         return InsertNewInstWith(Shl, *I);
543       }
544     }
545     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
546     // X * X is odd iff X is odd.
547     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
548     if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) {
549       Constant *One = ConstantInt::get(VTy, 1);
550       Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One);
551       return InsertNewInstWith(And1, *I);
552     }
553 
554     computeKnownBits(I, Known, Depth, CxtI);
555     break;
556   }
557   case Instruction::Shl: {
558     const APInt *SA;
559     if (match(I->getOperand(1), m_APInt(SA))) {
560       const APInt *ShrAmt;
561       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
562         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
563           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
564                                                     DemandedMask, Known))
565             return R;
566 
567       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
568       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
569 
570       // If the shift is NUW/NSW, then it does demand the high bits.
571       ShlOperator *IOp = cast<ShlOperator>(I);
572       if (IOp->hasNoSignedWrap())
573         DemandedMaskIn.setHighBits(ShiftAmt+1);
574       else if (IOp->hasNoUnsignedWrap())
575         DemandedMaskIn.setHighBits(ShiftAmt);
576 
577       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
578         return I;
579       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
580 
581       bool SignBitZero = Known.Zero.isSignBitSet();
582       bool SignBitOne = Known.One.isSignBitSet();
583       Known.Zero <<= ShiftAmt;
584       Known.One  <<= ShiftAmt;
585       // low bits known zero.
586       if (ShiftAmt)
587         Known.Zero.setLowBits(ShiftAmt);
588 
589       // If this shift has "nsw" keyword, then the result is either a poison
590       // value or has the same sign bit as the first operand.
591       if (IOp->hasNoSignedWrap()) {
592         if (SignBitZero)
593           Known.Zero.setSignBit();
594         else if (SignBitOne)
595           Known.One.setSignBit();
596         if (Known.hasConflict())
597           return UndefValue::get(I->getType());
598       }
599     } else {
600       // This is a variable shift, so we can't shift the demand mask by a known
601       // amount. But if we are not demanding high bits, then we are not
602       // demanding those bits from the pre-shifted operand either.
603       if (unsigned CTLZ = DemandedMask.countLeadingZeros()) {
604         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
605         if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) {
606           // We can't guarantee that nsw/nuw hold after simplifying the operand.
607           I->dropPoisonGeneratingFlags();
608           return I;
609         }
610       }
611       computeKnownBits(I, Known, Depth, CxtI);
612     }
613     break;
614   }
615   case Instruction::LShr: {
616     const APInt *SA;
617     if (match(I->getOperand(1), m_APInt(SA))) {
618       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
619 
620       // Unsigned shift right.
621       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
622 
623       // If the shift is exact, then it does demand the low bits (and knows that
624       // they are zero).
625       if (cast<LShrOperator>(I)->isExact())
626         DemandedMaskIn.setLowBits(ShiftAmt);
627 
628       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
629         return I;
630       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
631       Known.Zero.lshrInPlace(ShiftAmt);
632       Known.One.lshrInPlace(ShiftAmt);
633       if (ShiftAmt)
634         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
635     } else {
636       computeKnownBits(I, Known, Depth, CxtI);
637     }
638     break;
639   }
640   case Instruction::AShr: {
641     // If this is an arithmetic shift right and only the low-bit is set, we can
642     // always convert this into a logical shr, even if the shift amount is
643     // variable.  The low bit of the shift cannot be an input sign bit unless
644     // the shift amount is >= the size of the datatype, which is undefined.
645     if (DemandedMask.isOne()) {
646       // Perform the logical shift right.
647       Instruction *NewVal = BinaryOperator::CreateLShr(
648                         I->getOperand(0), I->getOperand(1), I->getName());
649       return InsertNewInstWith(NewVal, *I);
650     }
651 
652     // If the sign bit is the only bit demanded by this ashr, then there is no
653     // need to do it, the shift doesn't change the high bit.
654     if (DemandedMask.isSignMask())
655       return I->getOperand(0);
656 
657     const APInt *SA;
658     if (match(I->getOperand(1), m_APInt(SA))) {
659       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
660 
661       // Signed shift right.
662       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
663       // If any of the high bits are demanded, we should set the sign bit as
664       // demanded.
665       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
666         DemandedMaskIn.setSignBit();
667 
668       // If the shift is exact, then it does demand the low bits (and knows that
669       // they are zero).
670       if (cast<AShrOperator>(I)->isExact())
671         DemandedMaskIn.setLowBits(ShiftAmt);
672 
673       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
674         return I;
675 
676       unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
677 
678       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
679       // Compute the new bits that are at the top now plus sign bits.
680       APInt HighBits(APInt::getHighBitsSet(
681           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
682       Known.Zero.lshrInPlace(ShiftAmt);
683       Known.One.lshrInPlace(ShiftAmt);
684 
685       // If the input sign bit is known to be zero, or if none of the top bits
686       // are demanded, turn this into an unsigned shift right.
687       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
688       if (Known.Zero[BitWidth-ShiftAmt-1] ||
689           !DemandedMask.intersects(HighBits)) {
690         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
691                                                           I->getOperand(1));
692         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
693         return InsertNewInstWith(LShr, *I);
694       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
695         Known.One |= HighBits;
696       }
697     } else {
698       computeKnownBits(I, Known, Depth, CxtI);
699     }
700     break;
701   }
702   case Instruction::UDiv: {
703     // UDiv doesn't demand low bits that are zero in the divisor.
704     const APInt *SA;
705     if (match(I->getOperand(1), m_APInt(SA))) {
706       // If the shift is exact, then it does demand the low bits.
707       if (cast<UDivOperator>(I)->isExact())
708         break;
709 
710       // FIXME: Take the demanded mask of the result into account.
711       unsigned RHSTrailingZeros = SA->countTrailingZeros();
712       APInt DemandedMaskIn =
713           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
714       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
715         return I;
716 
717       // Propagate zero bits from the input.
718       Known.Zero.setHighBits(std::min(
719           BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
720     } else {
721       computeKnownBits(I, Known, Depth, CxtI);
722     }
723     break;
724   }
725   case Instruction::SRem: {
726     ConstantInt *Rem;
727     if (match(I->getOperand(1), m_ConstantInt(Rem))) {
728       // X % -1 demands all the bits because we don't want to introduce
729       // INT_MIN % -1 (== undef) by accident.
730       if (Rem->isMinusOne())
731         break;
732       APInt RA = Rem->getValue().abs();
733       if (RA.isPowerOf2()) {
734         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
735           return I->getOperand(0);
736 
737         APInt LowBits = RA - 1;
738         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
739         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
740           return I;
741 
742         // The low bits of LHS are unchanged by the srem.
743         Known.Zero = LHSKnown.Zero & LowBits;
744         Known.One = LHSKnown.One & LowBits;
745 
746         // If LHS is non-negative or has all low bits zero, then the upper bits
747         // are all zero.
748         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
749           Known.Zero |= ~LowBits;
750 
751         // If LHS is negative and not all low bits are zero, then the upper bits
752         // are all one.
753         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
754           Known.One |= ~LowBits;
755 
756         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
757         break;
758       }
759     }
760 
761     // The sign bit is the LHS's sign bit, except when the result of the
762     // remainder is zero.
763     if (DemandedMask.isSignBitSet()) {
764       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
765       // If it's known zero, our sign bit is also zero.
766       if (LHSKnown.isNonNegative())
767         Known.makeNonNegative();
768     }
769     break;
770   }
771   case Instruction::URem: {
772     KnownBits Known2(BitWidth);
773     APInt AllOnes = APInt::getAllOnes(BitWidth);
774     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
775         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
776       return I;
777 
778     unsigned Leaders = Known2.countMinLeadingZeros();
779     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
780     break;
781   }
782   case Instruction::Call: {
783     bool KnownBitsComputed = false;
784     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
785       switch (II->getIntrinsicID()) {
786       case Intrinsic::abs: {
787         if (DemandedMask == 1)
788           return II->getArgOperand(0);
789         break;
790       }
791       case Intrinsic::ctpop: {
792         // Checking if the number of clear bits is odd (parity)? If the type has
793         // an even number of bits, that's the same as checking if the number of
794         // set bits is odd, so we can eliminate the 'not' op.
795         Value *X;
796         if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 &&
797             match(II->getArgOperand(0), m_Not(m_Value(X)))) {
798           Function *Ctpop = Intrinsic::getDeclaration(
799               II->getModule(), Intrinsic::ctpop, II->getType());
800           return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I);
801         }
802         break;
803       }
804       case Intrinsic::bswap: {
805         // If the only bits demanded come from one byte of the bswap result,
806         // just shift the input byte into position to eliminate the bswap.
807         unsigned NLZ = DemandedMask.countLeadingZeros();
808         unsigned NTZ = DemandedMask.countTrailingZeros();
809 
810         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
811         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
812         // have 14 leading zeros, round to 8.
813         NLZ = alignDown(NLZ, 8);
814         NTZ = alignDown(NTZ, 8);
815         // If we need exactly one byte, we can do this transformation.
816         if (BitWidth - NLZ - NTZ == 8) {
817           // Replace this with either a left or right shift to get the byte into
818           // the right place.
819           Instruction *NewVal;
820           if (NLZ > NTZ)
821             NewVal = BinaryOperator::CreateLShr(
822                 II->getArgOperand(0),
823                 ConstantInt::get(I->getType(), NLZ - NTZ));
824           else
825             NewVal = BinaryOperator::CreateShl(
826                 II->getArgOperand(0),
827                 ConstantInt::get(I->getType(), NTZ - NLZ));
828           NewVal->takeName(I);
829           return InsertNewInstWith(NewVal, *I);
830         }
831         break;
832       }
833       case Intrinsic::fshr:
834       case Intrinsic::fshl: {
835         const APInt *SA;
836         if (!match(I->getOperand(2), m_APInt(SA)))
837           break;
838 
839         // Normalize to funnel shift left. APInt shifts of BitWidth are well-
840         // defined, so no need to special-case zero shifts here.
841         uint64_t ShiftAmt = SA->urem(BitWidth);
842         if (II->getIntrinsicID() == Intrinsic::fshr)
843           ShiftAmt = BitWidth - ShiftAmt;
844 
845         APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
846         APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
847         if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
848             SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
849           return I;
850 
851         Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
852                      RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
853         Known.One = LHSKnown.One.shl(ShiftAmt) |
854                     RHSKnown.One.lshr(BitWidth - ShiftAmt);
855         KnownBitsComputed = true;
856         break;
857       }
858       case Intrinsic::umax: {
859         // UMax(A, C) == A if ...
860         // The lowest non-zero bit of DemandMask is higher than the highest
861         // non-zero bit of C.
862         const APInt *C;
863         unsigned CTZ = DemandedMask.countTrailingZeros();
864         if (match(II->getArgOperand(1), m_APInt(C)) &&
865             CTZ >= C->getActiveBits())
866           return II->getArgOperand(0);
867         break;
868       }
869       case Intrinsic::umin: {
870         // UMin(A, C) == A if ...
871         // The lowest non-zero bit of DemandMask is higher than the highest
872         // non-one bit of C.
873         // This comes from using DeMorgans on the above umax example.
874         const APInt *C;
875         unsigned CTZ = DemandedMask.countTrailingZeros();
876         if (match(II->getArgOperand(1), m_APInt(C)) &&
877             CTZ >= C->getBitWidth() - C->countLeadingOnes())
878           return II->getArgOperand(0);
879         break;
880       }
881       default: {
882         // Handle target specific intrinsics
883         Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
884             *II, DemandedMask, Known, KnownBitsComputed);
885         if (V.hasValue())
886           return V.getValue();
887         break;
888       }
889       }
890     }
891 
892     if (!KnownBitsComputed)
893       computeKnownBits(V, Known, Depth, CxtI);
894     break;
895   }
896   }
897 
898   // If the client is only demanding bits that we know, return the known
899   // constant.
900   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
901     return Constant::getIntegerValue(VTy, Known.One);
902   return nullptr;
903 }
904 
905 /// Helper routine of SimplifyDemandedUseBits. It computes Known
906 /// bits. It also tries to handle simplifications that can be done based on
907 /// DemandedMask, but without modifying the Instruction.
908 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
909     Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
910     Instruction *CxtI) {
911   unsigned BitWidth = DemandedMask.getBitWidth();
912   Type *ITy = I->getType();
913 
914   KnownBits LHSKnown(BitWidth);
915   KnownBits RHSKnown(BitWidth);
916 
917   // Despite the fact that we can't simplify this instruction in all User's
918   // context, we can at least compute the known bits, and we can
919   // do simplifications that apply to *just* the one user if we know that
920   // this instruction has a simpler value in that context.
921   switch (I->getOpcode()) {
922   case Instruction::And: {
923     // If either the LHS or the RHS are Zero, the result is zero.
924     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
925     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
926                      CxtI);
927 
928     Known = LHSKnown & RHSKnown;
929 
930     // If the client is only demanding bits that we know, return the known
931     // constant.
932     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
933       return Constant::getIntegerValue(ITy, Known.One);
934 
935     // If all of the demanded bits are known 1 on one side, return the other.
936     // These bits cannot contribute to the result of the 'and' in this
937     // context.
938     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
939       return I->getOperand(0);
940     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
941       return I->getOperand(1);
942 
943     break;
944   }
945   case Instruction::Or: {
946     // We can simplify (X|Y) -> X or Y in the user's context if we know that
947     // only bits from X or Y are demanded.
948 
949     // If either the LHS or the RHS are One, the result is One.
950     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
951     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
952                      CxtI);
953 
954     Known = LHSKnown | RHSKnown;
955 
956     // If the client is only demanding bits that we know, return the known
957     // constant.
958     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
959       return Constant::getIntegerValue(ITy, Known.One);
960 
961     // If all of the demanded bits are known zero on one side, return the
962     // other.  These bits cannot contribute to the result of the 'or' in this
963     // context.
964     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
965       return I->getOperand(0);
966     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
967       return I->getOperand(1);
968 
969     break;
970   }
971   case Instruction::Xor: {
972     // We can simplify (X^Y) -> X or Y in the user's context if we know that
973     // only bits from X or Y are demanded.
974 
975     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
976     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
977                      CxtI);
978 
979     Known = LHSKnown ^ RHSKnown;
980 
981     // If the client is only demanding bits that we know, return the known
982     // constant.
983     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
984       return Constant::getIntegerValue(ITy, Known.One);
985 
986     // If all of the demanded bits are known zero on one side, return the
987     // other.
988     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
989       return I->getOperand(0);
990     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
991       return I->getOperand(1);
992 
993     break;
994   }
995   case Instruction::AShr: {
996     // Compute the Known bits to simplify things downstream.
997     computeKnownBits(I, Known, Depth, CxtI);
998 
999     // If this user is only demanding bits that we know, return the known
1000     // constant.
1001     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1002       return Constant::getIntegerValue(ITy, Known.One);
1003 
1004     // If the right shift operand 0 is a result of a left shift by the same
1005     // amount, this is probably a zero/sign extension, which may be unnecessary,
1006     // if we do not demand any of the new sign bits. So, return the original
1007     // operand instead.
1008     const APInt *ShiftRC;
1009     const APInt *ShiftLC;
1010     Value *X;
1011     unsigned BitWidth = DemandedMask.getBitWidth();
1012     if (match(I,
1013               m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) &&
1014         ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) &&
1015         DemandedMask.isSubsetOf(APInt::getLowBitsSet(
1016             BitWidth, BitWidth - ShiftRC->getZExtValue()))) {
1017       return X;
1018     }
1019 
1020     break;
1021   }
1022   default:
1023     // Compute the Known bits to simplify things downstream.
1024     computeKnownBits(I, Known, Depth, CxtI);
1025 
1026     // If this user is only demanding bits that we know, return the known
1027     // constant.
1028     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
1029       return Constant::getIntegerValue(ITy, Known.One);
1030 
1031     break;
1032   }
1033 
1034   return nullptr;
1035 }
1036 
1037 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
1038 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
1039 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
1040 /// of "C2-C1".
1041 ///
1042 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
1043 /// ..., bn}, without considering the specific value X is holding.
1044 /// This transformation is legal iff one of following conditions is hold:
1045 ///  1) All the bit in S are 0, in this case E1 == E2.
1046 ///  2) We don't care those bits in S, per the input DemandedMask.
1047 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
1048 ///     rest bits.
1049 ///
1050 /// Currently we only test condition 2).
1051 ///
1052 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
1053 /// not successful.
1054 Value *InstCombinerImpl::simplifyShrShlDemandedBits(
1055     Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
1056     const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
1057   if (!ShlOp1 || !ShrOp1)
1058     return nullptr; // No-op.
1059 
1060   Value *VarX = Shr->getOperand(0);
1061   Type *Ty = VarX->getType();
1062   unsigned BitWidth = Ty->getScalarSizeInBits();
1063   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
1064     return nullptr; // Undef.
1065 
1066   unsigned ShlAmt = ShlOp1.getZExtValue();
1067   unsigned ShrAmt = ShrOp1.getZExtValue();
1068 
1069   Known.One.clearAllBits();
1070   Known.Zero.setLowBits(ShlAmt - 1);
1071   Known.Zero &= DemandedMask;
1072 
1073   APInt BitMask1(APInt::getAllOnes(BitWidth));
1074   APInt BitMask2(APInt::getAllOnes(BitWidth));
1075 
1076   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
1077   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
1078                       (BitMask1.ashr(ShrAmt) << ShlAmt);
1079 
1080   if (ShrAmt <= ShlAmt) {
1081     BitMask2 <<= (ShlAmt - ShrAmt);
1082   } else {
1083     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
1084                         BitMask2.ashr(ShrAmt - ShlAmt);
1085   }
1086 
1087   // Check if condition-2 (see the comment to this function) is satified.
1088   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
1089     if (ShrAmt == ShlAmt)
1090       return VarX;
1091 
1092     if (!Shr->hasOneUse())
1093       return nullptr;
1094 
1095     BinaryOperator *New;
1096     if (ShrAmt < ShlAmt) {
1097       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
1098       New = BinaryOperator::CreateShl(VarX, Amt);
1099       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
1100       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
1101       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
1102     } else {
1103       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
1104       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
1105                      BinaryOperator::CreateAShr(VarX, Amt);
1106       if (cast<BinaryOperator>(Shr)->isExact())
1107         New->setIsExact(true);
1108     }
1109 
1110     return InsertNewInstWith(New, *Shl);
1111   }
1112 
1113   return nullptr;
1114 }
1115 
1116 /// The specified value produces a vector with any number of elements.
1117 /// This method analyzes which elements of the operand are undef or poison and
1118 /// returns that information in UndefElts.
1119 ///
1120 /// DemandedElts contains the set of elements that are actually used by the
1121 /// caller, and by default (AllowMultipleUsers equals false) the value is
1122 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1123 /// to true, DemandedElts refers to the union of sets of elements that are
1124 /// used by all callers.
1125 ///
1126 /// If the information about demanded elements can be used to simplify the
1127 /// operation, the operation is simplified, then the resultant value is
1128 /// returned.  This returns null if no change was made.
1129 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
1130                                                     APInt DemandedElts,
1131                                                     APInt &UndefElts,
1132                                                     unsigned Depth,
1133                                                     bool AllowMultipleUsers) {
1134   // Cannot analyze scalable type. The number of vector elements is not a
1135   // compile-time constant.
1136   if (isa<ScalableVectorType>(V->getType()))
1137     return nullptr;
1138 
1139   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
1140   APInt EltMask(APInt::getAllOnes(VWidth));
1141   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1142 
1143   if (match(V, m_Undef())) {
1144     // If the entire vector is undef or poison, just return this info.
1145     UndefElts = EltMask;
1146     return nullptr;
1147   }
1148 
1149   if (DemandedElts.isZero()) { // If nothing is demanded, provide poison.
1150     UndefElts = EltMask;
1151     return PoisonValue::get(V->getType());
1152   }
1153 
1154   UndefElts = 0;
1155 
1156   if (auto *C = dyn_cast<Constant>(V)) {
1157     // Check if this is identity. If so, return 0 since we are not simplifying
1158     // anything.
1159     if (DemandedElts.isAllOnes())
1160       return nullptr;
1161 
1162     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1163     Constant *Poison = PoisonValue::get(EltTy);
1164     SmallVector<Constant*, 16> Elts;
1165     for (unsigned i = 0; i != VWidth; ++i) {
1166       if (!DemandedElts[i]) {   // If not demanded, set to poison.
1167         Elts.push_back(Poison);
1168         UndefElts.setBit(i);
1169         continue;
1170       }
1171 
1172       Constant *Elt = C->getAggregateElement(i);
1173       if (!Elt) return nullptr;
1174 
1175       Elts.push_back(Elt);
1176       if (isa<UndefValue>(Elt))   // Already undef or poison.
1177         UndefElts.setBit(i);
1178     }
1179 
1180     // If we changed the constant, return it.
1181     Constant *NewCV = ConstantVector::get(Elts);
1182     return NewCV != C ? NewCV : nullptr;
1183   }
1184 
1185   // Limit search depth.
1186   if (Depth == 10)
1187     return nullptr;
1188 
1189   if (!AllowMultipleUsers) {
1190     // If multiple users are using the root value, proceed with
1191     // simplification conservatively assuming that all elements
1192     // are needed.
1193     if (!V->hasOneUse()) {
1194       // Quit if we find multiple users of a non-root value though.
1195       // They'll be handled when it's their turn to be visited by
1196       // the main instcombine process.
1197       if (Depth != 0)
1198         // TODO: Just compute the UndefElts information recursively.
1199         return nullptr;
1200 
1201       // Conservatively assume that all elements are needed.
1202       DemandedElts = EltMask;
1203     }
1204   }
1205 
1206   Instruction *I = dyn_cast<Instruction>(V);
1207   if (!I) return nullptr;        // Only analyze instructions.
1208 
1209   bool MadeChange = false;
1210   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1211                               APInt Demanded, APInt &Undef) {
1212     auto *II = dyn_cast<IntrinsicInst>(Inst);
1213     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1214     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1215       replaceOperand(*Inst, OpNum, V);
1216       MadeChange = true;
1217     }
1218   };
1219 
1220   APInt UndefElts2(VWidth, 0);
1221   APInt UndefElts3(VWidth, 0);
1222   switch (I->getOpcode()) {
1223   default: break;
1224 
1225   case Instruction::GetElementPtr: {
1226     // The LangRef requires that struct geps have all constant indices.  As
1227     // such, we can't convert any operand to partial undef.
1228     auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1229       for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1230            I != E; I++)
1231         if (I.isStruct())
1232           return true;
1233       return false;
1234     };
1235     if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1236       break;
1237 
1238     // Conservatively track the demanded elements back through any vector
1239     // operands we may have.  We know there must be at least one, or we
1240     // wouldn't have a vector result to get here. Note that we intentionally
1241     // merge the undef bits here since gepping with either an poison base or
1242     // index results in poison.
1243     for (unsigned i = 0; i < I->getNumOperands(); i++) {
1244       if (i == 0 ? match(I->getOperand(i), m_Undef())
1245                  : match(I->getOperand(i), m_Poison())) {
1246         // If the entire vector is undefined, just return this info.
1247         UndefElts = EltMask;
1248         return nullptr;
1249       }
1250       if (I->getOperand(i)->getType()->isVectorTy()) {
1251         APInt UndefEltsOp(VWidth, 0);
1252         simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1253         // gep(x, undef) is not undef, so skip considering idx ops here
1254         // Note that we could propagate poison, but we can't distinguish between
1255         // undef & poison bits ATM
1256         if (i == 0)
1257           UndefElts |= UndefEltsOp;
1258       }
1259     }
1260 
1261     break;
1262   }
1263   case Instruction::InsertElement: {
1264     // If this is a variable index, we don't know which element it overwrites.
1265     // demand exactly the same input as we produce.
1266     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1267     if (!Idx) {
1268       // Note that we can't propagate undef elt info, because we don't know
1269       // which elt is getting updated.
1270       simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1271       break;
1272     }
1273 
1274     // The element inserted overwrites whatever was there, so the input demanded
1275     // set is simpler than the output set.
1276     unsigned IdxNo = Idx->getZExtValue();
1277     APInt PreInsertDemandedElts = DemandedElts;
1278     if (IdxNo < VWidth)
1279       PreInsertDemandedElts.clearBit(IdxNo);
1280 
1281     // If we only demand the element that is being inserted and that element
1282     // was extracted from the same index in another vector with the same type,
1283     // replace this insert with that other vector.
1284     // Note: This is attempted before the call to simplifyAndSetOp because that
1285     //       may change UndefElts to a value that does not match with Vec.
1286     Value *Vec;
1287     if (PreInsertDemandedElts == 0 &&
1288         match(I->getOperand(1),
1289               m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) &&
1290         Vec->getType() == I->getType()) {
1291       return Vec;
1292     }
1293 
1294     simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1295 
1296     // If this is inserting an element that isn't demanded, remove this
1297     // insertelement.
1298     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1299       Worklist.push(I);
1300       return I->getOperand(0);
1301     }
1302 
1303     // The inserted element is defined.
1304     UndefElts.clearBit(IdxNo);
1305     break;
1306   }
1307   case Instruction::ShuffleVector: {
1308     auto *Shuffle = cast<ShuffleVectorInst>(I);
1309     assert(Shuffle->getOperand(0)->getType() ==
1310            Shuffle->getOperand(1)->getType() &&
1311            "Expected shuffle operands to have same type");
1312     unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType())
1313                            ->getNumElements();
1314     // Handle trivial case of a splat. Only check the first element of LHS
1315     // operand.
1316     if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
1317         DemandedElts.isAllOnes()) {
1318       if (!match(I->getOperand(1), m_Undef())) {
1319         I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType()));
1320         MadeChange = true;
1321       }
1322       APInt LeftDemanded(OpWidth, 1);
1323       APInt LHSUndefElts(OpWidth, 0);
1324       simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1325       if (LHSUndefElts[0])
1326         UndefElts = EltMask;
1327       else
1328         UndefElts.clearAllBits();
1329       break;
1330     }
1331 
1332     APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1333     for (unsigned i = 0; i < VWidth; i++) {
1334       if (DemandedElts[i]) {
1335         unsigned MaskVal = Shuffle->getMaskValue(i);
1336         if (MaskVal != -1u) {
1337           assert(MaskVal < OpWidth * 2 &&
1338                  "shufflevector mask index out of range!");
1339           if (MaskVal < OpWidth)
1340             LeftDemanded.setBit(MaskVal);
1341           else
1342             RightDemanded.setBit(MaskVal - OpWidth);
1343         }
1344       }
1345     }
1346 
1347     APInt LHSUndefElts(OpWidth, 0);
1348     simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1349 
1350     APInt RHSUndefElts(OpWidth, 0);
1351     simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1352 
1353     // If this shuffle does not change the vector length and the elements
1354     // demanded by this shuffle are an identity mask, then this shuffle is
1355     // unnecessary.
1356     //
1357     // We are assuming canonical form for the mask, so the source vector is
1358     // operand 0 and operand 1 is not used.
1359     //
1360     // Note that if an element is demanded and this shuffle mask is undefined
1361     // for that element, then the shuffle is not considered an identity
1362     // operation. The shuffle prevents poison from the operand vector from
1363     // leaking to the result by replacing poison with an undefined value.
1364     if (VWidth == OpWidth) {
1365       bool IsIdentityShuffle = true;
1366       for (unsigned i = 0; i < VWidth; i++) {
1367         unsigned MaskVal = Shuffle->getMaskValue(i);
1368         if (DemandedElts[i] && i != MaskVal) {
1369           IsIdentityShuffle = false;
1370           break;
1371         }
1372       }
1373       if (IsIdentityShuffle)
1374         return Shuffle->getOperand(0);
1375     }
1376 
1377     bool NewUndefElts = false;
1378     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1379     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1380     bool LHSUniform = true;
1381     bool RHSUniform = true;
1382     for (unsigned i = 0; i < VWidth; i++) {
1383       unsigned MaskVal = Shuffle->getMaskValue(i);
1384       if (MaskVal == -1u) {
1385         UndefElts.setBit(i);
1386       } else if (!DemandedElts[i]) {
1387         NewUndefElts = true;
1388         UndefElts.setBit(i);
1389       } else if (MaskVal < OpWidth) {
1390         if (LHSUndefElts[MaskVal]) {
1391           NewUndefElts = true;
1392           UndefElts.setBit(i);
1393         } else {
1394           LHSIdx = LHSIdx == -1u ? i : OpWidth;
1395           LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1396           LHSUniform = LHSUniform && (MaskVal == i);
1397         }
1398       } else {
1399         if (RHSUndefElts[MaskVal - OpWidth]) {
1400           NewUndefElts = true;
1401           UndefElts.setBit(i);
1402         } else {
1403           RHSIdx = RHSIdx == -1u ? i : OpWidth;
1404           RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1405           RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1406         }
1407       }
1408     }
1409 
1410     // Try to transform shuffle with constant vector and single element from
1411     // this constant vector to single insertelement instruction.
1412     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1413     // insertelement V, C[ci], ci-n
1414     if (OpWidth ==
1415         cast<FixedVectorType>(Shuffle->getType())->getNumElements()) {
1416       Value *Op = nullptr;
1417       Constant *Value = nullptr;
1418       unsigned Idx = -1u;
1419 
1420       // Find constant vector with the single element in shuffle (LHS or RHS).
1421       if (LHSIdx < OpWidth && RHSUniform) {
1422         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1423           Op = Shuffle->getOperand(1);
1424           Value = CV->getOperand(LHSValIdx);
1425           Idx = LHSIdx;
1426         }
1427       }
1428       if (RHSIdx < OpWidth && LHSUniform) {
1429         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1430           Op = Shuffle->getOperand(0);
1431           Value = CV->getOperand(RHSValIdx);
1432           Idx = RHSIdx;
1433         }
1434       }
1435       // Found constant vector with single element - convert to insertelement.
1436       if (Op && Value) {
1437         Instruction *New = InsertElementInst::Create(
1438             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1439             Shuffle->getName());
1440         InsertNewInstWith(New, *Shuffle);
1441         return New;
1442       }
1443     }
1444     if (NewUndefElts) {
1445       // Add additional discovered undefs.
1446       SmallVector<int, 16> Elts;
1447       for (unsigned i = 0; i < VWidth; ++i) {
1448         if (UndefElts[i])
1449           Elts.push_back(UndefMaskElem);
1450         else
1451           Elts.push_back(Shuffle->getMaskValue(i));
1452       }
1453       Shuffle->setShuffleMask(Elts);
1454       MadeChange = true;
1455     }
1456     break;
1457   }
1458   case Instruction::Select: {
1459     // If this is a vector select, try to transform the select condition based
1460     // on the current demanded elements.
1461     SelectInst *Sel = cast<SelectInst>(I);
1462     if (Sel->getCondition()->getType()->isVectorTy()) {
1463       // TODO: We are not doing anything with UndefElts based on this call.
1464       // It is overwritten below based on the other select operands. If an
1465       // element of the select condition is known undef, then we are free to
1466       // choose the output value from either arm of the select. If we know that
1467       // one of those values is undef, then the output can be undef.
1468       simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1469     }
1470 
1471     // Next, see if we can transform the arms of the select.
1472     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1473     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1474       for (unsigned i = 0; i < VWidth; i++) {
1475         // isNullValue() always returns false when called on a ConstantExpr.
1476         // Skip constant expressions to avoid propagating incorrect information.
1477         Constant *CElt = CV->getAggregateElement(i);
1478         if (isa<ConstantExpr>(CElt))
1479           continue;
1480         // TODO: If a select condition element is undef, we can demand from
1481         // either side. If one side is known undef, choosing that side would
1482         // propagate undef.
1483         if (CElt->isNullValue())
1484           DemandedLHS.clearBit(i);
1485         else
1486           DemandedRHS.clearBit(i);
1487       }
1488     }
1489 
1490     simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1491     simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1492 
1493     // Output elements are undefined if the element from each arm is undefined.
1494     // TODO: This can be improved. See comment in select condition handling.
1495     UndefElts = UndefElts2 & UndefElts3;
1496     break;
1497   }
1498   case Instruction::BitCast: {
1499     // Vector->vector casts only.
1500     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1501     if (!VTy) break;
1502     unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements();
1503     APInt InputDemandedElts(InVWidth, 0);
1504     UndefElts2 = APInt(InVWidth, 0);
1505     unsigned Ratio;
1506 
1507     if (VWidth == InVWidth) {
1508       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1509       // elements as are demanded of us.
1510       Ratio = 1;
1511       InputDemandedElts = DemandedElts;
1512     } else if ((VWidth % InVWidth) == 0) {
1513       // If the number of elements in the output is a multiple of the number of
1514       // elements in the input then an input element is live if any of the
1515       // corresponding output elements are live.
1516       Ratio = VWidth / InVWidth;
1517       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1518         if (DemandedElts[OutIdx])
1519           InputDemandedElts.setBit(OutIdx / Ratio);
1520     } else if ((InVWidth % VWidth) == 0) {
1521       // If the number of elements in the input is a multiple of the number of
1522       // elements in the output then an input element is live if the
1523       // corresponding output element is live.
1524       Ratio = InVWidth / VWidth;
1525       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1526         if (DemandedElts[InIdx / Ratio])
1527           InputDemandedElts.setBit(InIdx);
1528     } else {
1529       // Unsupported so far.
1530       break;
1531     }
1532 
1533     simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1534 
1535     if (VWidth == InVWidth) {
1536       UndefElts = UndefElts2;
1537     } else if ((VWidth % InVWidth) == 0) {
1538       // If the number of elements in the output is a multiple of the number of
1539       // elements in the input then an output element is undef if the
1540       // corresponding input element is undef.
1541       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1542         if (UndefElts2[OutIdx / Ratio])
1543           UndefElts.setBit(OutIdx);
1544     } else if ((InVWidth % VWidth) == 0) {
1545       // If the number of elements in the input is a multiple of the number of
1546       // elements in the output then an output element is undef if all of the
1547       // corresponding input elements are undef.
1548       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1549         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1550         if (SubUndef.countPopulation() == Ratio)
1551           UndefElts.setBit(OutIdx);
1552       }
1553     } else {
1554       llvm_unreachable("Unimp");
1555     }
1556     break;
1557   }
1558   case Instruction::FPTrunc:
1559   case Instruction::FPExt:
1560     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1561     break;
1562 
1563   case Instruction::Call: {
1564     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1565     if (!II) break;
1566     switch (II->getIntrinsicID()) {
1567     case Intrinsic::masked_gather: // fallthrough
1568     case Intrinsic::masked_load: {
1569       // Subtlety: If we load from a pointer, the pointer must be valid
1570       // regardless of whether the element is demanded.  Doing otherwise risks
1571       // segfaults which didn't exist in the original program.
1572       APInt DemandedPtrs(APInt::getAllOnes(VWidth)),
1573           DemandedPassThrough(DemandedElts);
1574       if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1575         for (unsigned i = 0; i < VWidth; i++) {
1576           Constant *CElt = CV->getAggregateElement(i);
1577           if (CElt->isNullValue())
1578             DemandedPtrs.clearBit(i);
1579           else if (CElt->isAllOnesValue())
1580             DemandedPassThrough.clearBit(i);
1581         }
1582       if (II->getIntrinsicID() == Intrinsic::masked_gather)
1583         simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1584       simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1585 
1586       // Output elements are undefined if the element from both sources are.
1587       // TODO: can strengthen via mask as well.
1588       UndefElts = UndefElts2 & UndefElts3;
1589       break;
1590     }
1591     default: {
1592       // Handle target specific intrinsics
1593       Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
1594           *II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
1595           simplifyAndSetOp);
1596       if (V.hasValue())
1597         return V.getValue();
1598       break;
1599     }
1600     } // switch on IntrinsicID
1601     break;
1602   } // case Call
1603   } // switch on Opcode
1604 
1605   // TODO: We bail completely on integer div/rem and shifts because they have
1606   // UB/poison potential, but that should be refined.
1607   BinaryOperator *BO;
1608   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1609     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1610     simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1611 
1612     // Output elements are undefined if both are undefined. Consider things
1613     // like undef & 0. The result is known zero, not undef.
1614     UndefElts &= UndefElts2;
1615   }
1616 
1617   // If we've proven all of the lanes undef, return an undef value.
1618   // TODO: Intersect w/demanded lanes
1619   if (UndefElts.isAllOnes())
1620     return UndefValue::get(I->getType());;
1621 
1622   return MadeChange ? I : nullptr;
1623 }
1624