1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/TargetTransformInfo.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnes(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == MaxAnalysisRecursionDepth) 131 return nullptr; 132 133 if (isa<ScalableVectorType>(VTy)) 134 return nullptr; 135 136 Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) { 138 computeKnownBits(V, Known, Depth, CxtI); 139 return nullptr; // Only analyze instructions. 140 } 141 142 // If there are multiple uses of this value and we aren't at the root, then 143 // we can't do any simplifications of the operands, because DemandedMask 144 // only reflects the bits demanded by *one* of the users. 145 if (Depth != 0 && !I->hasOneUse()) 146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 147 148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 149 150 // If this is the root being simplified, allow it to have multiple uses, 151 // just set the DemandedMask to all bits so that we can try to simplify the 152 // operands. This allows visitTruncInst (for example) to simplify the 153 // operand of a trunc without duplicating all the logic below. 154 if (Depth == 0 && !V->hasOneUse()) 155 DemandedMask.setAllBits(); 156 157 switch (I->getOpcode()) { 158 default: 159 computeKnownBits(I, Known, Depth, CxtI); 160 break; 161 case Instruction::And: { 162 // If either the LHS or the RHS are Zero, the result is zero. 163 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 164 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 165 Depth + 1)) 166 return I; 167 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 168 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 169 170 Known = LHSKnown & RHSKnown; 171 172 // If the client is only demanding bits that we know, return the known 173 // constant. 174 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 175 return Constant::getIntegerValue(VTy, Known.One); 176 177 // If all of the demanded bits are known 1 on one side, return the other. 178 // These bits cannot contribute to the result of the 'and'. 179 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 180 return I->getOperand(0); 181 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 182 return I->getOperand(1); 183 184 // If the RHS is a constant, see if we can simplify it. 185 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 186 return I; 187 188 break; 189 } 190 case Instruction::Or: { 191 // If either the LHS or the RHS are One, the result is One. 192 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 193 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 194 Depth + 1)) 195 return I; 196 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 197 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 198 199 Known = LHSKnown | RHSKnown; 200 201 // If the client is only demanding bits that we know, return the known 202 // constant. 203 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 204 return Constant::getIntegerValue(VTy, Known.One); 205 206 // If all of the demanded bits are known zero on one side, return the other. 207 // These bits cannot contribute to the result of the 'or'. 208 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 209 return I->getOperand(0); 210 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 211 return I->getOperand(1); 212 213 // If the RHS is a constant, see if we can simplify it. 214 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 215 return I; 216 217 break; 218 } 219 case Instruction::Xor: { 220 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 221 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 222 return I; 223 Value *LHS, *RHS; 224 if (DemandedMask == 1 && 225 match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) && 226 match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) { 227 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1 228 IRBuilderBase::InsertPointGuard Guard(Builder); 229 Builder.SetInsertPoint(I); 230 auto *Xor = Builder.CreateXor(LHS, RHS); 231 return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor); 232 } 233 234 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 235 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 236 237 Known = LHSKnown ^ RHSKnown; 238 239 // If the client is only demanding bits that we know, return the known 240 // constant. 241 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 242 return Constant::getIntegerValue(VTy, Known.One); 243 244 // If all of the demanded bits are known zero on one side, return the other. 245 // These bits cannot contribute to the result of the 'xor'. 246 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 247 return I->getOperand(0); 248 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 249 return I->getOperand(1); 250 251 // If all of the demanded bits are known to be zero on one side or the 252 // other, turn this into an *inclusive* or. 253 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 254 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 255 Instruction *Or = 256 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 257 I->getName()); 258 return InsertNewInstWith(Or, *I); 259 } 260 261 // If all of the demanded bits on one side are known, and all of the set 262 // bits on that side are also known to be set on the other side, turn this 263 // into an AND, as we know the bits will be cleared. 264 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 265 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 266 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 267 Constant *AndC = Constant::getIntegerValue(VTy, 268 ~RHSKnown.One & DemandedMask); 269 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 270 return InsertNewInstWith(And, *I); 271 } 272 273 // If the RHS is a constant, see if we can change it. Don't alter a -1 274 // constant because that's a canonical 'not' op, and that is better for 275 // combining, SCEV, and codegen. 276 const APInt *C; 277 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnesValue()) { 278 if ((*C | ~DemandedMask).isAllOnesValue()) { 279 // Force bits to 1 to create a 'not' op. 280 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 281 return I; 282 } 283 // If we can't turn this into a 'not', try to shrink the constant. 284 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 285 return I; 286 } 287 288 // If our LHS is an 'and' and if it has one use, and if any of the bits we 289 // are flipping are known to be set, then the xor is just resetting those 290 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 291 // simplifying both of them. 292 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 293 ConstantInt *AndRHS, *XorRHS; 294 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 295 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 296 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 297 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 298 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 299 300 Constant *AndC = 301 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 302 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 303 InsertNewInstWith(NewAnd, *I); 304 305 Constant *XorC = 306 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 307 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 308 return InsertNewInstWith(NewXor, *I); 309 } 310 } 311 break; 312 } 313 case Instruction::Select: { 314 Value *LHS, *RHS; 315 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 316 if (SPF == SPF_UMAX) { 317 // UMax(A, C) == A if ... 318 // The lowest non-zero bit of DemandMask is higher than the highest 319 // non-zero bit of C. 320 const APInt *C; 321 unsigned CTZ = DemandedMask.countTrailingZeros(); 322 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 323 return LHS; 324 } else if (SPF == SPF_UMIN) { 325 // UMin(A, C) == A if ... 326 // The lowest non-zero bit of DemandMask is higher than the highest 327 // non-one bit of C. 328 // This comes from using DeMorgans on the above umax example. 329 const APInt *C; 330 unsigned CTZ = DemandedMask.countTrailingZeros(); 331 if (match(RHS, m_APInt(C)) && 332 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 333 return LHS; 334 } 335 336 // If this is a select as part of any other min/max pattern, don't simplify 337 // any further in case we break the structure. 338 if (SPF != SPF_UNKNOWN) 339 return nullptr; 340 341 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 342 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 343 return I; 344 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 345 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 346 347 // If the operands are constants, see if we can simplify them. 348 // This is similar to ShrinkDemandedConstant, but for a select we want to 349 // try to keep the selected constants the same as icmp value constants, if 350 // we can. This helps not break apart (or helps put back together) 351 // canonical patterns like min and max. 352 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 353 const APInt &DemandedMask) { 354 const APInt *SelC; 355 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 356 return false; 357 358 // Get the constant out of the ICmp, if there is one. 359 // Only try this when exactly 1 operand is a constant (if both operands 360 // are constant, the icmp should eventually simplify). Otherwise, we may 361 // invert the transform that reduces set bits and infinite-loop. 362 Value *X; 363 const APInt *CmpC; 364 ICmpInst::Predicate Pred; 365 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 366 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 367 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 368 369 // If the constant is already the same as the ICmp, leave it as-is. 370 if (*CmpC == *SelC) 371 return false; 372 // If the constants are not already the same, but can be with the demand 373 // mask, use the constant value from the ICmp. 374 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 375 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 376 return true; 377 } 378 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 379 }; 380 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 381 CanonicalizeSelectConstant(I, 2, DemandedMask)) 382 return I; 383 384 // Only known if known in both the LHS and RHS. 385 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 386 break; 387 } 388 case Instruction::Trunc: { 389 // If we do not demand the high bits of a right-shifted and truncated value, 390 // then we may be able to truncate it before the shift. 391 Value *X; 392 const APInt *C; 393 if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 394 // The shift amount must be valid (not poison) in the narrow type, and 395 // it must not be greater than the high bits demanded of the result. 396 if (C->ult(I->getType()->getScalarSizeInBits()) && 397 C->ule(DemandedMask.countLeadingZeros())) { 398 // trunc (lshr X, C) --> lshr (trunc X), C 399 IRBuilderBase::InsertPointGuard Guard(Builder); 400 Builder.SetInsertPoint(I); 401 Value *Trunc = Builder.CreateTrunc(X, I->getType()); 402 return Builder.CreateLShr(Trunc, C->getZExtValue()); 403 } 404 } 405 } 406 LLVM_FALLTHROUGH; 407 case Instruction::ZExt: { 408 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 409 410 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 411 KnownBits InputKnown(SrcBitWidth); 412 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 413 return I; 414 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 415 Known = InputKnown.zextOrTrunc(BitWidth); 416 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 417 break; 418 } 419 case Instruction::BitCast: 420 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 421 return nullptr; // vector->int or fp->int? 422 423 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 424 if (VectorType *SrcVTy = 425 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 426 if (cast<FixedVectorType>(DstVTy)->getNumElements() != 427 cast<FixedVectorType>(SrcVTy)->getNumElements()) 428 // Don't touch a bitcast between vectors of different element counts. 429 return nullptr; 430 } else 431 // Don't touch a scalar-to-vector bitcast. 432 return nullptr; 433 } else if (I->getOperand(0)->getType()->isVectorTy()) 434 // Don't touch a vector-to-scalar bitcast. 435 return nullptr; 436 437 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 438 return I; 439 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 440 break; 441 case Instruction::SExt: { 442 // Compute the bits in the result that are not present in the input. 443 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 444 445 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 446 447 // If any of the sign extended bits are demanded, we know that the sign 448 // bit is demanded. 449 if (DemandedMask.getActiveBits() > SrcBitWidth) 450 InputDemandedBits.setBit(SrcBitWidth-1); 451 452 KnownBits InputKnown(SrcBitWidth); 453 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 454 return I; 455 456 // If the input sign bit is known zero, or if the NewBits are not demanded 457 // convert this into a zero extension. 458 if (InputKnown.isNonNegative() || 459 DemandedMask.getActiveBits() <= SrcBitWidth) { 460 // Convert to ZExt cast. 461 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 462 return InsertNewInstWith(NewCast, *I); 463 } 464 465 // If the sign bit of the input is known set or clear, then we know the 466 // top bits of the result. 467 Known = InputKnown.sext(BitWidth); 468 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 469 break; 470 } 471 case Instruction::Add: 472 if ((DemandedMask & 1) == 0) { 473 // If we do not need the low bit, try to convert bool math to logic: 474 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 475 Value *X, *Y; 476 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 477 m_OneUse(m_SExt(m_Value(Y))))) && 478 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 479 // Truth table for inputs and output signbits: 480 // X:0 | X:1 481 // ---------- 482 // Y:0 | 0 | 0 | 483 // Y:1 | -1 | 0 | 484 // ---------- 485 IRBuilderBase::InsertPointGuard Guard(Builder); 486 Builder.SetInsertPoint(I); 487 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 488 return Builder.CreateSExt(AndNot, VTy); 489 } 490 491 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 492 // TODO: Relax the one-use checks because we are removing an instruction? 493 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 494 m_OneUse(m_SExt(m_Value(Y))))) && 495 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 496 // Truth table for inputs and output signbits: 497 // X:0 | X:1 498 // ----------- 499 // Y:0 | -1 | -1 | 500 // Y:1 | -1 | 0 | 501 // ----------- 502 IRBuilderBase::InsertPointGuard Guard(Builder); 503 Builder.SetInsertPoint(I); 504 Value *Or = Builder.CreateOr(X, Y); 505 return Builder.CreateSExt(Or, VTy); 506 } 507 } 508 LLVM_FALLTHROUGH; 509 case Instruction::Sub: { 510 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 511 /// about the high bits of the operands. 512 unsigned NLZ = DemandedMask.countLeadingZeros(); 513 // Right fill the mask of bits for this ADD/SUB to demand the most 514 // significant bit and all those below it. 515 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 516 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 517 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 518 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 519 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 520 if (NLZ > 0) { 521 // Disable the nsw and nuw flags here: We can no longer guarantee that 522 // we won't wrap after simplification. Removing the nsw/nuw flags is 523 // legal here because the top bit is not demanded. 524 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 525 BinOP.setHasNoSignedWrap(false); 526 BinOP.setHasNoUnsignedWrap(false); 527 } 528 return I; 529 } 530 531 // If we are known to be adding/subtracting zeros to every bit below 532 // the highest demanded bit, we just return the other side. 533 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 534 return I->getOperand(0); 535 // We can't do this with the LHS for subtraction, unless we are only 536 // demanding the LSB. 537 if ((I->getOpcode() == Instruction::Add || 538 DemandedFromOps.isOneValue()) && 539 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 540 return I->getOperand(1); 541 542 // Otherwise just compute the known bits of the result. 543 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 544 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 545 NSW, LHSKnown, RHSKnown); 546 break; 547 } 548 case Instruction::Shl: { 549 const APInt *SA; 550 if (match(I->getOperand(1), m_APInt(SA))) { 551 const APInt *ShrAmt; 552 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 553 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 554 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 555 DemandedMask, Known)) 556 return R; 557 558 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 559 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 560 561 // If the shift is NUW/NSW, then it does demand the high bits. 562 ShlOperator *IOp = cast<ShlOperator>(I); 563 if (IOp->hasNoSignedWrap()) 564 DemandedMaskIn.setHighBits(ShiftAmt+1); 565 else if (IOp->hasNoUnsignedWrap()) 566 DemandedMaskIn.setHighBits(ShiftAmt); 567 568 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 569 return I; 570 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 571 572 bool SignBitZero = Known.Zero.isSignBitSet(); 573 bool SignBitOne = Known.One.isSignBitSet(); 574 Known.Zero <<= ShiftAmt; 575 Known.One <<= ShiftAmt; 576 // low bits known zero. 577 if (ShiftAmt) 578 Known.Zero.setLowBits(ShiftAmt); 579 580 // If this shift has "nsw" keyword, then the result is either a poison 581 // value or has the same sign bit as the first operand. 582 if (IOp->hasNoSignedWrap()) { 583 if (SignBitZero) 584 Known.Zero.setSignBit(); 585 else if (SignBitOne) 586 Known.One.setSignBit(); 587 if (Known.hasConflict()) 588 return UndefValue::get(I->getType()); 589 } 590 } else { 591 // This is a variable shift, so we can't shift the demand mask by a known 592 // amount. But if we are not demanding high bits, then we are not 593 // demanding those bits from the pre-shifted operand either. 594 if (unsigned CTLZ = DemandedMask.countLeadingZeros()) { 595 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 596 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) { 597 // We can't guarantee that nsw/nuw hold after simplifying the operand. 598 I->dropPoisonGeneratingFlags(); 599 return I; 600 } 601 } 602 computeKnownBits(I, Known, Depth, CxtI); 603 } 604 break; 605 } 606 case Instruction::LShr: { 607 const APInt *SA; 608 if (match(I->getOperand(1), m_APInt(SA))) { 609 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 610 611 // Unsigned shift right. 612 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 613 614 // If the shift is exact, then it does demand the low bits (and knows that 615 // they are zero). 616 if (cast<LShrOperator>(I)->isExact()) 617 DemandedMaskIn.setLowBits(ShiftAmt); 618 619 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 620 return I; 621 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 622 Known.Zero.lshrInPlace(ShiftAmt); 623 Known.One.lshrInPlace(ShiftAmt); 624 if (ShiftAmt) 625 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 626 } else { 627 computeKnownBits(I, Known, Depth, CxtI); 628 } 629 break; 630 } 631 case Instruction::AShr: { 632 // If this is an arithmetic shift right and only the low-bit is set, we can 633 // always convert this into a logical shr, even if the shift amount is 634 // variable. The low bit of the shift cannot be an input sign bit unless 635 // the shift amount is >= the size of the datatype, which is undefined. 636 if (DemandedMask.isOneValue()) { 637 // Perform the logical shift right. 638 Instruction *NewVal = BinaryOperator::CreateLShr( 639 I->getOperand(0), I->getOperand(1), I->getName()); 640 return InsertNewInstWith(NewVal, *I); 641 } 642 643 // If the sign bit is the only bit demanded by this ashr, then there is no 644 // need to do it, the shift doesn't change the high bit. 645 if (DemandedMask.isSignMask()) 646 return I->getOperand(0); 647 648 const APInt *SA; 649 if (match(I->getOperand(1), m_APInt(SA))) { 650 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 651 652 // Signed shift right. 653 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 654 // If any of the high bits are demanded, we should set the sign bit as 655 // demanded. 656 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 657 DemandedMaskIn.setSignBit(); 658 659 // If the shift is exact, then it does demand the low bits (and knows that 660 // they are zero). 661 if (cast<AShrOperator>(I)->isExact()) 662 DemandedMaskIn.setLowBits(ShiftAmt); 663 664 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 665 return I; 666 667 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 668 669 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 670 // Compute the new bits that are at the top now plus sign bits. 671 APInt HighBits(APInt::getHighBitsSet( 672 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 673 Known.Zero.lshrInPlace(ShiftAmt); 674 Known.One.lshrInPlace(ShiftAmt); 675 676 // If the input sign bit is known to be zero, or if none of the top bits 677 // are demanded, turn this into an unsigned shift right. 678 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 679 if (Known.Zero[BitWidth-ShiftAmt-1] || 680 !DemandedMask.intersects(HighBits)) { 681 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 682 I->getOperand(1)); 683 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 684 return InsertNewInstWith(LShr, *I); 685 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 686 Known.One |= HighBits; 687 } 688 } else { 689 computeKnownBits(I, Known, Depth, CxtI); 690 } 691 break; 692 } 693 case Instruction::UDiv: { 694 // UDiv doesn't demand low bits that are zero in the divisor. 695 const APInt *SA; 696 if (match(I->getOperand(1), m_APInt(SA))) { 697 // If the shift is exact, then it does demand the low bits. 698 if (cast<UDivOperator>(I)->isExact()) 699 break; 700 701 // FIXME: Take the demanded mask of the result into account. 702 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 703 APInt DemandedMaskIn = 704 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 705 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 706 return I; 707 708 // Propagate zero bits from the input. 709 Known.Zero.setHighBits(std::min( 710 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 711 } else { 712 computeKnownBits(I, Known, Depth, CxtI); 713 } 714 break; 715 } 716 case Instruction::SRem: { 717 ConstantInt *Rem; 718 if (match(I->getOperand(1), m_ConstantInt(Rem))) { 719 // X % -1 demands all the bits because we don't want to introduce 720 // INT_MIN % -1 (== undef) by accident. 721 if (Rem->isMinusOne()) 722 break; 723 APInt RA = Rem->getValue().abs(); 724 if (RA.isPowerOf2()) { 725 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 726 return I->getOperand(0); 727 728 APInt LowBits = RA - 1; 729 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 730 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 731 return I; 732 733 // The low bits of LHS are unchanged by the srem. 734 Known.Zero = LHSKnown.Zero & LowBits; 735 Known.One = LHSKnown.One & LowBits; 736 737 // If LHS is non-negative or has all low bits zero, then the upper bits 738 // are all zero. 739 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 740 Known.Zero |= ~LowBits; 741 742 // If LHS is negative and not all low bits are zero, then the upper bits 743 // are all one. 744 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 745 Known.One |= ~LowBits; 746 747 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 748 break; 749 } 750 } 751 752 // The sign bit is the LHS's sign bit, except when the result of the 753 // remainder is zero. 754 if (DemandedMask.isSignBitSet()) { 755 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 756 // If it's known zero, our sign bit is also zero. 757 if (LHSKnown.isNonNegative()) 758 Known.makeNonNegative(); 759 } 760 break; 761 } 762 case Instruction::URem: { 763 KnownBits Known2(BitWidth); 764 APInt AllOnes = APInt::getAllOnes(BitWidth); 765 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 766 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 767 return I; 768 769 unsigned Leaders = Known2.countMinLeadingZeros(); 770 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 771 break; 772 } 773 case Instruction::Call: { 774 bool KnownBitsComputed = false; 775 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 776 switch (II->getIntrinsicID()) { 777 case Intrinsic::abs: { 778 if (DemandedMask == 1) 779 return II->getArgOperand(0); 780 break; 781 } 782 case Intrinsic::ctpop: { 783 // Checking if the number of clear bits is odd (parity)? If the type has 784 // an even number of bits, that's the same as checking if the number of 785 // set bits is odd, so we can eliminate the 'not' op. 786 Value *X; 787 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && 788 match(II->getArgOperand(0), m_Not(m_Value(X)))) { 789 Function *Ctpop = Intrinsic::getDeclaration( 790 II->getModule(), Intrinsic::ctpop, II->getType()); 791 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I); 792 } 793 break; 794 } 795 case Intrinsic::bswap: { 796 // If the only bits demanded come from one byte of the bswap result, 797 // just shift the input byte into position to eliminate the bswap. 798 unsigned NLZ = DemandedMask.countLeadingZeros(); 799 unsigned NTZ = DemandedMask.countTrailingZeros(); 800 801 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 802 // we need all the bits down to bit 8. Likewise, round NLZ. If we 803 // have 14 leading zeros, round to 8. 804 NLZ &= ~7; 805 NTZ &= ~7; 806 // If we need exactly one byte, we can do this transformation. 807 if (BitWidth-NLZ-NTZ == 8) { 808 unsigned ResultBit = NTZ; 809 unsigned InputBit = BitWidth-NTZ-8; 810 811 // Replace this with either a left or right shift to get the byte into 812 // the right place. 813 Instruction *NewVal; 814 if (InputBit > ResultBit) 815 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 816 ConstantInt::get(I->getType(), InputBit-ResultBit)); 817 else 818 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 819 ConstantInt::get(I->getType(), ResultBit-InputBit)); 820 NewVal->takeName(I); 821 return InsertNewInstWith(NewVal, *I); 822 } 823 break; 824 } 825 case Intrinsic::fshr: 826 case Intrinsic::fshl: { 827 const APInt *SA; 828 if (!match(I->getOperand(2), m_APInt(SA))) 829 break; 830 831 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 832 // defined, so no need to special-case zero shifts here. 833 uint64_t ShiftAmt = SA->urem(BitWidth); 834 if (II->getIntrinsicID() == Intrinsic::fshr) 835 ShiftAmt = BitWidth - ShiftAmt; 836 837 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 838 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 839 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 840 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 841 return I; 842 843 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 844 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 845 Known.One = LHSKnown.One.shl(ShiftAmt) | 846 RHSKnown.One.lshr(BitWidth - ShiftAmt); 847 KnownBitsComputed = true; 848 break; 849 } 850 case Intrinsic::umax: { 851 // UMax(A, C) == A if ... 852 // The lowest non-zero bit of DemandMask is higher than the highest 853 // non-zero bit of C. 854 const APInt *C; 855 unsigned CTZ = DemandedMask.countTrailingZeros(); 856 if (match(II->getArgOperand(1), m_APInt(C)) && 857 CTZ >= C->getActiveBits()) 858 return II->getArgOperand(0); 859 break; 860 } 861 case Intrinsic::umin: { 862 // UMin(A, C) == A if ... 863 // The lowest non-zero bit of DemandMask is higher than the highest 864 // non-one bit of C. 865 // This comes from using DeMorgans on the above umax example. 866 const APInt *C; 867 unsigned CTZ = DemandedMask.countTrailingZeros(); 868 if (match(II->getArgOperand(1), m_APInt(C)) && 869 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 870 return II->getArgOperand(0); 871 break; 872 } 873 default: { 874 // Handle target specific intrinsics 875 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 876 *II, DemandedMask, Known, KnownBitsComputed); 877 if (V.hasValue()) 878 return V.getValue(); 879 break; 880 } 881 } 882 } 883 884 if (!KnownBitsComputed) 885 computeKnownBits(V, Known, Depth, CxtI); 886 break; 887 } 888 } 889 890 // If the client is only demanding bits that we know, return the known 891 // constant. 892 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 893 return Constant::getIntegerValue(VTy, Known.One); 894 return nullptr; 895 } 896 897 /// Helper routine of SimplifyDemandedUseBits. It computes Known 898 /// bits. It also tries to handle simplifications that can be done based on 899 /// DemandedMask, but without modifying the Instruction. 900 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 901 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 902 Instruction *CxtI) { 903 unsigned BitWidth = DemandedMask.getBitWidth(); 904 Type *ITy = I->getType(); 905 906 KnownBits LHSKnown(BitWidth); 907 KnownBits RHSKnown(BitWidth); 908 909 // Despite the fact that we can't simplify this instruction in all User's 910 // context, we can at least compute the known bits, and we can 911 // do simplifications that apply to *just* the one user if we know that 912 // this instruction has a simpler value in that context. 913 switch (I->getOpcode()) { 914 case Instruction::And: { 915 // If either the LHS or the RHS are Zero, the result is zero. 916 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 917 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 918 CxtI); 919 920 Known = LHSKnown & RHSKnown; 921 922 // If the client is only demanding bits that we know, return the known 923 // constant. 924 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 925 return Constant::getIntegerValue(ITy, Known.One); 926 927 // If all of the demanded bits are known 1 on one side, return the other. 928 // These bits cannot contribute to the result of the 'and' in this 929 // context. 930 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 931 return I->getOperand(0); 932 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 933 return I->getOperand(1); 934 935 break; 936 } 937 case Instruction::Or: { 938 // We can simplify (X|Y) -> X or Y in the user's context if we know that 939 // only bits from X or Y are demanded. 940 941 // If either the LHS or the RHS are One, the result is One. 942 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 943 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 944 CxtI); 945 946 Known = LHSKnown | RHSKnown; 947 948 // If the client is only demanding bits that we know, return the known 949 // constant. 950 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 951 return Constant::getIntegerValue(ITy, Known.One); 952 953 // If all of the demanded bits are known zero on one side, return the 954 // other. These bits cannot contribute to the result of the 'or' in this 955 // context. 956 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 957 return I->getOperand(0); 958 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 959 return I->getOperand(1); 960 961 break; 962 } 963 case Instruction::Xor: { 964 // We can simplify (X^Y) -> X or Y in the user's context if we know that 965 // only bits from X or Y are demanded. 966 967 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 968 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 969 CxtI); 970 971 Known = LHSKnown ^ RHSKnown; 972 973 // If the client is only demanding bits that we know, return the known 974 // constant. 975 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 976 return Constant::getIntegerValue(ITy, Known.One); 977 978 // If all of the demanded bits are known zero on one side, return the 979 // other. 980 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 981 return I->getOperand(0); 982 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 983 return I->getOperand(1); 984 985 break; 986 } 987 case Instruction::AShr: { 988 // Compute the Known bits to simplify things downstream. 989 computeKnownBits(I, Known, Depth, CxtI); 990 991 // If this user is only demanding bits that we know, return the known 992 // constant. 993 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 994 return Constant::getIntegerValue(ITy, Known.One); 995 996 // If the right shift operand 0 is a result of a left shift by the same 997 // amount, this is probably a zero/sign extension, which may be unnecessary, 998 // if we do not demand any of the new sign bits. So, return the original 999 // operand instead. 1000 const APInt *ShiftRC; 1001 const APInt *ShiftLC; 1002 Value *X; 1003 unsigned BitWidth = DemandedMask.getBitWidth(); 1004 if (match(I, 1005 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 1006 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && 1007 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 1008 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 1009 return X; 1010 } 1011 1012 break; 1013 } 1014 default: 1015 // Compute the Known bits to simplify things downstream. 1016 computeKnownBits(I, Known, Depth, CxtI); 1017 1018 // If this user is only demanding bits that we know, return the known 1019 // constant. 1020 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 1021 return Constant::getIntegerValue(ITy, Known.One); 1022 1023 break; 1024 } 1025 1026 return nullptr; 1027 } 1028 1029 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 1030 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 1031 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 1032 /// of "C2-C1". 1033 /// 1034 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 1035 /// ..., bn}, without considering the specific value X is holding. 1036 /// This transformation is legal iff one of following conditions is hold: 1037 /// 1) All the bit in S are 0, in this case E1 == E2. 1038 /// 2) We don't care those bits in S, per the input DemandedMask. 1039 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 1040 /// rest bits. 1041 /// 1042 /// Currently we only test condition 2). 1043 /// 1044 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 1045 /// not successful. 1046 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 1047 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 1048 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 1049 if (!ShlOp1 || !ShrOp1) 1050 return nullptr; // No-op. 1051 1052 Value *VarX = Shr->getOperand(0); 1053 Type *Ty = VarX->getType(); 1054 unsigned BitWidth = Ty->getScalarSizeInBits(); 1055 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1056 return nullptr; // Undef. 1057 1058 unsigned ShlAmt = ShlOp1.getZExtValue(); 1059 unsigned ShrAmt = ShrOp1.getZExtValue(); 1060 1061 Known.One.clearAllBits(); 1062 Known.Zero.setLowBits(ShlAmt - 1); 1063 Known.Zero &= DemandedMask; 1064 1065 APInt BitMask1(APInt::getAllOnes(BitWidth)); 1066 APInt BitMask2(APInt::getAllOnes(BitWidth)); 1067 1068 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1069 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1070 (BitMask1.ashr(ShrAmt) << ShlAmt); 1071 1072 if (ShrAmt <= ShlAmt) { 1073 BitMask2 <<= (ShlAmt - ShrAmt); 1074 } else { 1075 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1076 BitMask2.ashr(ShrAmt - ShlAmt); 1077 } 1078 1079 // Check if condition-2 (see the comment to this function) is satified. 1080 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1081 if (ShrAmt == ShlAmt) 1082 return VarX; 1083 1084 if (!Shr->hasOneUse()) 1085 return nullptr; 1086 1087 BinaryOperator *New; 1088 if (ShrAmt < ShlAmt) { 1089 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1090 New = BinaryOperator::CreateShl(VarX, Amt); 1091 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1092 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1093 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1094 } else { 1095 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1096 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1097 BinaryOperator::CreateAShr(VarX, Amt); 1098 if (cast<BinaryOperator>(Shr)->isExact()) 1099 New->setIsExact(true); 1100 } 1101 1102 return InsertNewInstWith(New, *Shl); 1103 } 1104 1105 return nullptr; 1106 } 1107 1108 /// The specified value produces a vector with any number of elements. 1109 /// This method analyzes which elements of the operand are undef or poison and 1110 /// returns that information in UndefElts. 1111 /// 1112 /// DemandedElts contains the set of elements that are actually used by the 1113 /// caller, and by default (AllowMultipleUsers equals false) the value is 1114 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1115 /// to true, DemandedElts refers to the union of sets of elements that are 1116 /// used by all callers. 1117 /// 1118 /// If the information about demanded elements can be used to simplify the 1119 /// operation, the operation is simplified, then the resultant value is 1120 /// returned. This returns null if no change was made. 1121 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1122 APInt DemandedElts, 1123 APInt &UndefElts, 1124 unsigned Depth, 1125 bool AllowMultipleUsers) { 1126 // Cannot analyze scalable type. The number of vector elements is not a 1127 // compile-time constant. 1128 if (isa<ScalableVectorType>(V->getType())) 1129 return nullptr; 1130 1131 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1132 APInt EltMask(APInt::getAllOnes(VWidth)); 1133 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1134 1135 if (match(V, m_Undef())) { 1136 // If the entire vector is undef or poison, just return this info. 1137 UndefElts = EltMask; 1138 return nullptr; 1139 } 1140 1141 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide poison. 1142 UndefElts = EltMask; 1143 return PoisonValue::get(V->getType()); 1144 } 1145 1146 UndefElts = 0; 1147 1148 if (auto *C = dyn_cast<Constant>(V)) { 1149 // Check if this is identity. If so, return 0 since we are not simplifying 1150 // anything. 1151 if (DemandedElts.isAllOnesValue()) 1152 return nullptr; 1153 1154 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1155 Constant *Poison = PoisonValue::get(EltTy); 1156 SmallVector<Constant*, 16> Elts; 1157 for (unsigned i = 0; i != VWidth; ++i) { 1158 if (!DemandedElts[i]) { // If not demanded, set to poison. 1159 Elts.push_back(Poison); 1160 UndefElts.setBit(i); 1161 continue; 1162 } 1163 1164 Constant *Elt = C->getAggregateElement(i); 1165 if (!Elt) return nullptr; 1166 1167 Elts.push_back(Elt); 1168 if (isa<UndefValue>(Elt)) // Already undef or poison. 1169 UndefElts.setBit(i); 1170 } 1171 1172 // If we changed the constant, return it. 1173 Constant *NewCV = ConstantVector::get(Elts); 1174 return NewCV != C ? NewCV : nullptr; 1175 } 1176 1177 // Limit search depth. 1178 if (Depth == 10) 1179 return nullptr; 1180 1181 if (!AllowMultipleUsers) { 1182 // If multiple users are using the root value, proceed with 1183 // simplification conservatively assuming that all elements 1184 // are needed. 1185 if (!V->hasOneUse()) { 1186 // Quit if we find multiple users of a non-root value though. 1187 // They'll be handled when it's their turn to be visited by 1188 // the main instcombine process. 1189 if (Depth != 0) 1190 // TODO: Just compute the UndefElts information recursively. 1191 return nullptr; 1192 1193 // Conservatively assume that all elements are needed. 1194 DemandedElts = EltMask; 1195 } 1196 } 1197 1198 Instruction *I = dyn_cast<Instruction>(V); 1199 if (!I) return nullptr; // Only analyze instructions. 1200 1201 bool MadeChange = false; 1202 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1203 APInt Demanded, APInt &Undef) { 1204 auto *II = dyn_cast<IntrinsicInst>(Inst); 1205 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1206 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1207 replaceOperand(*Inst, OpNum, V); 1208 MadeChange = true; 1209 } 1210 }; 1211 1212 APInt UndefElts2(VWidth, 0); 1213 APInt UndefElts3(VWidth, 0); 1214 switch (I->getOpcode()) { 1215 default: break; 1216 1217 case Instruction::GetElementPtr: { 1218 // The LangRef requires that struct geps have all constant indices. As 1219 // such, we can't convert any operand to partial undef. 1220 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1221 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1222 I != E; I++) 1223 if (I.isStruct()) 1224 return true;; 1225 return false; 1226 }; 1227 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1228 break; 1229 1230 // Conservatively track the demanded elements back through any vector 1231 // operands we may have. We know there must be at least one, or we 1232 // wouldn't have a vector result to get here. Note that we intentionally 1233 // merge the undef bits here since gepping with either an undef base or 1234 // index results in undef. 1235 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1236 if (match(I->getOperand(i), m_Undef())) { 1237 // If the entire vector is undefined, just return this info. 1238 UndefElts = EltMask; 1239 return nullptr; 1240 } 1241 if (I->getOperand(i)->getType()->isVectorTy()) { 1242 APInt UndefEltsOp(VWidth, 0); 1243 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1244 UndefElts |= UndefEltsOp; 1245 } 1246 } 1247 1248 break; 1249 } 1250 case Instruction::InsertElement: { 1251 // If this is a variable index, we don't know which element it overwrites. 1252 // demand exactly the same input as we produce. 1253 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1254 if (!Idx) { 1255 // Note that we can't propagate undef elt info, because we don't know 1256 // which elt is getting updated. 1257 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1258 break; 1259 } 1260 1261 // The element inserted overwrites whatever was there, so the input demanded 1262 // set is simpler than the output set. 1263 unsigned IdxNo = Idx->getZExtValue(); 1264 APInt PreInsertDemandedElts = DemandedElts; 1265 if (IdxNo < VWidth) 1266 PreInsertDemandedElts.clearBit(IdxNo); 1267 1268 // If we only demand the element that is being inserted and that element 1269 // was extracted from the same index in another vector with the same type, 1270 // replace this insert with that other vector. 1271 // Note: This is attempted before the call to simplifyAndSetOp because that 1272 // may change UndefElts to a value that does not match with Vec. 1273 Value *Vec; 1274 if (PreInsertDemandedElts == 0 && 1275 match(I->getOperand(1), 1276 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1277 Vec->getType() == I->getType()) { 1278 return Vec; 1279 } 1280 1281 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1282 1283 // If this is inserting an element that isn't demanded, remove this 1284 // insertelement. 1285 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1286 Worklist.push(I); 1287 return I->getOperand(0); 1288 } 1289 1290 // The inserted element is defined. 1291 UndefElts.clearBit(IdxNo); 1292 break; 1293 } 1294 case Instruction::ShuffleVector: { 1295 auto *Shuffle = cast<ShuffleVectorInst>(I); 1296 assert(Shuffle->getOperand(0)->getType() == 1297 Shuffle->getOperand(1)->getType() && 1298 "Expected shuffle operands to have same type"); 1299 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1300 ->getNumElements(); 1301 // Handle trivial case of a splat. Only check the first element of LHS 1302 // operand. 1303 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1304 DemandedElts.isAllOnesValue()) { 1305 if (!match(I->getOperand(1), m_Undef())) { 1306 I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType())); 1307 MadeChange = true; 1308 } 1309 APInt LeftDemanded(OpWidth, 1); 1310 APInt LHSUndefElts(OpWidth, 0); 1311 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1312 if (LHSUndefElts[0]) 1313 UndefElts = EltMask; 1314 else 1315 UndefElts.clearAllBits(); 1316 break; 1317 } 1318 1319 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1320 for (unsigned i = 0; i < VWidth; i++) { 1321 if (DemandedElts[i]) { 1322 unsigned MaskVal = Shuffle->getMaskValue(i); 1323 if (MaskVal != -1u) { 1324 assert(MaskVal < OpWidth * 2 && 1325 "shufflevector mask index out of range!"); 1326 if (MaskVal < OpWidth) 1327 LeftDemanded.setBit(MaskVal); 1328 else 1329 RightDemanded.setBit(MaskVal - OpWidth); 1330 } 1331 } 1332 } 1333 1334 APInt LHSUndefElts(OpWidth, 0); 1335 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1336 1337 APInt RHSUndefElts(OpWidth, 0); 1338 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1339 1340 // If this shuffle does not change the vector length and the elements 1341 // demanded by this shuffle are an identity mask, then this shuffle is 1342 // unnecessary. 1343 // 1344 // We are assuming canonical form for the mask, so the source vector is 1345 // operand 0 and operand 1 is not used. 1346 // 1347 // Note that if an element is demanded and this shuffle mask is undefined 1348 // for that element, then the shuffle is not considered an identity 1349 // operation. The shuffle prevents poison from the operand vector from 1350 // leaking to the result by replacing poison with an undefined value. 1351 if (VWidth == OpWidth) { 1352 bool IsIdentityShuffle = true; 1353 for (unsigned i = 0; i < VWidth; i++) { 1354 unsigned MaskVal = Shuffle->getMaskValue(i); 1355 if (DemandedElts[i] && i != MaskVal) { 1356 IsIdentityShuffle = false; 1357 break; 1358 } 1359 } 1360 if (IsIdentityShuffle) 1361 return Shuffle->getOperand(0); 1362 } 1363 1364 bool NewUndefElts = false; 1365 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1366 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1367 bool LHSUniform = true; 1368 bool RHSUniform = true; 1369 for (unsigned i = 0; i < VWidth; i++) { 1370 unsigned MaskVal = Shuffle->getMaskValue(i); 1371 if (MaskVal == -1u) { 1372 UndefElts.setBit(i); 1373 } else if (!DemandedElts[i]) { 1374 NewUndefElts = true; 1375 UndefElts.setBit(i); 1376 } else if (MaskVal < OpWidth) { 1377 if (LHSUndefElts[MaskVal]) { 1378 NewUndefElts = true; 1379 UndefElts.setBit(i); 1380 } else { 1381 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1382 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1383 LHSUniform = LHSUniform && (MaskVal == i); 1384 } 1385 } else { 1386 if (RHSUndefElts[MaskVal - OpWidth]) { 1387 NewUndefElts = true; 1388 UndefElts.setBit(i); 1389 } else { 1390 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1391 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1392 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1393 } 1394 } 1395 } 1396 1397 // Try to transform shuffle with constant vector and single element from 1398 // this constant vector to single insertelement instruction. 1399 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1400 // insertelement V, C[ci], ci-n 1401 if (OpWidth == 1402 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1403 Value *Op = nullptr; 1404 Constant *Value = nullptr; 1405 unsigned Idx = -1u; 1406 1407 // Find constant vector with the single element in shuffle (LHS or RHS). 1408 if (LHSIdx < OpWidth && RHSUniform) { 1409 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1410 Op = Shuffle->getOperand(1); 1411 Value = CV->getOperand(LHSValIdx); 1412 Idx = LHSIdx; 1413 } 1414 } 1415 if (RHSIdx < OpWidth && LHSUniform) { 1416 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1417 Op = Shuffle->getOperand(0); 1418 Value = CV->getOperand(RHSValIdx); 1419 Idx = RHSIdx; 1420 } 1421 } 1422 // Found constant vector with single element - convert to insertelement. 1423 if (Op && Value) { 1424 Instruction *New = InsertElementInst::Create( 1425 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1426 Shuffle->getName()); 1427 InsertNewInstWith(New, *Shuffle); 1428 return New; 1429 } 1430 } 1431 if (NewUndefElts) { 1432 // Add additional discovered undefs. 1433 SmallVector<int, 16> Elts; 1434 for (unsigned i = 0; i < VWidth; ++i) { 1435 if (UndefElts[i]) 1436 Elts.push_back(UndefMaskElem); 1437 else 1438 Elts.push_back(Shuffle->getMaskValue(i)); 1439 } 1440 Shuffle->setShuffleMask(Elts); 1441 MadeChange = true; 1442 } 1443 break; 1444 } 1445 case Instruction::Select: { 1446 // If this is a vector select, try to transform the select condition based 1447 // on the current demanded elements. 1448 SelectInst *Sel = cast<SelectInst>(I); 1449 if (Sel->getCondition()->getType()->isVectorTy()) { 1450 // TODO: We are not doing anything with UndefElts based on this call. 1451 // It is overwritten below based on the other select operands. If an 1452 // element of the select condition is known undef, then we are free to 1453 // choose the output value from either arm of the select. If we know that 1454 // one of those values is undef, then the output can be undef. 1455 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1456 } 1457 1458 // Next, see if we can transform the arms of the select. 1459 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1460 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1461 for (unsigned i = 0; i < VWidth; i++) { 1462 // isNullValue() always returns false when called on a ConstantExpr. 1463 // Skip constant expressions to avoid propagating incorrect information. 1464 Constant *CElt = CV->getAggregateElement(i); 1465 if (isa<ConstantExpr>(CElt)) 1466 continue; 1467 // TODO: If a select condition element is undef, we can demand from 1468 // either side. If one side is known undef, choosing that side would 1469 // propagate undef. 1470 if (CElt->isNullValue()) 1471 DemandedLHS.clearBit(i); 1472 else 1473 DemandedRHS.clearBit(i); 1474 } 1475 } 1476 1477 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1478 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1479 1480 // Output elements are undefined if the element from each arm is undefined. 1481 // TODO: This can be improved. See comment in select condition handling. 1482 UndefElts = UndefElts2 & UndefElts3; 1483 break; 1484 } 1485 case Instruction::BitCast: { 1486 // Vector->vector casts only. 1487 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1488 if (!VTy) break; 1489 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1490 APInt InputDemandedElts(InVWidth, 0); 1491 UndefElts2 = APInt(InVWidth, 0); 1492 unsigned Ratio; 1493 1494 if (VWidth == InVWidth) { 1495 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1496 // elements as are demanded of us. 1497 Ratio = 1; 1498 InputDemandedElts = DemandedElts; 1499 } else if ((VWidth % InVWidth) == 0) { 1500 // If the number of elements in the output is a multiple of the number of 1501 // elements in the input then an input element is live if any of the 1502 // corresponding output elements are live. 1503 Ratio = VWidth / InVWidth; 1504 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1505 if (DemandedElts[OutIdx]) 1506 InputDemandedElts.setBit(OutIdx / Ratio); 1507 } else if ((InVWidth % VWidth) == 0) { 1508 // If the number of elements in the input is a multiple of the number of 1509 // elements in the output then an input element is live if the 1510 // corresponding output element is live. 1511 Ratio = InVWidth / VWidth; 1512 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1513 if (DemandedElts[InIdx / Ratio]) 1514 InputDemandedElts.setBit(InIdx); 1515 } else { 1516 // Unsupported so far. 1517 break; 1518 } 1519 1520 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1521 1522 if (VWidth == InVWidth) { 1523 UndefElts = UndefElts2; 1524 } else if ((VWidth % InVWidth) == 0) { 1525 // If the number of elements in the output is a multiple of the number of 1526 // elements in the input then an output element is undef if the 1527 // corresponding input element is undef. 1528 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1529 if (UndefElts2[OutIdx / Ratio]) 1530 UndefElts.setBit(OutIdx); 1531 } else if ((InVWidth % VWidth) == 0) { 1532 // If the number of elements in the input is a multiple of the number of 1533 // elements in the output then an output element is undef if all of the 1534 // corresponding input elements are undef. 1535 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1536 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1537 if (SubUndef.countPopulation() == Ratio) 1538 UndefElts.setBit(OutIdx); 1539 } 1540 } else { 1541 llvm_unreachable("Unimp"); 1542 } 1543 break; 1544 } 1545 case Instruction::FPTrunc: 1546 case Instruction::FPExt: 1547 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1548 break; 1549 1550 case Instruction::Call: { 1551 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1552 if (!II) break; 1553 switch (II->getIntrinsicID()) { 1554 case Intrinsic::masked_gather: // fallthrough 1555 case Intrinsic::masked_load: { 1556 // Subtlety: If we load from a pointer, the pointer must be valid 1557 // regardless of whether the element is demanded. Doing otherwise risks 1558 // segfaults which didn't exist in the original program. 1559 APInt DemandedPtrs(APInt::getAllOnes(VWidth)), 1560 DemandedPassThrough(DemandedElts); 1561 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1562 for (unsigned i = 0; i < VWidth; i++) { 1563 Constant *CElt = CV->getAggregateElement(i); 1564 if (CElt->isNullValue()) 1565 DemandedPtrs.clearBit(i); 1566 else if (CElt->isAllOnesValue()) 1567 DemandedPassThrough.clearBit(i); 1568 } 1569 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1570 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1571 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1572 1573 // Output elements are undefined if the element from both sources are. 1574 // TODO: can strengthen via mask as well. 1575 UndefElts = UndefElts2 & UndefElts3; 1576 break; 1577 } 1578 default: { 1579 // Handle target specific intrinsics 1580 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1581 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1582 simplifyAndSetOp); 1583 if (V.hasValue()) 1584 return V.getValue(); 1585 break; 1586 } 1587 } // switch on IntrinsicID 1588 break; 1589 } // case Call 1590 } // switch on Opcode 1591 1592 // TODO: We bail completely on integer div/rem and shifts because they have 1593 // UB/poison potential, but that should be refined. 1594 BinaryOperator *BO; 1595 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1596 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1597 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1598 1599 // Any change to an instruction with potential poison must clear those flags 1600 // because we can not guarantee those constraints now. Other analysis may 1601 // determine that it is safe to re-apply the flags. 1602 if (MadeChange) 1603 BO->dropPoisonGeneratingFlags(); 1604 1605 // Output elements are undefined if both are undefined. Consider things 1606 // like undef & 0. The result is known zero, not undef. 1607 UndefElts &= UndefElts2; 1608 } 1609 1610 // If we've proven all of the lanes undef, return an undef value. 1611 // TODO: Intersect w/demanded lanes 1612 if (UndefElts.isAllOnesValue()) 1613 return UndefValue::get(I->getType());; 1614 1615 return MadeChange ? I : nullptr; 1616 } 1617