1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains logic for simplifying instructions based on information 11 // about how they are used. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombine.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 20 using namespace llvm; 21 using namespace llvm::PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// ShrinkDemandedConstant - Check to see if the specified operand of the 26 /// specified instruction is a constant integer. If so, check to see if there 27 /// are any bits set in the constant that are not demanded. If so, shrink the 28 /// constant and return true. 29 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 30 APInt Demanded) { 31 assert(I && "No instruction?"); 32 assert(OpNo < I->getNumOperands() && "Operand index too large"); 33 34 // If the operand is not a constant integer, nothing to do. 35 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); 36 if (!OpC) return false; 37 38 // If there are no bits set that aren't demanded, nothing to do. 39 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); 40 if ((~Demanded & OpC->getValue()) == 0) 41 return false; 42 43 // This instruction is producing bits that are not demanded. Shrink the RHS. 44 Demanded &= OpC->getValue(); 45 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded)); 46 47 // If either 'nsw' or 'nuw' is set and the constant is negative, 48 // removing *any* bits from the constant could make overflow occur. 49 // Remove 'nsw' and 'nuw' from the instruction in this case. 50 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) { 51 assert(OBO->getOpcode() == Instruction::Add); 52 if (OBO->hasNoSignedWrap() || OBO->hasNoUnsignedWrap()) { 53 if (OpC->getValue().isNegative()) { 54 cast<BinaryOperator>(OBO)->setHasNoSignedWrap(false); 55 cast<BinaryOperator>(OBO)->setHasNoUnsignedWrap(false); 56 } 57 } 58 } 59 60 return true; 61 } 62 63 64 65 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that 66 /// SimplifyDemandedBits knows about. See if the instruction has any 67 /// properties that allow us to simplify its operands. 68 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 69 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 70 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 71 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 72 73 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, 74 KnownZero, KnownOne, 0, &Inst); 75 if (!V) return false; 76 if (V == &Inst) return true; 77 ReplaceInstUsesWith(Inst, V); 78 return true; 79 } 80 81 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the 82 /// specified instruction operand if possible, updating it in place. It returns 83 /// true if it made any change and false otherwise. 84 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, 85 APInt &KnownZero, APInt &KnownOne, 86 unsigned Depth) { 87 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, 88 KnownZero, KnownOne, Depth, 89 dyn_cast<Instruction>(U.getUser())); 90 if (!NewVal) return false; 91 U = NewVal; 92 return true; 93 } 94 95 96 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler 97 /// value based on the demanded bits. When this function is called, it is known 98 /// that only the bits set in DemandedMask of the result of V are ever used 99 /// downstream. Consequently, depending on the mask and V, it may be possible 100 /// to replace V with a constant or one of its operands. In such cases, this 101 /// function does the replacement and returns true. In all other cases, it 102 /// returns false after analyzing the expression and setting KnownOne and known 103 /// to be one in the expression. KnownZero contains all the bits that are known 104 /// to be zero in the expression. These are provided to potentially allow the 105 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify 106 /// the expression. KnownOne and KnownZero always follow the invariant that 107 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that 108 /// the bits in KnownOne and KnownZero may only be accurate for those bits set 109 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero 110 /// and KnownOne must all be the same. 111 /// 112 /// This returns null if it did not change anything and it permits no 113 /// simplification. This returns V itself if it did some simplification of V's 114 /// operands based on the information about what bits are demanded. This returns 115 /// some other non-null value if it found out that V is equal to another value 116 /// in the context where the specified bits are demanded, but not for all users. 117 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 118 APInt &KnownZero, APInt &KnownOne, 119 unsigned Depth, 120 Instruction *CxtI) { 121 assert(V != nullptr && "Null pointer of Value???"); 122 assert(Depth <= 6 && "Limit Search Depth"); 123 uint32_t BitWidth = DemandedMask.getBitWidth(); 124 Type *VTy = V->getType(); 125 assert((DL || !VTy->isPointerTy()) && 126 "SimplifyDemandedBits needs to know bit widths!"); 127 assert((!DL || DL->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) && 128 (!VTy->isIntOrIntVectorTy() || 129 VTy->getScalarSizeInBits() == BitWidth) && 130 KnownZero.getBitWidth() == BitWidth && 131 KnownOne.getBitWidth() == BitWidth && 132 "Value *V, DemandedMask, KnownZero and KnownOne " 133 "must have same BitWidth"); 134 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 135 // We know all of the bits for a constant! 136 KnownOne = CI->getValue() & DemandedMask; 137 KnownZero = ~KnownOne & DemandedMask; 138 return nullptr; 139 } 140 if (isa<ConstantPointerNull>(V)) { 141 // We know all of the bits for a constant! 142 KnownOne.clearAllBits(); 143 KnownZero = DemandedMask; 144 return nullptr; 145 } 146 147 KnownZero.clearAllBits(); 148 KnownOne.clearAllBits(); 149 if (DemandedMask == 0) { // Not demanding any bits from V. 150 if (isa<UndefValue>(V)) 151 return nullptr; 152 return UndefValue::get(VTy); 153 } 154 155 if (Depth == 6) // Limit search depth. 156 return nullptr; 157 158 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 159 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 160 161 Instruction *I = dyn_cast<Instruction>(V); 162 if (!I) { 163 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 164 return nullptr; // Only analyze instructions. 165 } 166 167 // If there are multiple uses of this value and we aren't at the root, then 168 // we can't do any simplifications of the operands, because DemandedMask 169 // only reflects the bits demanded by *one* of the users. 170 if (Depth != 0 && !I->hasOneUse()) { 171 // Despite the fact that we can't simplify this instruction in all User's 172 // context, we can at least compute the knownzero/knownone bits, and we can 173 // do simplifications that apply to *just* the one user if we know that 174 // this instruction has a simpler value in that context. 175 if (I->getOpcode() == Instruction::And) { 176 // If either the LHS or the RHS are Zero, the result is zero. 177 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1, 178 CxtI); 179 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1, 180 CxtI); 181 182 // If all of the demanded bits are known 1 on one side, return the other. 183 // These bits cannot contribute to the result of the 'and' in this 184 // context. 185 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 186 (DemandedMask & ~LHSKnownZero)) 187 return I->getOperand(0); 188 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 189 (DemandedMask & ~RHSKnownZero)) 190 return I->getOperand(1); 191 192 // If all of the demanded bits in the inputs are known zeros, return zero. 193 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 194 return Constant::getNullValue(VTy); 195 196 } else if (I->getOpcode() == Instruction::Or) { 197 // We can simplify (X|Y) -> X or Y in the user's context if we know that 198 // only bits from X or Y are demanded. 199 200 // If either the LHS or the RHS are One, the result is One. 201 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1, 202 CxtI); 203 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1, 204 CxtI); 205 206 // If all of the demanded bits are known zero on one side, return the 207 // other. These bits cannot contribute to the result of the 'or' in this 208 // context. 209 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 210 (DemandedMask & ~LHSKnownOne)) 211 return I->getOperand(0); 212 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 213 (DemandedMask & ~RHSKnownOne)) 214 return I->getOperand(1); 215 216 // If all of the potentially set bits on one side are known to be set on 217 // the other side, just use the 'other' side. 218 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 219 (DemandedMask & (~RHSKnownZero))) 220 return I->getOperand(0); 221 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 222 (DemandedMask & (~LHSKnownZero))) 223 return I->getOperand(1); 224 } else if (I->getOpcode() == Instruction::Xor) { 225 // We can simplify (X^Y) -> X or Y in the user's context if we know that 226 // only bits from X or Y are demanded. 227 228 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1, 229 CxtI); 230 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1, 231 CxtI); 232 233 // If all of the demanded bits are known zero on one side, return the 234 // other. 235 if ((DemandedMask & RHSKnownZero) == DemandedMask) 236 return I->getOperand(0); 237 if ((DemandedMask & LHSKnownZero) == DemandedMask) 238 return I->getOperand(1); 239 } 240 241 // Compute the KnownZero/KnownOne bits to simplify things downstream. 242 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI); 243 return nullptr; 244 } 245 246 // If this is the root being simplified, allow it to have multiple uses, 247 // just set the DemandedMask to all bits so that we can try to simplify the 248 // operands. This allows visitTruncInst (for example) to simplify the 249 // operand of a trunc without duplicating all the logic below. 250 if (Depth == 0 && !V->hasOneUse()) 251 DemandedMask = APInt::getAllOnesValue(BitWidth); 252 253 switch (I->getOpcode()) { 254 default: 255 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI); 256 break; 257 case Instruction::And: 258 // If either the LHS or the RHS are Zero, the result is zero. 259 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 260 RHSKnownZero, RHSKnownOne, Depth+1) || 261 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, 262 LHSKnownZero, LHSKnownOne, Depth+1)) 263 return I; 264 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 265 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 266 267 // If the client is only demanding bits that we know, return the known 268 // constant. 269 if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)| 270 (RHSKnownOne & LHSKnownOne))) == DemandedMask) 271 return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne); 272 273 // If all of the demanded bits are known 1 on one side, return the other. 274 // These bits cannot contribute to the result of the 'and'. 275 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 276 (DemandedMask & ~LHSKnownZero)) 277 return I->getOperand(0); 278 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 279 (DemandedMask & ~RHSKnownZero)) 280 return I->getOperand(1); 281 282 // If all of the demanded bits in the inputs are known zeros, return zero. 283 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 284 return Constant::getNullValue(VTy); 285 286 // If the RHS is a constant, see if we can simplify it. 287 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) 288 return I; 289 290 // Output known-1 bits are only known if set in both the LHS & RHS. 291 KnownOne = RHSKnownOne & LHSKnownOne; 292 // Output known-0 are known to be clear if zero in either the LHS | RHS. 293 KnownZero = RHSKnownZero | LHSKnownZero; 294 break; 295 case Instruction::Or: 296 // If either the LHS or the RHS are One, the result is One. 297 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 298 RHSKnownZero, RHSKnownOne, Depth+1) || 299 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, 300 LHSKnownZero, LHSKnownOne, Depth+1)) 301 return I; 302 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 303 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 304 305 // If the client is only demanding bits that we know, return the known 306 // constant. 307 if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)| 308 (RHSKnownOne | LHSKnownOne))) == DemandedMask) 309 return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne); 310 311 // If all of the demanded bits are known zero on one side, return the other. 312 // These bits cannot contribute to the result of the 'or'. 313 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 314 (DemandedMask & ~LHSKnownOne)) 315 return I->getOperand(0); 316 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 317 (DemandedMask & ~RHSKnownOne)) 318 return I->getOperand(1); 319 320 // If all of the potentially set bits on one side are known to be set on 321 // the other side, just use the 'other' side. 322 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 323 (DemandedMask & (~RHSKnownZero))) 324 return I->getOperand(0); 325 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 326 (DemandedMask & (~LHSKnownZero))) 327 return I->getOperand(1); 328 329 // If the RHS is a constant, see if we can simplify it. 330 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 331 return I; 332 333 // Output known-0 bits are only known if clear in both the LHS & RHS. 334 KnownZero = RHSKnownZero & LHSKnownZero; 335 // Output known-1 are known to be set if set in either the LHS | RHS. 336 KnownOne = RHSKnownOne | LHSKnownOne; 337 break; 338 case Instruction::Xor: { 339 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 340 RHSKnownZero, RHSKnownOne, Depth+1) || 341 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 342 LHSKnownZero, LHSKnownOne, Depth+1)) 343 return I; 344 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 345 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 346 347 // Output known-0 bits are known if clear or set in both the LHS & RHS. 348 APInt IKnownZero = (RHSKnownZero & LHSKnownZero) | 349 (RHSKnownOne & LHSKnownOne); 350 // Output known-1 are known to be set if set in only one of the LHS, RHS. 351 APInt IKnownOne = (RHSKnownZero & LHSKnownOne) | 352 (RHSKnownOne & LHSKnownZero); 353 354 // If the client is only demanding bits that we know, return the known 355 // constant. 356 if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask) 357 return Constant::getIntegerValue(VTy, IKnownOne); 358 359 // If all of the demanded bits are known zero on one side, return the other. 360 // These bits cannot contribute to the result of the 'xor'. 361 if ((DemandedMask & RHSKnownZero) == DemandedMask) 362 return I->getOperand(0); 363 if ((DemandedMask & LHSKnownZero) == DemandedMask) 364 return I->getOperand(1); 365 366 // If all of the demanded bits are known to be zero on one side or the 367 // other, turn this into an *inclusive* or. 368 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 369 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { 370 Instruction *Or = 371 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 372 I->getName()); 373 return InsertNewInstWith(Or, *I); 374 } 375 376 // If all of the demanded bits on one side are known, and all of the set 377 // bits on that side are also known to be set on the other side, turn this 378 // into an AND, as we know the bits will be cleared. 379 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 380 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { 381 // all known 382 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { 383 Constant *AndC = Constant::getIntegerValue(VTy, 384 ~RHSKnownOne & DemandedMask); 385 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 386 return InsertNewInstWith(And, *I); 387 } 388 } 389 390 // If the RHS is a constant, see if we can simplify it. 391 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 392 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 393 return I; 394 395 // If our LHS is an 'and' and if it has one use, and if any of the bits we 396 // are flipping are known to be set, then the xor is just resetting those 397 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 398 // simplifying both of them. 399 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 400 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 401 isa<ConstantInt>(I->getOperand(1)) && 402 isa<ConstantInt>(LHSInst->getOperand(1)) && 403 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) { 404 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 405 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 406 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask); 407 408 Constant *AndC = 409 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 410 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 411 InsertNewInstWith(NewAnd, *I); 412 413 Constant *XorC = 414 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 415 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 416 return InsertNewInstWith(NewXor, *I); 417 } 418 419 // Output known-0 bits are known if clear or set in both the LHS & RHS. 420 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne); 421 // Output known-1 are known to be set if set in only one of the LHS, RHS. 422 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero); 423 break; 424 } 425 case Instruction::Select: 426 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, 427 RHSKnownZero, RHSKnownOne, Depth+1) || 428 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 429 LHSKnownZero, LHSKnownOne, Depth+1)) 430 return I; 431 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 432 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 433 434 // If the operands are constants, see if we can simplify them. 435 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 436 ShrinkDemandedConstant(I, 2, DemandedMask)) 437 return I; 438 439 // Only known if known in both the LHS and RHS. 440 KnownOne = RHSKnownOne & LHSKnownOne; 441 KnownZero = RHSKnownZero & LHSKnownZero; 442 break; 443 case Instruction::Trunc: { 444 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); 445 DemandedMask = DemandedMask.zext(truncBf); 446 KnownZero = KnownZero.zext(truncBf); 447 KnownOne = KnownOne.zext(truncBf); 448 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 449 KnownZero, KnownOne, Depth+1)) 450 return I; 451 DemandedMask = DemandedMask.trunc(BitWidth); 452 KnownZero = KnownZero.trunc(BitWidth); 453 KnownOne = KnownOne.trunc(BitWidth); 454 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 455 break; 456 } 457 case Instruction::BitCast: 458 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 459 return nullptr; // vector->int or fp->int? 460 461 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 462 if (VectorType *SrcVTy = 463 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 464 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 465 // Don't touch a bitcast between vectors of different element counts. 466 return nullptr; 467 } else 468 // Don't touch a scalar-to-vector bitcast. 469 return nullptr; 470 } else if (I->getOperand(0)->getType()->isVectorTy()) 471 // Don't touch a vector-to-scalar bitcast. 472 return nullptr; 473 474 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 475 KnownZero, KnownOne, Depth+1)) 476 return I; 477 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 478 break; 479 case Instruction::ZExt: { 480 // Compute the bits in the result that are not present in the input. 481 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 482 483 DemandedMask = DemandedMask.trunc(SrcBitWidth); 484 KnownZero = KnownZero.trunc(SrcBitWidth); 485 KnownOne = KnownOne.trunc(SrcBitWidth); 486 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 487 KnownZero, KnownOne, Depth+1)) 488 return I; 489 DemandedMask = DemandedMask.zext(BitWidth); 490 KnownZero = KnownZero.zext(BitWidth); 491 KnownOne = KnownOne.zext(BitWidth); 492 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 493 // The top bits are known to be zero. 494 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 495 break; 496 } 497 case Instruction::SExt: { 498 // Compute the bits in the result that are not present in the input. 499 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 500 501 APInt InputDemandedBits = DemandedMask & 502 APInt::getLowBitsSet(BitWidth, SrcBitWidth); 503 504 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); 505 // If any of the sign extended bits are demanded, we know that the sign 506 // bit is demanded. 507 if ((NewBits & DemandedMask) != 0) 508 InputDemandedBits.setBit(SrcBitWidth-1); 509 510 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth); 511 KnownZero = KnownZero.trunc(SrcBitWidth); 512 KnownOne = KnownOne.trunc(SrcBitWidth); 513 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, 514 KnownZero, KnownOne, Depth+1)) 515 return I; 516 InputDemandedBits = InputDemandedBits.zext(BitWidth); 517 KnownZero = KnownZero.zext(BitWidth); 518 KnownOne = KnownOne.zext(BitWidth); 519 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 520 521 // If the sign bit of the input is known set or clear, then we know the 522 // top bits of the result. 523 524 // If the input sign bit is known zero, or if the NewBits are not demanded 525 // convert this into a zero extension. 526 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { 527 // Convert to ZExt cast 528 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 529 return InsertNewInstWith(NewCast, *I); 530 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set 531 KnownOne |= NewBits; 532 } 533 break; 534 } 535 case Instruction::Add: { 536 // Figure out what the input bits are. If the top bits of the and result 537 // are not demanded, then the add doesn't demand them from its input 538 // either. 539 unsigned NLZ = DemandedMask.countLeadingZeros(); 540 541 // If there is a constant on the RHS, there are a variety of xformations 542 // we can do. 543 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 544 // If null, this should be simplified elsewhere. Some of the xforms here 545 // won't work if the RHS is zero. 546 if (RHS->isZero()) 547 break; 548 549 // If the top bit of the output is demanded, demand everything from the 550 // input. Otherwise, we demand all the input bits except NLZ top bits. 551 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ)); 552 553 // Find information about known zero/one bits in the input. 554 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, 555 LHSKnownZero, LHSKnownOne, Depth+1)) 556 return I; 557 558 // If the RHS of the add has bits set that can't affect the input, reduce 559 // the constant. 560 if (ShrinkDemandedConstant(I, 1, InDemandedBits)) 561 return I; 562 563 // Avoid excess work. 564 if (LHSKnownZero == 0 && LHSKnownOne == 0) 565 break; 566 567 // Turn it into OR if input bits are zero. 568 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) { 569 Instruction *Or = 570 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 571 I->getName()); 572 return InsertNewInstWith(Or, *I); 573 } 574 575 // We can say something about the output known-zero and known-one bits, 576 // depending on potential carries from the input constant and the 577 // unknowns. For example if the LHS is known to have at most the 0x0F0F0 578 // bits set and the RHS constant is 0x01001, then we know we have a known 579 // one mask of 0x00001 and a known zero mask of 0xE0F0E. 580 581 // To compute this, we first compute the potential carry bits. These are 582 // the bits which may be modified. I'm not aware of a better way to do 583 // this scan. 584 const APInt &RHSVal = RHS->getValue(); 585 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal)); 586 587 // Now that we know which bits have carries, compute the known-1/0 sets. 588 589 // Bits are known one if they are known zero in one operand and one in the 590 // other, and there is no input carry. 591 KnownOne = ((LHSKnownZero & RHSVal) | 592 (LHSKnownOne & ~RHSVal)) & ~CarryBits; 593 594 // Bits are known zero if they are known zero in both operands and there 595 // is no input carry. 596 KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits; 597 } else { 598 // If the high-bits of this ADD are not demanded, then it does not demand 599 // the high bits of its LHS or RHS. 600 if (DemandedMask[BitWidth-1] == 0) { 601 // Right fill the mask of bits for this ADD to demand the most 602 // significant bit and all those below it. 603 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 604 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 605 LHSKnownZero, LHSKnownOne, Depth+1) || 606 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 607 LHSKnownZero, LHSKnownOne, Depth+1)) 608 return I; 609 } 610 } 611 break; 612 } 613 case Instruction::Sub: 614 // If the high-bits of this SUB are not demanded, then it does not demand 615 // the high bits of its LHS or RHS. 616 if (DemandedMask[BitWidth-1] == 0) { 617 // Right fill the mask of bits for this SUB to demand the most 618 // significant bit and all those below it. 619 uint32_t NLZ = DemandedMask.countLeadingZeros(); 620 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 621 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 622 LHSKnownZero, LHSKnownOne, Depth+1) || 623 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 624 LHSKnownZero, LHSKnownOne, Depth+1)) 625 return I; 626 } 627 628 // Otherwise just hand the sub off to computeKnownBits to fill in 629 // the known zeros and ones. 630 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 631 632 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 633 // zero. 634 if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) { 635 APInt I0 = C0->getValue(); 636 if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) { 637 Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0); 638 return InsertNewInstWith(Xor, *I); 639 } 640 } 641 break; 642 case Instruction::Shl: 643 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 644 { 645 Value *VarX; ConstantInt *C1; 646 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) { 647 Instruction *Shr = cast<Instruction>(I->getOperand(0)); 648 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask, 649 KnownZero, KnownOne); 650 if (R) 651 return R; 652 } 653 } 654 655 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 656 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 657 658 // If the shift is NUW/NSW, then it does demand the high bits. 659 ShlOperator *IOp = cast<ShlOperator>(I); 660 if (IOp->hasNoSignedWrap()) 661 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 662 else if (IOp->hasNoUnsignedWrap()) 663 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 664 665 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 666 KnownZero, KnownOne, Depth+1)) 667 return I; 668 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 669 KnownZero <<= ShiftAmt; 670 KnownOne <<= ShiftAmt; 671 // low bits known zero. 672 if (ShiftAmt) 673 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 674 } 675 break; 676 case Instruction::LShr: 677 // For a logical shift right 678 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 679 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 680 681 // Unsigned shift right. 682 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 683 684 // If the shift is exact, then it does demand the low bits (and knows that 685 // they are zero). 686 if (cast<LShrOperator>(I)->isExact()) 687 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 688 689 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 690 KnownZero, KnownOne, Depth+1)) 691 return I; 692 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 693 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 694 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 695 if (ShiftAmt) { 696 // Compute the new bits that are at the top now. 697 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 698 KnownZero |= HighBits; // high bits known zero. 699 } 700 } 701 break; 702 case Instruction::AShr: 703 // If this is an arithmetic shift right and only the low-bit is set, we can 704 // always convert this into a logical shr, even if the shift amount is 705 // variable. The low bit of the shift cannot be an input sign bit unless 706 // the shift amount is >= the size of the datatype, which is undefined. 707 if (DemandedMask == 1) { 708 // Perform the logical shift right. 709 Instruction *NewVal = BinaryOperator::CreateLShr( 710 I->getOperand(0), I->getOperand(1), I->getName()); 711 return InsertNewInstWith(NewVal, *I); 712 } 713 714 // If the sign bit is the only bit demanded by this ashr, then there is no 715 // need to do it, the shift doesn't change the high bit. 716 if (DemandedMask.isSignBit()) 717 return I->getOperand(0); 718 719 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 720 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 721 722 // Signed shift right. 723 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 724 // If any of the "high bits" are demanded, we should set the sign bit as 725 // demanded. 726 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 727 DemandedMaskIn.setBit(BitWidth-1); 728 729 // If the shift is exact, then it does demand the low bits (and knows that 730 // they are zero). 731 if (cast<AShrOperator>(I)->isExact()) 732 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 733 734 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 735 KnownZero, KnownOne, Depth+1)) 736 return I; 737 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 738 // Compute the new bits that are at the top now. 739 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 740 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 741 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 742 743 // Handle the sign bits. 744 APInt SignBit(APInt::getSignBit(BitWidth)); 745 // Adjust to where it is now in the mask. 746 SignBit = APIntOps::lshr(SignBit, ShiftAmt); 747 748 // If the input sign bit is known to be zero, or if none of the top bits 749 // are demanded, turn this into an unsigned shift right. 750 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] || 751 (HighBits & ~DemandedMask) == HighBits) { 752 // Perform the logical shift right. 753 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0), 754 SA, I->getName()); 755 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact()); 756 return InsertNewInstWith(NewVal, *I); 757 } else if ((KnownOne & SignBit) != 0) { // New bits are known one. 758 KnownOne |= HighBits; 759 } 760 } 761 break; 762 case Instruction::SRem: 763 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 764 // X % -1 demands all the bits because we don't want to introduce 765 // INT_MIN % -1 (== undef) by accident. 766 if (Rem->isAllOnesValue()) 767 break; 768 APInt RA = Rem->getValue().abs(); 769 if (RA.isPowerOf2()) { 770 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 771 return I->getOperand(0); 772 773 APInt LowBits = RA - 1; 774 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 775 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, 776 LHSKnownZero, LHSKnownOne, Depth+1)) 777 return I; 778 779 // The low bits of LHS are unchanged by the srem. 780 KnownZero = LHSKnownZero & LowBits; 781 KnownOne = LHSKnownOne & LowBits; 782 783 // If LHS is non-negative or has all low bits zero, then the upper bits 784 // are all zero. 785 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) 786 KnownZero |= ~LowBits; 787 788 // If LHS is negative and not all low bits are zero, then the upper bits 789 // are all one. 790 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0)) 791 KnownOne |= ~LowBits; 792 793 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 794 } 795 } 796 797 // The sign bit is the LHS's sign bit, except when the result of the 798 // remainder is zero. 799 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) { 800 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 801 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1, 802 CxtI); 803 // If it's known zero, our sign bit is also zero. 804 if (LHSKnownZero.isNegative()) 805 KnownZero.setBit(KnownZero.getBitWidth() - 1); 806 } 807 break; 808 case Instruction::URem: { 809 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 810 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 811 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, 812 KnownZero2, KnownOne2, Depth+1) || 813 SimplifyDemandedBits(I->getOperandUse(1), AllOnes, 814 KnownZero2, KnownOne2, Depth+1)) 815 return I; 816 817 unsigned Leaders = KnownZero2.countLeadingOnes(); 818 Leaders = std::max(Leaders, 819 KnownZero2.countLeadingOnes()); 820 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 821 break; 822 } 823 case Instruction::Call: 824 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 825 switch (II->getIntrinsicID()) { 826 default: break; 827 case Intrinsic::bswap: { 828 // If the only bits demanded come from one byte of the bswap result, 829 // just shift the input byte into position to eliminate the bswap. 830 unsigned NLZ = DemandedMask.countLeadingZeros(); 831 unsigned NTZ = DemandedMask.countTrailingZeros(); 832 833 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 834 // we need all the bits down to bit 8. Likewise, round NLZ. If we 835 // have 14 leading zeros, round to 8. 836 NLZ &= ~7; 837 NTZ &= ~7; 838 // If we need exactly one byte, we can do this transformation. 839 if (BitWidth-NLZ-NTZ == 8) { 840 unsigned ResultBit = NTZ; 841 unsigned InputBit = BitWidth-NTZ-8; 842 843 // Replace this with either a left or right shift to get the byte into 844 // the right place. 845 Instruction *NewVal; 846 if (InputBit > ResultBit) 847 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 848 ConstantInt::get(I->getType(), InputBit-ResultBit)); 849 else 850 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 851 ConstantInt::get(I->getType(), ResultBit-InputBit)); 852 NewVal->takeName(I); 853 return InsertNewInstWith(NewVal, *I); 854 } 855 856 // TODO: Could compute known zero/one bits based on the input. 857 break; 858 } 859 case Intrinsic::x86_sse42_crc32_64_64: 860 KnownZero = APInt::getHighBitsSet(64, 32); 861 return nullptr; 862 } 863 } 864 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 865 break; 866 } 867 868 // If the client is only demanding bits that we know, return the known 869 // constant. 870 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) 871 return Constant::getIntegerValue(VTy, KnownOne); 872 return nullptr; 873 } 874 875 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 876 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 877 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 878 /// of "C2-C1". 879 /// 880 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 881 /// ..., bn}, without considering the specific value X is holding. 882 /// This transformation is legal iff one of following conditions is hold: 883 /// 1) All the bit in S are 0, in this case E1 == E2. 884 /// 2) We don't care those bits in S, per the input DemandedMask. 885 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 886 /// rest bits. 887 /// 888 /// Currently we only test condition 2). 889 /// 890 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 891 /// not successful. 892 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr, 893 Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) { 894 895 const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue(); 896 const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue(); 897 if (!ShlOp1 || !ShrOp1) 898 return nullptr; // Noop. 899 900 Value *VarX = Shr->getOperand(0); 901 Type *Ty = VarX->getType(); 902 unsigned BitWidth = Ty->getIntegerBitWidth(); 903 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 904 return nullptr; // Undef. 905 906 unsigned ShlAmt = ShlOp1.getZExtValue(); 907 unsigned ShrAmt = ShrOp1.getZExtValue(); 908 909 KnownOne.clearAllBits(); 910 KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1); 911 KnownZero &= DemandedMask; 912 913 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 914 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 915 916 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 917 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 918 (BitMask1.ashr(ShrAmt) << ShlAmt); 919 920 if (ShrAmt <= ShlAmt) { 921 BitMask2 <<= (ShlAmt - ShrAmt); 922 } else { 923 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 924 BitMask2.ashr(ShrAmt - ShlAmt); 925 } 926 927 // Check if condition-2 (see the comment to this function) is satified. 928 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 929 if (ShrAmt == ShlAmt) 930 return VarX; 931 932 if (!Shr->hasOneUse()) 933 return nullptr; 934 935 BinaryOperator *New; 936 if (ShrAmt < ShlAmt) { 937 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 938 New = BinaryOperator::CreateShl(VarX, Amt); 939 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 940 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 941 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 942 } else { 943 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 944 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 945 BinaryOperator::CreateAShr(VarX, Amt); 946 if (cast<BinaryOperator>(Shr)->isExact()) 947 New->setIsExact(true); 948 } 949 950 return InsertNewInstWith(New, *Shl); 951 } 952 953 return nullptr; 954 } 955 956 /// SimplifyDemandedVectorElts - The specified value produces a vector with 957 /// any number of elements. DemandedElts contains the set of elements that are 958 /// actually used by the caller. This method analyzes which elements of the 959 /// operand are undef and returns that information in UndefElts. 960 /// 961 /// If the information about demanded elements can be used to simplify the 962 /// operation, the operation is simplified, then the resultant value is 963 /// returned. This returns null if no change was made. 964 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 965 APInt &UndefElts, 966 unsigned Depth) { 967 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 968 APInt EltMask(APInt::getAllOnesValue(VWidth)); 969 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 970 971 if (isa<UndefValue>(V)) { 972 // If the entire vector is undefined, just return this info. 973 UndefElts = EltMask; 974 return nullptr; 975 } 976 977 if (DemandedElts == 0) { // If nothing is demanded, provide undef. 978 UndefElts = EltMask; 979 return UndefValue::get(V->getType()); 980 } 981 982 UndefElts = 0; 983 984 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. 985 if (Constant *C = dyn_cast<Constant>(V)) { 986 // Check if this is identity. If so, return 0 since we are not simplifying 987 // anything. 988 if (DemandedElts.isAllOnesValue()) 989 return nullptr; 990 991 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 992 Constant *Undef = UndefValue::get(EltTy); 993 994 SmallVector<Constant*, 16> Elts; 995 for (unsigned i = 0; i != VWidth; ++i) { 996 if (!DemandedElts[i]) { // If not demanded, set to undef. 997 Elts.push_back(Undef); 998 UndefElts.setBit(i); 999 continue; 1000 } 1001 1002 Constant *Elt = C->getAggregateElement(i); 1003 if (!Elt) return nullptr; 1004 1005 if (isa<UndefValue>(Elt)) { // Already undef. 1006 Elts.push_back(Undef); 1007 UndefElts.setBit(i); 1008 } else { // Otherwise, defined. 1009 Elts.push_back(Elt); 1010 } 1011 } 1012 1013 // If we changed the constant, return it. 1014 Constant *NewCV = ConstantVector::get(Elts); 1015 return NewCV != C ? NewCV : nullptr; 1016 } 1017 1018 // Limit search depth. 1019 if (Depth == 10) 1020 return nullptr; 1021 1022 // If multiple users are using the root value, proceed with 1023 // simplification conservatively assuming that all elements 1024 // are needed. 1025 if (!V->hasOneUse()) { 1026 // Quit if we find multiple users of a non-root value though. 1027 // They'll be handled when it's their turn to be visited by 1028 // the main instcombine process. 1029 if (Depth != 0) 1030 // TODO: Just compute the UndefElts information recursively. 1031 return nullptr; 1032 1033 // Conservatively assume that all elements are needed. 1034 DemandedElts = EltMask; 1035 } 1036 1037 Instruction *I = dyn_cast<Instruction>(V); 1038 if (!I) return nullptr; // Only analyze instructions. 1039 1040 bool MadeChange = false; 1041 APInt UndefElts2(VWidth, 0); 1042 Value *TmpV; 1043 switch (I->getOpcode()) { 1044 default: break; 1045 1046 case Instruction::InsertElement: { 1047 // If this is a variable index, we don't know which element it overwrites. 1048 // demand exactly the same input as we produce. 1049 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1050 if (!Idx) { 1051 // Note that we can't propagate undef elt info, because we don't know 1052 // which elt is getting updated. 1053 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1054 UndefElts2, Depth+1); 1055 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1056 break; 1057 } 1058 1059 // If this is inserting an element that isn't demanded, remove this 1060 // insertelement. 1061 unsigned IdxNo = Idx->getZExtValue(); 1062 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1063 Worklist.Add(I); 1064 return I->getOperand(0); 1065 } 1066 1067 // Otherwise, the element inserted overwrites whatever was there, so the 1068 // input demanded set is simpler than the output set. 1069 APInt DemandedElts2 = DemandedElts; 1070 DemandedElts2.clearBit(IdxNo); 1071 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, 1072 UndefElts, Depth+1); 1073 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1074 1075 // The inserted element is defined. 1076 UndefElts.clearBit(IdxNo); 1077 break; 1078 } 1079 case Instruction::ShuffleVector: { 1080 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1081 uint64_t LHSVWidth = 1082 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements(); 1083 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1084 for (unsigned i = 0; i < VWidth; i++) { 1085 if (DemandedElts[i]) { 1086 unsigned MaskVal = Shuffle->getMaskValue(i); 1087 if (MaskVal != -1u) { 1088 assert(MaskVal < LHSVWidth * 2 && 1089 "shufflevector mask index out of range!"); 1090 if (MaskVal < LHSVWidth) 1091 LeftDemanded.setBit(MaskVal); 1092 else 1093 RightDemanded.setBit(MaskVal - LHSVWidth); 1094 } 1095 } 1096 } 1097 1098 APInt UndefElts4(LHSVWidth, 0); 1099 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, 1100 UndefElts4, Depth+1); 1101 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1102 1103 APInt UndefElts3(LHSVWidth, 0); 1104 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, 1105 UndefElts3, Depth+1); 1106 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1107 1108 bool NewUndefElts = false; 1109 for (unsigned i = 0; i < VWidth; i++) { 1110 unsigned MaskVal = Shuffle->getMaskValue(i); 1111 if (MaskVal == -1u) { 1112 UndefElts.setBit(i); 1113 } else if (!DemandedElts[i]) { 1114 NewUndefElts = true; 1115 UndefElts.setBit(i); 1116 } else if (MaskVal < LHSVWidth) { 1117 if (UndefElts4[MaskVal]) { 1118 NewUndefElts = true; 1119 UndefElts.setBit(i); 1120 } 1121 } else { 1122 if (UndefElts3[MaskVal - LHSVWidth]) { 1123 NewUndefElts = true; 1124 UndefElts.setBit(i); 1125 } 1126 } 1127 } 1128 1129 if (NewUndefElts) { 1130 // Add additional discovered undefs. 1131 SmallVector<Constant*, 16> Elts; 1132 for (unsigned i = 0; i < VWidth; ++i) { 1133 if (UndefElts[i]) 1134 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1135 else 1136 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1137 Shuffle->getMaskValue(i))); 1138 } 1139 I->setOperand(2, ConstantVector::get(Elts)); 1140 MadeChange = true; 1141 } 1142 break; 1143 } 1144 case Instruction::Select: { 1145 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); 1146 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) { 1147 for (unsigned i = 0; i < VWidth; i++) { 1148 if (CV->getAggregateElement(i)->isNullValue()) 1149 LeftDemanded.clearBit(i); 1150 else 1151 RightDemanded.clearBit(i); 1152 } 1153 } 1154 1155 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, 1156 UndefElts, Depth+1); 1157 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1158 1159 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, 1160 UndefElts2, Depth+1); 1161 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } 1162 1163 // Output elements are undefined if both are undefined. 1164 UndefElts &= UndefElts2; 1165 break; 1166 } 1167 case Instruction::BitCast: { 1168 // Vector->vector casts only. 1169 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1170 if (!VTy) break; 1171 unsigned InVWidth = VTy->getNumElements(); 1172 APInt InputDemandedElts(InVWidth, 0); 1173 unsigned Ratio; 1174 1175 if (VWidth == InVWidth) { 1176 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1177 // elements as are demanded of us. 1178 Ratio = 1; 1179 InputDemandedElts = DemandedElts; 1180 } else if (VWidth > InVWidth) { 1181 // Untested so far. 1182 break; 1183 1184 // If there are more elements in the result than there are in the source, 1185 // then an input element is live if any of the corresponding output 1186 // elements are live. 1187 Ratio = VWidth/InVWidth; 1188 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1189 if (DemandedElts[OutIdx]) 1190 InputDemandedElts.setBit(OutIdx/Ratio); 1191 } 1192 } else { 1193 // Untested so far. 1194 break; 1195 1196 // If there are more elements in the source than there are in the result, 1197 // then an input element is live if the corresponding output element is 1198 // live. 1199 Ratio = InVWidth/VWidth; 1200 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1201 if (DemandedElts[InIdx/Ratio]) 1202 InputDemandedElts.setBit(InIdx); 1203 } 1204 1205 // div/rem demand all inputs, because they don't want divide by zero. 1206 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, 1207 UndefElts2, Depth+1); 1208 if (TmpV) { 1209 I->setOperand(0, TmpV); 1210 MadeChange = true; 1211 } 1212 1213 UndefElts = UndefElts2; 1214 if (VWidth > InVWidth) { 1215 llvm_unreachable("Unimp"); 1216 // If there are more elements in the result than there are in the source, 1217 // then an output element is undef if the corresponding input element is 1218 // undef. 1219 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1220 if (UndefElts2[OutIdx/Ratio]) 1221 UndefElts.setBit(OutIdx); 1222 } else if (VWidth < InVWidth) { 1223 llvm_unreachable("Unimp"); 1224 // If there are more elements in the source than there are in the result, 1225 // then a result element is undef if all of the corresponding input 1226 // elements are undef. 1227 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef. 1228 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1229 if (!UndefElts2[InIdx]) // Not undef? 1230 UndefElts.clearBit(InIdx/Ratio); // Clear undef bit. 1231 } 1232 break; 1233 } 1234 case Instruction::And: 1235 case Instruction::Or: 1236 case Instruction::Xor: 1237 case Instruction::Add: 1238 case Instruction::Sub: 1239 case Instruction::Mul: 1240 // div/rem demand all inputs, because they don't want divide by zero. 1241 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1242 UndefElts, Depth+1); 1243 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1244 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, 1245 UndefElts2, Depth+1); 1246 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1247 1248 // Output elements are undefined if both are undefined. Consider things 1249 // like undef&0. The result is known zero, not undef. 1250 UndefElts &= UndefElts2; 1251 break; 1252 case Instruction::FPTrunc: 1253 case Instruction::FPExt: 1254 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1255 UndefElts, Depth+1); 1256 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1257 break; 1258 1259 case Instruction::Call: { 1260 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1261 if (!II) break; 1262 switch (II->getIntrinsicID()) { 1263 default: break; 1264 1265 // Binary vector operations that work column-wise. A dest element is a 1266 // function of the corresponding input elements from the two inputs. 1267 case Intrinsic::x86_sse_sub_ss: 1268 case Intrinsic::x86_sse_mul_ss: 1269 case Intrinsic::x86_sse_min_ss: 1270 case Intrinsic::x86_sse_max_ss: 1271 case Intrinsic::x86_sse2_sub_sd: 1272 case Intrinsic::x86_sse2_mul_sd: 1273 case Intrinsic::x86_sse2_min_sd: 1274 case Intrinsic::x86_sse2_max_sd: 1275 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1276 UndefElts, Depth+1); 1277 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1278 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1279 UndefElts2, Depth+1); 1280 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1281 1282 // If only the low elt is demanded and this is a scalarizable intrinsic, 1283 // scalarize it now. 1284 if (DemandedElts == 1) { 1285 switch (II->getIntrinsicID()) { 1286 default: break; 1287 case Intrinsic::x86_sse_sub_ss: 1288 case Intrinsic::x86_sse_mul_ss: 1289 case Intrinsic::x86_sse2_sub_sd: 1290 case Intrinsic::x86_sse2_mul_sd: 1291 // TODO: Lower MIN/MAX/ABS/etc 1292 Value *LHS = II->getArgOperand(0); 1293 Value *RHS = II->getArgOperand(1); 1294 // Extract the element as scalars. 1295 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS, 1296 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 1297 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS, 1298 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 1299 1300 switch (II->getIntrinsicID()) { 1301 default: llvm_unreachable("Case stmts out of sync!"); 1302 case Intrinsic::x86_sse_sub_ss: 1303 case Intrinsic::x86_sse2_sub_sd: 1304 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS, 1305 II->getName()), *II); 1306 break; 1307 case Intrinsic::x86_sse_mul_ss: 1308 case Intrinsic::x86_sse2_mul_sd: 1309 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS, 1310 II->getName()), *II); 1311 break; 1312 } 1313 1314 Instruction *New = 1315 InsertElementInst::Create( 1316 UndefValue::get(II->getType()), TmpV, 1317 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false), 1318 II->getName()); 1319 InsertNewInstWith(New, *II); 1320 return New; 1321 } 1322 } 1323 1324 // Output elements are undefined if both are undefined. Consider things 1325 // like undef&0. The result is known zero, not undef. 1326 UndefElts &= UndefElts2; 1327 break; 1328 } 1329 break; 1330 } 1331 } 1332 return MadeChange ? I : nullptr; 1333 } 1334