1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Support/KnownBits.h"
19 
20 using namespace llvm;
21 using namespace llvm::PatternMatch;
22 
23 #define DEBUG_TYPE "instcombine"
24 
25 namespace {
26 
27 struct AMDGPUImageDMaskIntrinsic {
28   unsigned Intr;
29 };
30 
31 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
32 #include "InstCombineTables.inc"
33 
34 } // end anonymous namespace
35 
36 /// Check to see if the specified operand of the specified instruction is a
37 /// constant integer. If so, check to see if there are any bits set in the
38 /// constant that are not demanded. If so, shrink the constant and return true.
39 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
40                                    const APInt &Demanded) {
41   assert(I && "No instruction?");
42   assert(OpNo < I->getNumOperands() && "Operand index too large");
43 
44   // The operand must be a constant integer or splat integer.
45   Value *Op = I->getOperand(OpNo);
46   const APInt *C;
47   if (!match(Op, m_APInt(C)))
48     return false;
49 
50   // If there are no bits set that aren't demanded, nothing to do.
51   if (C->isSubsetOf(Demanded))
52     return false;
53 
54   // This instruction is producing bits that are not demanded. Shrink the RHS.
55   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
56 
57   return true;
58 }
59 
60 
61 
62 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
63 /// the instruction has any properties that allow us to simplify its operands.
64 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
65   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
66   KnownBits Known(BitWidth);
67   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
68 
69   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
70                                      0, &Inst);
71   if (!V) return false;
72   if (V == &Inst) return true;
73   replaceInstUsesWith(Inst, V);
74   return true;
75 }
76 
77 /// This form of SimplifyDemandedBits simplifies the specified instruction
78 /// operand if possible, updating it in place. It returns true if it made any
79 /// change and false otherwise.
80 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
81                                         const APInt &DemandedMask,
82                                         KnownBits &Known,
83                                         unsigned Depth) {
84   Use &U = I->getOperandUse(OpNo);
85   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
86                                           Depth, I);
87   if (!NewVal) return false;
88   U = NewVal;
89   return true;
90 }
91 
92 
93 /// This function attempts to replace V with a simpler value based on the
94 /// demanded bits. When this function is called, it is known that only the bits
95 /// set in DemandedMask of the result of V are ever used downstream.
96 /// Consequently, depending on the mask and V, it may be possible to replace V
97 /// with a constant or one of its operands. In such cases, this function does
98 /// the replacement and returns true. In all other cases, it returns false after
99 /// analyzing the expression and setting KnownOne and known to be one in the
100 /// expression. Known.Zero contains all the bits that are known to be zero in
101 /// the expression. These are provided to potentially allow the caller (which
102 /// might recursively be SimplifyDemandedBits itself) to simplify the
103 /// expression.
104 /// Known.One and Known.Zero always follow the invariant that:
105 ///   Known.One & Known.Zero == 0.
106 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
107 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
108 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
109 /// be the same.
110 ///
111 /// This returns null if it did not change anything and it permits no
112 /// simplification.  This returns V itself if it did some simplification of V's
113 /// operands based on the information about what bits are demanded. This returns
114 /// some other non-null value if it found out that V is equal to another value
115 /// in the context where the specified bits are demanded, but not for all users.
116 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
117                                              KnownBits &Known, unsigned Depth,
118                                              Instruction *CxtI) {
119   assert(V != nullptr && "Null pointer of Value???");
120   assert(Depth <= 6 && "Limit Search Depth");
121   uint32_t BitWidth = DemandedMask.getBitWidth();
122   Type *VTy = V->getType();
123   assert(
124       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
125       Known.getBitWidth() == BitWidth &&
126       "Value *V, DemandedMask and Known must have same BitWidth");
127 
128   if (isa<Constant>(V)) {
129     computeKnownBits(V, Known, Depth, CxtI);
130     return nullptr;
131   }
132 
133   Known.resetAll();
134   if (DemandedMask.isNullValue())     // Not demanding any bits from V.
135     return UndefValue::get(VTy);
136 
137   if (Depth == 6)        // Limit search depth.
138     return nullptr;
139 
140   Instruction *I = dyn_cast<Instruction>(V);
141   if (!I) {
142     computeKnownBits(V, Known, Depth, CxtI);
143     return nullptr;        // Only analyze instructions.
144   }
145 
146   // If there are multiple uses of this value and we aren't at the root, then
147   // we can't do any simplifications of the operands, because DemandedMask
148   // only reflects the bits demanded by *one* of the users.
149   if (Depth != 0 && !I->hasOneUse())
150     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
151 
152   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
153 
154   // If this is the root being simplified, allow it to have multiple uses,
155   // just set the DemandedMask to all bits so that we can try to simplify the
156   // operands.  This allows visitTruncInst (for example) to simplify the
157   // operand of a trunc without duplicating all the logic below.
158   if (Depth == 0 && !V->hasOneUse())
159     DemandedMask.setAllBits();
160 
161   switch (I->getOpcode()) {
162   default:
163     computeKnownBits(I, Known, Depth, CxtI);
164     break;
165   case Instruction::And: {
166     // If either the LHS or the RHS are Zero, the result is zero.
167     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
168         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
169                              Depth + 1))
170       return I;
171     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
172     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
173 
174     // Output known-0 are known to be clear if zero in either the LHS | RHS.
175     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
176     // Output known-1 bits are only known if set in both the LHS & RHS.
177     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
178 
179     // If the client is only demanding bits that we know, return the known
180     // constant.
181     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
182       return Constant::getIntegerValue(VTy, IKnownOne);
183 
184     // If all of the demanded bits are known 1 on one side, return the other.
185     // These bits cannot contribute to the result of the 'and'.
186     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
187       return I->getOperand(0);
188     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
189       return I->getOperand(1);
190 
191     // If the RHS is a constant, see if we can simplify it.
192     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
193       return I;
194 
195     Known.Zero = std::move(IKnownZero);
196     Known.One  = std::move(IKnownOne);
197     break;
198   }
199   case Instruction::Or: {
200     // If either the LHS or the RHS are One, the result is One.
201     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
202         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
203                              Depth + 1))
204       return I;
205     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
206     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
207 
208     // Output known-0 bits are only known if clear in both the LHS & RHS.
209     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
210     // Output known-1 are known. to be set if s.et in either the LHS | RHS.
211     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
212 
213     // If the client is only demanding bits that we know, return the known
214     // constant.
215     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
216       return Constant::getIntegerValue(VTy, IKnownOne);
217 
218     // If all of the demanded bits are known zero on one side, return the other.
219     // These bits cannot contribute to the result of the 'or'.
220     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
221       return I->getOperand(0);
222     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
223       return I->getOperand(1);
224 
225     // If the RHS is a constant, see if we can simplify it.
226     if (ShrinkDemandedConstant(I, 1, DemandedMask))
227       return I;
228 
229     Known.Zero = std::move(IKnownZero);
230     Known.One  = std::move(IKnownOne);
231     break;
232   }
233   case Instruction::Xor: {
234     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
235         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
236       return I;
237     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
238     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
239 
240     // Output known-0 bits are known if clear or set in both the LHS & RHS.
241     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
242                        (RHSKnown.One & LHSKnown.One);
243     // Output known-1 are known to be set if set in only one of the LHS, RHS.
244     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
245                        (RHSKnown.One & LHSKnown.Zero);
246 
247     // If the client is only demanding bits that we know, return the known
248     // constant.
249     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
250       return Constant::getIntegerValue(VTy, IKnownOne);
251 
252     // If all of the demanded bits are known zero on one side, return the other.
253     // These bits cannot contribute to the result of the 'xor'.
254     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
255       return I->getOperand(0);
256     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
257       return I->getOperand(1);
258 
259     // If all of the demanded bits are known to be zero on one side or the
260     // other, turn this into an *inclusive* or.
261     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
262     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
263       Instruction *Or =
264         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
265                                  I->getName());
266       return InsertNewInstWith(Or, *I);
267     }
268 
269     // If all of the demanded bits on one side are known, and all of the set
270     // bits on that side are also known to be set on the other side, turn this
271     // into an AND, as we know the bits will be cleared.
272     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
273     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
274         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
275       Constant *AndC = Constant::getIntegerValue(VTy,
276                                                  ~RHSKnown.One & DemandedMask);
277       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
278       return InsertNewInstWith(And, *I);
279     }
280 
281     // If the RHS is a constant, see if we can simplify it.
282     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
283     if (ShrinkDemandedConstant(I, 1, DemandedMask))
284       return I;
285 
286     // If our LHS is an 'and' and if it has one use, and if any of the bits we
287     // are flipping are known to be set, then the xor is just resetting those
288     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
289     // simplifying both of them.
290     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
291       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
292           isa<ConstantInt>(I->getOperand(1)) &&
293           isa<ConstantInt>(LHSInst->getOperand(1)) &&
294           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
295         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
296         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
297         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
298 
299         Constant *AndC =
300           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
301         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
302         InsertNewInstWith(NewAnd, *I);
303 
304         Constant *XorC =
305           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
306         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
307         return InsertNewInstWith(NewXor, *I);
308       }
309 
310     // Output known-0 bits are known if clear or set in both the LHS & RHS.
311     Known.Zero = std::move(IKnownZero);
312     // Output known-1 are known to be set if set in only one of the LHS, RHS.
313     Known.One  = std::move(IKnownOne);
314     break;
315   }
316   case Instruction::Select: {
317     Value *LHS, *RHS;
318     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
319     if (SPF == SPF_UMAX) {
320       // UMax(A, C) == A if ...
321       // The lowest non-zero bit of DemandMask is higher than the highest
322       // non-zero bit of C.
323       const APInt *C;
324       unsigned CTZ = DemandedMask.countTrailingZeros();
325       if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
326         return LHS;
327     } else if (SPF == SPF_UMIN) {
328       // UMin(A, C) == A if ...
329       // The lowest non-zero bit of DemandMask is higher than the highest
330       // non-one bit of C.
331       // This comes from using DeMorgans on the above umax example.
332       const APInt *C;
333       unsigned CTZ = DemandedMask.countTrailingZeros();
334       if (match(RHS, m_APInt(C)) &&
335           CTZ >= C->getBitWidth() - C->countLeadingOnes())
336         return LHS;
337     }
338 
339     // If this is a select as part of any other min/max pattern, don't simplify
340     // any further in case we break the structure.
341     if (SPF != SPF_UNKNOWN)
342       return nullptr;
343 
344     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
345         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
346       return I;
347     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
348     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
349 
350     // If the operands are constants, see if we can simplify them.
351     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
352         ShrinkDemandedConstant(I, 2, DemandedMask))
353       return I;
354 
355     // Only known if known in both the LHS and RHS.
356     Known.One = RHSKnown.One & LHSKnown.One;
357     Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
358     break;
359   }
360   case Instruction::ZExt:
361   case Instruction::Trunc: {
362     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
363 
364     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
365     KnownBits InputKnown(SrcBitWidth);
366     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
367       return I;
368     assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
369     Known = InputKnown.zextOrTrunc(BitWidth,
370                                    true /* ExtendedBitsAreKnownZero */);
371     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
372     break;
373   }
374   case Instruction::BitCast:
375     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
376       return nullptr;  // vector->int or fp->int?
377 
378     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
379       if (VectorType *SrcVTy =
380             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
381         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
382           // Don't touch a bitcast between vectors of different element counts.
383           return nullptr;
384       } else
385         // Don't touch a scalar-to-vector bitcast.
386         return nullptr;
387     } else if (I->getOperand(0)->getType()->isVectorTy())
388       // Don't touch a vector-to-scalar bitcast.
389       return nullptr;
390 
391     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
392       return I;
393     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
394     break;
395   case Instruction::SExt: {
396     // Compute the bits in the result that are not present in the input.
397     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
398 
399     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
400 
401     // If any of the sign extended bits are demanded, we know that the sign
402     // bit is demanded.
403     if (DemandedMask.getActiveBits() > SrcBitWidth)
404       InputDemandedBits.setBit(SrcBitWidth-1);
405 
406     KnownBits InputKnown(SrcBitWidth);
407     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
408       return I;
409 
410     // If the input sign bit is known zero, or if the NewBits are not demanded
411     // convert this into a zero extension.
412     if (InputKnown.isNonNegative() ||
413         DemandedMask.getActiveBits() <= SrcBitWidth) {
414       // Convert to ZExt cast.
415       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
416       return InsertNewInstWith(NewCast, *I);
417      }
418 
419     // If the sign bit of the input is known set or clear, then we know the
420     // top bits of the result.
421     Known = InputKnown.sext(BitWidth);
422     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
423     break;
424   }
425   case Instruction::Add:
426   case Instruction::Sub: {
427     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
428     /// about the high bits of the operands.
429     unsigned NLZ = DemandedMask.countLeadingZeros();
430     // Right fill the mask of bits for this ADD/SUB to demand the most
431     // significant bit and all those below it.
432     APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
433     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
434         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
435         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
436         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
437       if (NLZ > 0) {
438         // Disable the nsw and nuw flags here: We can no longer guarantee that
439         // we won't wrap after simplification. Removing the nsw/nuw flags is
440         // legal here because the top bit is not demanded.
441         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
442         BinOP.setHasNoSignedWrap(false);
443         BinOP.setHasNoUnsignedWrap(false);
444       }
445       return I;
446     }
447 
448     // If we are known to be adding/subtracting zeros to every bit below
449     // the highest demanded bit, we just return the other side.
450     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
451       return I->getOperand(0);
452     // We can't do this with the LHS for subtraction, unless we are only
453     // demanding the LSB.
454     if ((I->getOpcode() == Instruction::Add ||
455          DemandedFromOps.isOneValue()) &&
456         DemandedFromOps.isSubsetOf(LHSKnown.Zero))
457       return I->getOperand(1);
458 
459     // Otherwise just compute the known bits of the result.
460     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
461     Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
462                                         NSW, LHSKnown, RHSKnown);
463     break;
464   }
465   case Instruction::Shl: {
466     const APInt *SA;
467     if (match(I->getOperand(1), m_APInt(SA))) {
468       const APInt *ShrAmt;
469       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
470         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
471           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
472                                                     DemandedMask, Known))
473             return R;
474 
475       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
476       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
477 
478       // If the shift is NUW/NSW, then it does demand the high bits.
479       ShlOperator *IOp = cast<ShlOperator>(I);
480       if (IOp->hasNoSignedWrap())
481         DemandedMaskIn.setHighBits(ShiftAmt+1);
482       else if (IOp->hasNoUnsignedWrap())
483         DemandedMaskIn.setHighBits(ShiftAmt);
484 
485       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
486         return I;
487       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
488       Known.Zero <<= ShiftAmt;
489       Known.One  <<= ShiftAmt;
490       // low bits known zero.
491       if (ShiftAmt)
492         Known.Zero.setLowBits(ShiftAmt);
493     }
494     break;
495   }
496   case Instruction::LShr: {
497     const APInt *SA;
498     if (match(I->getOperand(1), m_APInt(SA))) {
499       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
500 
501       // Unsigned shift right.
502       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
503 
504       // If the shift is exact, then it does demand the low bits (and knows that
505       // they are zero).
506       if (cast<LShrOperator>(I)->isExact())
507         DemandedMaskIn.setLowBits(ShiftAmt);
508 
509       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
510         return I;
511       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
512       Known.Zero.lshrInPlace(ShiftAmt);
513       Known.One.lshrInPlace(ShiftAmt);
514       if (ShiftAmt)
515         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
516     }
517     break;
518   }
519   case Instruction::AShr: {
520     // If this is an arithmetic shift right and only the low-bit is set, we can
521     // always convert this into a logical shr, even if the shift amount is
522     // variable.  The low bit of the shift cannot be an input sign bit unless
523     // the shift amount is >= the size of the datatype, which is undefined.
524     if (DemandedMask.isOneValue()) {
525       // Perform the logical shift right.
526       Instruction *NewVal = BinaryOperator::CreateLShr(
527                         I->getOperand(0), I->getOperand(1), I->getName());
528       return InsertNewInstWith(NewVal, *I);
529     }
530 
531     // If the sign bit is the only bit demanded by this ashr, then there is no
532     // need to do it, the shift doesn't change the high bit.
533     if (DemandedMask.isSignMask())
534       return I->getOperand(0);
535 
536     const APInt *SA;
537     if (match(I->getOperand(1), m_APInt(SA))) {
538       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
539 
540       // Signed shift right.
541       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
542       // If any of the high bits are demanded, we should set the sign bit as
543       // demanded.
544       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
545         DemandedMaskIn.setSignBit();
546 
547       // If the shift is exact, then it does demand the low bits (and knows that
548       // they are zero).
549       if (cast<AShrOperator>(I)->isExact())
550         DemandedMaskIn.setLowBits(ShiftAmt);
551 
552       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
553         return I;
554 
555       unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
556 
557       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
558       // Compute the new bits that are at the top now plus sign bits.
559       APInt HighBits(APInt::getHighBitsSet(
560           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
561       Known.Zero.lshrInPlace(ShiftAmt);
562       Known.One.lshrInPlace(ShiftAmt);
563 
564       // If the input sign bit is known to be zero, or if none of the top bits
565       // are demanded, turn this into an unsigned shift right.
566       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
567       if (Known.Zero[BitWidth-ShiftAmt-1] ||
568           !DemandedMask.intersects(HighBits)) {
569         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
570                                                           I->getOperand(1));
571         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
572         return InsertNewInstWith(LShr, *I);
573       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
574         Known.One |= HighBits;
575       }
576     }
577     break;
578   }
579   case Instruction::UDiv: {
580     // UDiv doesn't demand low bits that are zero in the divisor.
581     const APInt *SA;
582     if (match(I->getOperand(1), m_APInt(SA))) {
583       // If the shift is exact, then it does demand the low bits.
584       if (cast<UDivOperator>(I)->isExact())
585         break;
586 
587       // FIXME: Take the demanded mask of the result into account.
588       unsigned RHSTrailingZeros = SA->countTrailingZeros();
589       APInt DemandedMaskIn =
590           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
591       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
592         return I;
593 
594       // Propagate zero bits from the input.
595       Known.Zero.setHighBits(std::min(
596           BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
597     }
598     break;
599   }
600   case Instruction::SRem:
601     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
602       // X % -1 demands all the bits because we don't want to introduce
603       // INT_MIN % -1 (== undef) by accident.
604       if (Rem->isMinusOne())
605         break;
606       APInt RA = Rem->getValue().abs();
607       if (RA.isPowerOf2()) {
608         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
609           return I->getOperand(0);
610 
611         APInt LowBits = RA - 1;
612         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
613         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
614           return I;
615 
616         // The low bits of LHS are unchanged by the srem.
617         Known.Zero = LHSKnown.Zero & LowBits;
618         Known.One = LHSKnown.One & LowBits;
619 
620         // If LHS is non-negative or has all low bits zero, then the upper bits
621         // are all zero.
622         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
623           Known.Zero |= ~LowBits;
624 
625         // If LHS is negative and not all low bits are zero, then the upper bits
626         // are all one.
627         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
628           Known.One |= ~LowBits;
629 
630         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
631         break;
632       }
633     }
634 
635     // The sign bit is the LHS's sign bit, except when the result of the
636     // remainder is zero.
637     if (DemandedMask.isSignBitSet()) {
638       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
639       // If it's known zero, our sign bit is also zero.
640       if (LHSKnown.isNonNegative())
641         Known.makeNonNegative();
642     }
643     break;
644   case Instruction::URem: {
645     KnownBits Known2(BitWidth);
646     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
647     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
648         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
649       return I;
650 
651     unsigned Leaders = Known2.countMinLeadingZeros();
652     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
653     break;
654   }
655   case Instruction::Call:
656     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
657       switch (II->getIntrinsicID()) {
658       default: break;
659       case Intrinsic::bswap: {
660         // If the only bits demanded come from one byte of the bswap result,
661         // just shift the input byte into position to eliminate the bswap.
662         unsigned NLZ = DemandedMask.countLeadingZeros();
663         unsigned NTZ = DemandedMask.countTrailingZeros();
664 
665         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
666         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
667         // have 14 leading zeros, round to 8.
668         NLZ &= ~7;
669         NTZ &= ~7;
670         // If we need exactly one byte, we can do this transformation.
671         if (BitWidth-NLZ-NTZ == 8) {
672           unsigned ResultBit = NTZ;
673           unsigned InputBit = BitWidth-NTZ-8;
674 
675           // Replace this with either a left or right shift to get the byte into
676           // the right place.
677           Instruction *NewVal;
678           if (InputBit > ResultBit)
679             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
680                     ConstantInt::get(I->getType(), InputBit-ResultBit));
681           else
682             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
683                     ConstantInt::get(I->getType(), ResultBit-InputBit));
684           NewVal->takeName(I);
685           return InsertNewInstWith(NewVal, *I);
686         }
687 
688         // TODO: Could compute known zero/one bits based on the input.
689         break;
690       }
691       case Intrinsic::fshr:
692       case Intrinsic::fshl: {
693         const APInt *SA;
694         if (!match(I->getOperand(2), m_APInt(SA)))
695           break;
696 
697         // Normalize to funnel shift left. APInt shifts of BitWidth are well-
698         // defined, so no need to special-case zero shifts here.
699         uint64_t ShiftAmt = SA->urem(BitWidth);
700         if (II->getIntrinsicID() == Intrinsic::fshr)
701           ShiftAmt = BitWidth - ShiftAmt;
702 
703         APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
704         APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
705         if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
706             SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
707           return I;
708 
709         Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
710                      RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
711         Known.One = LHSKnown.One.shl(ShiftAmt) |
712                     RHSKnown.One.lshr(BitWidth - ShiftAmt);
713         break;
714       }
715       case Intrinsic::x86_mmx_pmovmskb:
716       case Intrinsic::x86_sse_movmsk_ps:
717       case Intrinsic::x86_sse2_movmsk_pd:
718       case Intrinsic::x86_sse2_pmovmskb_128:
719       case Intrinsic::x86_avx_movmsk_ps_256:
720       case Intrinsic::x86_avx_movmsk_pd_256:
721       case Intrinsic::x86_avx2_pmovmskb: {
722         // MOVMSK copies the vector elements' sign bits to the low bits
723         // and zeros the high bits.
724         unsigned ArgWidth;
725         if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
726           ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
727         } else {
728           auto Arg = II->getArgOperand(0);
729           auto ArgType = cast<VectorType>(Arg->getType());
730           ArgWidth = ArgType->getNumElements();
731         }
732 
733         // If we don't need any of low bits then return zero,
734         // we know that DemandedMask is non-zero already.
735         APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
736         if (DemandedElts.isNullValue())
737           return ConstantInt::getNullValue(VTy);
738 
739         // We know that the upper bits are set to zero.
740         Known.Zero.setBitsFrom(ArgWidth);
741         return nullptr;
742       }
743       case Intrinsic::x86_sse42_crc32_64_64:
744         Known.Zero.setBitsFrom(32);
745         return nullptr;
746       }
747     }
748     computeKnownBits(V, Known, Depth, CxtI);
749     break;
750   }
751 
752   // If the client is only demanding bits that we know, return the known
753   // constant.
754   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
755     return Constant::getIntegerValue(VTy, Known.One);
756   return nullptr;
757 }
758 
759 /// Helper routine of SimplifyDemandedUseBits. It computes Known
760 /// bits. It also tries to handle simplifications that can be done based on
761 /// DemandedMask, but without modifying the Instruction.
762 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
763                                                      const APInt &DemandedMask,
764                                                      KnownBits &Known,
765                                                      unsigned Depth,
766                                                      Instruction *CxtI) {
767   unsigned BitWidth = DemandedMask.getBitWidth();
768   Type *ITy = I->getType();
769 
770   KnownBits LHSKnown(BitWidth);
771   KnownBits RHSKnown(BitWidth);
772 
773   // Despite the fact that we can't simplify this instruction in all User's
774   // context, we can at least compute the known bits, and we can
775   // do simplifications that apply to *just* the one user if we know that
776   // this instruction has a simpler value in that context.
777   switch (I->getOpcode()) {
778   case Instruction::And: {
779     // If either the LHS or the RHS are Zero, the result is zero.
780     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
781     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
782                      CxtI);
783 
784     // Output known-0 are known to be clear if zero in either the LHS | RHS.
785     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
786     // Output known-1 bits are only known if set in both the LHS & RHS.
787     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
788 
789     // If the client is only demanding bits that we know, return the known
790     // constant.
791     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
792       return Constant::getIntegerValue(ITy, IKnownOne);
793 
794     // If all of the demanded bits are known 1 on one side, return the other.
795     // These bits cannot contribute to the result of the 'and' in this
796     // context.
797     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
798       return I->getOperand(0);
799     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
800       return I->getOperand(1);
801 
802     Known.Zero = std::move(IKnownZero);
803     Known.One  = std::move(IKnownOne);
804     break;
805   }
806   case Instruction::Or: {
807     // We can simplify (X|Y) -> X or Y in the user's context if we know that
808     // only bits from X or Y are demanded.
809 
810     // If either the LHS or the RHS are One, the result is One.
811     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
812     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
813                      CxtI);
814 
815     // Output known-0 bits are only known if clear in both the LHS & RHS.
816     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
817     // Output known-1 are known to be set if set in either the LHS | RHS.
818     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
819 
820     // If the client is only demanding bits that we know, return the known
821     // constant.
822     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
823       return Constant::getIntegerValue(ITy, IKnownOne);
824 
825     // If all of the demanded bits are known zero on one side, return the
826     // other.  These bits cannot contribute to the result of the 'or' in this
827     // context.
828     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
829       return I->getOperand(0);
830     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
831       return I->getOperand(1);
832 
833     Known.Zero = std::move(IKnownZero);
834     Known.One  = std::move(IKnownOne);
835     break;
836   }
837   case Instruction::Xor: {
838     // We can simplify (X^Y) -> X or Y in the user's context if we know that
839     // only bits from X or Y are demanded.
840 
841     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
842     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
843                      CxtI);
844 
845     // Output known-0 bits are known if clear or set in both the LHS & RHS.
846     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
847                        (RHSKnown.One & LHSKnown.One);
848     // Output known-1 are known to be set if set in only one of the LHS, RHS.
849     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
850                        (RHSKnown.One & LHSKnown.Zero);
851 
852     // If the client is only demanding bits that we know, return the known
853     // constant.
854     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
855       return Constant::getIntegerValue(ITy, IKnownOne);
856 
857     // If all of the demanded bits are known zero on one side, return the
858     // other.
859     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
860       return I->getOperand(0);
861     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
862       return I->getOperand(1);
863 
864     // Output known-0 bits are known if clear or set in both the LHS & RHS.
865     Known.Zero = std::move(IKnownZero);
866     // Output known-1 are known to be set if set in only one of the LHS, RHS.
867     Known.One  = std::move(IKnownOne);
868     break;
869   }
870   default:
871     // Compute the Known bits to simplify things downstream.
872     computeKnownBits(I, Known, Depth, CxtI);
873 
874     // If this user is only demanding bits that we know, return the known
875     // constant.
876     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
877       return Constant::getIntegerValue(ITy, Known.One);
878 
879     break;
880   }
881 
882   return nullptr;
883 }
884 
885 
886 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
887 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
888 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
889 /// of "C2-C1".
890 ///
891 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
892 /// ..., bn}, without considering the specific value X is holding.
893 /// This transformation is legal iff one of following conditions is hold:
894 ///  1) All the bit in S are 0, in this case E1 == E2.
895 ///  2) We don't care those bits in S, per the input DemandedMask.
896 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
897 ///     rest bits.
898 ///
899 /// Currently we only test condition 2).
900 ///
901 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
902 /// not successful.
903 Value *
904 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
905                                          Instruction *Shl, const APInt &ShlOp1,
906                                          const APInt &DemandedMask,
907                                          KnownBits &Known) {
908   if (!ShlOp1 || !ShrOp1)
909     return nullptr; // No-op.
910 
911   Value *VarX = Shr->getOperand(0);
912   Type *Ty = VarX->getType();
913   unsigned BitWidth = Ty->getScalarSizeInBits();
914   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
915     return nullptr; // Undef.
916 
917   unsigned ShlAmt = ShlOp1.getZExtValue();
918   unsigned ShrAmt = ShrOp1.getZExtValue();
919 
920   Known.One.clearAllBits();
921   Known.Zero.setLowBits(ShlAmt - 1);
922   Known.Zero &= DemandedMask;
923 
924   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
925   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
926 
927   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
928   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
929                       (BitMask1.ashr(ShrAmt) << ShlAmt);
930 
931   if (ShrAmt <= ShlAmt) {
932     BitMask2 <<= (ShlAmt - ShrAmt);
933   } else {
934     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
935                         BitMask2.ashr(ShrAmt - ShlAmt);
936   }
937 
938   // Check if condition-2 (see the comment to this function) is satified.
939   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
940     if (ShrAmt == ShlAmt)
941       return VarX;
942 
943     if (!Shr->hasOneUse())
944       return nullptr;
945 
946     BinaryOperator *New;
947     if (ShrAmt < ShlAmt) {
948       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
949       New = BinaryOperator::CreateShl(VarX, Amt);
950       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
951       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
952       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
953     } else {
954       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
955       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
956                      BinaryOperator::CreateAShr(VarX, Amt);
957       if (cast<BinaryOperator>(Shr)->isExact())
958         New->setIsExact(true);
959     }
960 
961     return InsertNewInstWith(New, *Shl);
962   }
963 
964   return nullptr;
965 }
966 
967 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
968 ///
969 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have
970 ///       struct returns.
971 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
972                                                            APInt DemandedElts,
973                                                            int DMaskIdx) {
974   unsigned VWidth = II->getType()->getVectorNumElements();
975   if (VWidth == 1)
976     return nullptr;
977 
978   ConstantInt *NewDMask = nullptr;
979 
980   if (DMaskIdx < 0) {
981     // Pretend that a prefix of elements is demanded to simplify the code
982     // below.
983     DemandedElts = (1 << DemandedElts.getActiveBits()) - 1;
984   } else {
985     ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx));
986     unsigned DMaskVal = DMask->getZExtValue() & 0xf;
987 
988     // Mask off values that are undefined because the dmask doesn't cover them
989     DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
990 
991     unsigned NewDMaskVal = 0;
992     unsigned OrigLoadIdx = 0;
993     for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
994       const unsigned Bit = 1 << SrcIdx;
995       if (!!(DMaskVal & Bit)) {
996         if (!!DemandedElts[OrigLoadIdx])
997           NewDMaskVal |= Bit;
998         OrigLoadIdx++;
999       }
1000     }
1001 
1002     if (DMaskVal != NewDMaskVal)
1003       NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal);
1004   }
1005 
1006   unsigned NewNumElts = DemandedElts.countPopulation();
1007   if (!NewNumElts)
1008     return UndefValue::get(II->getType());
1009 
1010   if (NewNumElts >= VWidth && DemandedElts.isMask()) {
1011     if (NewDMask)
1012       II->setArgOperand(DMaskIdx, NewDMask);
1013     return nullptr;
1014   }
1015 
1016   // Determine the overload types of the original intrinsic.
1017   auto IID = II->getIntrinsicID();
1018   SmallVector<Intrinsic::IITDescriptor, 16> Table;
1019   getIntrinsicInfoTableEntries(IID, Table);
1020   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1021 
1022   FunctionType *FTy = II->getCalledFunction()->getFunctionType();
1023   SmallVector<Type *, 6> OverloadTys;
1024   Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, OverloadTys);
1025   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1026     Intrinsic::matchIntrinsicType(FTy->getParamType(i), TableRef, OverloadTys);
1027 
1028   // Get the new return type overload of the intrinsic.
1029   Module *M = II->getParent()->getParent()->getParent();
1030   Type *EltTy = II->getType()->getVectorElementType();
1031   Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
1032 
1033   OverloadTys[0] = NewTy;
1034   Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
1035 
1036   SmallVector<Value *, 16> Args;
1037   for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1038     Args.push_back(II->getArgOperand(I));
1039 
1040   if (NewDMask)
1041     Args[DMaskIdx] = NewDMask;
1042 
1043   IRBuilderBase::InsertPointGuard Guard(Builder);
1044   Builder.SetInsertPoint(II);
1045 
1046   CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
1047   NewCall->takeName(II);
1048   NewCall->copyMetadata(*II);
1049 
1050   if (NewNumElts == 1) {
1051     return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
1052                                        DemandedElts.countTrailingZeros());
1053   }
1054 
1055   SmallVector<uint32_t, 8> EltMask;
1056   unsigned NewLoadIdx = 0;
1057   for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
1058     if (!!DemandedElts[OrigLoadIdx])
1059       EltMask.push_back(NewLoadIdx++);
1060     else
1061       EltMask.push_back(NewNumElts);
1062   }
1063 
1064   Value *Shuffle =
1065       Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
1066 
1067   return Shuffle;
1068 }
1069 
1070 /// The specified value produces a vector with any number of elements.
1071 /// DemandedElts contains the set of elements that are actually used by the
1072 /// caller. This method analyzes which elements of the operand are undef and
1073 /// returns that information in UndefElts.
1074 ///
1075 /// If the information about demanded elements can be used to simplify the
1076 /// operation, the operation is simplified, then the resultant value is
1077 /// returned.  This returns null if no change was made.
1078 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
1079                                                 APInt &UndefElts,
1080                                                 unsigned Depth) {
1081   unsigned VWidth = V->getType()->getVectorNumElements();
1082   APInt EltMask(APInt::getAllOnesValue(VWidth));
1083   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1084 
1085   if (isa<UndefValue>(V)) {
1086     // If the entire vector is undefined, just return this info.
1087     UndefElts = EltMask;
1088     return nullptr;
1089   }
1090 
1091   if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
1092     UndefElts = EltMask;
1093     return UndefValue::get(V->getType());
1094   }
1095 
1096   UndefElts = 0;
1097 
1098   if (auto *C = dyn_cast<Constant>(V)) {
1099     // Check if this is identity. If so, return 0 since we are not simplifying
1100     // anything.
1101     if (DemandedElts.isAllOnesValue())
1102       return nullptr;
1103 
1104     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1105     Constant *Undef = UndefValue::get(EltTy);
1106     SmallVector<Constant*, 16> Elts;
1107     for (unsigned i = 0; i != VWidth; ++i) {
1108       if (!DemandedElts[i]) {   // If not demanded, set to undef.
1109         Elts.push_back(Undef);
1110         UndefElts.setBit(i);
1111         continue;
1112       }
1113 
1114       Constant *Elt = C->getAggregateElement(i);
1115       if (!Elt) return nullptr;
1116 
1117       if (isa<UndefValue>(Elt)) {   // Already undef.
1118         Elts.push_back(Undef);
1119         UndefElts.setBit(i);
1120       } else {                               // Otherwise, defined.
1121         Elts.push_back(Elt);
1122       }
1123     }
1124 
1125     // If we changed the constant, return it.
1126     Constant *NewCV = ConstantVector::get(Elts);
1127     return NewCV != C ? NewCV : nullptr;
1128   }
1129 
1130   // Limit search depth.
1131   if (Depth == 10)
1132     return nullptr;
1133 
1134   // If multiple users are using the root value, proceed with
1135   // simplification conservatively assuming that all elements
1136   // are needed.
1137   if (!V->hasOneUse()) {
1138     // Quit if we find multiple users of a non-root value though.
1139     // They'll be handled when it's their turn to be visited by
1140     // the main instcombine process.
1141     if (Depth != 0)
1142       // TODO: Just compute the UndefElts information recursively.
1143       return nullptr;
1144 
1145     // Conservatively assume that all elements are needed.
1146     DemandedElts = EltMask;
1147   }
1148 
1149   Instruction *I = dyn_cast<Instruction>(V);
1150   if (!I) return nullptr;        // Only analyze instructions.
1151 
1152   bool MadeChange = false;
1153   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1154                               APInt Demanded, APInt &Undef) {
1155     auto *II = dyn_cast<IntrinsicInst>(Inst);
1156     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1157     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1158       if (II)
1159         II->setArgOperand(OpNum, V);
1160       else
1161         Inst->setOperand(OpNum, V);
1162       MadeChange = true;
1163     }
1164   };
1165 
1166   APInt UndefElts2(VWidth, 0);
1167   APInt UndefElts3(VWidth, 0);
1168   switch (I->getOpcode()) {
1169   default: break;
1170 
1171   case Instruction::GetElementPtr: {
1172     // The LangRef requires that struct geps have all constant indices.  As
1173     // such, we can't convert any operand to partial undef.
1174     auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1175       for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1176            I != E; I++)
1177         if (I.isStruct())
1178           return true;;
1179       return false;
1180     };
1181     if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1182       break;
1183 
1184     // Conservatively track the demanded elements back through any vector
1185     // operands we may have.  We know there must be at least one, or we
1186     // wouldn't have a vector result to get here. Note that we intentionally
1187     // merge the undef bits here since gepping with either an undef base or
1188     // index results in undef.
1189     for (unsigned i = 0; i < I->getNumOperands(); i++) {
1190       if (isa<UndefValue>(I->getOperand(i))) {
1191         // If the entire vector is undefined, just return this info.
1192         UndefElts = EltMask;
1193         return nullptr;
1194       }
1195       if (I->getOperand(i)->getType()->isVectorTy()) {
1196         APInt UndefEltsOp(VWidth, 0);
1197         simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1198         UndefElts |= UndefEltsOp;
1199       }
1200     }
1201 
1202     break;
1203   }
1204   case Instruction::InsertElement: {
1205     // If this is a variable index, we don't know which element it overwrites.
1206     // demand exactly the same input as we produce.
1207     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1208     if (!Idx) {
1209       // Note that we can't propagate undef elt info, because we don't know
1210       // which elt is getting updated.
1211       simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1212       break;
1213     }
1214 
1215     // The element inserted overwrites whatever was there, so the input demanded
1216     // set is simpler than the output set.
1217     unsigned IdxNo = Idx->getZExtValue();
1218     APInt PreInsertDemandedElts = DemandedElts;
1219     if (IdxNo < VWidth)
1220       PreInsertDemandedElts.clearBit(IdxNo);
1221 
1222     simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1223 
1224     // If this is inserting an element that isn't demanded, remove this
1225     // insertelement.
1226     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1227       Worklist.Add(I);
1228       return I->getOperand(0);
1229     }
1230 
1231     // The inserted element is defined.
1232     UndefElts.clearBit(IdxNo);
1233     break;
1234   }
1235   case Instruction::ShuffleVector: {
1236     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1237     unsigned LHSVWidth =
1238       Shuffle->getOperand(0)->getType()->getVectorNumElements();
1239     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1240     for (unsigned i = 0; i < VWidth; i++) {
1241       if (DemandedElts[i]) {
1242         unsigned MaskVal = Shuffle->getMaskValue(i);
1243         if (MaskVal != -1u) {
1244           assert(MaskVal < LHSVWidth * 2 &&
1245                  "shufflevector mask index out of range!");
1246           if (MaskVal < LHSVWidth)
1247             LeftDemanded.setBit(MaskVal);
1248           else
1249             RightDemanded.setBit(MaskVal - LHSVWidth);
1250         }
1251       }
1252     }
1253 
1254     APInt LHSUndefElts(LHSVWidth, 0);
1255     simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1256 
1257     APInt RHSUndefElts(LHSVWidth, 0);
1258     simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1259 
1260     bool NewUndefElts = false;
1261     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1262     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1263     bool LHSUniform = true;
1264     bool RHSUniform = true;
1265     for (unsigned i = 0; i < VWidth; i++) {
1266       unsigned MaskVal = Shuffle->getMaskValue(i);
1267       if (MaskVal == -1u) {
1268         UndefElts.setBit(i);
1269       } else if (!DemandedElts[i]) {
1270         NewUndefElts = true;
1271         UndefElts.setBit(i);
1272       } else if (MaskVal < LHSVWidth) {
1273         if (LHSUndefElts[MaskVal]) {
1274           NewUndefElts = true;
1275           UndefElts.setBit(i);
1276         } else {
1277           LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1278           LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
1279           LHSUniform = LHSUniform && (MaskVal == i);
1280         }
1281       } else {
1282         if (RHSUndefElts[MaskVal - LHSVWidth]) {
1283           NewUndefElts = true;
1284           UndefElts.setBit(i);
1285         } else {
1286           RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1287           RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
1288           RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
1289         }
1290       }
1291     }
1292 
1293     // Try to transform shuffle with constant vector and single element from
1294     // this constant vector to single insertelement instruction.
1295     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1296     // insertelement V, C[ci], ci-n
1297     if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1298       Value *Op = nullptr;
1299       Constant *Value = nullptr;
1300       unsigned Idx = -1u;
1301 
1302       // Find constant vector with the single element in shuffle (LHS or RHS).
1303       if (LHSIdx < LHSVWidth && RHSUniform) {
1304         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1305           Op = Shuffle->getOperand(1);
1306           Value = CV->getOperand(LHSValIdx);
1307           Idx = LHSIdx;
1308         }
1309       }
1310       if (RHSIdx < LHSVWidth && LHSUniform) {
1311         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1312           Op = Shuffle->getOperand(0);
1313           Value = CV->getOperand(RHSValIdx);
1314           Idx = RHSIdx;
1315         }
1316       }
1317       // Found constant vector with single element - convert to insertelement.
1318       if (Op && Value) {
1319         Instruction *New = InsertElementInst::Create(
1320             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1321             Shuffle->getName());
1322         InsertNewInstWith(New, *Shuffle);
1323         return New;
1324       }
1325     }
1326     if (NewUndefElts) {
1327       // Add additional discovered undefs.
1328       SmallVector<Constant*, 16> Elts;
1329       for (unsigned i = 0; i < VWidth; ++i) {
1330         if (UndefElts[i])
1331           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1332         else
1333           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1334                                           Shuffle->getMaskValue(i)));
1335       }
1336       I->setOperand(2, ConstantVector::get(Elts));
1337       MadeChange = true;
1338     }
1339     break;
1340   }
1341   case Instruction::Select: {
1342     // If this is a vector select, try to transform the select condition based
1343     // on the current demanded elements.
1344     SelectInst *Sel = cast<SelectInst>(I);
1345     if (Sel->getCondition()->getType()->isVectorTy()) {
1346       // TODO: We are not doing anything with UndefElts based on this call.
1347       // It is overwritten below based on the other select operands. If an
1348       // element of the select condition is known undef, then we are free to
1349       // choose the output value from either arm of the select. If we know that
1350       // one of those values is undef, then the output can be undef.
1351       simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1352     }
1353 
1354     // Next, see if we can transform the arms of the select.
1355     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1356     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1357       for (unsigned i = 0; i < VWidth; i++) {
1358         // isNullValue() always returns false when called on a ConstantExpr.
1359         // Skip constant expressions to avoid propagating incorrect information.
1360         Constant *CElt = CV->getAggregateElement(i);
1361         if (isa<ConstantExpr>(CElt))
1362           continue;
1363         // TODO: If a select condition element is undef, we can demand from
1364         // either side. If one side is known undef, choosing that side would
1365         // propagate undef.
1366         if (CElt->isNullValue())
1367           DemandedLHS.clearBit(i);
1368         else
1369           DemandedRHS.clearBit(i);
1370       }
1371     }
1372 
1373     simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1374     simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1375 
1376     // Output elements are undefined if the element from each arm is undefined.
1377     // TODO: This can be improved. See comment in select condition handling.
1378     UndefElts = UndefElts2 & UndefElts3;
1379     break;
1380   }
1381   case Instruction::BitCast: {
1382     // Vector->vector casts only.
1383     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1384     if (!VTy) break;
1385     unsigned InVWidth = VTy->getNumElements();
1386     APInt InputDemandedElts(InVWidth, 0);
1387     UndefElts2 = APInt(InVWidth, 0);
1388     unsigned Ratio;
1389 
1390     if (VWidth == InVWidth) {
1391       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1392       // elements as are demanded of us.
1393       Ratio = 1;
1394       InputDemandedElts = DemandedElts;
1395     } else if ((VWidth % InVWidth) == 0) {
1396       // If the number of elements in the output is a multiple of the number of
1397       // elements in the input then an input element is live if any of the
1398       // corresponding output elements are live.
1399       Ratio = VWidth / InVWidth;
1400       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1401         if (DemandedElts[OutIdx])
1402           InputDemandedElts.setBit(OutIdx / Ratio);
1403     } else if ((InVWidth % VWidth) == 0) {
1404       // If the number of elements in the input is a multiple of the number of
1405       // elements in the output then an input element is live if the
1406       // corresponding output element is live.
1407       Ratio = InVWidth / VWidth;
1408       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1409         if (DemandedElts[InIdx / Ratio])
1410           InputDemandedElts.setBit(InIdx);
1411     } else {
1412       // Unsupported so far.
1413       break;
1414     }
1415 
1416     simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1417 
1418     if (VWidth == InVWidth) {
1419       UndefElts = UndefElts2;
1420     } else if ((VWidth % InVWidth) == 0) {
1421       // If the number of elements in the output is a multiple of the number of
1422       // elements in the input then an output element is undef if the
1423       // corresponding input element is undef.
1424       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1425         if (UndefElts2[OutIdx / Ratio])
1426           UndefElts.setBit(OutIdx);
1427     } else if ((InVWidth % VWidth) == 0) {
1428       // If the number of elements in the input is a multiple of the number of
1429       // elements in the output then an output element is undef if all of the
1430       // corresponding input elements are undef.
1431       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1432         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1433         if (SubUndef.countPopulation() == Ratio)
1434           UndefElts.setBit(OutIdx);
1435       }
1436     } else {
1437       llvm_unreachable("Unimp");
1438     }
1439     break;
1440   }
1441   case Instruction::FPTrunc:
1442   case Instruction::FPExt:
1443     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1444     break;
1445 
1446   case Instruction::Call: {
1447     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1448     if (!II) break;
1449     switch (II->getIntrinsicID()) {
1450     case Intrinsic::masked_gather: // fallthrough
1451     case Intrinsic::masked_load: {
1452       // Subtlety: If we load from a pointer, the pointer must be valid
1453       // regardless of whether the element is demanded.  Doing otherwise risks
1454       // segfaults which didn't exist in the original program.
1455       APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)),
1456         DemandedPassThrough(DemandedElts);
1457       if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1458         for (unsigned i = 0; i < VWidth; i++) {
1459           Constant *CElt = CV->getAggregateElement(i);
1460           if (CElt->isNullValue())
1461             DemandedPtrs.clearBit(i);
1462           else if (CElt->isAllOnesValue())
1463             DemandedPassThrough.clearBit(i);
1464         }
1465       if (II->getIntrinsicID() == Intrinsic::masked_gather)
1466         simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1467       simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1468 
1469       // Output elements are undefined if the element from both sources are.
1470       // TODO: can strengthen via mask as well.
1471       UndefElts = UndefElts2 & UndefElts3;
1472       break;
1473     }
1474     case Intrinsic::x86_xop_vfrcz_ss:
1475     case Intrinsic::x86_xop_vfrcz_sd:
1476       // The instructions for these intrinsics are speced to zero upper bits not
1477       // pass them through like other scalar intrinsics. So we shouldn't just
1478       // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1479       // Instead we should return a zero vector.
1480       if (!DemandedElts[0]) {
1481         Worklist.Add(II);
1482         return ConstantAggregateZero::get(II->getType());
1483       }
1484 
1485       // Only the lower element is used.
1486       DemandedElts = 1;
1487       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1488 
1489       // Only the lower element is undefined. The high elements are zero.
1490       UndefElts = UndefElts[0];
1491       break;
1492 
1493     // Unary scalar-as-vector operations that work column-wise.
1494     case Intrinsic::x86_sse_rcp_ss:
1495     case Intrinsic::x86_sse_rsqrt_ss:
1496       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1497 
1498       // If lowest element of a scalar op isn't used then use Arg0.
1499       if (!DemandedElts[0]) {
1500         Worklist.Add(II);
1501         return II->getArgOperand(0);
1502       }
1503       // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1504       // checks).
1505       break;
1506 
1507     // Binary scalar-as-vector operations that work column-wise. The high
1508     // elements come from operand 0. The low element is a function of both
1509     // operands.
1510     case Intrinsic::x86_sse_min_ss:
1511     case Intrinsic::x86_sse_max_ss:
1512     case Intrinsic::x86_sse_cmp_ss:
1513     case Intrinsic::x86_sse2_min_sd:
1514     case Intrinsic::x86_sse2_max_sd:
1515     case Intrinsic::x86_sse2_cmp_sd: {
1516       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1517 
1518       // If lowest element of a scalar op isn't used then use Arg0.
1519       if (!DemandedElts[0]) {
1520         Worklist.Add(II);
1521         return II->getArgOperand(0);
1522       }
1523 
1524       // Only lower element is used for operand 1.
1525       DemandedElts = 1;
1526       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1527 
1528       // Lower element is undefined if both lower elements are undefined.
1529       // Consider things like undef&0.  The result is known zero, not undef.
1530       if (!UndefElts2[0])
1531         UndefElts.clearBit(0);
1532 
1533       break;
1534     }
1535 
1536     // Binary scalar-as-vector operations that work column-wise. The high
1537     // elements come from operand 0 and the low element comes from operand 1.
1538     case Intrinsic::x86_sse41_round_ss:
1539     case Intrinsic::x86_sse41_round_sd: {
1540       // Don't use the low element of operand 0.
1541       APInt DemandedElts2 = DemandedElts;
1542       DemandedElts2.clearBit(0);
1543       simplifyAndSetOp(II, 0, DemandedElts2, UndefElts);
1544 
1545       // If lowest element of a scalar op isn't used then use Arg0.
1546       if (!DemandedElts[0]) {
1547         Worklist.Add(II);
1548         return II->getArgOperand(0);
1549       }
1550 
1551       // Only lower element is used for operand 1.
1552       DemandedElts = 1;
1553       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1554 
1555       // Take the high undef elements from operand 0 and take the lower element
1556       // from operand 1.
1557       UndefElts.clearBit(0);
1558       UndefElts |= UndefElts2[0];
1559       break;
1560     }
1561 
1562     // Three input scalar-as-vector operations that work column-wise. The high
1563     // elements come from operand 0 and the low element is a function of all
1564     // three inputs.
1565     case Intrinsic::x86_avx512_mask_add_ss_round:
1566     case Intrinsic::x86_avx512_mask_div_ss_round:
1567     case Intrinsic::x86_avx512_mask_mul_ss_round:
1568     case Intrinsic::x86_avx512_mask_sub_ss_round:
1569     case Intrinsic::x86_avx512_mask_max_ss_round:
1570     case Intrinsic::x86_avx512_mask_min_ss_round:
1571     case Intrinsic::x86_avx512_mask_add_sd_round:
1572     case Intrinsic::x86_avx512_mask_div_sd_round:
1573     case Intrinsic::x86_avx512_mask_mul_sd_round:
1574     case Intrinsic::x86_avx512_mask_sub_sd_round:
1575     case Intrinsic::x86_avx512_mask_max_sd_round:
1576     case Intrinsic::x86_avx512_mask_min_sd_round:
1577       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1578 
1579       // If lowest element of a scalar op isn't used then use Arg0.
1580       if (!DemandedElts[0]) {
1581         Worklist.Add(II);
1582         return II->getArgOperand(0);
1583       }
1584 
1585       // Only lower element is used for operand 1 and 2.
1586       DemandedElts = 1;
1587       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1588       simplifyAndSetOp(II, 2, DemandedElts, UndefElts3);
1589 
1590       // Lower element is undefined if all three lower elements are undefined.
1591       // Consider things like undef&0.  The result is known zero, not undef.
1592       if (!UndefElts2[0] || !UndefElts3[0])
1593         UndefElts.clearBit(0);
1594 
1595       break;
1596 
1597     case Intrinsic::x86_sse2_packssdw_128:
1598     case Intrinsic::x86_sse2_packsswb_128:
1599     case Intrinsic::x86_sse2_packuswb_128:
1600     case Intrinsic::x86_sse41_packusdw:
1601     case Intrinsic::x86_avx2_packssdw:
1602     case Intrinsic::x86_avx2_packsswb:
1603     case Intrinsic::x86_avx2_packusdw:
1604     case Intrinsic::x86_avx2_packuswb:
1605     case Intrinsic::x86_avx512_packssdw_512:
1606     case Intrinsic::x86_avx512_packsswb_512:
1607     case Intrinsic::x86_avx512_packusdw_512:
1608     case Intrinsic::x86_avx512_packuswb_512: {
1609       auto *Ty0 = II->getArgOperand(0)->getType();
1610       unsigned InnerVWidth = Ty0->getVectorNumElements();
1611       assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1612 
1613       unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1614       unsigned VWidthPerLane = VWidth / NumLanes;
1615       unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1616 
1617       // Per lane, pack the elements of the first input and then the second.
1618       // e.g.
1619       // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1620       // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1621       for (int OpNum = 0; OpNum != 2; ++OpNum) {
1622         APInt OpDemandedElts(InnerVWidth, 0);
1623         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1624           unsigned LaneIdx = Lane * VWidthPerLane;
1625           for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1626             unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1627             if (DemandedElts[Idx])
1628               OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1629           }
1630         }
1631 
1632         // Demand elements from the operand.
1633         APInt OpUndefElts(InnerVWidth, 0);
1634         simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts);
1635 
1636         // Pack the operand's UNDEF elements, one lane at a time.
1637         OpUndefElts = OpUndefElts.zext(VWidth);
1638         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1639           APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1640           LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1641           LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
1642           UndefElts |= LaneElts;
1643         }
1644       }
1645       break;
1646     }
1647 
1648     // PSHUFB
1649     case Intrinsic::x86_ssse3_pshuf_b_128:
1650     case Intrinsic::x86_avx2_pshuf_b:
1651     case Intrinsic::x86_avx512_pshuf_b_512:
1652     // PERMILVAR
1653     case Intrinsic::x86_avx_vpermilvar_ps:
1654     case Intrinsic::x86_avx_vpermilvar_ps_256:
1655     case Intrinsic::x86_avx512_vpermilvar_ps_512:
1656     case Intrinsic::x86_avx_vpermilvar_pd:
1657     case Intrinsic::x86_avx_vpermilvar_pd_256:
1658     case Intrinsic::x86_avx512_vpermilvar_pd_512:
1659     // PERMV
1660     case Intrinsic::x86_avx2_permd:
1661     case Intrinsic::x86_avx2_permps: {
1662       simplifyAndSetOp(II, 1, DemandedElts, UndefElts);
1663       break;
1664     }
1665 
1666     // SSE4A instructions leave the upper 64-bits of the 128-bit result
1667     // in an undefined state.
1668     case Intrinsic::x86_sse4a_extrq:
1669     case Intrinsic::x86_sse4a_extrqi:
1670     case Intrinsic::x86_sse4a_insertq:
1671     case Intrinsic::x86_sse4a_insertqi:
1672       UndefElts.setHighBits(VWidth / 2);
1673       break;
1674     case Intrinsic::amdgcn_buffer_load:
1675     case Intrinsic::amdgcn_buffer_load_format:
1676     case Intrinsic::amdgcn_raw_buffer_load:
1677     case Intrinsic::amdgcn_raw_buffer_load_format:
1678     case Intrinsic::amdgcn_struct_buffer_load:
1679     case Intrinsic::amdgcn_struct_buffer_load_format:
1680       return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
1681     default: {
1682       if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID()))
1683         return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);
1684 
1685       break;
1686     }
1687     } // switch on IntrinsicID
1688     break;
1689   } // case Call
1690   } // switch on Opcode
1691 
1692   // TODO: We bail completely on integer div/rem and shifts because they have
1693   // UB/poison potential, but that should be refined.
1694   BinaryOperator *BO;
1695   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1696     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1697     simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1698 
1699     // Any change to an instruction with potential poison must clear those flags
1700     // because we can not guarantee those constraints now. Other analysis may
1701     // determine that it is safe to re-apply the flags.
1702     if (MadeChange)
1703       BO->dropPoisonGeneratingFlags();
1704 
1705     // Output elements are undefined if both are undefined. Consider things
1706     // like undef & 0. The result is known zero, not undef.
1707     UndefElts &= UndefElts2;
1708   }
1709 
1710   // If we've proven all of the lanes undef, return an undef value.
1711   // TODO: Intersect w/demanded lanes
1712   if (UndefElts.isAllOnesValue())
1713     return UndefValue::get(I->getType());;
1714 
1715   return MadeChange ? I : nullptr;
1716 }
1717