1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/IntrinsicsAMDGPU.h" 18 #include "llvm/IR/IntrinsicsX86.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 namespace { 28 29 struct AMDGPUImageDMaskIntrinsic { 30 unsigned Intr; 31 }; 32 33 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 34 #include "InstCombineTables.inc" 35 36 } // end anonymous namespace 37 38 /// Check to see if the specified operand of the specified instruction is a 39 /// constant integer. If so, check to see if there are any bits set in the 40 /// constant that are not demanded. If so, shrink the constant and return true. 41 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 42 const APInt &Demanded) { 43 assert(I && "No instruction?"); 44 assert(OpNo < I->getNumOperands() && "Operand index too large"); 45 46 // The operand must be a constant integer or splat integer. 47 Value *Op = I->getOperand(OpNo); 48 const APInt *C; 49 if (!match(Op, m_APInt(C))) 50 return false; 51 52 // If there are no bits set that aren't demanded, nothing to do. 53 if (C->isSubsetOf(Demanded)) 54 return false; 55 56 // This instruction is producing bits that are not demanded. Shrink the RHS. 57 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 58 59 return true; 60 } 61 62 63 64 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 65 /// the instruction has any properties that allow us to simplify its operands. 66 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 67 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 68 KnownBits Known(BitWidth); 69 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 70 71 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 72 0, &Inst); 73 if (!V) return false; 74 if (V == &Inst) return true; 75 replaceInstUsesWith(Inst, V); 76 return true; 77 } 78 79 /// This form of SimplifyDemandedBits simplifies the specified instruction 80 /// operand if possible, updating it in place. It returns true if it made any 81 /// change and false otherwise. 82 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 83 const APInt &DemandedMask, 84 KnownBits &Known, 85 unsigned Depth) { 86 Use &U = I->getOperandUse(OpNo); 87 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 88 Depth, I); 89 if (!NewVal) return false; 90 // Add the old operand back to the worklist. 91 Worklist.addValue(U.get()); 92 U = NewVal; 93 return true; 94 } 95 96 97 /// This function attempts to replace V with a simpler value based on the 98 /// demanded bits. When this function is called, it is known that only the bits 99 /// set in DemandedMask of the result of V are ever used downstream. 100 /// Consequently, depending on the mask and V, it may be possible to replace V 101 /// with a constant or one of its operands. In such cases, this function does 102 /// the replacement and returns true. In all other cases, it returns false after 103 /// analyzing the expression and setting KnownOne and known to be one in the 104 /// expression. Known.Zero contains all the bits that are known to be zero in 105 /// the expression. These are provided to potentially allow the caller (which 106 /// might recursively be SimplifyDemandedBits itself) to simplify the 107 /// expression. 108 /// Known.One and Known.Zero always follow the invariant that: 109 /// Known.One & Known.Zero == 0. 110 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 111 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 112 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 113 /// be the same. 114 /// 115 /// This returns null if it did not change anything and it permits no 116 /// simplification. This returns V itself if it did some simplification of V's 117 /// operands based on the information about what bits are demanded. This returns 118 /// some other non-null value if it found out that V is equal to another value 119 /// in the context where the specified bits are demanded, but not for all users. 120 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 121 KnownBits &Known, unsigned Depth, 122 Instruction *CxtI) { 123 assert(V != nullptr && "Null pointer of Value???"); 124 assert(Depth <= 6 && "Limit Search Depth"); 125 uint32_t BitWidth = DemandedMask.getBitWidth(); 126 Type *VTy = V->getType(); 127 assert( 128 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 129 Known.getBitWidth() == BitWidth && 130 "Value *V, DemandedMask and Known must have same BitWidth"); 131 132 if (isa<Constant>(V)) { 133 computeKnownBits(V, Known, Depth, CxtI); 134 return nullptr; 135 } 136 137 Known.resetAll(); 138 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 139 return UndefValue::get(VTy); 140 141 if (Depth == 6) // Limit search depth. 142 return nullptr; 143 144 Instruction *I = dyn_cast<Instruction>(V); 145 if (!I) { 146 computeKnownBits(V, Known, Depth, CxtI); 147 return nullptr; // Only analyze instructions. 148 } 149 150 // If there are multiple uses of this value and we aren't at the root, then 151 // we can't do any simplifications of the operands, because DemandedMask 152 // only reflects the bits demanded by *one* of the users. 153 if (Depth != 0 && !I->hasOneUse()) 154 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 155 156 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 157 158 // If this is the root being simplified, allow it to have multiple uses, 159 // just set the DemandedMask to all bits so that we can try to simplify the 160 // operands. This allows visitTruncInst (for example) to simplify the 161 // operand of a trunc without duplicating all the logic below. 162 if (Depth == 0 && !V->hasOneUse()) 163 DemandedMask.setAllBits(); 164 165 switch (I->getOpcode()) { 166 default: 167 computeKnownBits(I, Known, Depth, CxtI); 168 break; 169 case Instruction::And: { 170 // If either the LHS or the RHS are Zero, the result is zero. 171 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 172 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 173 Depth + 1)) 174 return I; 175 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 176 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 177 178 // Output known-0 are known to be clear if zero in either the LHS | RHS. 179 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 180 // Output known-1 bits are only known if set in both the LHS & RHS. 181 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 182 183 // If the client is only demanding bits that we know, return the known 184 // constant. 185 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 186 return Constant::getIntegerValue(VTy, IKnownOne); 187 188 // If all of the demanded bits are known 1 on one side, return the other. 189 // These bits cannot contribute to the result of the 'and'. 190 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 191 return I->getOperand(0); 192 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 193 return I->getOperand(1); 194 195 // If the RHS is a constant, see if we can simplify it. 196 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 197 return I; 198 199 Known.Zero = std::move(IKnownZero); 200 Known.One = std::move(IKnownOne); 201 break; 202 } 203 case Instruction::Or: { 204 // If either the LHS or the RHS are One, the result is One. 205 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 206 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 207 Depth + 1)) 208 return I; 209 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 210 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 211 212 // Output known-0 bits are only known if clear in both the LHS & RHS. 213 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 214 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 215 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 216 217 // If the client is only demanding bits that we know, return the known 218 // constant. 219 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 220 return Constant::getIntegerValue(VTy, IKnownOne); 221 222 // If all of the demanded bits are known zero on one side, return the other. 223 // These bits cannot contribute to the result of the 'or'. 224 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 225 return I->getOperand(0); 226 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 227 return I->getOperand(1); 228 229 // If the RHS is a constant, see if we can simplify it. 230 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 231 return I; 232 233 Known.Zero = std::move(IKnownZero); 234 Known.One = std::move(IKnownOne); 235 break; 236 } 237 case Instruction::Xor: { 238 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 239 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 240 return I; 241 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 242 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 243 244 // Output known-0 bits are known if clear or set in both the LHS & RHS. 245 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 246 (RHSKnown.One & LHSKnown.One); 247 // Output known-1 are known to be set if set in only one of the LHS, RHS. 248 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 249 (RHSKnown.One & LHSKnown.Zero); 250 251 // If the client is only demanding bits that we know, return the known 252 // constant. 253 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 254 return Constant::getIntegerValue(VTy, IKnownOne); 255 256 // If all of the demanded bits are known zero on one side, return the other. 257 // These bits cannot contribute to the result of the 'xor'. 258 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 259 return I->getOperand(0); 260 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 261 return I->getOperand(1); 262 263 // If all of the demanded bits are known to be zero on one side or the 264 // other, turn this into an *inclusive* or. 265 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 266 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 267 Instruction *Or = 268 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 269 I->getName()); 270 return InsertNewInstWith(Or, *I); 271 } 272 273 // If all of the demanded bits on one side are known, and all of the set 274 // bits on that side are also known to be set on the other side, turn this 275 // into an AND, as we know the bits will be cleared. 276 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 277 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 278 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 279 Constant *AndC = Constant::getIntegerValue(VTy, 280 ~RHSKnown.One & DemandedMask); 281 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 282 return InsertNewInstWith(And, *I); 283 } 284 285 // If the RHS is a constant, see if we can simplify it. 286 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 287 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 288 return I; 289 290 // If our LHS is an 'and' and if it has one use, and if any of the bits we 291 // are flipping are known to be set, then the xor is just resetting those 292 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 293 // simplifying both of them. 294 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 295 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 296 isa<ConstantInt>(I->getOperand(1)) && 297 isa<ConstantInt>(LHSInst->getOperand(1)) && 298 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 299 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 300 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 301 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 302 303 Constant *AndC = 304 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 305 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 306 InsertNewInstWith(NewAnd, *I); 307 308 Constant *XorC = 309 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 310 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 311 return InsertNewInstWith(NewXor, *I); 312 } 313 314 // Output known-0 bits are known if clear or set in both the LHS & RHS. 315 Known.Zero = std::move(IKnownZero); 316 // Output known-1 are known to be set if set in only one of the LHS, RHS. 317 Known.One = std::move(IKnownOne); 318 break; 319 } 320 case Instruction::Select: { 321 Value *LHS, *RHS; 322 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 323 if (SPF == SPF_UMAX) { 324 // UMax(A, C) == A if ... 325 // The lowest non-zero bit of DemandMask is higher than the highest 326 // non-zero bit of C. 327 const APInt *C; 328 unsigned CTZ = DemandedMask.countTrailingZeros(); 329 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 330 return LHS; 331 } else if (SPF == SPF_UMIN) { 332 // UMin(A, C) == A if ... 333 // The lowest non-zero bit of DemandMask is higher than the highest 334 // non-one bit of C. 335 // This comes from using DeMorgans on the above umax example. 336 const APInt *C; 337 unsigned CTZ = DemandedMask.countTrailingZeros(); 338 if (match(RHS, m_APInt(C)) && 339 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 340 return LHS; 341 } 342 343 // If this is a select as part of any other min/max pattern, don't simplify 344 // any further in case we break the structure. 345 if (SPF != SPF_UNKNOWN) 346 return nullptr; 347 348 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 349 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 350 return I; 351 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 352 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 353 354 // If the operands are constants, see if we can simplify them. 355 // This is similar to ShrinkDemandedConstant, but for a select we want to 356 // try to keep the selected constants the same as icmp value constants, if 357 // we can. This helps not break apart (or helps put back together) 358 // canonical patterns like min and max. 359 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 360 APInt DemandedMask) { 361 const APInt *SelC; 362 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 363 return false; 364 365 // Get the constant out of the ICmp, if there is one. 366 const APInt *CmpC; 367 ICmpInst::Predicate Pred; 368 if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) || 369 CmpC->getBitWidth() != SelC->getBitWidth()) 370 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 371 372 // If the constant is already the same as the ICmp, leave it as-is. 373 if (*CmpC == *SelC) 374 return false; 375 // If the constants are not already the same, but can be with the demand 376 // mask, use the constant value from the ICmp. 377 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 378 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 379 return true; 380 } 381 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 382 }; 383 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 384 CanonicalizeSelectConstant(I, 2, DemandedMask)) 385 return I; 386 387 // Only known if known in both the LHS and RHS. 388 Known.One = RHSKnown.One & LHSKnown.One; 389 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 390 break; 391 } 392 case Instruction::ZExt: 393 case Instruction::Trunc: { 394 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 395 396 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 397 KnownBits InputKnown(SrcBitWidth); 398 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 399 return I; 400 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 401 Known = InputKnown.zextOrTrunc(BitWidth); 402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 403 break; 404 } 405 case Instruction::BitCast: 406 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 407 return nullptr; // vector->int or fp->int? 408 409 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 410 if (VectorType *SrcVTy = 411 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 412 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 413 // Don't touch a bitcast between vectors of different element counts. 414 return nullptr; 415 } else 416 // Don't touch a scalar-to-vector bitcast. 417 return nullptr; 418 } else if (I->getOperand(0)->getType()->isVectorTy()) 419 // Don't touch a vector-to-scalar bitcast. 420 return nullptr; 421 422 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 423 return I; 424 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 425 break; 426 case Instruction::SExt: { 427 // Compute the bits in the result that are not present in the input. 428 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 429 430 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 431 432 // If any of the sign extended bits are demanded, we know that the sign 433 // bit is demanded. 434 if (DemandedMask.getActiveBits() > SrcBitWidth) 435 InputDemandedBits.setBit(SrcBitWidth-1); 436 437 KnownBits InputKnown(SrcBitWidth); 438 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 439 return I; 440 441 // If the input sign bit is known zero, or if the NewBits are not demanded 442 // convert this into a zero extension. 443 if (InputKnown.isNonNegative() || 444 DemandedMask.getActiveBits() <= SrcBitWidth) { 445 // Convert to ZExt cast. 446 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 447 return InsertNewInstWith(NewCast, *I); 448 } 449 450 // If the sign bit of the input is known set or clear, then we know the 451 // top bits of the result. 452 Known = InputKnown.sext(BitWidth); 453 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 454 break; 455 } 456 case Instruction::Add: 457 if ((DemandedMask & 1) == 0) { 458 // If we do not need the low bit, try to convert bool math to logic: 459 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 460 Value *X, *Y; 461 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 462 m_OneUse(m_SExt(m_Value(Y))))) && 463 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 464 // Truth table for inputs and output signbits: 465 // X:0 | X:1 466 // ---------- 467 // Y:0 | 0 | 0 | 468 // Y:1 | -1 | 0 | 469 // ---------- 470 IRBuilderBase::InsertPointGuard Guard(Builder); 471 Builder.SetInsertPoint(I); 472 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 473 return Builder.CreateSExt(AndNot, VTy); 474 } 475 476 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 477 // TODO: Relax the one-use checks because we are removing an instruction? 478 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 479 m_OneUse(m_SExt(m_Value(Y))))) && 480 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 481 // Truth table for inputs and output signbits: 482 // X:0 | X:1 483 // ----------- 484 // Y:0 | -1 | -1 | 485 // Y:1 | -1 | 0 | 486 // ----------- 487 IRBuilderBase::InsertPointGuard Guard(Builder); 488 Builder.SetInsertPoint(I); 489 Value *Or = Builder.CreateOr(X, Y); 490 return Builder.CreateSExt(Or, VTy); 491 } 492 } 493 LLVM_FALLTHROUGH; 494 case Instruction::Sub: { 495 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 496 /// about the high bits of the operands. 497 unsigned NLZ = DemandedMask.countLeadingZeros(); 498 // Right fill the mask of bits for this ADD/SUB to demand the most 499 // significant bit and all those below it. 500 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 501 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 502 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 503 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 504 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 505 if (NLZ > 0) { 506 // Disable the nsw and nuw flags here: We can no longer guarantee that 507 // we won't wrap after simplification. Removing the nsw/nuw flags is 508 // legal here because the top bit is not demanded. 509 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 510 BinOP.setHasNoSignedWrap(false); 511 BinOP.setHasNoUnsignedWrap(false); 512 } 513 return I; 514 } 515 516 // If we are known to be adding/subtracting zeros to every bit below 517 // the highest demanded bit, we just return the other side. 518 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 519 return I->getOperand(0); 520 // We can't do this with the LHS for subtraction, unless we are only 521 // demanding the LSB. 522 if ((I->getOpcode() == Instruction::Add || 523 DemandedFromOps.isOneValue()) && 524 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 525 return I->getOperand(1); 526 527 // Otherwise just compute the known bits of the result. 528 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 529 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 530 NSW, LHSKnown, RHSKnown); 531 break; 532 } 533 case Instruction::Shl: { 534 const APInt *SA; 535 if (match(I->getOperand(1), m_APInt(SA))) { 536 const APInt *ShrAmt; 537 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 538 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 539 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 540 DemandedMask, Known)) 541 return R; 542 543 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 544 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 545 546 // If the shift is NUW/NSW, then it does demand the high bits. 547 ShlOperator *IOp = cast<ShlOperator>(I); 548 if (IOp->hasNoSignedWrap()) 549 DemandedMaskIn.setHighBits(ShiftAmt+1); 550 else if (IOp->hasNoUnsignedWrap()) 551 DemandedMaskIn.setHighBits(ShiftAmt); 552 553 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 554 return I; 555 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 556 Known.Zero <<= ShiftAmt; 557 Known.One <<= ShiftAmt; 558 // low bits known zero. 559 if (ShiftAmt) 560 Known.Zero.setLowBits(ShiftAmt); 561 } else { 562 computeKnownBits(I, Known, Depth, CxtI); 563 } 564 break; 565 } 566 case Instruction::LShr: { 567 const APInt *SA; 568 if (match(I->getOperand(1), m_APInt(SA))) { 569 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 570 571 // Unsigned shift right. 572 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 573 574 // If the shift is exact, then it does demand the low bits (and knows that 575 // they are zero). 576 if (cast<LShrOperator>(I)->isExact()) 577 DemandedMaskIn.setLowBits(ShiftAmt); 578 579 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 580 return I; 581 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 582 Known.Zero.lshrInPlace(ShiftAmt); 583 Known.One.lshrInPlace(ShiftAmt); 584 if (ShiftAmt) 585 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 586 } else { 587 computeKnownBits(I, Known, Depth, CxtI); 588 } 589 break; 590 } 591 case Instruction::AShr: { 592 // If this is an arithmetic shift right and only the low-bit is set, we can 593 // always convert this into a logical shr, even if the shift amount is 594 // variable. The low bit of the shift cannot be an input sign bit unless 595 // the shift amount is >= the size of the datatype, which is undefined. 596 if (DemandedMask.isOneValue()) { 597 // Perform the logical shift right. 598 Instruction *NewVal = BinaryOperator::CreateLShr( 599 I->getOperand(0), I->getOperand(1), I->getName()); 600 return InsertNewInstWith(NewVal, *I); 601 } 602 603 // If the sign bit is the only bit demanded by this ashr, then there is no 604 // need to do it, the shift doesn't change the high bit. 605 if (DemandedMask.isSignMask()) 606 return I->getOperand(0); 607 608 const APInt *SA; 609 if (match(I->getOperand(1), m_APInt(SA))) { 610 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 611 612 // Signed shift right. 613 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 614 // If any of the high bits are demanded, we should set the sign bit as 615 // demanded. 616 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 617 DemandedMaskIn.setSignBit(); 618 619 // If the shift is exact, then it does demand the low bits (and knows that 620 // they are zero). 621 if (cast<AShrOperator>(I)->isExact()) 622 DemandedMaskIn.setLowBits(ShiftAmt); 623 624 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 625 return I; 626 627 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 628 629 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 630 // Compute the new bits that are at the top now plus sign bits. 631 APInt HighBits(APInt::getHighBitsSet( 632 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 633 Known.Zero.lshrInPlace(ShiftAmt); 634 Known.One.lshrInPlace(ShiftAmt); 635 636 // If the input sign bit is known to be zero, or if none of the top bits 637 // are demanded, turn this into an unsigned shift right. 638 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 639 if (Known.Zero[BitWidth-ShiftAmt-1] || 640 !DemandedMask.intersects(HighBits)) { 641 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 642 I->getOperand(1)); 643 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 644 return InsertNewInstWith(LShr, *I); 645 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 646 Known.One |= HighBits; 647 } 648 } else { 649 computeKnownBits(I, Known, Depth, CxtI); 650 } 651 break; 652 } 653 case Instruction::UDiv: { 654 // UDiv doesn't demand low bits that are zero in the divisor. 655 const APInt *SA; 656 if (match(I->getOperand(1), m_APInt(SA))) { 657 // If the shift is exact, then it does demand the low bits. 658 if (cast<UDivOperator>(I)->isExact()) 659 break; 660 661 // FIXME: Take the demanded mask of the result into account. 662 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 663 APInt DemandedMaskIn = 664 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 665 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 666 return I; 667 668 // Propagate zero bits from the input. 669 Known.Zero.setHighBits(std::min( 670 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 671 } else { 672 computeKnownBits(I, Known, Depth, CxtI); 673 } 674 break; 675 } 676 case Instruction::SRem: 677 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 678 // X % -1 demands all the bits because we don't want to introduce 679 // INT_MIN % -1 (== undef) by accident. 680 if (Rem->isMinusOne()) 681 break; 682 APInt RA = Rem->getValue().abs(); 683 if (RA.isPowerOf2()) { 684 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 685 return I->getOperand(0); 686 687 APInt LowBits = RA - 1; 688 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 689 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 690 return I; 691 692 // The low bits of LHS are unchanged by the srem. 693 Known.Zero = LHSKnown.Zero & LowBits; 694 Known.One = LHSKnown.One & LowBits; 695 696 // If LHS is non-negative or has all low bits zero, then the upper bits 697 // are all zero. 698 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 699 Known.Zero |= ~LowBits; 700 701 // If LHS is negative and not all low bits are zero, then the upper bits 702 // are all one. 703 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 704 Known.One |= ~LowBits; 705 706 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 707 break; 708 } 709 } 710 711 // The sign bit is the LHS's sign bit, except when the result of the 712 // remainder is zero. 713 if (DemandedMask.isSignBitSet()) { 714 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 715 // If it's known zero, our sign bit is also zero. 716 if (LHSKnown.isNonNegative()) 717 Known.makeNonNegative(); 718 } 719 break; 720 case Instruction::URem: { 721 KnownBits Known2(BitWidth); 722 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 723 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 724 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 725 return I; 726 727 unsigned Leaders = Known2.countMinLeadingZeros(); 728 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 729 break; 730 } 731 case Instruction::Call: { 732 bool KnownBitsComputed = false; 733 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 734 switch (II->getIntrinsicID()) { 735 default: break; 736 case Intrinsic::bswap: { 737 // If the only bits demanded come from one byte of the bswap result, 738 // just shift the input byte into position to eliminate the bswap. 739 unsigned NLZ = DemandedMask.countLeadingZeros(); 740 unsigned NTZ = DemandedMask.countTrailingZeros(); 741 742 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 743 // we need all the bits down to bit 8. Likewise, round NLZ. If we 744 // have 14 leading zeros, round to 8. 745 NLZ &= ~7; 746 NTZ &= ~7; 747 // If we need exactly one byte, we can do this transformation. 748 if (BitWidth-NLZ-NTZ == 8) { 749 unsigned ResultBit = NTZ; 750 unsigned InputBit = BitWidth-NTZ-8; 751 752 // Replace this with either a left or right shift to get the byte into 753 // the right place. 754 Instruction *NewVal; 755 if (InputBit > ResultBit) 756 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 757 ConstantInt::get(I->getType(), InputBit-ResultBit)); 758 else 759 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 760 ConstantInt::get(I->getType(), ResultBit-InputBit)); 761 NewVal->takeName(I); 762 return InsertNewInstWith(NewVal, *I); 763 } 764 break; 765 } 766 case Intrinsic::fshr: 767 case Intrinsic::fshl: { 768 const APInt *SA; 769 if (!match(I->getOperand(2), m_APInt(SA))) 770 break; 771 772 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 773 // defined, so no need to special-case zero shifts here. 774 uint64_t ShiftAmt = SA->urem(BitWidth); 775 if (II->getIntrinsicID() == Intrinsic::fshr) 776 ShiftAmt = BitWidth - ShiftAmt; 777 778 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 779 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 780 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 781 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 782 return I; 783 784 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 785 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 786 Known.One = LHSKnown.One.shl(ShiftAmt) | 787 RHSKnown.One.lshr(BitWidth - ShiftAmt); 788 KnownBitsComputed = true; 789 break; 790 } 791 case Intrinsic::x86_mmx_pmovmskb: 792 case Intrinsic::x86_sse_movmsk_ps: 793 case Intrinsic::x86_sse2_movmsk_pd: 794 case Intrinsic::x86_sse2_pmovmskb_128: 795 case Intrinsic::x86_avx_movmsk_ps_256: 796 case Intrinsic::x86_avx_movmsk_pd_256: 797 case Intrinsic::x86_avx2_pmovmskb: { 798 // MOVMSK copies the vector elements' sign bits to the low bits 799 // and zeros the high bits. 800 unsigned ArgWidth; 801 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 802 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 803 } else { 804 auto Arg = II->getArgOperand(0); 805 auto ArgType = cast<VectorType>(Arg->getType()); 806 ArgWidth = ArgType->getNumElements(); 807 } 808 809 // If we don't need any of low bits then return zero, 810 // we know that DemandedMask is non-zero already. 811 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 812 if (DemandedElts.isNullValue()) 813 return ConstantInt::getNullValue(VTy); 814 815 // We know that the upper bits are set to zero. 816 Known.Zero.setBitsFrom(ArgWidth); 817 KnownBitsComputed = true; 818 break; 819 } 820 case Intrinsic::x86_sse42_crc32_64_64: 821 Known.Zero.setBitsFrom(32); 822 KnownBitsComputed = true; 823 break; 824 } 825 } 826 827 if (!KnownBitsComputed) 828 computeKnownBits(V, Known, Depth, CxtI); 829 break; 830 } 831 } 832 833 // If the client is only demanding bits that we know, return the known 834 // constant. 835 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 836 return Constant::getIntegerValue(VTy, Known.One); 837 return nullptr; 838 } 839 840 /// Helper routine of SimplifyDemandedUseBits. It computes Known 841 /// bits. It also tries to handle simplifications that can be done based on 842 /// DemandedMask, but without modifying the Instruction. 843 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 844 const APInt &DemandedMask, 845 KnownBits &Known, 846 unsigned Depth, 847 Instruction *CxtI) { 848 unsigned BitWidth = DemandedMask.getBitWidth(); 849 Type *ITy = I->getType(); 850 851 KnownBits LHSKnown(BitWidth); 852 KnownBits RHSKnown(BitWidth); 853 854 // Despite the fact that we can't simplify this instruction in all User's 855 // context, we can at least compute the known bits, and we can 856 // do simplifications that apply to *just* the one user if we know that 857 // this instruction has a simpler value in that context. 858 switch (I->getOpcode()) { 859 case Instruction::And: { 860 // If either the LHS or the RHS are Zero, the result is zero. 861 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 862 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 863 CxtI); 864 865 // Output known-0 are known to be clear if zero in either the LHS | RHS. 866 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 867 // Output known-1 bits are only known if set in both the LHS & RHS. 868 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 869 870 // If the client is only demanding bits that we know, return the known 871 // constant. 872 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 873 return Constant::getIntegerValue(ITy, IKnownOne); 874 875 // If all of the demanded bits are known 1 on one side, return the other. 876 // These bits cannot contribute to the result of the 'and' in this 877 // context. 878 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 879 return I->getOperand(0); 880 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 881 return I->getOperand(1); 882 883 Known.Zero = std::move(IKnownZero); 884 Known.One = std::move(IKnownOne); 885 break; 886 } 887 case Instruction::Or: { 888 // We can simplify (X|Y) -> X or Y in the user's context if we know that 889 // only bits from X or Y are demanded. 890 891 // If either the LHS or the RHS are One, the result is One. 892 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 893 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 894 CxtI); 895 896 // Output known-0 bits are only known if clear in both the LHS & RHS. 897 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 898 // Output known-1 are known to be set if set in either the LHS | RHS. 899 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 900 901 // If the client is only demanding bits that we know, return the known 902 // constant. 903 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 904 return Constant::getIntegerValue(ITy, IKnownOne); 905 906 // If all of the demanded bits are known zero on one side, return the 907 // other. These bits cannot contribute to the result of the 'or' in this 908 // context. 909 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 910 return I->getOperand(0); 911 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 912 return I->getOperand(1); 913 914 Known.Zero = std::move(IKnownZero); 915 Known.One = std::move(IKnownOne); 916 break; 917 } 918 case Instruction::Xor: { 919 // We can simplify (X^Y) -> X or Y in the user's context if we know that 920 // only bits from X or Y are demanded. 921 922 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 923 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 924 CxtI); 925 926 // Output known-0 bits are known if clear or set in both the LHS & RHS. 927 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 928 (RHSKnown.One & LHSKnown.One); 929 // Output known-1 are known to be set if set in only one of the LHS, RHS. 930 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 931 (RHSKnown.One & LHSKnown.Zero); 932 933 // If the client is only demanding bits that we know, return the known 934 // constant. 935 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 936 return Constant::getIntegerValue(ITy, IKnownOne); 937 938 // If all of the demanded bits are known zero on one side, return the 939 // other. 940 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 941 return I->getOperand(0); 942 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 943 return I->getOperand(1); 944 945 // Output known-0 bits are known if clear or set in both the LHS & RHS. 946 Known.Zero = std::move(IKnownZero); 947 // Output known-1 are known to be set if set in only one of the LHS, RHS. 948 Known.One = std::move(IKnownOne); 949 break; 950 } 951 default: 952 // Compute the Known bits to simplify things downstream. 953 computeKnownBits(I, Known, Depth, CxtI); 954 955 // If this user is only demanding bits that we know, return the known 956 // constant. 957 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 958 return Constant::getIntegerValue(ITy, Known.One); 959 960 break; 961 } 962 963 return nullptr; 964 } 965 966 967 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 968 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 969 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 970 /// of "C2-C1". 971 /// 972 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 973 /// ..., bn}, without considering the specific value X is holding. 974 /// This transformation is legal iff one of following conditions is hold: 975 /// 1) All the bit in S are 0, in this case E1 == E2. 976 /// 2) We don't care those bits in S, per the input DemandedMask. 977 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 978 /// rest bits. 979 /// 980 /// Currently we only test condition 2). 981 /// 982 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 983 /// not successful. 984 Value * 985 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 986 Instruction *Shl, const APInt &ShlOp1, 987 const APInt &DemandedMask, 988 KnownBits &Known) { 989 if (!ShlOp1 || !ShrOp1) 990 return nullptr; // No-op. 991 992 Value *VarX = Shr->getOperand(0); 993 Type *Ty = VarX->getType(); 994 unsigned BitWidth = Ty->getScalarSizeInBits(); 995 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 996 return nullptr; // Undef. 997 998 unsigned ShlAmt = ShlOp1.getZExtValue(); 999 unsigned ShrAmt = ShrOp1.getZExtValue(); 1000 1001 Known.One.clearAllBits(); 1002 Known.Zero.setLowBits(ShlAmt - 1); 1003 Known.Zero &= DemandedMask; 1004 1005 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 1006 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 1007 1008 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1009 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1010 (BitMask1.ashr(ShrAmt) << ShlAmt); 1011 1012 if (ShrAmt <= ShlAmt) { 1013 BitMask2 <<= (ShlAmt - ShrAmt); 1014 } else { 1015 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1016 BitMask2.ashr(ShrAmt - ShlAmt); 1017 } 1018 1019 // Check if condition-2 (see the comment to this function) is satified. 1020 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1021 if (ShrAmt == ShlAmt) 1022 return VarX; 1023 1024 if (!Shr->hasOneUse()) 1025 return nullptr; 1026 1027 BinaryOperator *New; 1028 if (ShrAmt < ShlAmt) { 1029 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1030 New = BinaryOperator::CreateShl(VarX, Amt); 1031 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1032 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1033 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1034 } else { 1035 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1036 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1037 BinaryOperator::CreateAShr(VarX, Amt); 1038 if (cast<BinaryOperator>(Shr)->isExact()) 1039 New->setIsExact(true); 1040 } 1041 1042 return InsertNewInstWith(New, *Shl); 1043 } 1044 1045 return nullptr; 1046 } 1047 1048 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 1049 /// 1050 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 1051 /// struct returns. 1052 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, 1053 APInt DemandedElts, 1054 int DMaskIdx) { 1055 1056 // FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported. 1057 if (DMaskIdx < 0 && 1058 II->getType()->getScalarSizeInBits() != 32 && 1059 DemandedElts.getActiveBits() == 3) 1060 return nullptr; 1061 1062 unsigned VWidth = II->getType()->getVectorNumElements(); 1063 if (VWidth == 1) 1064 return nullptr; 1065 1066 IRBuilderBase::InsertPointGuard Guard(Builder); 1067 Builder.SetInsertPoint(II); 1068 1069 // Assume the arguments are unchanged and later override them, if needed. 1070 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 1071 1072 if (DMaskIdx < 0) { 1073 // Buffer case. 1074 1075 const unsigned ActiveBits = DemandedElts.getActiveBits(); 1076 const unsigned UnusedComponentsAtFront = DemandedElts.countTrailingZeros(); 1077 1078 // Start assuming the prefix of elements is demanded, but possibly clear 1079 // some other bits if there are trailing zeros (unused components at front) 1080 // and update offset. 1081 DemandedElts = (1 << ActiveBits) - 1; 1082 1083 if (UnusedComponentsAtFront > 0) { 1084 static const unsigned InvalidOffsetIdx = 0xf; 1085 1086 unsigned OffsetIdx; 1087 switch (II->getIntrinsicID()) { 1088 case Intrinsic::amdgcn_raw_buffer_load: 1089 OffsetIdx = 1; 1090 break; 1091 case Intrinsic::amdgcn_s_buffer_load: 1092 // If resulting type is vec3, there is no point in trimming the 1093 // load with updated offset, as the vec3 would most likely be widened to 1094 // vec4 anyway during lowering. 1095 if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1096 OffsetIdx = InvalidOffsetIdx; 1097 else 1098 OffsetIdx = 1; 1099 break; 1100 case Intrinsic::amdgcn_struct_buffer_load: 1101 OffsetIdx = 2; 1102 break; 1103 default: 1104 // TODO: handle tbuffer* intrinsics. 1105 OffsetIdx = InvalidOffsetIdx; 1106 break; 1107 } 1108 1109 if (OffsetIdx != InvalidOffsetIdx) { 1110 // Clear demanded bits and update the offset. 1111 DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1112 auto *Offset = II->getArgOperand(OffsetIdx); 1113 unsigned SingleComponentSizeInBits = 1114 getDataLayout().getTypeSizeInBits(II->getType()->getScalarType()); 1115 unsigned OffsetAdd = 1116 UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1117 auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1118 Args[OffsetIdx] = Builder.CreateAdd(Offset, OffsetAddVal); 1119 } 1120 } 1121 } else { 1122 // Image case. 1123 1124 ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx)); 1125 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1126 1127 // Mask off values that are undefined because the dmask doesn't cover them 1128 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; 1129 1130 unsigned NewDMaskVal = 0; 1131 unsigned OrigLoadIdx = 0; 1132 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1133 const unsigned Bit = 1 << SrcIdx; 1134 if (!!(DMaskVal & Bit)) { 1135 if (!!DemandedElts[OrigLoadIdx]) 1136 NewDMaskVal |= Bit; 1137 OrigLoadIdx++; 1138 } 1139 } 1140 1141 if (DMaskVal != NewDMaskVal) 1142 Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1143 } 1144 1145 unsigned NewNumElts = DemandedElts.countPopulation(); 1146 if (!NewNumElts) 1147 return UndefValue::get(II->getType()); 1148 1149 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1150 if (DMaskIdx >= 0) 1151 II->setArgOperand(DMaskIdx, Args[DMaskIdx]); 1152 return nullptr; 1153 } 1154 1155 // Determine the overload types of the original intrinsic. 1156 auto IID = II->getIntrinsicID(); 1157 SmallVector<Intrinsic::IITDescriptor, 16> Table; 1158 getIntrinsicInfoTableEntries(IID, Table); 1159 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1160 1161 // Validate function argument and return types, extracting overloaded types 1162 // along the way. 1163 FunctionType *FTy = II->getCalledFunction()->getFunctionType(); 1164 SmallVector<Type *, 6> OverloadTys; 1165 Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys); 1166 1167 Module *M = II->getParent()->getParent()->getParent(); 1168 Type *EltTy = II->getType()->getVectorElementType(); 1169 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts); 1170 1171 OverloadTys[0] = NewTy; 1172 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys); 1173 1174 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); 1175 NewCall->takeName(II); 1176 NewCall->copyMetadata(*II); 1177 1178 if (NewNumElts == 1) { 1179 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall, 1180 DemandedElts.countTrailingZeros()); 1181 } 1182 1183 SmallVector<uint32_t, 8> EltMask; 1184 unsigned NewLoadIdx = 0; 1185 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1186 if (!!DemandedElts[OrigLoadIdx]) 1187 EltMask.push_back(NewLoadIdx++); 1188 else 1189 EltMask.push_back(NewNumElts); 1190 } 1191 1192 Value *Shuffle = 1193 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask); 1194 1195 return Shuffle; 1196 } 1197 1198 /// The specified value produces a vector with any number of elements. 1199 /// This method analyzes which elements of the operand are undef and returns 1200 /// that information in UndefElts. 1201 /// 1202 /// DemandedElts contains the set of elements that are actually used by the 1203 /// caller, and by default (AllowMultipleUsers equals false) the value is 1204 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1205 /// to true, DemandedElts refers to the union of sets of elements that are 1206 /// used by all callers. 1207 /// 1208 /// If the information about demanded elements can be used to simplify the 1209 /// operation, the operation is simplified, then the resultant value is 1210 /// returned. This returns null if no change was made. 1211 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 1212 APInt &UndefElts, 1213 unsigned Depth, 1214 bool AllowMultipleUsers) { 1215 unsigned VWidth = V->getType()->getVectorNumElements(); 1216 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1217 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1218 1219 if (isa<UndefValue>(V)) { 1220 // If the entire vector is undefined, just return this info. 1221 UndefElts = EltMask; 1222 return nullptr; 1223 } 1224 1225 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 1226 UndefElts = EltMask; 1227 return UndefValue::get(V->getType()); 1228 } 1229 1230 UndefElts = 0; 1231 1232 if (auto *C = dyn_cast<Constant>(V)) { 1233 // Check if this is identity. If so, return 0 since we are not simplifying 1234 // anything. 1235 if (DemandedElts.isAllOnesValue()) 1236 return nullptr; 1237 1238 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1239 Constant *Undef = UndefValue::get(EltTy); 1240 SmallVector<Constant*, 16> Elts; 1241 for (unsigned i = 0; i != VWidth; ++i) { 1242 if (!DemandedElts[i]) { // If not demanded, set to undef. 1243 Elts.push_back(Undef); 1244 UndefElts.setBit(i); 1245 continue; 1246 } 1247 1248 Constant *Elt = C->getAggregateElement(i); 1249 if (!Elt) return nullptr; 1250 1251 if (isa<UndefValue>(Elt)) { // Already undef. 1252 Elts.push_back(Undef); 1253 UndefElts.setBit(i); 1254 } else { // Otherwise, defined. 1255 Elts.push_back(Elt); 1256 } 1257 } 1258 1259 // If we changed the constant, return it. 1260 Constant *NewCV = ConstantVector::get(Elts); 1261 return NewCV != C ? NewCV : nullptr; 1262 } 1263 1264 // Limit search depth. 1265 if (Depth == 10) 1266 return nullptr; 1267 1268 if (!AllowMultipleUsers) { 1269 // If multiple users are using the root value, proceed with 1270 // simplification conservatively assuming that all elements 1271 // are needed. 1272 if (!V->hasOneUse()) { 1273 // Quit if we find multiple users of a non-root value though. 1274 // They'll be handled when it's their turn to be visited by 1275 // the main instcombine process. 1276 if (Depth != 0) 1277 // TODO: Just compute the UndefElts information recursively. 1278 return nullptr; 1279 1280 // Conservatively assume that all elements are needed. 1281 DemandedElts = EltMask; 1282 } 1283 } 1284 1285 Instruction *I = dyn_cast<Instruction>(V); 1286 if (!I) return nullptr; // Only analyze instructions. 1287 1288 bool MadeChange = false; 1289 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1290 APInt Demanded, APInt &Undef) { 1291 auto *II = dyn_cast<IntrinsicInst>(Inst); 1292 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1293 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1294 if (II) 1295 II->setArgOperand(OpNum, V); 1296 else 1297 Inst->setOperand(OpNum, V); 1298 MadeChange = true; 1299 } 1300 }; 1301 1302 APInt UndefElts2(VWidth, 0); 1303 APInt UndefElts3(VWidth, 0); 1304 switch (I->getOpcode()) { 1305 default: break; 1306 1307 case Instruction::GetElementPtr: { 1308 // The LangRef requires that struct geps have all constant indices. As 1309 // such, we can't convert any operand to partial undef. 1310 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1311 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1312 I != E; I++) 1313 if (I.isStruct()) 1314 return true;; 1315 return false; 1316 }; 1317 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1318 break; 1319 1320 // Conservatively track the demanded elements back through any vector 1321 // operands we may have. We know there must be at least one, or we 1322 // wouldn't have a vector result to get here. Note that we intentionally 1323 // merge the undef bits here since gepping with either an undef base or 1324 // index results in undef. 1325 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1326 if (isa<UndefValue>(I->getOperand(i))) { 1327 // If the entire vector is undefined, just return this info. 1328 UndefElts = EltMask; 1329 return nullptr; 1330 } 1331 if (I->getOperand(i)->getType()->isVectorTy()) { 1332 APInt UndefEltsOp(VWidth, 0); 1333 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1334 UndefElts |= UndefEltsOp; 1335 } 1336 } 1337 1338 break; 1339 } 1340 case Instruction::InsertElement: { 1341 // If this is a variable index, we don't know which element it overwrites. 1342 // demand exactly the same input as we produce. 1343 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1344 if (!Idx) { 1345 // Note that we can't propagate undef elt info, because we don't know 1346 // which elt is getting updated. 1347 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1348 break; 1349 } 1350 1351 // The element inserted overwrites whatever was there, so the input demanded 1352 // set is simpler than the output set. 1353 unsigned IdxNo = Idx->getZExtValue(); 1354 APInt PreInsertDemandedElts = DemandedElts; 1355 if (IdxNo < VWidth) 1356 PreInsertDemandedElts.clearBit(IdxNo); 1357 1358 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1359 1360 // If this is inserting an element that isn't demanded, remove this 1361 // insertelement. 1362 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1363 Worklist.push(I); 1364 return I->getOperand(0); 1365 } 1366 1367 // The inserted element is defined. 1368 UndefElts.clearBit(IdxNo); 1369 break; 1370 } 1371 case Instruction::ShuffleVector: { 1372 auto *Shuffle = cast<ShuffleVectorInst>(I); 1373 assert(Shuffle->getOperand(0)->getType() == 1374 Shuffle->getOperand(1)->getType() && 1375 "Expected shuffle operands to have same type"); 1376 unsigned OpWidth = 1377 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1378 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1379 for (unsigned i = 0; i < VWidth; i++) { 1380 if (DemandedElts[i]) { 1381 unsigned MaskVal = Shuffle->getMaskValue(i); 1382 if (MaskVal != -1u) { 1383 assert(MaskVal < OpWidth * 2 && 1384 "shufflevector mask index out of range!"); 1385 if (MaskVal < OpWidth) 1386 LeftDemanded.setBit(MaskVal); 1387 else 1388 RightDemanded.setBit(MaskVal - OpWidth); 1389 } 1390 } 1391 } 1392 1393 APInt LHSUndefElts(OpWidth, 0); 1394 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1395 1396 APInt RHSUndefElts(OpWidth, 0); 1397 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1398 1399 // If this shuffle does not change the vector length and the elements 1400 // demanded by this shuffle are an identity mask, then this shuffle is 1401 // unnecessary. 1402 // 1403 // We are assuming canonical form for the mask, so the source vector is 1404 // operand 0 and operand 1 is not used. 1405 // 1406 // Note that if an element is demanded and this shuffle mask is undefined 1407 // for that element, then the shuffle is not considered an identity 1408 // operation. The shuffle prevents poison from the operand vector from 1409 // leaking to the result by replacing poison with an undefined value. 1410 if (VWidth == OpWidth) { 1411 bool IsIdentityShuffle = true; 1412 for (unsigned i = 0; i < VWidth; i++) { 1413 unsigned MaskVal = Shuffle->getMaskValue(i); 1414 if (DemandedElts[i] && i != MaskVal) { 1415 IsIdentityShuffle = false; 1416 break; 1417 } 1418 } 1419 if (IsIdentityShuffle) 1420 return Shuffle->getOperand(0); 1421 } 1422 1423 bool NewUndefElts = false; 1424 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1425 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1426 bool LHSUniform = true; 1427 bool RHSUniform = true; 1428 for (unsigned i = 0; i < VWidth; i++) { 1429 unsigned MaskVal = Shuffle->getMaskValue(i); 1430 if (MaskVal == -1u) { 1431 UndefElts.setBit(i); 1432 } else if (!DemandedElts[i]) { 1433 NewUndefElts = true; 1434 UndefElts.setBit(i); 1435 } else if (MaskVal < OpWidth) { 1436 if (LHSUndefElts[MaskVal]) { 1437 NewUndefElts = true; 1438 UndefElts.setBit(i); 1439 } else { 1440 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1441 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1442 LHSUniform = LHSUniform && (MaskVal == i); 1443 } 1444 } else { 1445 if (RHSUndefElts[MaskVal - OpWidth]) { 1446 NewUndefElts = true; 1447 UndefElts.setBit(i); 1448 } else { 1449 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1450 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1451 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1452 } 1453 } 1454 } 1455 1456 // Try to transform shuffle with constant vector and single element from 1457 // this constant vector to single insertelement instruction. 1458 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1459 // insertelement V, C[ci], ci-n 1460 if (OpWidth == Shuffle->getType()->getNumElements()) { 1461 Value *Op = nullptr; 1462 Constant *Value = nullptr; 1463 unsigned Idx = -1u; 1464 1465 // Find constant vector with the single element in shuffle (LHS or RHS). 1466 if (LHSIdx < OpWidth && RHSUniform) { 1467 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1468 Op = Shuffle->getOperand(1); 1469 Value = CV->getOperand(LHSValIdx); 1470 Idx = LHSIdx; 1471 } 1472 } 1473 if (RHSIdx < OpWidth && LHSUniform) { 1474 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1475 Op = Shuffle->getOperand(0); 1476 Value = CV->getOperand(RHSValIdx); 1477 Idx = RHSIdx; 1478 } 1479 } 1480 // Found constant vector with single element - convert to insertelement. 1481 if (Op && Value) { 1482 Instruction *New = InsertElementInst::Create( 1483 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1484 Shuffle->getName()); 1485 InsertNewInstWith(New, *Shuffle); 1486 return New; 1487 } 1488 } 1489 if (NewUndefElts) { 1490 // Add additional discovered undefs. 1491 SmallVector<Constant*, 16> Elts; 1492 for (unsigned i = 0; i < VWidth; ++i) { 1493 if (UndefElts[i]) 1494 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1495 else 1496 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1497 Shuffle->getMaskValue(i))); 1498 } 1499 I->setOperand(2, ConstantVector::get(Elts)); 1500 MadeChange = true; 1501 } 1502 break; 1503 } 1504 case Instruction::Select: { 1505 // If this is a vector select, try to transform the select condition based 1506 // on the current demanded elements. 1507 SelectInst *Sel = cast<SelectInst>(I); 1508 if (Sel->getCondition()->getType()->isVectorTy()) { 1509 // TODO: We are not doing anything with UndefElts based on this call. 1510 // It is overwritten below based on the other select operands. If an 1511 // element of the select condition is known undef, then we are free to 1512 // choose the output value from either arm of the select. If we know that 1513 // one of those values is undef, then the output can be undef. 1514 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1515 } 1516 1517 // Next, see if we can transform the arms of the select. 1518 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1519 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1520 for (unsigned i = 0; i < VWidth; i++) { 1521 // isNullValue() always returns false when called on a ConstantExpr. 1522 // Skip constant expressions to avoid propagating incorrect information. 1523 Constant *CElt = CV->getAggregateElement(i); 1524 if (isa<ConstantExpr>(CElt)) 1525 continue; 1526 // TODO: If a select condition element is undef, we can demand from 1527 // either side. If one side is known undef, choosing that side would 1528 // propagate undef. 1529 if (CElt->isNullValue()) 1530 DemandedLHS.clearBit(i); 1531 else 1532 DemandedRHS.clearBit(i); 1533 } 1534 } 1535 1536 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1537 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1538 1539 // Output elements are undefined if the element from each arm is undefined. 1540 // TODO: This can be improved. See comment in select condition handling. 1541 UndefElts = UndefElts2 & UndefElts3; 1542 break; 1543 } 1544 case Instruction::BitCast: { 1545 // Vector->vector casts only. 1546 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1547 if (!VTy) break; 1548 unsigned InVWidth = VTy->getNumElements(); 1549 APInt InputDemandedElts(InVWidth, 0); 1550 UndefElts2 = APInt(InVWidth, 0); 1551 unsigned Ratio; 1552 1553 if (VWidth == InVWidth) { 1554 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1555 // elements as are demanded of us. 1556 Ratio = 1; 1557 InputDemandedElts = DemandedElts; 1558 } else if ((VWidth % InVWidth) == 0) { 1559 // If the number of elements in the output is a multiple of the number of 1560 // elements in the input then an input element is live if any of the 1561 // corresponding output elements are live. 1562 Ratio = VWidth / InVWidth; 1563 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1564 if (DemandedElts[OutIdx]) 1565 InputDemandedElts.setBit(OutIdx / Ratio); 1566 } else if ((InVWidth % VWidth) == 0) { 1567 // If the number of elements in the input is a multiple of the number of 1568 // elements in the output then an input element is live if the 1569 // corresponding output element is live. 1570 Ratio = InVWidth / VWidth; 1571 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1572 if (DemandedElts[InIdx / Ratio]) 1573 InputDemandedElts.setBit(InIdx); 1574 } else { 1575 // Unsupported so far. 1576 break; 1577 } 1578 1579 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1580 1581 if (VWidth == InVWidth) { 1582 UndefElts = UndefElts2; 1583 } else if ((VWidth % InVWidth) == 0) { 1584 // If the number of elements in the output is a multiple of the number of 1585 // elements in the input then an output element is undef if the 1586 // corresponding input element is undef. 1587 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1588 if (UndefElts2[OutIdx / Ratio]) 1589 UndefElts.setBit(OutIdx); 1590 } else if ((InVWidth % VWidth) == 0) { 1591 // If the number of elements in the input is a multiple of the number of 1592 // elements in the output then an output element is undef if all of the 1593 // corresponding input elements are undef. 1594 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1595 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1596 if (SubUndef.countPopulation() == Ratio) 1597 UndefElts.setBit(OutIdx); 1598 } 1599 } else { 1600 llvm_unreachable("Unimp"); 1601 } 1602 break; 1603 } 1604 case Instruction::FPTrunc: 1605 case Instruction::FPExt: 1606 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1607 break; 1608 1609 case Instruction::Call: { 1610 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1611 if (!II) break; 1612 switch (II->getIntrinsicID()) { 1613 case Intrinsic::masked_gather: // fallthrough 1614 case Intrinsic::masked_load: { 1615 // Subtlety: If we load from a pointer, the pointer must be valid 1616 // regardless of whether the element is demanded. Doing otherwise risks 1617 // segfaults which didn't exist in the original program. 1618 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1619 DemandedPassThrough(DemandedElts); 1620 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1621 for (unsigned i = 0; i < VWidth; i++) { 1622 Constant *CElt = CV->getAggregateElement(i); 1623 if (CElt->isNullValue()) 1624 DemandedPtrs.clearBit(i); 1625 else if (CElt->isAllOnesValue()) 1626 DemandedPassThrough.clearBit(i); 1627 } 1628 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1629 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1630 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1631 1632 // Output elements are undefined if the element from both sources are. 1633 // TODO: can strengthen via mask as well. 1634 UndefElts = UndefElts2 & UndefElts3; 1635 break; 1636 } 1637 case Intrinsic::x86_xop_vfrcz_ss: 1638 case Intrinsic::x86_xop_vfrcz_sd: 1639 // The instructions for these intrinsics are speced to zero upper bits not 1640 // pass them through like other scalar intrinsics. So we shouldn't just 1641 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1642 // Instead we should return a zero vector. 1643 if (!DemandedElts[0]) { 1644 Worklist.push(II); 1645 return ConstantAggregateZero::get(II->getType()); 1646 } 1647 1648 // Only the lower element is used. 1649 DemandedElts = 1; 1650 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1651 1652 // Only the lower element is undefined. The high elements are zero. 1653 UndefElts = UndefElts[0]; 1654 break; 1655 1656 // Unary scalar-as-vector operations that work column-wise. 1657 case Intrinsic::x86_sse_rcp_ss: 1658 case Intrinsic::x86_sse_rsqrt_ss: 1659 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1660 1661 // If lowest element of a scalar op isn't used then use Arg0. 1662 if (!DemandedElts[0]) { 1663 Worklist.push(II); 1664 return II->getArgOperand(0); 1665 } 1666 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1667 // checks). 1668 break; 1669 1670 // Binary scalar-as-vector operations that work column-wise. The high 1671 // elements come from operand 0. The low element is a function of both 1672 // operands. 1673 case Intrinsic::x86_sse_min_ss: 1674 case Intrinsic::x86_sse_max_ss: 1675 case Intrinsic::x86_sse_cmp_ss: 1676 case Intrinsic::x86_sse2_min_sd: 1677 case Intrinsic::x86_sse2_max_sd: 1678 case Intrinsic::x86_sse2_cmp_sd: { 1679 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1680 1681 // If lowest element of a scalar op isn't used then use Arg0. 1682 if (!DemandedElts[0]) { 1683 Worklist.push(II); 1684 return II->getArgOperand(0); 1685 } 1686 1687 // Only lower element is used for operand 1. 1688 DemandedElts = 1; 1689 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1690 1691 // Lower element is undefined if both lower elements are undefined. 1692 // Consider things like undef&0. The result is known zero, not undef. 1693 if (!UndefElts2[0]) 1694 UndefElts.clearBit(0); 1695 1696 break; 1697 } 1698 1699 // Binary scalar-as-vector operations that work column-wise. The high 1700 // elements come from operand 0 and the low element comes from operand 1. 1701 case Intrinsic::x86_sse41_round_ss: 1702 case Intrinsic::x86_sse41_round_sd: { 1703 // Don't use the low element of operand 0. 1704 APInt DemandedElts2 = DemandedElts; 1705 DemandedElts2.clearBit(0); 1706 simplifyAndSetOp(II, 0, DemandedElts2, UndefElts); 1707 1708 // If lowest element of a scalar op isn't used then use Arg0. 1709 if (!DemandedElts[0]) { 1710 Worklist.push(II); 1711 return II->getArgOperand(0); 1712 } 1713 1714 // Only lower element is used for operand 1. 1715 DemandedElts = 1; 1716 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1717 1718 // Take the high undef elements from operand 0 and take the lower element 1719 // from operand 1. 1720 UndefElts.clearBit(0); 1721 UndefElts |= UndefElts2[0]; 1722 break; 1723 } 1724 1725 // Three input scalar-as-vector operations that work column-wise. The high 1726 // elements come from operand 0 and the low element is a function of all 1727 // three inputs. 1728 case Intrinsic::x86_avx512_mask_add_ss_round: 1729 case Intrinsic::x86_avx512_mask_div_ss_round: 1730 case Intrinsic::x86_avx512_mask_mul_ss_round: 1731 case Intrinsic::x86_avx512_mask_sub_ss_round: 1732 case Intrinsic::x86_avx512_mask_max_ss_round: 1733 case Intrinsic::x86_avx512_mask_min_ss_round: 1734 case Intrinsic::x86_avx512_mask_add_sd_round: 1735 case Intrinsic::x86_avx512_mask_div_sd_round: 1736 case Intrinsic::x86_avx512_mask_mul_sd_round: 1737 case Intrinsic::x86_avx512_mask_sub_sd_round: 1738 case Intrinsic::x86_avx512_mask_max_sd_round: 1739 case Intrinsic::x86_avx512_mask_min_sd_round: 1740 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1741 1742 // If lowest element of a scalar op isn't used then use Arg0. 1743 if (!DemandedElts[0]) { 1744 Worklist.push(II); 1745 return II->getArgOperand(0); 1746 } 1747 1748 // Only lower element is used for operand 1 and 2. 1749 DemandedElts = 1; 1750 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1751 simplifyAndSetOp(II, 2, DemandedElts, UndefElts3); 1752 1753 // Lower element is undefined if all three lower elements are undefined. 1754 // Consider things like undef&0. The result is known zero, not undef. 1755 if (!UndefElts2[0] || !UndefElts3[0]) 1756 UndefElts.clearBit(0); 1757 1758 break; 1759 1760 case Intrinsic::x86_sse2_packssdw_128: 1761 case Intrinsic::x86_sse2_packsswb_128: 1762 case Intrinsic::x86_sse2_packuswb_128: 1763 case Intrinsic::x86_sse41_packusdw: 1764 case Intrinsic::x86_avx2_packssdw: 1765 case Intrinsic::x86_avx2_packsswb: 1766 case Intrinsic::x86_avx2_packusdw: 1767 case Intrinsic::x86_avx2_packuswb: 1768 case Intrinsic::x86_avx512_packssdw_512: 1769 case Intrinsic::x86_avx512_packsswb_512: 1770 case Intrinsic::x86_avx512_packusdw_512: 1771 case Intrinsic::x86_avx512_packuswb_512: { 1772 auto *Ty0 = II->getArgOperand(0)->getType(); 1773 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1774 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1775 1776 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1777 unsigned VWidthPerLane = VWidth / NumLanes; 1778 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1779 1780 // Per lane, pack the elements of the first input and then the second. 1781 // e.g. 1782 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1783 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1784 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1785 APInt OpDemandedElts(InnerVWidth, 0); 1786 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1787 unsigned LaneIdx = Lane * VWidthPerLane; 1788 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1789 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1790 if (DemandedElts[Idx]) 1791 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1792 } 1793 } 1794 1795 // Demand elements from the operand. 1796 APInt OpUndefElts(InnerVWidth, 0); 1797 simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts); 1798 1799 // Pack the operand's UNDEF elements, one lane at a time. 1800 OpUndefElts = OpUndefElts.zext(VWidth); 1801 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1802 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1803 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1804 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1805 UndefElts |= LaneElts; 1806 } 1807 } 1808 break; 1809 } 1810 1811 // PSHUFB 1812 case Intrinsic::x86_ssse3_pshuf_b_128: 1813 case Intrinsic::x86_avx2_pshuf_b: 1814 case Intrinsic::x86_avx512_pshuf_b_512: 1815 // PERMILVAR 1816 case Intrinsic::x86_avx_vpermilvar_ps: 1817 case Intrinsic::x86_avx_vpermilvar_ps_256: 1818 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1819 case Intrinsic::x86_avx_vpermilvar_pd: 1820 case Intrinsic::x86_avx_vpermilvar_pd_256: 1821 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1822 // PERMV 1823 case Intrinsic::x86_avx2_permd: 1824 case Intrinsic::x86_avx2_permps: { 1825 simplifyAndSetOp(II, 1, DemandedElts, UndefElts); 1826 break; 1827 } 1828 1829 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1830 // in an undefined state. 1831 case Intrinsic::x86_sse4a_extrq: 1832 case Intrinsic::x86_sse4a_extrqi: 1833 case Intrinsic::x86_sse4a_insertq: 1834 case Intrinsic::x86_sse4a_insertqi: 1835 UndefElts.setHighBits(VWidth / 2); 1836 break; 1837 case Intrinsic::amdgcn_buffer_load: 1838 case Intrinsic::amdgcn_buffer_load_format: 1839 case Intrinsic::amdgcn_raw_buffer_load: 1840 case Intrinsic::amdgcn_raw_buffer_load_format: 1841 case Intrinsic::amdgcn_raw_tbuffer_load: 1842 case Intrinsic::amdgcn_s_buffer_load: 1843 case Intrinsic::amdgcn_struct_buffer_load: 1844 case Intrinsic::amdgcn_struct_buffer_load_format: 1845 case Intrinsic::amdgcn_struct_tbuffer_load: 1846 case Intrinsic::amdgcn_tbuffer_load: 1847 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts); 1848 default: { 1849 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) 1850 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0); 1851 1852 break; 1853 } 1854 } // switch on IntrinsicID 1855 break; 1856 } // case Call 1857 } // switch on Opcode 1858 1859 // TODO: We bail completely on integer div/rem and shifts because they have 1860 // UB/poison potential, but that should be refined. 1861 BinaryOperator *BO; 1862 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1863 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1864 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1865 1866 // Any change to an instruction with potential poison must clear those flags 1867 // because we can not guarantee those constraints now. Other analysis may 1868 // determine that it is safe to re-apply the flags. 1869 if (MadeChange) 1870 BO->dropPoisonGeneratingFlags(); 1871 1872 // Output elements are undefined if both are undefined. Consider things 1873 // like undef & 0. The result is known zero, not undef. 1874 UndefElts &= UndefElts2; 1875 } 1876 1877 // If we've proven all of the lanes undef, return an undef value. 1878 // TODO: Intersect w/demanded lanes 1879 if (UndefElts.isAllOnesValue()) 1880 return UndefValue::get(I->getType());; 1881 1882 return MadeChange ? I : nullptr; 1883 } 1884