1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains logic for simplifying instructions based on information 11 // about how they are used. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombineInternal.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 21 using namespace llvm; 22 using namespace llvm::PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 /// Check to see if the specified operand of the specified instruction is a 27 /// constant integer. If so, check to see if there are any bits set in the 28 /// constant that are not demanded. If so, shrink the constant and return true. 29 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 30 const APInt &Demanded) { 31 assert(I && "No instruction?"); 32 assert(OpNo < I->getNumOperands() && "Operand index too large"); 33 34 // The operand must be a constant integer or splat integer. 35 Value *Op = I->getOperand(OpNo); 36 const APInt *C; 37 if (!match(Op, m_APInt(C))) 38 return false; 39 40 // If there are no bits set that aren't demanded, nothing to do. 41 if (C->isSubsetOf(Demanded)) 42 return false; 43 44 // This instruction is producing bits that are not demanded. Shrink the RHS. 45 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 46 47 return true; 48 } 49 50 51 52 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 53 /// the instruction has any properties that allow us to simplify its operands. 54 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 55 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 56 KnownBits Known(BitWidth); 57 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 58 59 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 60 0, &Inst); 61 if (!V) return false; 62 if (V == &Inst) return true; 63 replaceInstUsesWith(Inst, V); 64 return true; 65 } 66 67 /// This form of SimplifyDemandedBits simplifies the specified instruction 68 /// operand if possible, updating it in place. It returns true if it made any 69 /// change and false otherwise. 70 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 71 const APInt &DemandedMask, 72 KnownBits &Known, 73 unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 U = NewVal; 79 return true; 80 } 81 82 83 /// This function attempts to replace V with a simpler value based on the 84 /// demanded bits. When this function is called, it is known that only the bits 85 /// set in DemandedMask of the result of V are ever used downstream. 86 /// Consequently, depending on the mask and V, it may be possible to replace V 87 /// with a constant or one of its operands. In such cases, this function does 88 /// the replacement and returns true. In all other cases, it returns false after 89 /// analyzing the expression and setting KnownOne and known to be one in the 90 /// expression. Known.Zero contains all the bits that are known to be zero in 91 /// the expression. These are provided to potentially allow the caller (which 92 /// might recursively be SimplifyDemandedBits itself) to simplify the 93 /// expression. 94 /// Known.One and Known.Zero always follow the invariant that: 95 /// Known.One & Known.Zero == 0. 96 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 97 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 98 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 99 /// be the same. 100 /// 101 /// This returns null if it did not change anything and it permits no 102 /// simplification. This returns V itself if it did some simplification of V's 103 /// operands based on the information about what bits are demanded. This returns 104 /// some other non-null value if it found out that V is equal to another value 105 /// in the context where the specified bits are demanded, but not for all users. 106 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 107 KnownBits &Known, unsigned Depth, 108 Instruction *CxtI) { 109 assert(V != nullptr && "Null pointer of Value???"); 110 assert(Depth <= 6 && "Limit Search Depth"); 111 uint32_t BitWidth = DemandedMask.getBitWidth(); 112 Type *VTy = V->getType(); 113 assert( 114 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 115 Known.getBitWidth() == BitWidth && 116 "Value *V, DemandedMask and Known must have same BitWidth"); 117 118 if (isa<Constant>(V)) { 119 computeKnownBits(V, Known, Depth, CxtI); 120 return nullptr; 121 } 122 123 Known.resetAll(); 124 if (DemandedMask == 0) // Not demanding any bits from V. 125 return UndefValue::get(VTy); 126 127 if (Depth == 6) // Limit search depth. 128 return nullptr; 129 130 Instruction *I = dyn_cast<Instruction>(V); 131 if (!I) { 132 computeKnownBits(V, Known, Depth, CxtI); 133 return nullptr; // Only analyze instructions. 134 } 135 136 // If there are multiple uses of this value and we aren't at the root, then 137 // we can't do any simplifications of the operands, because DemandedMask 138 // only reflects the bits demanded by *one* of the users. 139 if (Depth != 0 && !I->hasOneUse()) 140 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 141 142 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 143 144 // If this is the root being simplified, allow it to have multiple uses, 145 // just set the DemandedMask to all bits so that we can try to simplify the 146 // operands. This allows visitTruncInst (for example) to simplify the 147 // operand of a trunc without duplicating all the logic below. 148 if (Depth == 0 && !V->hasOneUse()) 149 DemandedMask.setAllBits(); 150 151 switch (I->getOpcode()) { 152 default: 153 computeKnownBits(I, Known, Depth, CxtI); 154 break; 155 case Instruction::And: { 156 // If either the LHS or the RHS are Zero, the result is zero. 157 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 158 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 159 Depth + 1)) 160 return I; 161 assert(!(RHSKnown.Zero & RHSKnown.One) && "Bits known to be one AND zero?"); 162 assert(!(LHSKnown.Zero & LHSKnown.One) && "Bits known to be one AND zero?"); 163 164 // Output known-0 are known to be clear if zero in either the LHS | RHS. 165 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 166 // Output known-1 bits are only known if set in both the LHS & RHS. 167 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 168 169 // If the client is only demanding bits that we know, return the known 170 // constant. 171 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 172 return Constant::getIntegerValue(VTy, IKnownOne); 173 174 // If all of the demanded bits are known 1 on one side, return the other. 175 // These bits cannot contribute to the result of the 'and'. 176 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 177 return I->getOperand(0); 178 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 179 return I->getOperand(1); 180 181 // If the RHS is a constant, see if we can simplify it. 182 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 183 return I; 184 185 Known.Zero = std::move(IKnownZero); 186 Known.One = std::move(IKnownOne); 187 break; 188 } 189 case Instruction::Or: { 190 // If either the LHS or the RHS are One, the result is One. 191 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 192 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 193 Depth + 1)) 194 return I; 195 assert(!(RHSKnown.Zero & RHSKnown.One) && "Bits known to be one AND zero?"); 196 assert(!(LHSKnown.Zero & LHSKnown.One) && "Bits known to be one AND zero?"); 197 198 // Output known-0 bits are only known if clear in both the LHS & RHS. 199 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 200 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 201 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 202 203 // If the client is only demanding bits that we know, return the known 204 // constant. 205 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 206 return Constant::getIntegerValue(VTy, IKnownOne); 207 208 // If all of the demanded bits are known zero on one side, return the other. 209 // These bits cannot contribute to the result of the 'or'. 210 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 211 return I->getOperand(0); 212 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 213 return I->getOperand(1); 214 215 // If the RHS is a constant, see if we can simplify it. 216 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 217 return I; 218 219 Known.Zero = std::move(IKnownZero); 220 Known.One = std::move(IKnownOne); 221 break; 222 } 223 case Instruction::Xor: { 224 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 225 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 226 return I; 227 assert(!(RHSKnown.Zero & RHSKnown.One) && "Bits known to be one AND zero?"); 228 assert(!(LHSKnown.Zero & LHSKnown.One) && "Bits known to be one AND zero?"); 229 230 // Output known-0 bits are known if clear or set in both the LHS & RHS. 231 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 232 (RHSKnown.One & LHSKnown.One); 233 // Output known-1 are known to be set if set in only one of the LHS, RHS. 234 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 235 (RHSKnown.One & LHSKnown.Zero); 236 237 // If the client is only demanding bits that we know, return the known 238 // constant. 239 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 240 return Constant::getIntegerValue(VTy, IKnownOne); 241 242 // If all of the demanded bits are known zero on one side, return the other. 243 // These bits cannot contribute to the result of the 'xor'. 244 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 245 return I->getOperand(0); 246 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 247 return I->getOperand(1); 248 249 // If all of the demanded bits are known to be zero on one side or the 250 // other, turn this into an *inclusive* or. 251 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 252 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 253 Instruction *Or = 254 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 255 I->getName()); 256 return InsertNewInstWith(Or, *I); 257 } 258 259 // If all of the demanded bits on one side are known, and all of the set 260 // bits on that side are also known to be set on the other side, turn this 261 // into an AND, as we know the bits will be cleared. 262 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 263 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 264 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 265 Constant *AndC = Constant::getIntegerValue(VTy, 266 ~RHSKnown.One & DemandedMask); 267 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 268 return InsertNewInstWith(And, *I); 269 } 270 271 // If the RHS is a constant, see if we can simplify it. 272 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 273 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 274 return I; 275 276 // If our LHS is an 'and' and if it has one use, and if any of the bits we 277 // are flipping are known to be set, then the xor is just resetting those 278 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 279 // simplifying both of them. 280 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 281 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 282 isa<ConstantInt>(I->getOperand(1)) && 283 isa<ConstantInt>(LHSInst->getOperand(1)) && 284 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 285 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 286 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 287 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 288 289 Constant *AndC = 290 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 291 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 292 InsertNewInstWith(NewAnd, *I); 293 294 Constant *XorC = 295 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 296 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 297 return InsertNewInstWith(NewXor, *I); 298 } 299 300 // Output known-0 bits are known if clear or set in both the LHS & RHS. 301 Known.Zero = std::move(IKnownZero); 302 // Output known-1 are known to be set if set in only one of the LHS, RHS. 303 Known.One = std::move(IKnownOne); 304 break; 305 } 306 case Instruction::Select: 307 // If this is a select as part of a min/max pattern, don't simplify any 308 // further in case we break the structure. 309 Value *LHS, *RHS; 310 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN) 311 return nullptr; 312 313 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 314 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 315 return I; 316 assert(!(RHSKnown.Zero & RHSKnown.One) && "Bits known to be one AND zero?"); 317 assert(!(LHSKnown.Zero & LHSKnown.One) && "Bits known to be one AND zero?"); 318 319 // If the operands are constants, see if we can simplify them. 320 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 321 ShrinkDemandedConstant(I, 2, DemandedMask)) 322 return I; 323 324 // Only known if known in both the LHS and RHS. 325 Known.One = RHSKnown.One & LHSKnown.One; 326 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 327 break; 328 case Instruction::Trunc: { 329 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); 330 DemandedMask = DemandedMask.zext(truncBf); 331 Known = Known.zext(truncBf); 332 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 333 return I; 334 DemandedMask = DemandedMask.trunc(BitWidth); 335 Known = Known.trunc(BitWidth); 336 assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); 337 break; 338 } 339 case Instruction::BitCast: 340 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 341 return nullptr; // vector->int or fp->int? 342 343 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 344 if (VectorType *SrcVTy = 345 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 346 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 347 // Don't touch a bitcast between vectors of different element counts. 348 return nullptr; 349 } else 350 // Don't touch a scalar-to-vector bitcast. 351 return nullptr; 352 } else if (I->getOperand(0)->getType()->isVectorTy()) 353 // Don't touch a vector-to-scalar bitcast. 354 return nullptr; 355 356 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 357 return I; 358 assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); 359 break; 360 case Instruction::ZExt: { 361 // Compute the bits in the result that are not present in the input. 362 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 363 364 DemandedMask = DemandedMask.trunc(SrcBitWidth); 365 Known = Known.trunc(SrcBitWidth); 366 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 367 return I; 368 DemandedMask = DemandedMask.zext(BitWidth); 369 Known = Known.zext(BitWidth); 370 assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); 371 // The top bits are known to be zero. 372 Known.Zero.setBitsFrom(SrcBitWidth); 373 break; 374 } 375 case Instruction::SExt: { 376 // Compute the bits in the result that are not present in the input. 377 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 378 379 APInt InputDemandedBits = DemandedMask & 380 APInt::getLowBitsSet(BitWidth, SrcBitWidth); 381 382 APInt NewBits(APInt::getBitsSetFrom(BitWidth, SrcBitWidth)); 383 // If any of the sign extended bits are demanded, we know that the sign 384 // bit is demanded. 385 if ((NewBits & DemandedMask) != 0) 386 InputDemandedBits.setBit(SrcBitWidth-1); 387 388 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth); 389 Known = Known.trunc(SrcBitWidth); 390 if (SimplifyDemandedBits(I, 0, InputDemandedBits, Known, Depth + 1)) 391 return I; 392 InputDemandedBits = InputDemandedBits.zext(BitWidth); 393 Known = Known.zext(BitWidth); 394 assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); 395 396 // If the sign bit of the input is known set or clear, then we know the 397 // top bits of the result. 398 399 // If the input sign bit is known zero, or if the NewBits are not demanded 400 // convert this into a zero extension. 401 if (Known.Zero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { 402 // Convert to ZExt cast 403 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 404 return InsertNewInstWith(NewCast, *I); 405 } else if (Known.One[SrcBitWidth-1]) { // Input sign bit known set 406 Known.One |= NewBits; 407 } 408 break; 409 } 410 case Instruction::Add: 411 case Instruction::Sub: { 412 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 413 /// about the high bits of the operands. 414 unsigned NLZ = DemandedMask.countLeadingZeros(); 415 if (NLZ > 0) { 416 // Right fill the mask of bits for this ADD/SUB to demand the most 417 // significant bit and all those below it. 418 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 419 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 420 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 421 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 422 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 423 // Disable the nsw and nuw flags here: We can no longer guarantee that 424 // we won't wrap after simplification. Removing the nsw/nuw flags is 425 // legal here because the top bit is not demanded. 426 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 427 BinOP.setHasNoSignedWrap(false); 428 BinOP.setHasNoUnsignedWrap(false); 429 return I; 430 } 431 432 // If we are known to be adding/subtracting zeros to every bit below 433 // the highest demanded bit, we just return the other side. 434 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 435 return I->getOperand(0); 436 // We can't do this with the LHS for subtraction. 437 if (I->getOpcode() == Instruction::Add && 438 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 439 return I->getOperand(1); 440 } 441 442 // Otherwise just hand the add/sub off to computeKnownBits to fill in 443 // the known zeros and ones. 444 computeKnownBits(V, Known, Depth, CxtI); 445 break; 446 } 447 case Instruction::Shl: { 448 const APInt *SA; 449 if (match(I->getOperand(1), m_APInt(SA))) { 450 const APInt *ShrAmt; 451 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) { 452 Instruction *Shr = cast<Instruction>(I->getOperand(0)); 453 if (Value *R = simplifyShrShlDemandedBits( 454 Shr, *ShrAmt, I, *SA, DemandedMask, Known)) 455 return R; 456 } 457 458 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 459 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 460 461 // If the shift is NUW/NSW, then it does demand the high bits. 462 ShlOperator *IOp = cast<ShlOperator>(I); 463 if (IOp->hasNoSignedWrap()) 464 DemandedMaskIn.setHighBits(ShiftAmt+1); 465 else if (IOp->hasNoUnsignedWrap()) 466 DemandedMaskIn.setHighBits(ShiftAmt); 467 468 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 469 return I; 470 assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); 471 Known.Zero <<= ShiftAmt; 472 Known.One <<= ShiftAmt; 473 // low bits known zero. 474 if (ShiftAmt) 475 Known.Zero.setLowBits(ShiftAmt); 476 } 477 break; 478 } 479 case Instruction::LShr: { 480 const APInt *SA; 481 if (match(I->getOperand(1), m_APInt(SA))) { 482 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 483 484 // Unsigned shift right. 485 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 486 487 // If the shift is exact, then it does demand the low bits (and knows that 488 // they are zero). 489 if (cast<LShrOperator>(I)->isExact()) 490 DemandedMaskIn.setLowBits(ShiftAmt); 491 492 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 493 return I; 494 assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); 495 Known.Zero.lshrInPlace(ShiftAmt); 496 Known.One.lshrInPlace(ShiftAmt); 497 if (ShiftAmt) 498 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 499 } 500 break; 501 } 502 case Instruction::AShr: { 503 // If this is an arithmetic shift right and only the low-bit is set, we can 504 // always convert this into a logical shr, even if the shift amount is 505 // variable. The low bit of the shift cannot be an input sign bit unless 506 // the shift amount is >= the size of the datatype, which is undefined. 507 if (DemandedMask == 1) { 508 // Perform the logical shift right. 509 Instruction *NewVal = BinaryOperator::CreateLShr( 510 I->getOperand(0), I->getOperand(1), I->getName()); 511 return InsertNewInstWith(NewVal, *I); 512 } 513 514 // If the sign bit is the only bit demanded by this ashr, then there is no 515 // need to do it, the shift doesn't change the high bit. 516 if (DemandedMask.isSignMask()) 517 return I->getOperand(0); 518 519 const APInt *SA; 520 if (match(I->getOperand(1), m_APInt(SA))) { 521 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 522 523 // Signed shift right. 524 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 525 // If any of the high bits are demanded, we should set the sign bit as 526 // demanded. 527 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 528 DemandedMaskIn.setSignBit(); 529 530 // If the shift is exact, then it does demand the low bits (and knows that 531 // they are zero). 532 if (cast<AShrOperator>(I)->isExact()) 533 DemandedMaskIn.setLowBits(ShiftAmt); 534 535 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 536 return I; 537 538 assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); 539 // Compute the new bits that are at the top now. 540 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 541 Known.Zero.lshrInPlace(ShiftAmt); 542 Known.One.lshrInPlace(ShiftAmt); 543 544 // Handle the sign bits. 545 APInt SignMask(APInt::getSignMask(BitWidth)); 546 // Adjust to where it is now in the mask. 547 SignMask.lshrInPlace(ShiftAmt); 548 549 // If the input sign bit is known to be zero, or if none of the top bits 550 // are demanded, turn this into an unsigned shift right. 551 if (BitWidth <= ShiftAmt || Known.Zero[BitWidth-ShiftAmt-1] || 552 !DemandedMask.intersects(HighBits)) { 553 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 554 I->getOperand(1)); 555 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 556 return InsertNewInstWith(LShr, *I); 557 } else if (Known.One.intersects(SignMask)) { // New bits are known one. 558 Known.One |= HighBits; 559 } 560 } 561 break; 562 } 563 case Instruction::SRem: 564 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 565 // X % -1 demands all the bits because we don't want to introduce 566 // INT_MIN % -1 (== undef) by accident. 567 if (Rem->isAllOnesValue()) 568 break; 569 APInt RA = Rem->getValue().abs(); 570 if (RA.isPowerOf2()) { 571 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 572 return I->getOperand(0); 573 574 APInt LowBits = RA - 1; 575 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 576 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 577 return I; 578 579 // The low bits of LHS are unchanged by the srem. 580 Known.Zero = LHSKnown.Zero & LowBits; 581 Known.One = LHSKnown.One & LowBits; 582 583 // If LHS is non-negative or has all low bits zero, then the upper bits 584 // are all zero. 585 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 586 Known.Zero |= ~LowBits; 587 588 // If LHS is negative and not all low bits are zero, then the upper bits 589 // are all one. 590 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 591 Known.One |= ~LowBits; 592 593 assert(!(Known.Zero & Known.One) && "Bits known to be one AND zero?"); 594 break; 595 } 596 } 597 598 // The sign bit is the LHS's sign bit, except when the result of the 599 // remainder is zero. 600 if (DemandedMask.isSignBitSet()) { 601 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 602 // If it's known zero, our sign bit is also zero. 603 if (LHSKnown.isNonNegative()) 604 Known.makeNonNegative(); 605 } 606 break; 607 case Instruction::URem: { 608 KnownBits Known2(BitWidth); 609 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 610 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 611 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 612 return I; 613 614 unsigned Leaders = Known2.Zero.countLeadingOnes(); 615 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 616 break; 617 } 618 case Instruction::Call: 619 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 620 switch (II->getIntrinsicID()) { 621 default: break; 622 case Intrinsic::bswap: { 623 // If the only bits demanded come from one byte of the bswap result, 624 // just shift the input byte into position to eliminate the bswap. 625 unsigned NLZ = DemandedMask.countLeadingZeros(); 626 unsigned NTZ = DemandedMask.countTrailingZeros(); 627 628 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 629 // we need all the bits down to bit 8. Likewise, round NLZ. If we 630 // have 14 leading zeros, round to 8. 631 NLZ &= ~7; 632 NTZ &= ~7; 633 // If we need exactly one byte, we can do this transformation. 634 if (BitWidth-NLZ-NTZ == 8) { 635 unsigned ResultBit = NTZ; 636 unsigned InputBit = BitWidth-NTZ-8; 637 638 // Replace this with either a left or right shift to get the byte into 639 // the right place. 640 Instruction *NewVal; 641 if (InputBit > ResultBit) 642 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 643 ConstantInt::get(I->getType(), InputBit-ResultBit)); 644 else 645 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 646 ConstantInt::get(I->getType(), ResultBit-InputBit)); 647 NewVal->takeName(I); 648 return InsertNewInstWith(NewVal, *I); 649 } 650 651 // TODO: Could compute known zero/one bits based on the input. 652 break; 653 } 654 case Intrinsic::x86_mmx_pmovmskb: 655 case Intrinsic::x86_sse_movmsk_ps: 656 case Intrinsic::x86_sse2_movmsk_pd: 657 case Intrinsic::x86_sse2_pmovmskb_128: 658 case Intrinsic::x86_avx_movmsk_ps_256: 659 case Intrinsic::x86_avx_movmsk_pd_256: 660 case Intrinsic::x86_avx2_pmovmskb: { 661 // MOVMSK copies the vector elements' sign bits to the low bits 662 // and zeros the high bits. 663 unsigned ArgWidth; 664 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 665 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 666 } else { 667 auto Arg = II->getArgOperand(0); 668 auto ArgType = cast<VectorType>(Arg->getType()); 669 ArgWidth = ArgType->getNumElements(); 670 } 671 672 // If we don't need any of low bits then return zero, 673 // we know that DemandedMask is non-zero already. 674 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 675 if (DemandedElts == 0) 676 return ConstantInt::getNullValue(VTy); 677 678 // We know that the upper bits are set to zero. 679 Known.Zero.setBitsFrom(ArgWidth); 680 return nullptr; 681 } 682 case Intrinsic::x86_sse42_crc32_64_64: 683 Known.Zero.setBitsFrom(32); 684 return nullptr; 685 } 686 } 687 computeKnownBits(V, Known, Depth, CxtI); 688 break; 689 } 690 691 // If the client is only demanding bits that we know, return the known 692 // constant. 693 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 694 return Constant::getIntegerValue(VTy, Known.One); 695 return nullptr; 696 } 697 698 /// Helper routine of SimplifyDemandedUseBits. It computes Known 699 /// bits. It also tries to handle simplifications that can be done based on 700 /// DemandedMask, but without modifying the Instruction. 701 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 702 const APInt &DemandedMask, 703 KnownBits &Known, 704 unsigned Depth, 705 Instruction *CxtI) { 706 unsigned BitWidth = DemandedMask.getBitWidth(); 707 Type *ITy = I->getType(); 708 709 KnownBits LHSKnown(BitWidth); 710 KnownBits RHSKnown(BitWidth); 711 712 // Despite the fact that we can't simplify this instruction in all User's 713 // context, we can at least compute the known bits, and we can 714 // do simplifications that apply to *just* the one user if we know that 715 // this instruction has a simpler value in that context. 716 switch (I->getOpcode()) { 717 case Instruction::And: { 718 // If either the LHS or the RHS are Zero, the result is zero. 719 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 720 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 721 CxtI); 722 723 // Output known-0 are known to be clear if zero in either the LHS | RHS. 724 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 725 // Output known-1 bits are only known if set in both the LHS & RHS. 726 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 727 728 // If the client is only demanding bits that we know, return the known 729 // constant. 730 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 731 return Constant::getIntegerValue(ITy, IKnownOne); 732 733 // If all of the demanded bits are known 1 on one side, return the other. 734 // These bits cannot contribute to the result of the 'and' in this 735 // context. 736 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 737 return I->getOperand(0); 738 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 739 return I->getOperand(1); 740 741 Known.Zero = std::move(IKnownZero); 742 Known.One = std::move(IKnownOne); 743 break; 744 } 745 case Instruction::Or: { 746 // We can simplify (X|Y) -> X or Y in the user's context if we know that 747 // only bits from X or Y are demanded. 748 749 // If either the LHS or the RHS are One, the result is One. 750 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 751 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 752 CxtI); 753 754 // Output known-0 bits are only known if clear in both the LHS & RHS. 755 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 756 // Output known-1 are known to be set if set in either the LHS | RHS. 757 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 758 759 // If the client is only demanding bits that we know, return the known 760 // constant. 761 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 762 return Constant::getIntegerValue(ITy, IKnownOne); 763 764 // If all of the demanded bits are known zero on one side, return the 765 // other. These bits cannot contribute to the result of the 'or' in this 766 // context. 767 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 768 return I->getOperand(0); 769 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 770 return I->getOperand(1); 771 772 Known.Zero = std::move(IKnownZero); 773 Known.One = std::move(IKnownOne); 774 break; 775 } 776 case Instruction::Xor: { 777 // We can simplify (X^Y) -> X or Y in the user's context if we know that 778 // only bits from X or Y are demanded. 779 780 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 781 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 782 CxtI); 783 784 // Output known-0 bits are known if clear or set in both the LHS & RHS. 785 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 786 (RHSKnown.One & LHSKnown.One); 787 // Output known-1 are known to be set if set in only one of the LHS, RHS. 788 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 789 (RHSKnown.One & LHSKnown.Zero); 790 791 // If the client is only demanding bits that we know, return the known 792 // constant. 793 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 794 return Constant::getIntegerValue(ITy, IKnownOne); 795 796 // If all of the demanded bits are known zero on one side, return the 797 // other. 798 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 799 return I->getOperand(0); 800 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 801 return I->getOperand(1); 802 803 // Output known-0 bits are known if clear or set in both the LHS & RHS. 804 Known.Zero = std::move(IKnownZero); 805 // Output known-1 are known to be set if set in only one of the LHS, RHS. 806 Known.One = std::move(IKnownOne); 807 break; 808 } 809 default: 810 // Compute the Known bits to simplify things downstream. 811 computeKnownBits(I, Known, Depth, CxtI); 812 813 // If this user is only demanding bits that we know, return the known 814 // constant. 815 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 816 return Constant::getIntegerValue(ITy, Known.One); 817 818 break; 819 } 820 821 return nullptr; 822 } 823 824 825 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 826 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 827 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 828 /// of "C2-C1". 829 /// 830 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 831 /// ..., bn}, without considering the specific value X is holding. 832 /// This transformation is legal iff one of following conditions is hold: 833 /// 1) All the bit in S are 0, in this case E1 == E2. 834 /// 2) We don't care those bits in S, per the input DemandedMask. 835 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 836 /// rest bits. 837 /// 838 /// Currently we only test condition 2). 839 /// 840 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 841 /// not successful. 842 Value * 843 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 844 Instruction *Shl, const APInt &ShlOp1, 845 const APInt &DemandedMask, 846 KnownBits &Known) { 847 if (!ShlOp1 || !ShrOp1) 848 return nullptr; // No-op. 849 850 Value *VarX = Shr->getOperand(0); 851 Type *Ty = VarX->getType(); 852 unsigned BitWidth = Ty->getScalarSizeInBits(); 853 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 854 return nullptr; // Undef. 855 856 unsigned ShlAmt = ShlOp1.getZExtValue(); 857 unsigned ShrAmt = ShrOp1.getZExtValue(); 858 859 Known.One.clearAllBits(); 860 Known.Zero.setLowBits(ShlAmt - 1); 861 Known.Zero &= DemandedMask; 862 863 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 864 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 865 866 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 867 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 868 (BitMask1.ashr(ShrAmt) << ShlAmt); 869 870 if (ShrAmt <= ShlAmt) { 871 BitMask2 <<= (ShlAmt - ShrAmt); 872 } else { 873 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 874 BitMask2.ashr(ShrAmt - ShlAmt); 875 } 876 877 // Check if condition-2 (see the comment to this function) is satified. 878 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 879 if (ShrAmt == ShlAmt) 880 return VarX; 881 882 if (!Shr->hasOneUse()) 883 return nullptr; 884 885 BinaryOperator *New; 886 if (ShrAmt < ShlAmt) { 887 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 888 New = BinaryOperator::CreateShl(VarX, Amt); 889 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 890 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 891 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 892 } else { 893 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 894 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 895 BinaryOperator::CreateAShr(VarX, Amt); 896 if (cast<BinaryOperator>(Shr)->isExact()) 897 New->setIsExact(true); 898 } 899 900 return InsertNewInstWith(New, *Shl); 901 } 902 903 return nullptr; 904 } 905 906 /// The specified value produces a vector with any number of elements. 907 /// DemandedElts contains the set of elements that are actually used by the 908 /// caller. This method analyzes which elements of the operand are undef and 909 /// returns that information in UndefElts. 910 /// 911 /// If the information about demanded elements can be used to simplify the 912 /// operation, the operation is simplified, then the resultant value is 913 /// returned. This returns null if no change was made. 914 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 915 APInt &UndefElts, 916 unsigned Depth) { 917 unsigned VWidth = V->getType()->getVectorNumElements(); 918 APInt EltMask(APInt::getAllOnesValue(VWidth)); 919 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 920 921 if (isa<UndefValue>(V)) { 922 // If the entire vector is undefined, just return this info. 923 UndefElts = EltMask; 924 return nullptr; 925 } 926 927 if (DemandedElts == 0) { // If nothing is demanded, provide undef. 928 UndefElts = EltMask; 929 return UndefValue::get(V->getType()); 930 } 931 932 UndefElts = 0; 933 934 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. 935 if (Constant *C = dyn_cast<Constant>(V)) { 936 // Check if this is identity. If so, return 0 since we are not simplifying 937 // anything. 938 if (DemandedElts.isAllOnesValue()) 939 return nullptr; 940 941 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 942 Constant *Undef = UndefValue::get(EltTy); 943 944 SmallVector<Constant*, 16> Elts; 945 for (unsigned i = 0; i != VWidth; ++i) { 946 if (!DemandedElts[i]) { // If not demanded, set to undef. 947 Elts.push_back(Undef); 948 UndefElts.setBit(i); 949 continue; 950 } 951 952 Constant *Elt = C->getAggregateElement(i); 953 if (!Elt) return nullptr; 954 955 if (isa<UndefValue>(Elt)) { // Already undef. 956 Elts.push_back(Undef); 957 UndefElts.setBit(i); 958 } else { // Otherwise, defined. 959 Elts.push_back(Elt); 960 } 961 } 962 963 // If we changed the constant, return it. 964 Constant *NewCV = ConstantVector::get(Elts); 965 return NewCV != C ? NewCV : nullptr; 966 } 967 968 // Limit search depth. 969 if (Depth == 10) 970 return nullptr; 971 972 // If multiple users are using the root value, proceed with 973 // simplification conservatively assuming that all elements 974 // are needed. 975 if (!V->hasOneUse()) { 976 // Quit if we find multiple users of a non-root value though. 977 // They'll be handled when it's their turn to be visited by 978 // the main instcombine process. 979 if (Depth != 0) 980 // TODO: Just compute the UndefElts information recursively. 981 return nullptr; 982 983 // Conservatively assume that all elements are needed. 984 DemandedElts = EltMask; 985 } 986 987 Instruction *I = dyn_cast<Instruction>(V); 988 if (!I) return nullptr; // Only analyze instructions. 989 990 bool MadeChange = false; 991 APInt UndefElts2(VWidth, 0); 992 APInt UndefElts3(VWidth, 0); 993 Value *TmpV; 994 switch (I->getOpcode()) { 995 default: break; 996 997 case Instruction::InsertElement: { 998 // If this is a variable index, we don't know which element it overwrites. 999 // demand exactly the same input as we produce. 1000 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1001 if (!Idx) { 1002 // Note that we can't propagate undef elt info, because we don't know 1003 // which elt is getting updated. 1004 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1005 UndefElts2, Depth + 1); 1006 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1007 break; 1008 } 1009 1010 // If this is inserting an element that isn't demanded, remove this 1011 // insertelement. 1012 unsigned IdxNo = Idx->getZExtValue(); 1013 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1014 Worklist.Add(I); 1015 return I->getOperand(0); 1016 } 1017 1018 // Otherwise, the element inserted overwrites whatever was there, so the 1019 // input demanded set is simpler than the output set. 1020 APInt DemandedElts2 = DemandedElts; 1021 DemandedElts2.clearBit(IdxNo); 1022 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, 1023 UndefElts, Depth + 1); 1024 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1025 1026 // The inserted element is defined. 1027 UndefElts.clearBit(IdxNo); 1028 break; 1029 } 1030 case Instruction::ShuffleVector: { 1031 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1032 unsigned LHSVWidth = 1033 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1034 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1035 for (unsigned i = 0; i < VWidth; i++) { 1036 if (DemandedElts[i]) { 1037 unsigned MaskVal = Shuffle->getMaskValue(i); 1038 if (MaskVal != -1u) { 1039 assert(MaskVal < LHSVWidth * 2 && 1040 "shufflevector mask index out of range!"); 1041 if (MaskVal < LHSVWidth) 1042 LeftDemanded.setBit(MaskVal); 1043 else 1044 RightDemanded.setBit(MaskVal - LHSVWidth); 1045 } 1046 } 1047 } 1048 1049 APInt LHSUndefElts(LHSVWidth, 0); 1050 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, 1051 LHSUndefElts, Depth + 1); 1052 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1053 1054 APInt RHSUndefElts(LHSVWidth, 0); 1055 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, 1056 RHSUndefElts, Depth + 1); 1057 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1058 1059 bool NewUndefElts = false; 1060 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1061 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1062 bool LHSUniform = true; 1063 bool RHSUniform = true; 1064 for (unsigned i = 0; i < VWidth; i++) { 1065 unsigned MaskVal = Shuffle->getMaskValue(i); 1066 if (MaskVal == -1u) { 1067 UndefElts.setBit(i); 1068 } else if (!DemandedElts[i]) { 1069 NewUndefElts = true; 1070 UndefElts.setBit(i); 1071 } else if (MaskVal < LHSVWidth) { 1072 if (LHSUndefElts[MaskVal]) { 1073 NewUndefElts = true; 1074 UndefElts.setBit(i); 1075 } else { 1076 LHSIdx = LHSIdx == -1u ? i : LHSVWidth; 1077 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth; 1078 LHSUniform = LHSUniform && (MaskVal == i); 1079 } 1080 } else { 1081 if (RHSUndefElts[MaskVal - LHSVWidth]) { 1082 NewUndefElts = true; 1083 UndefElts.setBit(i); 1084 } else { 1085 RHSIdx = RHSIdx == -1u ? i : LHSVWidth; 1086 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth; 1087 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i); 1088 } 1089 } 1090 } 1091 1092 // Try to transform shuffle with constant vector and single element from 1093 // this constant vector to single insertelement instruction. 1094 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1095 // insertelement V, C[ci], ci-n 1096 if (LHSVWidth == Shuffle->getType()->getNumElements()) { 1097 Value *Op = nullptr; 1098 Constant *Value = nullptr; 1099 unsigned Idx = -1u; 1100 1101 // Find constant vector with the single element in shuffle (LHS or RHS). 1102 if (LHSIdx < LHSVWidth && RHSUniform) { 1103 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1104 Op = Shuffle->getOperand(1); 1105 Value = CV->getOperand(LHSValIdx); 1106 Idx = LHSIdx; 1107 } 1108 } 1109 if (RHSIdx < LHSVWidth && LHSUniform) { 1110 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1111 Op = Shuffle->getOperand(0); 1112 Value = CV->getOperand(RHSValIdx); 1113 Idx = RHSIdx; 1114 } 1115 } 1116 // Found constant vector with single element - convert to insertelement. 1117 if (Op && Value) { 1118 Instruction *New = InsertElementInst::Create( 1119 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1120 Shuffle->getName()); 1121 InsertNewInstWith(New, *Shuffle); 1122 return New; 1123 } 1124 } 1125 if (NewUndefElts) { 1126 // Add additional discovered undefs. 1127 SmallVector<Constant*, 16> Elts; 1128 for (unsigned i = 0; i < VWidth; ++i) { 1129 if (UndefElts[i]) 1130 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1131 else 1132 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1133 Shuffle->getMaskValue(i))); 1134 } 1135 I->setOperand(2, ConstantVector::get(Elts)); 1136 MadeChange = true; 1137 } 1138 break; 1139 } 1140 case Instruction::Select: { 1141 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); 1142 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) { 1143 for (unsigned i = 0; i < VWidth; i++) { 1144 Constant *CElt = CV->getAggregateElement(i); 1145 // Method isNullValue always returns false when called on a 1146 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to 1147 // to avoid propagating incorrect information. 1148 if (isa<ConstantExpr>(CElt)) 1149 continue; 1150 if (CElt->isNullValue()) 1151 LeftDemanded.clearBit(i); 1152 else 1153 RightDemanded.clearBit(i); 1154 } 1155 } 1156 1157 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts, 1158 Depth + 1); 1159 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1160 1161 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, 1162 UndefElts2, Depth + 1); 1163 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } 1164 1165 // Output elements are undefined if both are undefined. 1166 UndefElts &= UndefElts2; 1167 break; 1168 } 1169 case Instruction::BitCast: { 1170 // Vector->vector casts only. 1171 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1172 if (!VTy) break; 1173 unsigned InVWidth = VTy->getNumElements(); 1174 APInt InputDemandedElts(InVWidth, 0); 1175 UndefElts2 = APInt(InVWidth, 0); 1176 unsigned Ratio; 1177 1178 if (VWidth == InVWidth) { 1179 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1180 // elements as are demanded of us. 1181 Ratio = 1; 1182 InputDemandedElts = DemandedElts; 1183 } else if ((VWidth % InVWidth) == 0) { 1184 // If the number of elements in the output is a multiple of the number of 1185 // elements in the input then an input element is live if any of the 1186 // corresponding output elements are live. 1187 Ratio = VWidth / InVWidth; 1188 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1189 if (DemandedElts[OutIdx]) 1190 InputDemandedElts.setBit(OutIdx / Ratio); 1191 } else if ((InVWidth % VWidth) == 0) { 1192 // If the number of elements in the input is a multiple of the number of 1193 // elements in the output then an input element is live if the 1194 // corresponding output element is live. 1195 Ratio = InVWidth / VWidth; 1196 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1197 if (DemandedElts[InIdx / Ratio]) 1198 InputDemandedElts.setBit(InIdx); 1199 } else { 1200 // Unsupported so far. 1201 break; 1202 } 1203 1204 // div/rem demand all inputs, because they don't want divide by zero. 1205 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, 1206 UndefElts2, Depth + 1); 1207 if (TmpV) { 1208 I->setOperand(0, TmpV); 1209 MadeChange = true; 1210 } 1211 1212 if (VWidth == InVWidth) { 1213 UndefElts = UndefElts2; 1214 } else if ((VWidth % InVWidth) == 0) { 1215 // If the number of elements in the output is a multiple of the number of 1216 // elements in the input then an output element is undef if the 1217 // corresponding input element is undef. 1218 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1219 if (UndefElts2[OutIdx / Ratio]) 1220 UndefElts.setBit(OutIdx); 1221 } else if ((InVWidth % VWidth) == 0) { 1222 // If the number of elements in the input is a multiple of the number of 1223 // elements in the output then an output element is undef if all of the 1224 // corresponding input elements are undef. 1225 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1226 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1227 if (SubUndef.countPopulation() == Ratio) 1228 UndefElts.setBit(OutIdx); 1229 } 1230 } else { 1231 llvm_unreachable("Unimp"); 1232 } 1233 break; 1234 } 1235 case Instruction::And: 1236 case Instruction::Or: 1237 case Instruction::Xor: 1238 case Instruction::Add: 1239 case Instruction::Sub: 1240 case Instruction::Mul: 1241 // div/rem demand all inputs, because they don't want divide by zero. 1242 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1243 Depth + 1); 1244 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1245 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, 1246 UndefElts2, Depth + 1); 1247 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1248 1249 // Output elements are undefined if both are undefined. Consider things 1250 // like undef&0. The result is known zero, not undef. 1251 UndefElts &= UndefElts2; 1252 break; 1253 case Instruction::FPTrunc: 1254 case Instruction::FPExt: 1255 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1256 Depth + 1); 1257 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1258 break; 1259 1260 case Instruction::Call: { 1261 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1262 if (!II) break; 1263 switch (II->getIntrinsicID()) { 1264 default: break; 1265 1266 case Intrinsic::x86_xop_vfrcz_ss: 1267 case Intrinsic::x86_xop_vfrcz_sd: 1268 // The instructions for these intrinsics are speced to zero upper bits not 1269 // pass them through like other scalar intrinsics. So we shouldn't just 1270 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1271 // Instead we should return a zero vector. 1272 if (!DemandedElts[0]) { 1273 Worklist.Add(II); 1274 return ConstantAggregateZero::get(II->getType()); 1275 } 1276 1277 // Only the lower element is used. 1278 DemandedElts = 1; 1279 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1280 UndefElts, Depth + 1); 1281 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1282 1283 // Only the lower element is undefined. The high elements are zero. 1284 UndefElts = UndefElts[0]; 1285 break; 1286 1287 // Unary scalar-as-vector operations that work column-wise. 1288 case Intrinsic::x86_sse_rcp_ss: 1289 case Intrinsic::x86_sse_rsqrt_ss: 1290 case Intrinsic::x86_sse_sqrt_ss: 1291 case Intrinsic::x86_sse2_sqrt_sd: 1292 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1293 UndefElts, Depth + 1); 1294 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1295 1296 // If lowest element of a scalar op isn't used then use Arg0. 1297 if (!DemandedElts[0]) { 1298 Worklist.Add(II); 1299 return II->getArgOperand(0); 1300 } 1301 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1302 // checks). 1303 break; 1304 1305 // Binary scalar-as-vector operations that work column-wise. The high 1306 // elements come from operand 0. The low element is a function of both 1307 // operands. 1308 case Intrinsic::x86_sse_min_ss: 1309 case Intrinsic::x86_sse_max_ss: 1310 case Intrinsic::x86_sse_cmp_ss: 1311 case Intrinsic::x86_sse2_min_sd: 1312 case Intrinsic::x86_sse2_max_sd: 1313 case Intrinsic::x86_sse2_cmp_sd: { 1314 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1315 UndefElts, Depth + 1); 1316 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1317 1318 // If lowest element of a scalar op isn't used then use Arg0. 1319 if (!DemandedElts[0]) { 1320 Worklist.Add(II); 1321 return II->getArgOperand(0); 1322 } 1323 1324 // Only lower element is used for operand 1. 1325 DemandedElts = 1; 1326 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1327 UndefElts2, Depth + 1); 1328 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1329 1330 // Lower element is undefined if both lower elements are undefined. 1331 // Consider things like undef&0. The result is known zero, not undef. 1332 if (!UndefElts2[0]) 1333 UndefElts.clearBit(0); 1334 1335 break; 1336 } 1337 1338 // Binary scalar-as-vector operations that work column-wise. The high 1339 // elements come from operand 0 and the low element comes from operand 1. 1340 case Intrinsic::x86_sse41_round_ss: 1341 case Intrinsic::x86_sse41_round_sd: { 1342 // Don't use the low element of operand 0. 1343 APInt DemandedElts2 = DemandedElts; 1344 DemandedElts2.clearBit(0); 1345 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2, 1346 UndefElts, Depth + 1); 1347 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1348 1349 // If lowest element of a scalar op isn't used then use Arg0. 1350 if (!DemandedElts[0]) { 1351 Worklist.Add(II); 1352 return II->getArgOperand(0); 1353 } 1354 1355 // Only lower element is used for operand 1. 1356 DemandedElts = 1; 1357 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1358 UndefElts2, Depth + 1); 1359 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1360 1361 // Take the high undef elements from operand 0 and take the lower element 1362 // from operand 1. 1363 UndefElts.clearBit(0); 1364 UndefElts |= UndefElts2[0]; 1365 break; 1366 } 1367 1368 // Three input scalar-as-vector operations that work column-wise. The high 1369 // elements come from operand 0 and the low element is a function of all 1370 // three inputs. 1371 case Intrinsic::x86_avx512_mask_add_ss_round: 1372 case Intrinsic::x86_avx512_mask_div_ss_round: 1373 case Intrinsic::x86_avx512_mask_mul_ss_round: 1374 case Intrinsic::x86_avx512_mask_sub_ss_round: 1375 case Intrinsic::x86_avx512_mask_max_ss_round: 1376 case Intrinsic::x86_avx512_mask_min_ss_round: 1377 case Intrinsic::x86_avx512_mask_add_sd_round: 1378 case Intrinsic::x86_avx512_mask_div_sd_round: 1379 case Intrinsic::x86_avx512_mask_mul_sd_round: 1380 case Intrinsic::x86_avx512_mask_sub_sd_round: 1381 case Intrinsic::x86_avx512_mask_max_sd_round: 1382 case Intrinsic::x86_avx512_mask_min_sd_round: 1383 case Intrinsic::x86_fma_vfmadd_ss: 1384 case Intrinsic::x86_fma_vfmsub_ss: 1385 case Intrinsic::x86_fma_vfnmadd_ss: 1386 case Intrinsic::x86_fma_vfnmsub_ss: 1387 case Intrinsic::x86_fma_vfmadd_sd: 1388 case Intrinsic::x86_fma_vfmsub_sd: 1389 case Intrinsic::x86_fma_vfnmadd_sd: 1390 case Intrinsic::x86_fma_vfnmsub_sd: 1391 case Intrinsic::x86_avx512_mask_vfmadd_ss: 1392 case Intrinsic::x86_avx512_mask_vfmadd_sd: 1393 case Intrinsic::x86_avx512_maskz_vfmadd_ss: 1394 case Intrinsic::x86_avx512_maskz_vfmadd_sd: 1395 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1396 UndefElts, Depth + 1); 1397 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1398 1399 // If lowest element of a scalar op isn't used then use Arg0. 1400 if (!DemandedElts[0]) { 1401 Worklist.Add(II); 1402 return II->getArgOperand(0); 1403 } 1404 1405 // Only lower element is used for operand 1 and 2. 1406 DemandedElts = 1; 1407 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1408 UndefElts2, Depth + 1); 1409 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1410 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, 1411 UndefElts3, Depth + 1); 1412 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } 1413 1414 // Lower element is undefined if all three lower elements are undefined. 1415 // Consider things like undef&0. The result is known zero, not undef. 1416 if (!UndefElts2[0] || !UndefElts3[0]) 1417 UndefElts.clearBit(0); 1418 1419 break; 1420 1421 case Intrinsic::x86_avx512_mask3_vfmadd_ss: 1422 case Intrinsic::x86_avx512_mask3_vfmadd_sd: 1423 case Intrinsic::x86_avx512_mask3_vfmsub_ss: 1424 case Intrinsic::x86_avx512_mask3_vfmsub_sd: 1425 case Intrinsic::x86_avx512_mask3_vfnmsub_ss: 1426 case Intrinsic::x86_avx512_mask3_vfnmsub_sd: 1427 // These intrinsics get the passthru bits from operand 2. 1428 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, 1429 UndefElts, Depth + 1); 1430 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } 1431 1432 // If lowest element of a scalar op isn't used then use Arg2. 1433 if (!DemandedElts[0]) { 1434 Worklist.Add(II); 1435 return II->getArgOperand(2); 1436 } 1437 1438 // Only lower element is used for operand 0 and 1. 1439 DemandedElts = 1; 1440 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1441 UndefElts2, Depth + 1); 1442 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1443 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1444 UndefElts3, Depth + 1); 1445 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1446 1447 // Lower element is undefined if all three lower elements are undefined. 1448 // Consider things like undef&0. The result is known zero, not undef. 1449 if (!UndefElts2[0] || !UndefElts3[0]) 1450 UndefElts.clearBit(0); 1451 1452 break; 1453 1454 case Intrinsic::x86_sse2_pmulu_dq: 1455 case Intrinsic::x86_sse41_pmuldq: 1456 case Intrinsic::x86_avx2_pmul_dq: 1457 case Intrinsic::x86_avx2_pmulu_dq: 1458 case Intrinsic::x86_avx512_pmul_dq_512: 1459 case Intrinsic::x86_avx512_pmulu_dq_512: { 1460 Value *Op0 = II->getArgOperand(0); 1461 Value *Op1 = II->getArgOperand(1); 1462 unsigned InnerVWidth = Op0->getType()->getVectorNumElements(); 1463 assert((VWidth * 2) == InnerVWidth && "Unexpected input size"); 1464 1465 APInt InnerDemandedElts(InnerVWidth, 0); 1466 for (unsigned i = 0; i != VWidth; ++i) 1467 if (DemandedElts[i]) 1468 InnerDemandedElts.setBit(i * 2); 1469 1470 UndefElts2 = APInt(InnerVWidth, 0); 1471 TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2, 1472 Depth + 1); 1473 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1474 1475 UndefElts3 = APInt(InnerVWidth, 0); 1476 TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3, 1477 Depth + 1); 1478 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1479 1480 break; 1481 } 1482 1483 case Intrinsic::x86_sse2_packssdw_128: 1484 case Intrinsic::x86_sse2_packsswb_128: 1485 case Intrinsic::x86_sse2_packuswb_128: 1486 case Intrinsic::x86_sse41_packusdw: 1487 case Intrinsic::x86_avx2_packssdw: 1488 case Intrinsic::x86_avx2_packsswb: 1489 case Intrinsic::x86_avx2_packusdw: 1490 case Intrinsic::x86_avx2_packuswb: 1491 case Intrinsic::x86_avx512_packssdw_512: 1492 case Intrinsic::x86_avx512_packsswb_512: 1493 case Intrinsic::x86_avx512_packusdw_512: 1494 case Intrinsic::x86_avx512_packuswb_512: { 1495 auto *Ty0 = II->getArgOperand(0)->getType(); 1496 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1497 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1498 1499 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1500 unsigned VWidthPerLane = VWidth / NumLanes; 1501 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1502 1503 // Per lane, pack the elements of the first input and then the second. 1504 // e.g. 1505 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1506 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1507 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1508 APInt OpDemandedElts(InnerVWidth, 0); 1509 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1510 unsigned LaneIdx = Lane * VWidthPerLane; 1511 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1512 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1513 if (DemandedElts[Idx]) 1514 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1515 } 1516 } 1517 1518 // Demand elements from the operand. 1519 auto *Op = II->getArgOperand(OpNum); 1520 APInt OpUndefElts(InnerVWidth, 0); 1521 TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts, 1522 Depth + 1); 1523 if (TmpV) { 1524 II->setArgOperand(OpNum, TmpV); 1525 MadeChange = true; 1526 } 1527 1528 // Pack the operand's UNDEF elements, one lane at a time. 1529 OpUndefElts = OpUndefElts.zext(VWidth); 1530 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1531 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1532 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1533 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1534 UndefElts |= LaneElts; 1535 } 1536 } 1537 break; 1538 } 1539 1540 // PSHUFB 1541 case Intrinsic::x86_ssse3_pshuf_b_128: 1542 case Intrinsic::x86_avx2_pshuf_b: 1543 case Intrinsic::x86_avx512_pshuf_b_512: 1544 // PERMILVAR 1545 case Intrinsic::x86_avx_vpermilvar_ps: 1546 case Intrinsic::x86_avx_vpermilvar_ps_256: 1547 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1548 case Intrinsic::x86_avx_vpermilvar_pd: 1549 case Intrinsic::x86_avx_vpermilvar_pd_256: 1550 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1551 // PERMV 1552 case Intrinsic::x86_avx2_permd: 1553 case Intrinsic::x86_avx2_permps: { 1554 Value *Op1 = II->getArgOperand(1); 1555 TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts, 1556 Depth + 1); 1557 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1558 break; 1559 } 1560 1561 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1562 // in an undefined state. 1563 case Intrinsic::x86_sse4a_extrq: 1564 case Intrinsic::x86_sse4a_extrqi: 1565 case Intrinsic::x86_sse4a_insertq: 1566 case Intrinsic::x86_sse4a_insertqi: 1567 UndefElts.setHighBits(VWidth / 2); 1568 break; 1569 case Intrinsic::amdgcn_buffer_load: 1570 case Intrinsic::amdgcn_buffer_load_format: 1571 case Intrinsic::amdgcn_image_sample: 1572 case Intrinsic::amdgcn_image_sample_cl: 1573 case Intrinsic::amdgcn_image_sample_d: 1574 case Intrinsic::amdgcn_image_sample_d_cl: 1575 case Intrinsic::amdgcn_image_sample_l: 1576 case Intrinsic::amdgcn_image_sample_b: 1577 case Intrinsic::amdgcn_image_sample_b_cl: 1578 case Intrinsic::amdgcn_image_sample_lz: 1579 case Intrinsic::amdgcn_image_sample_cd: 1580 case Intrinsic::amdgcn_image_sample_cd_cl: 1581 1582 case Intrinsic::amdgcn_image_sample_c: 1583 case Intrinsic::amdgcn_image_sample_c_cl: 1584 case Intrinsic::amdgcn_image_sample_c_d: 1585 case Intrinsic::amdgcn_image_sample_c_d_cl: 1586 case Intrinsic::amdgcn_image_sample_c_l: 1587 case Intrinsic::amdgcn_image_sample_c_b: 1588 case Intrinsic::amdgcn_image_sample_c_b_cl: 1589 case Intrinsic::amdgcn_image_sample_c_lz: 1590 case Intrinsic::amdgcn_image_sample_c_cd: 1591 case Intrinsic::amdgcn_image_sample_c_cd_cl: 1592 1593 case Intrinsic::amdgcn_image_sample_o: 1594 case Intrinsic::amdgcn_image_sample_cl_o: 1595 case Intrinsic::amdgcn_image_sample_d_o: 1596 case Intrinsic::amdgcn_image_sample_d_cl_o: 1597 case Intrinsic::amdgcn_image_sample_l_o: 1598 case Intrinsic::amdgcn_image_sample_b_o: 1599 case Intrinsic::amdgcn_image_sample_b_cl_o: 1600 case Intrinsic::amdgcn_image_sample_lz_o: 1601 case Intrinsic::amdgcn_image_sample_cd_o: 1602 case Intrinsic::amdgcn_image_sample_cd_cl_o: 1603 1604 case Intrinsic::amdgcn_image_sample_c_o: 1605 case Intrinsic::amdgcn_image_sample_c_cl_o: 1606 case Intrinsic::amdgcn_image_sample_c_d_o: 1607 case Intrinsic::amdgcn_image_sample_c_d_cl_o: 1608 case Intrinsic::amdgcn_image_sample_c_l_o: 1609 case Intrinsic::amdgcn_image_sample_c_b_o: 1610 case Intrinsic::amdgcn_image_sample_c_b_cl_o: 1611 case Intrinsic::amdgcn_image_sample_c_lz_o: 1612 case Intrinsic::amdgcn_image_sample_c_cd_o: 1613 case Intrinsic::amdgcn_image_sample_c_cd_cl_o: 1614 1615 case Intrinsic::amdgcn_image_getlod: { 1616 if (VWidth == 1 || !DemandedElts.isMask()) 1617 return nullptr; 1618 1619 // TODO: Handle 3 vectors when supported in code gen. 1620 unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes()); 1621 if (NewNumElts == VWidth) 1622 return nullptr; 1623 1624 Module *M = II->getParent()->getParent()->getParent(); 1625 Type *EltTy = V->getType()->getVectorElementType(); 1626 1627 Type *NewTy = (NewNumElts == 1) ? EltTy : 1628 VectorType::get(EltTy, NewNumElts); 1629 1630 auto IID = II->getIntrinsicID(); 1631 1632 bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load || 1633 IID == Intrinsic::amdgcn_buffer_load_format; 1634 1635 Function *NewIntrin = IsBuffer ? 1636 Intrinsic::getDeclaration(M, IID, NewTy) : 1637 // Samplers have 3 mangled types. 1638 Intrinsic::getDeclaration(M, IID, 1639 { NewTy, II->getArgOperand(0)->getType(), 1640 II->getArgOperand(1)->getType()}); 1641 1642 SmallVector<Value *, 5> Args; 1643 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I) 1644 Args.push_back(II->getArgOperand(I)); 1645 1646 IRBuilderBase::InsertPointGuard Guard(*Builder); 1647 Builder->SetInsertPoint(II); 1648 1649 CallInst *NewCall = Builder->CreateCall(NewIntrin, Args); 1650 NewCall->takeName(II); 1651 NewCall->copyMetadata(*II); 1652 1653 if (!IsBuffer) { 1654 ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3)); 1655 if (DMask) { 1656 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1657 1658 unsigned PopCnt = 0; 1659 unsigned NewDMask = 0; 1660 for (unsigned I = 0; I < 4; ++I) { 1661 const unsigned Bit = 1 << I; 1662 if (!!(DMaskVal & Bit)) { 1663 if (++PopCnt > NewNumElts) 1664 break; 1665 1666 NewDMask |= Bit; 1667 } 1668 } 1669 1670 NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask)); 1671 } 1672 } 1673 1674 1675 if (NewNumElts == 1) { 1676 return Builder->CreateInsertElement(UndefValue::get(V->getType()), 1677 NewCall, static_cast<uint64_t>(0)); 1678 } 1679 1680 SmallVector<uint32_t, 8> EltMask; 1681 for (unsigned I = 0; I < VWidth; ++I) 1682 EltMask.push_back(I); 1683 1684 Value *Shuffle = Builder->CreateShuffleVector( 1685 NewCall, UndefValue::get(NewTy), EltMask); 1686 1687 MadeChange = true; 1688 return Shuffle; 1689 } 1690 } 1691 break; 1692 } 1693 } 1694 return MadeChange ? I : nullptr; 1695 } 1696