1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/GetElementPtrTypeIterator.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnes(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isZero()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == MaxAnalysisRecursionDepth) 131 return nullptr; 132 133 if (isa<ScalableVectorType>(VTy)) 134 return nullptr; 135 136 Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) { 138 computeKnownBits(V, Known, Depth, CxtI); 139 return nullptr; // Only analyze instructions. 140 } 141 142 // If there are multiple uses of this value and we aren't at the root, then 143 // we can't do any simplifications of the operands, because DemandedMask 144 // only reflects the bits demanded by *one* of the users. 145 if (Depth != 0 && !I->hasOneUse()) 146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 147 148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 149 150 // If this is the root being simplified, allow it to have multiple uses, 151 // just set the DemandedMask to all bits so that we can try to simplify the 152 // operands. This allows visitTruncInst (for example) to simplify the 153 // operand of a trunc without duplicating all the logic below. 154 if (Depth == 0 && !V->hasOneUse()) 155 DemandedMask.setAllBits(); 156 157 // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care 158 // about the high bits of the operands. 159 auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) { 160 unsigned NLZ = DemandedMask.countLeadingZeros(); 161 // Right fill the mask of bits for the operands to demand the most 162 // significant bit and all those below it. 163 DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 164 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 165 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 166 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 167 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 168 if (NLZ > 0) { 169 // Disable the nsw and nuw flags here: We can no longer guarantee that 170 // we won't wrap after simplification. Removing the nsw/nuw flags is 171 // legal here because the top bit is not demanded. 172 I->setHasNoSignedWrap(false); 173 I->setHasNoUnsignedWrap(false); 174 } 175 return true; 176 } 177 return false; 178 }; 179 180 switch (I->getOpcode()) { 181 default: 182 computeKnownBits(I, Known, Depth, CxtI); 183 break; 184 case Instruction::And: { 185 // If either the LHS or the RHS are Zero, the result is zero. 186 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 187 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 188 Depth + 1)) 189 return I; 190 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 191 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 192 193 Known = LHSKnown & RHSKnown; 194 195 // If the client is only demanding bits that we know, return the known 196 // constant. 197 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 198 return Constant::getIntegerValue(VTy, Known.One); 199 200 // If all of the demanded bits are known 1 on one side, return the other. 201 // These bits cannot contribute to the result of the 'and'. 202 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 203 return I->getOperand(0); 204 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 205 return I->getOperand(1); 206 207 // If the RHS is a constant, see if we can simplify it. 208 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 209 return I; 210 211 break; 212 } 213 case Instruction::Or: { 214 // If either the LHS or the RHS are One, the result is One. 215 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 216 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 217 Depth + 1)) 218 return I; 219 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 220 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 221 222 Known = LHSKnown | RHSKnown; 223 224 // If the client is only demanding bits that we know, return the known 225 // constant. 226 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 227 return Constant::getIntegerValue(VTy, Known.One); 228 229 // If all of the demanded bits are known zero on one side, return the other. 230 // These bits cannot contribute to the result of the 'or'. 231 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 232 return I->getOperand(0); 233 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 234 return I->getOperand(1); 235 236 // If the RHS is a constant, see if we can simplify it. 237 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 238 return I; 239 240 break; 241 } 242 case Instruction::Xor: { 243 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 244 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 245 return I; 246 Value *LHS, *RHS; 247 if (DemandedMask == 1 && 248 match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) && 249 match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) { 250 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1 251 IRBuilderBase::InsertPointGuard Guard(Builder); 252 Builder.SetInsertPoint(I); 253 auto *Xor = Builder.CreateXor(LHS, RHS); 254 return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor); 255 } 256 257 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 258 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 259 260 Known = LHSKnown ^ RHSKnown; 261 262 // If the client is only demanding bits that we know, return the known 263 // constant. 264 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 265 return Constant::getIntegerValue(VTy, Known.One); 266 267 // If all of the demanded bits are known zero on one side, return the other. 268 // These bits cannot contribute to the result of the 'xor'. 269 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 270 return I->getOperand(0); 271 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 272 return I->getOperand(1); 273 274 // If all of the demanded bits are known to be zero on one side or the 275 // other, turn this into an *inclusive* or. 276 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 277 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 278 Instruction *Or = 279 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 280 I->getName()); 281 return InsertNewInstWith(Or, *I); 282 } 283 284 // If all of the demanded bits on one side are known, and all of the set 285 // bits on that side are also known to be set on the other side, turn this 286 // into an AND, as we know the bits will be cleared. 287 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 288 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 289 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 290 Constant *AndC = Constant::getIntegerValue(VTy, 291 ~RHSKnown.One & DemandedMask); 292 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 293 return InsertNewInstWith(And, *I); 294 } 295 296 // If the RHS is a constant, see if we can change it. Don't alter a -1 297 // constant because that's a canonical 'not' op, and that is better for 298 // combining, SCEV, and codegen. 299 const APInt *C; 300 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) { 301 if ((*C | ~DemandedMask).isAllOnes()) { 302 // Force bits to 1 to create a 'not' op. 303 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 304 return I; 305 } 306 // If we can't turn this into a 'not', try to shrink the constant. 307 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 308 return I; 309 } 310 311 // If our LHS is an 'and' and if it has one use, and if any of the bits we 312 // are flipping are known to be set, then the xor is just resetting those 313 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 314 // simplifying both of them. 315 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 316 ConstantInt *AndRHS, *XorRHS; 317 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 318 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 319 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 320 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 321 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 322 323 Constant *AndC = 324 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 325 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 326 InsertNewInstWith(NewAnd, *I); 327 328 Constant *XorC = 329 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 330 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 331 return InsertNewInstWith(NewXor, *I); 332 } 333 } 334 break; 335 } 336 case Instruction::Select: { 337 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 338 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 339 return I; 340 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 341 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 342 343 // If the operands are constants, see if we can simplify them. 344 // This is similar to ShrinkDemandedConstant, but for a select we want to 345 // try to keep the selected constants the same as icmp value constants, if 346 // we can. This helps not break apart (or helps put back together) 347 // canonical patterns like min and max. 348 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 349 const APInt &DemandedMask) { 350 const APInt *SelC; 351 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 352 return false; 353 354 // Get the constant out of the ICmp, if there is one. 355 // Only try this when exactly 1 operand is a constant (if both operands 356 // are constant, the icmp should eventually simplify). Otherwise, we may 357 // invert the transform that reduces set bits and infinite-loop. 358 Value *X; 359 const APInt *CmpC; 360 ICmpInst::Predicate Pred; 361 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 362 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 363 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 364 365 // If the constant is already the same as the ICmp, leave it as-is. 366 if (*CmpC == *SelC) 367 return false; 368 // If the constants are not already the same, but can be with the demand 369 // mask, use the constant value from the ICmp. 370 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 371 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 372 return true; 373 } 374 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 375 }; 376 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 377 CanonicalizeSelectConstant(I, 2, DemandedMask)) 378 return I; 379 380 // Only known if known in both the LHS and RHS. 381 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 382 break; 383 } 384 case Instruction::Trunc: { 385 // If we do not demand the high bits of a right-shifted and truncated value, 386 // then we may be able to truncate it before the shift. 387 Value *X; 388 const APInt *C; 389 if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 390 // The shift amount must be valid (not poison) in the narrow type, and 391 // it must not be greater than the high bits demanded of the result. 392 if (C->ult(I->getType()->getScalarSizeInBits()) && 393 C->ule(DemandedMask.countLeadingZeros())) { 394 // trunc (lshr X, C) --> lshr (trunc X), C 395 IRBuilderBase::InsertPointGuard Guard(Builder); 396 Builder.SetInsertPoint(I); 397 Value *Trunc = Builder.CreateTrunc(X, I->getType()); 398 return Builder.CreateLShr(Trunc, C->getZExtValue()); 399 } 400 } 401 } 402 LLVM_FALLTHROUGH; 403 case Instruction::ZExt: { 404 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 405 406 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 407 KnownBits InputKnown(SrcBitWidth); 408 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 409 return I; 410 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 411 Known = InputKnown.zextOrTrunc(BitWidth); 412 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 413 break; 414 } 415 case Instruction::BitCast: 416 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 417 return nullptr; // vector->int or fp->int? 418 419 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 420 if (VectorType *SrcVTy = 421 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 422 if (cast<FixedVectorType>(DstVTy)->getNumElements() != 423 cast<FixedVectorType>(SrcVTy)->getNumElements()) 424 // Don't touch a bitcast between vectors of different element counts. 425 return nullptr; 426 } else 427 // Don't touch a scalar-to-vector bitcast. 428 return nullptr; 429 } else if (I->getOperand(0)->getType()->isVectorTy()) 430 // Don't touch a vector-to-scalar bitcast. 431 return nullptr; 432 433 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 434 return I; 435 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 436 break; 437 case Instruction::SExt: { 438 // Compute the bits in the result that are not present in the input. 439 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 440 441 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 442 443 // If any of the sign extended bits are demanded, we know that the sign 444 // bit is demanded. 445 if (DemandedMask.getActiveBits() > SrcBitWidth) 446 InputDemandedBits.setBit(SrcBitWidth-1); 447 448 KnownBits InputKnown(SrcBitWidth); 449 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 450 return I; 451 452 // If the input sign bit is known zero, or if the NewBits are not demanded 453 // convert this into a zero extension. 454 if (InputKnown.isNonNegative() || 455 DemandedMask.getActiveBits() <= SrcBitWidth) { 456 // Convert to ZExt cast. 457 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 458 return InsertNewInstWith(NewCast, *I); 459 } 460 461 // If the sign bit of the input is known set or clear, then we know the 462 // top bits of the result. 463 Known = InputKnown.sext(BitWidth); 464 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 465 break; 466 } 467 case Instruction::Add: 468 if ((DemandedMask & 1) == 0) { 469 // If we do not need the low bit, try to convert bool math to logic: 470 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 471 Value *X, *Y; 472 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 473 m_OneUse(m_SExt(m_Value(Y))))) && 474 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 475 // Truth table for inputs and output signbits: 476 // X:0 | X:1 477 // ---------- 478 // Y:0 | 0 | 0 | 479 // Y:1 | -1 | 0 | 480 // ---------- 481 IRBuilderBase::InsertPointGuard Guard(Builder); 482 Builder.SetInsertPoint(I); 483 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 484 return Builder.CreateSExt(AndNot, VTy); 485 } 486 487 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 488 // TODO: Relax the one-use checks because we are removing an instruction? 489 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 490 m_OneUse(m_SExt(m_Value(Y))))) && 491 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 492 // Truth table for inputs and output signbits: 493 // X:0 | X:1 494 // ----------- 495 // Y:0 | -1 | -1 | 496 // Y:1 | -1 | 0 | 497 // ----------- 498 IRBuilderBase::InsertPointGuard Guard(Builder); 499 Builder.SetInsertPoint(I); 500 Value *Or = Builder.CreateOr(X, Y); 501 return Builder.CreateSExt(Or, VTy); 502 } 503 } 504 LLVM_FALLTHROUGH; 505 case Instruction::Sub: { 506 APInt DemandedFromOps; 507 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps)) 508 return I; 509 510 // If we are known to be adding/subtracting zeros to every bit below 511 // the highest demanded bit, we just return the other side. 512 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 513 return I->getOperand(0); 514 // We can't do this with the LHS for subtraction, unless we are only 515 // demanding the LSB. 516 if ((I->getOpcode() == Instruction::Add || DemandedFromOps.isOne()) && 517 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 518 return I->getOperand(1); 519 520 // Otherwise just compute the known bits of the result. 521 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 522 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 523 NSW, LHSKnown, RHSKnown); 524 break; 525 } 526 case Instruction::Mul: { 527 APInt DemandedFromOps; 528 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps)) 529 return I; 530 531 if (DemandedMask.isPowerOf2()) { 532 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 533 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 534 // odd (has LSB set), then the left-shifted low bit of X is the answer. 535 unsigned CTZ = DemandedMask.countTrailingZeros(); 536 const APInt *C; 537 if (match(I->getOperand(1), m_APInt(C)) && 538 C->countTrailingZeros() == CTZ) { 539 Constant *ShiftC = ConstantInt::get(I->getType(), CTZ); 540 Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC); 541 return InsertNewInstWith(Shl, *I); 542 } 543 } 544 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 545 // X * X is odd iff X is odd. 546 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 547 if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) { 548 Constant *One = ConstantInt::get(VTy, 1); 549 Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One); 550 return InsertNewInstWith(And1, *I); 551 } 552 553 computeKnownBits(I, Known, Depth, CxtI); 554 break; 555 } 556 case Instruction::Shl: { 557 const APInt *SA; 558 if (match(I->getOperand(1), m_APInt(SA))) { 559 const APInt *ShrAmt; 560 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 561 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 562 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 563 DemandedMask, Known)) 564 return R; 565 566 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 567 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 568 569 // If the shift is NUW/NSW, then it does demand the high bits. 570 ShlOperator *IOp = cast<ShlOperator>(I); 571 if (IOp->hasNoSignedWrap()) 572 DemandedMaskIn.setHighBits(ShiftAmt+1); 573 else if (IOp->hasNoUnsignedWrap()) 574 DemandedMaskIn.setHighBits(ShiftAmt); 575 576 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 577 return I; 578 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 579 580 bool SignBitZero = Known.Zero.isSignBitSet(); 581 bool SignBitOne = Known.One.isSignBitSet(); 582 Known.Zero <<= ShiftAmt; 583 Known.One <<= ShiftAmt; 584 // low bits known zero. 585 if (ShiftAmt) 586 Known.Zero.setLowBits(ShiftAmt); 587 588 // If this shift has "nsw" keyword, then the result is either a poison 589 // value or has the same sign bit as the first operand. 590 if (IOp->hasNoSignedWrap()) { 591 if (SignBitZero) 592 Known.Zero.setSignBit(); 593 else if (SignBitOne) 594 Known.One.setSignBit(); 595 if (Known.hasConflict()) 596 return UndefValue::get(I->getType()); 597 } 598 } else { 599 // This is a variable shift, so we can't shift the demand mask by a known 600 // amount. But if we are not demanding high bits, then we are not 601 // demanding those bits from the pre-shifted operand either. 602 if (unsigned CTLZ = DemandedMask.countLeadingZeros()) { 603 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 604 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) { 605 // We can't guarantee that nsw/nuw hold after simplifying the operand. 606 I->dropPoisonGeneratingFlags(); 607 return I; 608 } 609 } 610 computeKnownBits(I, Known, Depth, CxtI); 611 } 612 break; 613 } 614 case Instruction::LShr: { 615 const APInt *SA; 616 if (match(I->getOperand(1), m_APInt(SA))) { 617 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 618 619 // Unsigned shift right. 620 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 621 622 // If the shift is exact, then it does demand the low bits (and knows that 623 // they are zero). 624 if (cast<LShrOperator>(I)->isExact()) 625 DemandedMaskIn.setLowBits(ShiftAmt); 626 627 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 628 return I; 629 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 630 Known.Zero.lshrInPlace(ShiftAmt); 631 Known.One.lshrInPlace(ShiftAmt); 632 if (ShiftAmt) 633 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 634 } else { 635 computeKnownBits(I, Known, Depth, CxtI); 636 } 637 break; 638 } 639 case Instruction::AShr: { 640 // If this is an arithmetic shift right and only the low-bit is set, we can 641 // always convert this into a logical shr, even if the shift amount is 642 // variable. The low bit of the shift cannot be an input sign bit unless 643 // the shift amount is >= the size of the datatype, which is undefined. 644 if (DemandedMask.isOne()) { 645 // Perform the logical shift right. 646 Instruction *NewVal = BinaryOperator::CreateLShr( 647 I->getOperand(0), I->getOperand(1), I->getName()); 648 return InsertNewInstWith(NewVal, *I); 649 } 650 651 // If the sign bit is the only bit demanded by this ashr, then there is no 652 // need to do it, the shift doesn't change the high bit. 653 if (DemandedMask.isSignMask()) 654 return I->getOperand(0); 655 656 const APInt *SA; 657 if (match(I->getOperand(1), m_APInt(SA))) { 658 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 659 660 // Signed shift right. 661 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 662 // If any of the high bits are demanded, we should set the sign bit as 663 // demanded. 664 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 665 DemandedMaskIn.setSignBit(); 666 667 // If the shift is exact, then it does demand the low bits (and knows that 668 // they are zero). 669 if (cast<AShrOperator>(I)->isExact()) 670 DemandedMaskIn.setLowBits(ShiftAmt); 671 672 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 673 return I; 674 675 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 676 677 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 678 // Compute the new bits that are at the top now plus sign bits. 679 APInt HighBits(APInt::getHighBitsSet( 680 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 681 Known.Zero.lshrInPlace(ShiftAmt); 682 Known.One.lshrInPlace(ShiftAmt); 683 684 // If the input sign bit is known to be zero, or if none of the top bits 685 // are demanded, turn this into an unsigned shift right. 686 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 687 if (Known.Zero[BitWidth-ShiftAmt-1] || 688 !DemandedMask.intersects(HighBits)) { 689 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 690 I->getOperand(1)); 691 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 692 return InsertNewInstWith(LShr, *I); 693 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 694 Known.One |= HighBits; 695 } 696 } else { 697 computeKnownBits(I, Known, Depth, CxtI); 698 } 699 break; 700 } 701 case Instruction::UDiv: { 702 // UDiv doesn't demand low bits that are zero in the divisor. 703 const APInt *SA; 704 if (match(I->getOperand(1), m_APInt(SA))) { 705 // If the shift is exact, then it does demand the low bits. 706 if (cast<UDivOperator>(I)->isExact()) 707 break; 708 709 // FIXME: Take the demanded mask of the result into account. 710 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 711 APInt DemandedMaskIn = 712 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 713 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 714 return I; 715 716 // Propagate zero bits from the input. 717 Known.Zero.setHighBits(std::min( 718 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 719 } else { 720 computeKnownBits(I, Known, Depth, CxtI); 721 } 722 break; 723 } 724 case Instruction::SRem: { 725 ConstantInt *Rem; 726 if (match(I->getOperand(1), m_ConstantInt(Rem))) { 727 // X % -1 demands all the bits because we don't want to introduce 728 // INT_MIN % -1 (== undef) by accident. 729 if (Rem->isMinusOne()) 730 break; 731 APInt RA = Rem->getValue().abs(); 732 if (RA.isPowerOf2()) { 733 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 734 return I->getOperand(0); 735 736 APInt LowBits = RA - 1; 737 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 738 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 739 return I; 740 741 // The low bits of LHS are unchanged by the srem. 742 Known.Zero = LHSKnown.Zero & LowBits; 743 Known.One = LHSKnown.One & LowBits; 744 745 // If LHS is non-negative or has all low bits zero, then the upper bits 746 // are all zero. 747 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 748 Known.Zero |= ~LowBits; 749 750 // If LHS is negative and not all low bits are zero, then the upper bits 751 // are all one. 752 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 753 Known.One |= ~LowBits; 754 755 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 756 break; 757 } 758 } 759 760 // The sign bit is the LHS's sign bit, except when the result of the 761 // remainder is zero. 762 if (DemandedMask.isSignBitSet()) { 763 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 764 // If it's known zero, our sign bit is also zero. 765 if (LHSKnown.isNonNegative()) 766 Known.makeNonNegative(); 767 } 768 break; 769 } 770 case Instruction::URem: { 771 KnownBits Known2(BitWidth); 772 APInt AllOnes = APInt::getAllOnes(BitWidth); 773 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 774 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 775 return I; 776 777 unsigned Leaders = Known2.countMinLeadingZeros(); 778 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 779 break; 780 } 781 case Instruction::Call: { 782 bool KnownBitsComputed = false; 783 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 784 switch (II->getIntrinsicID()) { 785 case Intrinsic::abs: { 786 if (DemandedMask == 1) 787 return II->getArgOperand(0); 788 break; 789 } 790 case Intrinsic::ctpop: { 791 // Checking if the number of clear bits is odd (parity)? If the type has 792 // an even number of bits, that's the same as checking if the number of 793 // set bits is odd, so we can eliminate the 'not' op. 794 Value *X; 795 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && 796 match(II->getArgOperand(0), m_Not(m_Value(X)))) { 797 Function *Ctpop = Intrinsic::getDeclaration( 798 II->getModule(), Intrinsic::ctpop, II->getType()); 799 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I); 800 } 801 break; 802 } 803 case Intrinsic::bswap: { 804 // If the only bits demanded come from one byte of the bswap result, 805 // just shift the input byte into position to eliminate the bswap. 806 unsigned NLZ = DemandedMask.countLeadingZeros(); 807 unsigned NTZ = DemandedMask.countTrailingZeros(); 808 809 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 810 // we need all the bits down to bit 8. Likewise, round NLZ. If we 811 // have 14 leading zeros, round to 8. 812 NLZ = alignDown(NLZ, 8); 813 NTZ = alignDown(NTZ, 8); 814 // If we need exactly one byte, we can do this transformation. 815 if (BitWidth - NLZ - NTZ == 8) { 816 // Replace this with either a left or right shift to get the byte into 817 // the right place. 818 Instruction *NewVal; 819 if (NLZ > NTZ) 820 NewVal = BinaryOperator::CreateLShr( 821 II->getArgOperand(0), 822 ConstantInt::get(I->getType(), NLZ - NTZ)); 823 else 824 NewVal = BinaryOperator::CreateShl( 825 II->getArgOperand(0), 826 ConstantInt::get(I->getType(), NTZ - NLZ)); 827 NewVal->takeName(I); 828 return InsertNewInstWith(NewVal, *I); 829 } 830 break; 831 } 832 case Intrinsic::fshr: 833 case Intrinsic::fshl: { 834 const APInt *SA; 835 if (!match(I->getOperand(2), m_APInt(SA))) 836 break; 837 838 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 839 // defined, so no need to special-case zero shifts here. 840 uint64_t ShiftAmt = SA->urem(BitWidth); 841 if (II->getIntrinsicID() == Intrinsic::fshr) 842 ShiftAmt = BitWidth - ShiftAmt; 843 844 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 845 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 846 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 847 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 848 return I; 849 850 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 851 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 852 Known.One = LHSKnown.One.shl(ShiftAmt) | 853 RHSKnown.One.lshr(BitWidth - ShiftAmt); 854 KnownBitsComputed = true; 855 break; 856 } 857 case Intrinsic::umax: { 858 // UMax(A, C) == A if ... 859 // The lowest non-zero bit of DemandMask is higher than the highest 860 // non-zero bit of C. 861 const APInt *C; 862 unsigned CTZ = DemandedMask.countTrailingZeros(); 863 if (match(II->getArgOperand(1), m_APInt(C)) && 864 CTZ >= C->getActiveBits()) 865 return II->getArgOperand(0); 866 break; 867 } 868 case Intrinsic::umin: { 869 // UMin(A, C) == A if ... 870 // The lowest non-zero bit of DemandMask is higher than the highest 871 // non-one bit of C. 872 // This comes from using DeMorgans on the above umax example. 873 const APInt *C; 874 unsigned CTZ = DemandedMask.countTrailingZeros(); 875 if (match(II->getArgOperand(1), m_APInt(C)) && 876 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 877 return II->getArgOperand(0); 878 break; 879 } 880 default: { 881 // Handle target specific intrinsics 882 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 883 *II, DemandedMask, Known, KnownBitsComputed); 884 if (V.hasValue()) 885 return V.getValue(); 886 break; 887 } 888 } 889 } 890 891 if (!KnownBitsComputed) 892 computeKnownBits(V, Known, Depth, CxtI); 893 break; 894 } 895 } 896 897 // If the client is only demanding bits that we know, return the known 898 // constant. 899 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 900 return Constant::getIntegerValue(VTy, Known.One); 901 return nullptr; 902 } 903 904 /// Helper routine of SimplifyDemandedUseBits. It computes Known 905 /// bits. It also tries to handle simplifications that can be done based on 906 /// DemandedMask, but without modifying the Instruction. 907 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 908 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 909 Instruction *CxtI) { 910 unsigned BitWidth = DemandedMask.getBitWidth(); 911 Type *ITy = I->getType(); 912 913 KnownBits LHSKnown(BitWidth); 914 KnownBits RHSKnown(BitWidth); 915 916 // Despite the fact that we can't simplify this instruction in all User's 917 // context, we can at least compute the known bits, and we can 918 // do simplifications that apply to *just* the one user if we know that 919 // this instruction has a simpler value in that context. 920 switch (I->getOpcode()) { 921 case Instruction::And: { 922 // If either the LHS or the RHS are Zero, the result is zero. 923 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 924 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 925 CxtI); 926 927 Known = LHSKnown & RHSKnown; 928 929 // If the client is only demanding bits that we know, return the known 930 // constant. 931 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 932 return Constant::getIntegerValue(ITy, Known.One); 933 934 // If all of the demanded bits are known 1 on one side, return the other. 935 // These bits cannot contribute to the result of the 'and' in this 936 // context. 937 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 938 return I->getOperand(0); 939 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 940 return I->getOperand(1); 941 942 break; 943 } 944 case Instruction::Or: { 945 // We can simplify (X|Y) -> X or Y in the user's context if we know that 946 // only bits from X or Y are demanded. 947 948 // If either the LHS or the RHS are One, the result is One. 949 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 950 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 951 CxtI); 952 953 Known = LHSKnown | RHSKnown; 954 955 // If the client is only demanding bits that we know, return the known 956 // constant. 957 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 958 return Constant::getIntegerValue(ITy, Known.One); 959 960 // If all of the demanded bits are known zero on one side, return the 961 // other. These bits cannot contribute to the result of the 'or' in this 962 // context. 963 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 964 return I->getOperand(0); 965 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 966 return I->getOperand(1); 967 968 break; 969 } 970 case Instruction::Xor: { 971 // We can simplify (X^Y) -> X or Y in the user's context if we know that 972 // only bits from X or Y are demanded. 973 974 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 975 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 976 CxtI); 977 978 Known = LHSKnown ^ RHSKnown; 979 980 // If the client is only demanding bits that we know, return the known 981 // constant. 982 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 983 return Constant::getIntegerValue(ITy, Known.One); 984 985 // If all of the demanded bits are known zero on one side, return the 986 // other. 987 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 988 return I->getOperand(0); 989 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 990 return I->getOperand(1); 991 992 break; 993 } 994 case Instruction::AShr: { 995 // Compute the Known bits to simplify things downstream. 996 computeKnownBits(I, Known, Depth, CxtI); 997 998 // If this user is only demanding bits that we know, return the known 999 // constant. 1000 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1001 return Constant::getIntegerValue(ITy, Known.One); 1002 1003 // If the right shift operand 0 is a result of a left shift by the same 1004 // amount, this is probably a zero/sign extension, which may be unnecessary, 1005 // if we do not demand any of the new sign bits. So, return the original 1006 // operand instead. 1007 const APInt *ShiftRC; 1008 const APInt *ShiftLC; 1009 Value *X; 1010 unsigned BitWidth = DemandedMask.getBitWidth(); 1011 if (match(I, 1012 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 1013 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && 1014 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 1015 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 1016 return X; 1017 } 1018 1019 break; 1020 } 1021 default: 1022 // Compute the Known bits to simplify things downstream. 1023 computeKnownBits(I, Known, Depth, CxtI); 1024 1025 // If this user is only demanding bits that we know, return the known 1026 // constant. 1027 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 1028 return Constant::getIntegerValue(ITy, Known.One); 1029 1030 break; 1031 } 1032 1033 return nullptr; 1034 } 1035 1036 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 1037 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 1038 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 1039 /// of "C2-C1". 1040 /// 1041 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 1042 /// ..., bn}, without considering the specific value X is holding. 1043 /// This transformation is legal iff one of following conditions is hold: 1044 /// 1) All the bit in S are 0, in this case E1 == E2. 1045 /// 2) We don't care those bits in S, per the input DemandedMask. 1046 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 1047 /// rest bits. 1048 /// 1049 /// Currently we only test condition 2). 1050 /// 1051 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 1052 /// not successful. 1053 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 1054 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 1055 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 1056 if (!ShlOp1 || !ShrOp1) 1057 return nullptr; // No-op. 1058 1059 Value *VarX = Shr->getOperand(0); 1060 Type *Ty = VarX->getType(); 1061 unsigned BitWidth = Ty->getScalarSizeInBits(); 1062 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1063 return nullptr; // Undef. 1064 1065 unsigned ShlAmt = ShlOp1.getZExtValue(); 1066 unsigned ShrAmt = ShrOp1.getZExtValue(); 1067 1068 Known.One.clearAllBits(); 1069 Known.Zero.setLowBits(ShlAmt - 1); 1070 Known.Zero &= DemandedMask; 1071 1072 APInt BitMask1(APInt::getAllOnes(BitWidth)); 1073 APInt BitMask2(APInt::getAllOnes(BitWidth)); 1074 1075 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1076 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1077 (BitMask1.ashr(ShrAmt) << ShlAmt); 1078 1079 if (ShrAmt <= ShlAmt) { 1080 BitMask2 <<= (ShlAmt - ShrAmt); 1081 } else { 1082 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1083 BitMask2.ashr(ShrAmt - ShlAmt); 1084 } 1085 1086 // Check if condition-2 (see the comment to this function) is satified. 1087 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1088 if (ShrAmt == ShlAmt) 1089 return VarX; 1090 1091 if (!Shr->hasOneUse()) 1092 return nullptr; 1093 1094 BinaryOperator *New; 1095 if (ShrAmt < ShlAmt) { 1096 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1097 New = BinaryOperator::CreateShl(VarX, Amt); 1098 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1099 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1100 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1101 } else { 1102 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1103 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1104 BinaryOperator::CreateAShr(VarX, Amt); 1105 if (cast<BinaryOperator>(Shr)->isExact()) 1106 New->setIsExact(true); 1107 } 1108 1109 return InsertNewInstWith(New, *Shl); 1110 } 1111 1112 return nullptr; 1113 } 1114 1115 /// The specified value produces a vector with any number of elements. 1116 /// This method analyzes which elements of the operand are undef or poison and 1117 /// returns that information in UndefElts. 1118 /// 1119 /// DemandedElts contains the set of elements that are actually used by the 1120 /// caller, and by default (AllowMultipleUsers equals false) the value is 1121 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1122 /// to true, DemandedElts refers to the union of sets of elements that are 1123 /// used by all callers. 1124 /// 1125 /// If the information about demanded elements can be used to simplify the 1126 /// operation, the operation is simplified, then the resultant value is 1127 /// returned. This returns null if no change was made. 1128 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1129 APInt DemandedElts, 1130 APInt &UndefElts, 1131 unsigned Depth, 1132 bool AllowMultipleUsers) { 1133 // Cannot analyze scalable type. The number of vector elements is not a 1134 // compile-time constant. 1135 if (isa<ScalableVectorType>(V->getType())) 1136 return nullptr; 1137 1138 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1139 APInt EltMask(APInt::getAllOnes(VWidth)); 1140 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1141 1142 if (match(V, m_Undef())) { 1143 // If the entire vector is undef or poison, just return this info. 1144 UndefElts = EltMask; 1145 return nullptr; 1146 } 1147 1148 if (DemandedElts.isZero()) { // If nothing is demanded, provide poison. 1149 UndefElts = EltMask; 1150 return PoisonValue::get(V->getType()); 1151 } 1152 1153 UndefElts = 0; 1154 1155 if (auto *C = dyn_cast<Constant>(V)) { 1156 // Check if this is identity. If so, return 0 since we are not simplifying 1157 // anything. 1158 if (DemandedElts.isAllOnes()) 1159 return nullptr; 1160 1161 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1162 Constant *Poison = PoisonValue::get(EltTy); 1163 SmallVector<Constant*, 16> Elts; 1164 for (unsigned i = 0; i != VWidth; ++i) { 1165 if (!DemandedElts[i]) { // If not demanded, set to poison. 1166 Elts.push_back(Poison); 1167 UndefElts.setBit(i); 1168 continue; 1169 } 1170 1171 Constant *Elt = C->getAggregateElement(i); 1172 if (!Elt) return nullptr; 1173 1174 Elts.push_back(Elt); 1175 if (isa<UndefValue>(Elt)) // Already undef or poison. 1176 UndefElts.setBit(i); 1177 } 1178 1179 // If we changed the constant, return it. 1180 Constant *NewCV = ConstantVector::get(Elts); 1181 return NewCV != C ? NewCV : nullptr; 1182 } 1183 1184 // Limit search depth. 1185 if (Depth == 10) 1186 return nullptr; 1187 1188 if (!AllowMultipleUsers) { 1189 // If multiple users are using the root value, proceed with 1190 // simplification conservatively assuming that all elements 1191 // are needed. 1192 if (!V->hasOneUse()) { 1193 // Quit if we find multiple users of a non-root value though. 1194 // They'll be handled when it's their turn to be visited by 1195 // the main instcombine process. 1196 if (Depth != 0) 1197 // TODO: Just compute the UndefElts information recursively. 1198 return nullptr; 1199 1200 // Conservatively assume that all elements are needed. 1201 DemandedElts = EltMask; 1202 } 1203 } 1204 1205 Instruction *I = dyn_cast<Instruction>(V); 1206 if (!I) return nullptr; // Only analyze instructions. 1207 1208 bool MadeChange = false; 1209 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1210 APInt Demanded, APInt &Undef) { 1211 auto *II = dyn_cast<IntrinsicInst>(Inst); 1212 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1213 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1214 replaceOperand(*Inst, OpNum, V); 1215 MadeChange = true; 1216 } 1217 }; 1218 1219 APInt UndefElts2(VWidth, 0); 1220 APInt UndefElts3(VWidth, 0); 1221 switch (I->getOpcode()) { 1222 default: break; 1223 1224 case Instruction::GetElementPtr: { 1225 // The LangRef requires that struct geps have all constant indices. As 1226 // such, we can't convert any operand to partial undef. 1227 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1228 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1229 I != E; I++) 1230 if (I.isStruct()) 1231 return true; 1232 return false; 1233 }; 1234 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1235 break; 1236 1237 // Conservatively track the demanded elements back through any vector 1238 // operands we may have. We know there must be at least one, or we 1239 // wouldn't have a vector result to get here. Note that we intentionally 1240 // merge the undef bits here since gepping with either an poison base or 1241 // index results in poison. 1242 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1243 if (i == 0 ? match(I->getOperand(i), m_Undef()) 1244 : match(I->getOperand(i), m_Poison())) { 1245 // If the entire vector is undefined, just return this info. 1246 UndefElts = EltMask; 1247 return nullptr; 1248 } 1249 if (I->getOperand(i)->getType()->isVectorTy()) { 1250 APInt UndefEltsOp(VWidth, 0); 1251 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1252 // gep(x, undef) is not undef, so skip considering idx ops here 1253 // Note that we could propagate poison, but we can't distinguish between 1254 // undef & poison bits ATM 1255 if (i == 0) 1256 UndefElts |= UndefEltsOp; 1257 } 1258 } 1259 1260 break; 1261 } 1262 case Instruction::InsertElement: { 1263 // If this is a variable index, we don't know which element it overwrites. 1264 // demand exactly the same input as we produce. 1265 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1266 if (!Idx) { 1267 // Note that we can't propagate undef elt info, because we don't know 1268 // which elt is getting updated. 1269 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1270 break; 1271 } 1272 1273 // The element inserted overwrites whatever was there, so the input demanded 1274 // set is simpler than the output set. 1275 unsigned IdxNo = Idx->getZExtValue(); 1276 APInt PreInsertDemandedElts = DemandedElts; 1277 if (IdxNo < VWidth) 1278 PreInsertDemandedElts.clearBit(IdxNo); 1279 1280 // If we only demand the element that is being inserted and that element 1281 // was extracted from the same index in another vector with the same type, 1282 // replace this insert with that other vector. 1283 // Note: This is attempted before the call to simplifyAndSetOp because that 1284 // may change UndefElts to a value that does not match with Vec. 1285 Value *Vec; 1286 if (PreInsertDemandedElts == 0 && 1287 match(I->getOperand(1), 1288 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1289 Vec->getType() == I->getType()) { 1290 return Vec; 1291 } 1292 1293 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1294 1295 // If this is inserting an element that isn't demanded, remove this 1296 // insertelement. 1297 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1298 Worklist.push(I); 1299 return I->getOperand(0); 1300 } 1301 1302 // The inserted element is defined. 1303 UndefElts.clearBit(IdxNo); 1304 break; 1305 } 1306 case Instruction::ShuffleVector: { 1307 auto *Shuffle = cast<ShuffleVectorInst>(I); 1308 assert(Shuffle->getOperand(0)->getType() == 1309 Shuffle->getOperand(1)->getType() && 1310 "Expected shuffle operands to have same type"); 1311 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1312 ->getNumElements(); 1313 // Handle trivial case of a splat. Only check the first element of LHS 1314 // operand. 1315 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1316 DemandedElts.isAllOnes()) { 1317 if (!match(I->getOperand(1), m_Undef())) { 1318 I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType())); 1319 MadeChange = true; 1320 } 1321 APInt LeftDemanded(OpWidth, 1); 1322 APInt LHSUndefElts(OpWidth, 0); 1323 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1324 if (LHSUndefElts[0]) 1325 UndefElts = EltMask; 1326 else 1327 UndefElts.clearAllBits(); 1328 break; 1329 } 1330 1331 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1332 for (unsigned i = 0; i < VWidth; i++) { 1333 if (DemandedElts[i]) { 1334 unsigned MaskVal = Shuffle->getMaskValue(i); 1335 if (MaskVal != -1u) { 1336 assert(MaskVal < OpWidth * 2 && 1337 "shufflevector mask index out of range!"); 1338 if (MaskVal < OpWidth) 1339 LeftDemanded.setBit(MaskVal); 1340 else 1341 RightDemanded.setBit(MaskVal - OpWidth); 1342 } 1343 } 1344 } 1345 1346 APInt LHSUndefElts(OpWidth, 0); 1347 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1348 1349 APInt RHSUndefElts(OpWidth, 0); 1350 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1351 1352 // If this shuffle does not change the vector length and the elements 1353 // demanded by this shuffle are an identity mask, then this shuffle is 1354 // unnecessary. 1355 // 1356 // We are assuming canonical form for the mask, so the source vector is 1357 // operand 0 and operand 1 is not used. 1358 // 1359 // Note that if an element is demanded and this shuffle mask is undefined 1360 // for that element, then the shuffle is not considered an identity 1361 // operation. The shuffle prevents poison from the operand vector from 1362 // leaking to the result by replacing poison with an undefined value. 1363 if (VWidth == OpWidth) { 1364 bool IsIdentityShuffle = true; 1365 for (unsigned i = 0; i < VWidth; i++) { 1366 unsigned MaskVal = Shuffle->getMaskValue(i); 1367 if (DemandedElts[i] && i != MaskVal) { 1368 IsIdentityShuffle = false; 1369 break; 1370 } 1371 } 1372 if (IsIdentityShuffle) 1373 return Shuffle->getOperand(0); 1374 } 1375 1376 bool NewUndefElts = false; 1377 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1378 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1379 bool LHSUniform = true; 1380 bool RHSUniform = true; 1381 for (unsigned i = 0; i < VWidth; i++) { 1382 unsigned MaskVal = Shuffle->getMaskValue(i); 1383 if (MaskVal == -1u) { 1384 UndefElts.setBit(i); 1385 } else if (!DemandedElts[i]) { 1386 NewUndefElts = true; 1387 UndefElts.setBit(i); 1388 } else if (MaskVal < OpWidth) { 1389 if (LHSUndefElts[MaskVal]) { 1390 NewUndefElts = true; 1391 UndefElts.setBit(i); 1392 } else { 1393 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1394 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1395 LHSUniform = LHSUniform && (MaskVal == i); 1396 } 1397 } else { 1398 if (RHSUndefElts[MaskVal - OpWidth]) { 1399 NewUndefElts = true; 1400 UndefElts.setBit(i); 1401 } else { 1402 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1403 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1404 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1405 } 1406 } 1407 } 1408 1409 // Try to transform shuffle with constant vector and single element from 1410 // this constant vector to single insertelement instruction. 1411 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1412 // insertelement V, C[ci], ci-n 1413 if (OpWidth == 1414 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1415 Value *Op = nullptr; 1416 Constant *Value = nullptr; 1417 unsigned Idx = -1u; 1418 1419 // Find constant vector with the single element in shuffle (LHS or RHS). 1420 if (LHSIdx < OpWidth && RHSUniform) { 1421 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1422 Op = Shuffle->getOperand(1); 1423 Value = CV->getOperand(LHSValIdx); 1424 Idx = LHSIdx; 1425 } 1426 } 1427 if (RHSIdx < OpWidth && LHSUniform) { 1428 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1429 Op = Shuffle->getOperand(0); 1430 Value = CV->getOperand(RHSValIdx); 1431 Idx = RHSIdx; 1432 } 1433 } 1434 // Found constant vector with single element - convert to insertelement. 1435 if (Op && Value) { 1436 Instruction *New = InsertElementInst::Create( 1437 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1438 Shuffle->getName()); 1439 InsertNewInstWith(New, *Shuffle); 1440 return New; 1441 } 1442 } 1443 if (NewUndefElts) { 1444 // Add additional discovered undefs. 1445 SmallVector<int, 16> Elts; 1446 for (unsigned i = 0; i < VWidth; ++i) { 1447 if (UndefElts[i]) 1448 Elts.push_back(UndefMaskElem); 1449 else 1450 Elts.push_back(Shuffle->getMaskValue(i)); 1451 } 1452 Shuffle->setShuffleMask(Elts); 1453 MadeChange = true; 1454 } 1455 break; 1456 } 1457 case Instruction::Select: { 1458 // If this is a vector select, try to transform the select condition based 1459 // on the current demanded elements. 1460 SelectInst *Sel = cast<SelectInst>(I); 1461 if (Sel->getCondition()->getType()->isVectorTy()) { 1462 // TODO: We are not doing anything with UndefElts based on this call. 1463 // It is overwritten below based on the other select operands. If an 1464 // element of the select condition is known undef, then we are free to 1465 // choose the output value from either arm of the select. If we know that 1466 // one of those values is undef, then the output can be undef. 1467 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1468 } 1469 1470 // Next, see if we can transform the arms of the select. 1471 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1472 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1473 for (unsigned i = 0; i < VWidth; i++) { 1474 // isNullValue() always returns false when called on a ConstantExpr. 1475 // Skip constant expressions to avoid propagating incorrect information. 1476 Constant *CElt = CV->getAggregateElement(i); 1477 if (isa<ConstantExpr>(CElt)) 1478 continue; 1479 // TODO: If a select condition element is undef, we can demand from 1480 // either side. If one side is known undef, choosing that side would 1481 // propagate undef. 1482 if (CElt->isNullValue()) 1483 DemandedLHS.clearBit(i); 1484 else 1485 DemandedRHS.clearBit(i); 1486 } 1487 } 1488 1489 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1490 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1491 1492 // Output elements are undefined if the element from each arm is undefined. 1493 // TODO: This can be improved. See comment in select condition handling. 1494 UndefElts = UndefElts2 & UndefElts3; 1495 break; 1496 } 1497 case Instruction::BitCast: { 1498 // Vector->vector casts only. 1499 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1500 if (!VTy) break; 1501 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1502 APInt InputDemandedElts(InVWidth, 0); 1503 UndefElts2 = APInt(InVWidth, 0); 1504 unsigned Ratio; 1505 1506 if (VWidth == InVWidth) { 1507 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1508 // elements as are demanded of us. 1509 Ratio = 1; 1510 InputDemandedElts = DemandedElts; 1511 } else if ((VWidth % InVWidth) == 0) { 1512 // If the number of elements in the output is a multiple of the number of 1513 // elements in the input then an input element is live if any of the 1514 // corresponding output elements are live. 1515 Ratio = VWidth / InVWidth; 1516 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1517 if (DemandedElts[OutIdx]) 1518 InputDemandedElts.setBit(OutIdx / Ratio); 1519 } else if ((InVWidth % VWidth) == 0) { 1520 // If the number of elements in the input is a multiple of the number of 1521 // elements in the output then an input element is live if the 1522 // corresponding output element is live. 1523 Ratio = InVWidth / VWidth; 1524 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1525 if (DemandedElts[InIdx / Ratio]) 1526 InputDemandedElts.setBit(InIdx); 1527 } else { 1528 // Unsupported so far. 1529 break; 1530 } 1531 1532 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1533 1534 if (VWidth == InVWidth) { 1535 UndefElts = UndefElts2; 1536 } else if ((VWidth % InVWidth) == 0) { 1537 // If the number of elements in the output is a multiple of the number of 1538 // elements in the input then an output element is undef if the 1539 // corresponding input element is undef. 1540 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1541 if (UndefElts2[OutIdx / Ratio]) 1542 UndefElts.setBit(OutIdx); 1543 } else if ((InVWidth % VWidth) == 0) { 1544 // If the number of elements in the input is a multiple of the number of 1545 // elements in the output then an output element is undef if all of the 1546 // corresponding input elements are undef. 1547 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1548 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1549 if (SubUndef.countPopulation() == Ratio) 1550 UndefElts.setBit(OutIdx); 1551 } 1552 } else { 1553 llvm_unreachable("Unimp"); 1554 } 1555 break; 1556 } 1557 case Instruction::FPTrunc: 1558 case Instruction::FPExt: 1559 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1560 break; 1561 1562 case Instruction::Call: { 1563 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1564 if (!II) break; 1565 switch (II->getIntrinsicID()) { 1566 case Intrinsic::masked_gather: // fallthrough 1567 case Intrinsic::masked_load: { 1568 // Subtlety: If we load from a pointer, the pointer must be valid 1569 // regardless of whether the element is demanded. Doing otherwise risks 1570 // segfaults which didn't exist in the original program. 1571 APInt DemandedPtrs(APInt::getAllOnes(VWidth)), 1572 DemandedPassThrough(DemandedElts); 1573 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1574 for (unsigned i = 0; i < VWidth; i++) { 1575 Constant *CElt = CV->getAggregateElement(i); 1576 if (CElt->isNullValue()) 1577 DemandedPtrs.clearBit(i); 1578 else if (CElt->isAllOnesValue()) 1579 DemandedPassThrough.clearBit(i); 1580 } 1581 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1582 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1583 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1584 1585 // Output elements are undefined if the element from both sources are. 1586 // TODO: can strengthen via mask as well. 1587 UndefElts = UndefElts2 & UndefElts3; 1588 break; 1589 } 1590 default: { 1591 // Handle target specific intrinsics 1592 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1593 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1594 simplifyAndSetOp); 1595 if (V.hasValue()) 1596 return V.getValue(); 1597 break; 1598 } 1599 } // switch on IntrinsicID 1600 break; 1601 } // case Call 1602 } // switch on Opcode 1603 1604 // TODO: We bail completely on integer div/rem and shifts because they have 1605 // UB/poison potential, but that should be refined. 1606 BinaryOperator *BO; 1607 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1608 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1609 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1610 1611 // Output elements are undefined if both are undefined. Consider things 1612 // like undef & 0. The result is known zero, not undef. 1613 UndefElts &= UndefElts2; 1614 } 1615 1616 // If we've proven all of the lanes undef, return an undef value. 1617 // TODO: Intersect w/demanded lanes 1618 if (UndefElts.isAllOnes()) 1619 return UndefValue::get(I->getType());; 1620 1621 return MadeChange ? I : nullptr; 1622 } 1623