1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains logic for simplifying instructions based on information 11 // about how they are used. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombineInternal.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 20 using namespace llvm; 21 using namespace llvm::PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// Check to see if the specified operand of the specified instruction is a 26 /// constant integer. If so, check to see if there are any bits set in the 27 /// constant that are not demanded. If so, shrink the constant and return true. 28 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 29 APInt Demanded) { 30 assert(I && "No instruction?"); 31 assert(OpNo < I->getNumOperands() && "Operand index too large"); 32 33 // If the operand is not a constant integer, nothing to do. 34 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); 35 if (!OpC) return false; 36 37 // If there are no bits set that aren't demanded, nothing to do. 38 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); 39 if ((~Demanded & OpC->getValue()) == 0) 40 return false; 41 42 // This instruction is producing bits that are not demanded. Shrink the RHS. 43 Demanded &= OpC->getValue(); 44 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded)); 45 46 return true; 47 } 48 49 50 51 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 52 /// the instruction has any properties that allow us to simplify its operands. 53 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 54 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 55 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 56 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 57 58 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne, 59 0, &Inst); 60 if (!V) return false; 61 if (V == &Inst) return true; 62 replaceInstUsesWith(Inst, V); 63 return true; 64 } 65 66 /// This form of SimplifyDemandedBits simplifies the specified instruction 67 /// operand if possible, updating it in place. It returns true if it made any 68 /// change and false otherwise. 69 bool InstCombiner::SimplifyDemandedBits(Use &U, const APInt &DemandedMask, 70 APInt &KnownZero, APInt &KnownOne, 71 unsigned Depth) { 72 auto *UserI = dyn_cast<Instruction>(U.getUser()); 73 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero, 74 KnownOne, Depth, UserI); 75 if (!NewVal) return false; 76 U = NewVal; 77 return true; 78 } 79 80 81 /// This function attempts to replace V with a simpler value based on the 82 /// demanded bits. When this function is called, it is known that only the bits 83 /// set in DemandedMask of the result of V are ever used downstream. 84 /// Consequently, depending on the mask and V, it may be possible to replace V 85 /// with a constant or one of its operands. In such cases, this function does 86 /// the replacement and returns true. In all other cases, it returns false after 87 /// analyzing the expression and setting KnownOne and known to be one in the 88 /// expression. KnownZero contains all the bits that are known to be zero in the 89 /// expression. These are provided to potentially allow the caller (which might 90 /// recursively be SimplifyDemandedBits itself) to simplify the expression. 91 /// KnownOne and KnownZero always follow the invariant that: 92 /// KnownOne & KnownZero == 0. 93 /// That is, a bit can't be both 1 and 0. Note that the bits in KnownOne and 94 /// KnownZero may only be accurate for those bits set in DemandedMask. Note also 95 /// that the bitwidth of V, DemandedMask, KnownZero and KnownOne must all be the 96 /// same. 97 /// 98 /// This returns null if it did not change anything and it permits no 99 /// simplification. This returns V itself if it did some simplification of V's 100 /// operands based on the information about what bits are demanded. This returns 101 /// some other non-null value if it found out that V is equal to another value 102 /// in the context where the specified bits are demanded, but not for all users. 103 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 104 APInt &KnownZero, APInt &KnownOne, 105 unsigned Depth, 106 Instruction *CxtI) { 107 assert(V != nullptr && "Null pointer of Value???"); 108 assert(Depth <= 6 && "Limit Search Depth"); 109 uint32_t BitWidth = DemandedMask.getBitWidth(); 110 Type *VTy = V->getType(); 111 assert( 112 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 113 KnownZero.getBitWidth() == BitWidth && 114 KnownOne.getBitWidth() == BitWidth && 115 "Value *V, DemandedMask, KnownZero and KnownOne " 116 "must have same BitWidth"); 117 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 118 // We know all of the bits for a constant! 119 KnownOne = CI->getValue() & DemandedMask; 120 KnownZero = ~KnownOne & DemandedMask; 121 return nullptr; 122 } 123 if (isa<ConstantPointerNull>(V)) { 124 // We know all of the bits for a constant! 125 KnownOne.clearAllBits(); 126 KnownZero = DemandedMask; 127 return nullptr; 128 } 129 130 KnownZero.clearAllBits(); 131 KnownOne.clearAllBits(); 132 if (DemandedMask == 0) { // Not demanding any bits from V. 133 if (isa<UndefValue>(V)) 134 return nullptr; 135 return UndefValue::get(VTy); 136 } 137 138 if (Depth == 6) // Limit search depth. 139 return nullptr; 140 141 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 142 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 143 144 Instruction *I = dyn_cast<Instruction>(V); 145 if (!I) { 146 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 147 return nullptr; // Only analyze instructions. 148 } 149 150 // If there are multiple uses of this value and we aren't at the root, then 151 // we can't do any simplifications of the operands, because DemandedMask 152 // only reflects the bits demanded by *one* of the users. 153 if (Depth != 0 && !I->hasOneUse()) { 154 // Despite the fact that we can't simplify this instruction in all User's 155 // context, we can at least compute the knownzero/knownone bits, and we can 156 // do simplifications that apply to *just* the one user if we know that 157 // this instruction has a simpler value in that context. 158 if (I->getOpcode() == Instruction::And) { 159 // If either the LHS or the RHS are Zero, the result is zero. 160 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1, 161 CxtI); 162 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 163 CxtI); 164 165 // If all of the demanded bits are known 1 on one side, return the other. 166 // These bits cannot contribute to the result of the 'and' in this 167 // context. 168 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 169 (DemandedMask & ~LHSKnownZero)) 170 return I->getOperand(0); 171 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 172 (DemandedMask & ~RHSKnownZero)) 173 return I->getOperand(1); 174 175 // If all of the demanded bits in the inputs are known zeros, return zero. 176 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 177 return Constant::getNullValue(VTy); 178 179 } else if (I->getOpcode() == Instruction::Or) { 180 // We can simplify (X|Y) -> X or Y in the user's context if we know that 181 // only bits from X or Y are demanded. 182 183 // If either the LHS or the RHS are One, the result is One. 184 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1, 185 CxtI); 186 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 187 CxtI); 188 189 // If all of the demanded bits are known zero on one side, return the 190 // other. These bits cannot contribute to the result of the 'or' in this 191 // context. 192 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 193 (DemandedMask & ~LHSKnownOne)) 194 return I->getOperand(0); 195 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 196 (DemandedMask & ~RHSKnownOne)) 197 return I->getOperand(1); 198 199 // If all of the potentially set bits on one side are known to be set on 200 // the other side, just use the 'other' side. 201 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 202 (DemandedMask & (~RHSKnownZero))) 203 return I->getOperand(0); 204 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 205 (DemandedMask & (~LHSKnownZero))) 206 return I->getOperand(1); 207 } else if (I->getOpcode() == Instruction::Xor) { 208 // We can simplify (X^Y) -> X or Y in the user's context if we know that 209 // only bits from X or Y are demanded. 210 211 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1, 212 CxtI); 213 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 214 CxtI); 215 216 // If all of the demanded bits are known zero on one side, return the 217 // other. 218 if ((DemandedMask & RHSKnownZero) == DemandedMask) 219 return I->getOperand(0); 220 if ((DemandedMask & LHSKnownZero) == DemandedMask) 221 return I->getOperand(1); 222 } 223 224 // Compute the KnownZero/KnownOne bits to simplify things downstream. 225 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI); 226 return nullptr; 227 } 228 229 // If this is the root being simplified, allow it to have multiple uses, 230 // just set the DemandedMask to all bits so that we can try to simplify the 231 // operands. This allows visitTruncInst (for example) to simplify the 232 // operand of a trunc without duplicating all the logic below. 233 if (Depth == 0 && !V->hasOneUse()) 234 DemandedMask = APInt::getAllOnesValue(BitWidth); 235 236 switch (I->getOpcode()) { 237 default: 238 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI); 239 break; 240 case Instruction::And: 241 // If either the LHS or the RHS are Zero, the result is zero. 242 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero, 243 RHSKnownOne, Depth + 1) || 244 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, 245 LHSKnownZero, LHSKnownOne, Depth + 1)) 246 return I; 247 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 248 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 249 250 // If the client is only demanding bits that we know, return the known 251 // constant. 252 if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)| 253 (RHSKnownOne & LHSKnownOne))) == DemandedMask) 254 return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne); 255 256 // If all of the demanded bits are known 1 on one side, return the other. 257 // These bits cannot contribute to the result of the 'and'. 258 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 259 (DemandedMask & ~LHSKnownZero)) 260 return I->getOperand(0); 261 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 262 (DemandedMask & ~RHSKnownZero)) 263 return I->getOperand(1); 264 265 // If all of the demanded bits in the inputs are known zeros, return zero. 266 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 267 return Constant::getNullValue(VTy); 268 269 // If the RHS is a constant, see if we can simplify it. 270 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) 271 return I; 272 273 // Output known-1 bits are only known if set in both the LHS & RHS. 274 KnownOne = RHSKnownOne & LHSKnownOne; 275 // Output known-0 are known to be clear if zero in either the LHS | RHS. 276 KnownZero = RHSKnownZero | LHSKnownZero; 277 break; 278 case Instruction::Or: 279 // If either the LHS or the RHS are One, the result is One. 280 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero, 281 RHSKnownOne, Depth + 1) || 282 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, 283 LHSKnownZero, LHSKnownOne, Depth + 1)) 284 return I; 285 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 286 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 287 288 // If the client is only demanding bits that we know, return the known 289 // constant. 290 if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)| 291 (RHSKnownOne | LHSKnownOne))) == DemandedMask) 292 return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne); 293 294 // If all of the demanded bits are known zero on one side, return the other. 295 // These bits cannot contribute to the result of the 'or'. 296 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 297 (DemandedMask & ~LHSKnownOne)) 298 return I->getOperand(0); 299 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 300 (DemandedMask & ~RHSKnownOne)) 301 return I->getOperand(1); 302 303 // If all of the potentially set bits on one side are known to be set on 304 // the other side, just use the 'other' side. 305 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 306 (DemandedMask & (~RHSKnownZero))) 307 return I->getOperand(0); 308 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 309 (DemandedMask & (~LHSKnownZero))) 310 return I->getOperand(1); 311 312 // If the RHS is a constant, see if we can simplify it. 313 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 314 return I; 315 316 // Output known-0 bits are only known if clear in both the LHS & RHS. 317 KnownZero = RHSKnownZero & LHSKnownZero; 318 // Output known-1 are known to be set if set in either the LHS | RHS. 319 KnownOne = RHSKnownOne | LHSKnownOne; 320 break; 321 case Instruction::Xor: { 322 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero, 323 RHSKnownOne, Depth + 1) || 324 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero, 325 LHSKnownOne, Depth + 1)) 326 return I; 327 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 328 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 329 330 // Output known-0 bits are known if clear or set in both the LHS & RHS. 331 APInt IKnownZero = (RHSKnownZero & LHSKnownZero) | 332 (RHSKnownOne & LHSKnownOne); 333 // Output known-1 are known to be set if set in only one of the LHS, RHS. 334 APInt IKnownOne = (RHSKnownZero & LHSKnownOne) | 335 (RHSKnownOne & LHSKnownZero); 336 337 // If the client is only demanding bits that we know, return the known 338 // constant. 339 if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask) 340 return Constant::getIntegerValue(VTy, IKnownOne); 341 342 // If all of the demanded bits are known zero on one side, return the other. 343 // These bits cannot contribute to the result of the 'xor'. 344 if ((DemandedMask & RHSKnownZero) == DemandedMask) 345 return I->getOperand(0); 346 if ((DemandedMask & LHSKnownZero) == DemandedMask) 347 return I->getOperand(1); 348 349 // If all of the demanded bits are known to be zero on one side or the 350 // other, turn this into an *inclusive* or. 351 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 352 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { 353 Instruction *Or = 354 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 355 I->getName()); 356 return InsertNewInstWith(Or, *I); 357 } 358 359 // If all of the demanded bits on one side are known, and all of the set 360 // bits on that side are also known to be set on the other side, turn this 361 // into an AND, as we know the bits will be cleared. 362 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 363 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { 364 // all known 365 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { 366 Constant *AndC = Constant::getIntegerValue(VTy, 367 ~RHSKnownOne & DemandedMask); 368 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 369 return InsertNewInstWith(And, *I); 370 } 371 } 372 373 // If the RHS is a constant, see if we can simplify it. 374 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 375 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 376 return I; 377 378 // If our LHS is an 'and' and if it has one use, and if any of the bits we 379 // are flipping are known to be set, then the xor is just resetting those 380 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 381 // simplifying both of them. 382 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 383 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 384 isa<ConstantInt>(I->getOperand(1)) && 385 isa<ConstantInt>(LHSInst->getOperand(1)) && 386 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) { 387 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 388 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 389 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask); 390 391 Constant *AndC = 392 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 393 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 394 InsertNewInstWith(NewAnd, *I); 395 396 Constant *XorC = 397 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 398 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 399 return InsertNewInstWith(NewXor, *I); 400 } 401 402 // Output known-0 bits are known if clear or set in both the LHS & RHS. 403 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne); 404 // Output known-1 are known to be set if set in only one of the LHS, RHS. 405 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero); 406 break; 407 } 408 case Instruction::Select: 409 // If this is a select as part of a min/max pattern, don't simplify any 410 // further in case we break the structure. 411 Value *LHS, *RHS; 412 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN) 413 return nullptr; 414 415 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero, 416 RHSKnownOne, Depth + 1) || 417 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero, 418 LHSKnownOne, Depth + 1)) 419 return I; 420 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 421 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 422 423 // If the operands are constants, see if we can simplify them. 424 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 425 ShrinkDemandedConstant(I, 2, DemandedMask)) 426 return I; 427 428 // Only known if known in both the LHS and RHS. 429 KnownOne = RHSKnownOne & LHSKnownOne; 430 KnownZero = RHSKnownZero & LHSKnownZero; 431 break; 432 case Instruction::Trunc: { 433 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); 434 DemandedMask = DemandedMask.zext(truncBf); 435 KnownZero = KnownZero.zext(truncBf); 436 KnownOne = KnownOne.zext(truncBf); 437 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero, 438 KnownOne, Depth + 1)) 439 return I; 440 DemandedMask = DemandedMask.trunc(BitWidth); 441 KnownZero = KnownZero.trunc(BitWidth); 442 KnownOne = KnownOne.trunc(BitWidth); 443 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 444 break; 445 } 446 case Instruction::BitCast: 447 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 448 return nullptr; // vector->int or fp->int? 449 450 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 451 if (VectorType *SrcVTy = 452 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 453 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 454 // Don't touch a bitcast between vectors of different element counts. 455 return nullptr; 456 } else 457 // Don't touch a scalar-to-vector bitcast. 458 return nullptr; 459 } else if (I->getOperand(0)->getType()->isVectorTy()) 460 // Don't touch a vector-to-scalar bitcast. 461 return nullptr; 462 463 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero, 464 KnownOne, Depth + 1)) 465 return I; 466 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 467 break; 468 case Instruction::ZExt: { 469 // Compute the bits in the result that are not present in the input. 470 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 471 472 DemandedMask = DemandedMask.trunc(SrcBitWidth); 473 KnownZero = KnownZero.trunc(SrcBitWidth); 474 KnownOne = KnownOne.trunc(SrcBitWidth); 475 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero, 476 KnownOne, Depth + 1)) 477 return I; 478 DemandedMask = DemandedMask.zext(BitWidth); 479 KnownZero = KnownZero.zext(BitWidth); 480 KnownOne = KnownOne.zext(BitWidth); 481 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 482 // The top bits are known to be zero. 483 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 484 break; 485 } 486 case Instruction::SExt: { 487 // Compute the bits in the result that are not present in the input. 488 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 489 490 APInt InputDemandedBits = DemandedMask & 491 APInt::getLowBitsSet(BitWidth, SrcBitWidth); 492 493 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); 494 // If any of the sign extended bits are demanded, we know that the sign 495 // bit is demanded. 496 if ((NewBits & DemandedMask) != 0) 497 InputDemandedBits.setBit(SrcBitWidth-1); 498 499 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth); 500 KnownZero = KnownZero.trunc(SrcBitWidth); 501 KnownOne = KnownOne.trunc(SrcBitWidth); 502 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, KnownZero, 503 KnownOne, Depth + 1)) 504 return I; 505 InputDemandedBits = InputDemandedBits.zext(BitWidth); 506 KnownZero = KnownZero.zext(BitWidth); 507 KnownOne = KnownOne.zext(BitWidth); 508 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 509 510 // If the sign bit of the input is known set or clear, then we know the 511 // top bits of the result. 512 513 // If the input sign bit is known zero, or if the NewBits are not demanded 514 // convert this into a zero extension. 515 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { 516 // Convert to ZExt cast 517 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 518 return InsertNewInstWith(NewCast, *I); 519 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set 520 KnownOne |= NewBits; 521 } 522 break; 523 } 524 case Instruction::Add: 525 case Instruction::Sub: { 526 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 527 /// about the high bits of the operands. 528 unsigned NLZ = DemandedMask.countLeadingZeros(); 529 if (NLZ > 0) { 530 // Right fill the mask of bits for this ADD/SUB to demand the most 531 // significant bit and all those below it. 532 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 533 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 534 LHSKnownZero, LHSKnownOne, Depth + 1) || 535 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 536 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 537 LHSKnownZero, LHSKnownOne, Depth + 1)) { 538 // Disable the nsw and nuw flags here: We can no longer guarantee that 539 // we won't wrap after simplification. Removing the nsw/nuw flags is 540 // legal here because the top bit is not demanded. 541 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 542 BinOP.setHasNoSignedWrap(false); 543 BinOP.setHasNoUnsignedWrap(false); 544 return I; 545 } 546 } 547 548 // Otherwise just hand the add/sub off to computeKnownBits to fill in 549 // the known zeros and ones. 550 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 551 break; 552 } 553 case Instruction::Shl: 554 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 555 { 556 Value *VarX; ConstantInt *C1; 557 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) { 558 Instruction *Shr = cast<Instruction>(I->getOperand(0)); 559 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask, 560 KnownZero, KnownOne); 561 if (R) 562 return R; 563 } 564 } 565 566 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 567 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 568 569 // If the shift is NUW/NSW, then it does demand the high bits. 570 ShlOperator *IOp = cast<ShlOperator>(I); 571 if (IOp->hasNoSignedWrap()) 572 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 573 else if (IOp->hasNoUnsignedWrap()) 574 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 575 576 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero, 577 KnownOne, Depth + 1)) 578 return I; 579 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 580 KnownZero <<= ShiftAmt; 581 KnownOne <<= ShiftAmt; 582 // low bits known zero. 583 if (ShiftAmt) 584 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 585 } 586 break; 587 case Instruction::LShr: 588 // For a logical shift right 589 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 590 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 591 592 // Unsigned shift right. 593 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 594 595 // If the shift is exact, then it does demand the low bits (and knows that 596 // they are zero). 597 if (cast<LShrOperator>(I)->isExact()) 598 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 599 600 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero, 601 KnownOne, Depth + 1)) 602 return I; 603 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 604 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 605 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 606 if (ShiftAmt) { 607 // Compute the new bits that are at the top now. 608 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 609 KnownZero |= HighBits; // high bits known zero. 610 } 611 } 612 break; 613 case Instruction::AShr: 614 // If this is an arithmetic shift right and only the low-bit is set, we can 615 // always convert this into a logical shr, even if the shift amount is 616 // variable. The low bit of the shift cannot be an input sign bit unless 617 // the shift amount is >= the size of the datatype, which is undefined. 618 if (DemandedMask == 1) { 619 // Perform the logical shift right. 620 Instruction *NewVal = BinaryOperator::CreateLShr( 621 I->getOperand(0), I->getOperand(1), I->getName()); 622 return InsertNewInstWith(NewVal, *I); 623 } 624 625 // If the sign bit is the only bit demanded by this ashr, then there is no 626 // need to do it, the shift doesn't change the high bit. 627 if (DemandedMask.isSignBit()) 628 return I->getOperand(0); 629 630 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 631 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 632 633 // Signed shift right. 634 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 635 // If any of the "high bits" are demanded, we should set the sign bit as 636 // demanded. 637 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 638 DemandedMaskIn.setBit(BitWidth-1); 639 640 // If the shift is exact, then it does demand the low bits (and knows that 641 // they are zero). 642 if (cast<AShrOperator>(I)->isExact()) 643 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 644 645 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero, 646 KnownOne, Depth + 1)) 647 return I; 648 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 649 // Compute the new bits that are at the top now. 650 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 651 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 652 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 653 654 // Handle the sign bits. 655 APInt SignBit(APInt::getSignBit(BitWidth)); 656 // Adjust to where it is now in the mask. 657 SignBit = APIntOps::lshr(SignBit, ShiftAmt); 658 659 // If the input sign bit is known to be zero, or if none of the top bits 660 // are demanded, turn this into an unsigned shift right. 661 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] || 662 (HighBits & ~DemandedMask) == HighBits) { 663 // Perform the logical shift right. 664 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0), 665 SA, I->getName()); 666 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact()); 667 return InsertNewInstWith(NewVal, *I); 668 } else if ((KnownOne & SignBit) != 0) { // New bits are known one. 669 KnownOne |= HighBits; 670 } 671 } 672 break; 673 case Instruction::SRem: 674 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 675 // X % -1 demands all the bits because we don't want to introduce 676 // INT_MIN % -1 (== undef) by accident. 677 if (Rem->isAllOnesValue()) 678 break; 679 APInt RA = Rem->getValue().abs(); 680 if (RA.isPowerOf2()) { 681 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 682 return I->getOperand(0); 683 684 APInt LowBits = RA - 1; 685 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 686 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero, 687 LHSKnownOne, Depth + 1)) 688 return I; 689 690 // The low bits of LHS are unchanged by the srem. 691 KnownZero = LHSKnownZero & LowBits; 692 KnownOne = LHSKnownOne & LowBits; 693 694 // If LHS is non-negative or has all low bits zero, then the upper bits 695 // are all zero. 696 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) 697 KnownZero |= ~LowBits; 698 699 // If LHS is negative and not all low bits are zero, then the upper bits 700 // are all one. 701 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0)) 702 KnownOne |= ~LowBits; 703 704 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 705 } 706 } 707 708 // The sign bit is the LHS's sign bit, except when the result of the 709 // remainder is zero. 710 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) { 711 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 712 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 713 CxtI); 714 // If it's known zero, our sign bit is also zero. 715 if (LHSKnownZero.isNegative()) 716 KnownZero.setBit(KnownZero.getBitWidth() - 1); 717 } 718 break; 719 case Instruction::URem: { 720 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 721 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 722 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2, 723 KnownOne2, Depth + 1) || 724 SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2, 725 KnownOne2, Depth + 1)) 726 return I; 727 728 unsigned Leaders = KnownZero2.countLeadingOnes(); 729 Leaders = std::max(Leaders, 730 KnownZero2.countLeadingOnes()); 731 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 732 break; 733 } 734 case Instruction::Call: 735 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 736 switch (II->getIntrinsicID()) { 737 default: break; 738 case Intrinsic::bswap: { 739 // If the only bits demanded come from one byte of the bswap result, 740 // just shift the input byte into position to eliminate the bswap. 741 unsigned NLZ = DemandedMask.countLeadingZeros(); 742 unsigned NTZ = DemandedMask.countTrailingZeros(); 743 744 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 745 // we need all the bits down to bit 8. Likewise, round NLZ. If we 746 // have 14 leading zeros, round to 8. 747 NLZ &= ~7; 748 NTZ &= ~7; 749 // If we need exactly one byte, we can do this transformation. 750 if (BitWidth-NLZ-NTZ == 8) { 751 unsigned ResultBit = NTZ; 752 unsigned InputBit = BitWidth-NTZ-8; 753 754 // Replace this with either a left or right shift to get the byte into 755 // the right place. 756 Instruction *NewVal; 757 if (InputBit > ResultBit) 758 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 759 ConstantInt::get(I->getType(), InputBit-ResultBit)); 760 else 761 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 762 ConstantInt::get(I->getType(), ResultBit-InputBit)); 763 NewVal->takeName(I); 764 return InsertNewInstWith(NewVal, *I); 765 } 766 767 // TODO: Could compute known zero/one bits based on the input. 768 break; 769 } 770 case Intrinsic::x86_mmx_pmovmskb: 771 case Intrinsic::x86_sse_movmsk_ps: 772 case Intrinsic::x86_sse2_movmsk_pd: 773 case Intrinsic::x86_sse2_pmovmskb_128: 774 case Intrinsic::x86_avx_movmsk_ps_256: 775 case Intrinsic::x86_avx_movmsk_pd_256: 776 case Intrinsic::x86_avx2_pmovmskb: { 777 // MOVMSK copies the vector elements' sign bits to the low bits 778 // and zeros the high bits. 779 unsigned ArgWidth; 780 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 781 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 782 } else { 783 auto Arg = II->getArgOperand(0); 784 auto ArgType = cast<VectorType>(Arg->getType()); 785 ArgWidth = ArgType->getNumElements(); 786 } 787 788 // If we don't need any of low bits then return zero, 789 // we know that DemandedMask is non-zero already. 790 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 791 if (DemandedElts == 0) 792 return ConstantInt::getNullValue(VTy); 793 794 // We know that the upper bits are set to zero. 795 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - ArgWidth); 796 return nullptr; 797 } 798 case Intrinsic::x86_sse42_crc32_64_64: 799 KnownZero = APInt::getHighBitsSet(64, 32); 800 return nullptr; 801 } 802 } 803 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 804 break; 805 } 806 807 // If the client is only demanding bits that we know, return the known 808 // constant. 809 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) 810 return Constant::getIntegerValue(VTy, KnownOne); 811 return nullptr; 812 } 813 814 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 815 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 816 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 817 /// of "C2-C1". 818 /// 819 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 820 /// ..., bn}, without considering the specific value X is holding. 821 /// This transformation is legal iff one of following conditions is hold: 822 /// 1) All the bit in S are 0, in this case E1 == E2. 823 /// 2) We don't care those bits in S, per the input DemandedMask. 824 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 825 /// rest bits. 826 /// 827 /// Currently we only test condition 2). 828 /// 829 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 830 /// not successful. 831 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr, 832 Instruction *Shl, 833 const APInt &DemandedMask, 834 APInt &KnownZero, 835 APInt &KnownOne) { 836 837 const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue(); 838 const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue(); 839 if (!ShlOp1 || !ShrOp1) 840 return nullptr; // Noop. 841 842 Value *VarX = Shr->getOperand(0); 843 Type *Ty = VarX->getType(); 844 unsigned BitWidth = Ty->getIntegerBitWidth(); 845 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 846 return nullptr; // Undef. 847 848 unsigned ShlAmt = ShlOp1.getZExtValue(); 849 unsigned ShrAmt = ShrOp1.getZExtValue(); 850 851 KnownOne.clearAllBits(); 852 KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1); 853 KnownZero &= DemandedMask; 854 855 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 856 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 857 858 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 859 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 860 (BitMask1.ashr(ShrAmt) << ShlAmt); 861 862 if (ShrAmt <= ShlAmt) { 863 BitMask2 <<= (ShlAmt - ShrAmt); 864 } else { 865 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 866 BitMask2.ashr(ShrAmt - ShlAmt); 867 } 868 869 // Check if condition-2 (see the comment to this function) is satified. 870 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 871 if (ShrAmt == ShlAmt) 872 return VarX; 873 874 if (!Shr->hasOneUse()) 875 return nullptr; 876 877 BinaryOperator *New; 878 if (ShrAmt < ShlAmt) { 879 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 880 New = BinaryOperator::CreateShl(VarX, Amt); 881 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 882 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 883 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 884 } else { 885 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 886 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 887 BinaryOperator::CreateAShr(VarX, Amt); 888 if (cast<BinaryOperator>(Shr)->isExact()) 889 New->setIsExact(true); 890 } 891 892 return InsertNewInstWith(New, *Shl); 893 } 894 895 return nullptr; 896 } 897 898 /// The specified value produces a vector with any number of elements. 899 /// DemandedElts contains the set of elements that are actually used by the 900 /// caller. This method analyzes which elements of the operand are undef and 901 /// returns that information in UndefElts. 902 /// 903 /// If the information about demanded elements can be used to simplify the 904 /// operation, the operation is simplified, then the resultant value is 905 /// returned. This returns null if no change was made. 906 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 907 APInt &UndefElts, 908 unsigned Depth) { 909 unsigned VWidth = V->getType()->getVectorNumElements(); 910 APInt EltMask(APInt::getAllOnesValue(VWidth)); 911 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 912 913 if (isa<UndefValue>(V)) { 914 // If the entire vector is undefined, just return this info. 915 UndefElts = EltMask; 916 return nullptr; 917 } 918 919 if (DemandedElts == 0) { // If nothing is demanded, provide undef. 920 UndefElts = EltMask; 921 return UndefValue::get(V->getType()); 922 } 923 924 UndefElts = 0; 925 926 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. 927 if (Constant *C = dyn_cast<Constant>(V)) { 928 // Check if this is identity. If so, return 0 since we are not simplifying 929 // anything. 930 if (DemandedElts.isAllOnesValue()) 931 return nullptr; 932 933 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 934 Constant *Undef = UndefValue::get(EltTy); 935 936 SmallVector<Constant*, 16> Elts; 937 for (unsigned i = 0; i != VWidth; ++i) { 938 if (!DemandedElts[i]) { // If not demanded, set to undef. 939 Elts.push_back(Undef); 940 UndefElts.setBit(i); 941 continue; 942 } 943 944 Constant *Elt = C->getAggregateElement(i); 945 if (!Elt) return nullptr; 946 947 if (isa<UndefValue>(Elt)) { // Already undef. 948 Elts.push_back(Undef); 949 UndefElts.setBit(i); 950 } else { // Otherwise, defined. 951 Elts.push_back(Elt); 952 } 953 } 954 955 // If we changed the constant, return it. 956 Constant *NewCV = ConstantVector::get(Elts); 957 return NewCV != C ? NewCV : nullptr; 958 } 959 960 // Limit search depth. 961 if (Depth == 10) 962 return nullptr; 963 964 // If multiple users are using the root value, proceed with 965 // simplification conservatively assuming that all elements 966 // are needed. 967 if (!V->hasOneUse()) { 968 // Quit if we find multiple users of a non-root value though. 969 // They'll be handled when it's their turn to be visited by 970 // the main instcombine process. 971 if (Depth != 0) 972 // TODO: Just compute the UndefElts information recursively. 973 return nullptr; 974 975 // Conservatively assume that all elements are needed. 976 DemandedElts = EltMask; 977 } 978 979 Instruction *I = dyn_cast<Instruction>(V); 980 if (!I) return nullptr; // Only analyze instructions. 981 982 bool MadeChange = false; 983 APInt UndefElts2(VWidth, 0); 984 APInt UndefElts3(VWidth, 0); 985 Value *TmpV; 986 switch (I->getOpcode()) { 987 default: break; 988 989 case Instruction::InsertElement: { 990 // If this is a variable index, we don't know which element it overwrites. 991 // demand exactly the same input as we produce. 992 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 993 if (!Idx) { 994 // Note that we can't propagate undef elt info, because we don't know 995 // which elt is getting updated. 996 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 997 UndefElts2, Depth + 1); 998 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 999 break; 1000 } 1001 1002 // If this is inserting an element that isn't demanded, remove this 1003 // insertelement. 1004 unsigned IdxNo = Idx->getZExtValue(); 1005 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1006 Worklist.Add(I); 1007 return I->getOperand(0); 1008 } 1009 1010 // Otherwise, the element inserted overwrites whatever was there, so the 1011 // input demanded set is simpler than the output set. 1012 APInt DemandedElts2 = DemandedElts; 1013 DemandedElts2.clearBit(IdxNo); 1014 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, 1015 UndefElts, Depth + 1); 1016 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1017 1018 // The inserted element is defined. 1019 UndefElts.clearBit(IdxNo); 1020 break; 1021 } 1022 case Instruction::ShuffleVector: { 1023 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1024 unsigned LHSVWidth = 1025 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1026 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1027 for (unsigned i = 0; i < VWidth; i++) { 1028 if (DemandedElts[i]) { 1029 unsigned MaskVal = Shuffle->getMaskValue(i); 1030 if (MaskVal != -1u) { 1031 assert(MaskVal < LHSVWidth * 2 && 1032 "shufflevector mask index out of range!"); 1033 if (MaskVal < LHSVWidth) 1034 LeftDemanded.setBit(MaskVal); 1035 else 1036 RightDemanded.setBit(MaskVal - LHSVWidth); 1037 } 1038 } 1039 } 1040 1041 APInt LHSUndefElts(LHSVWidth, 0); 1042 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, 1043 LHSUndefElts, Depth + 1); 1044 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1045 1046 APInt RHSUndefElts(LHSVWidth, 0); 1047 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, 1048 RHSUndefElts, Depth + 1); 1049 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1050 1051 bool NewUndefElts = false; 1052 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1053 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1054 bool LHSUniform = true; 1055 bool RHSUniform = true; 1056 for (unsigned i = 0; i < VWidth; i++) { 1057 unsigned MaskVal = Shuffle->getMaskValue(i); 1058 if (MaskVal == -1u) { 1059 UndefElts.setBit(i); 1060 } else if (!DemandedElts[i]) { 1061 NewUndefElts = true; 1062 UndefElts.setBit(i); 1063 } else if (MaskVal < LHSVWidth) { 1064 if (LHSUndefElts[MaskVal]) { 1065 NewUndefElts = true; 1066 UndefElts.setBit(i); 1067 } else { 1068 LHSIdx = LHSIdx == -1u ? i : LHSVWidth; 1069 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth; 1070 LHSUniform = LHSUniform && (MaskVal == i); 1071 } 1072 } else { 1073 if (RHSUndefElts[MaskVal - LHSVWidth]) { 1074 NewUndefElts = true; 1075 UndefElts.setBit(i); 1076 } else { 1077 RHSIdx = RHSIdx == -1u ? i : LHSVWidth; 1078 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth; 1079 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i); 1080 } 1081 } 1082 } 1083 1084 // Try to transform shuffle with constant vector and single element from 1085 // this constant vector to single insertelement instruction. 1086 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1087 // insertelement V, C[ci], ci-n 1088 if (LHSVWidth == Shuffle->getType()->getNumElements()) { 1089 Value *Op = nullptr; 1090 Constant *Value = nullptr; 1091 unsigned Idx = -1u; 1092 1093 // Find constant vector with the single element in shuffle (LHS or RHS). 1094 if (LHSIdx < LHSVWidth && RHSUniform) { 1095 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1096 Op = Shuffle->getOperand(1); 1097 Value = CV->getOperand(LHSValIdx); 1098 Idx = LHSIdx; 1099 } 1100 } 1101 if (RHSIdx < LHSVWidth && LHSUniform) { 1102 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1103 Op = Shuffle->getOperand(0); 1104 Value = CV->getOperand(RHSValIdx); 1105 Idx = RHSIdx; 1106 } 1107 } 1108 // Found constant vector with single element - convert to insertelement. 1109 if (Op && Value) { 1110 Instruction *New = InsertElementInst::Create( 1111 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1112 Shuffle->getName()); 1113 InsertNewInstWith(New, *Shuffle); 1114 return New; 1115 } 1116 } 1117 if (NewUndefElts) { 1118 // Add additional discovered undefs. 1119 SmallVector<Constant*, 16> Elts; 1120 for (unsigned i = 0; i < VWidth; ++i) { 1121 if (UndefElts[i]) 1122 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1123 else 1124 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1125 Shuffle->getMaskValue(i))); 1126 } 1127 I->setOperand(2, ConstantVector::get(Elts)); 1128 MadeChange = true; 1129 } 1130 break; 1131 } 1132 case Instruction::Select: { 1133 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); 1134 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) { 1135 for (unsigned i = 0; i < VWidth; i++) { 1136 Constant *CElt = CV->getAggregateElement(i); 1137 // Method isNullValue always returns false when called on a 1138 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to 1139 // to avoid propagating incorrect information. 1140 if (isa<ConstantExpr>(CElt)) 1141 continue; 1142 if (CElt->isNullValue()) 1143 LeftDemanded.clearBit(i); 1144 else 1145 RightDemanded.clearBit(i); 1146 } 1147 } 1148 1149 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts, 1150 Depth + 1); 1151 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1152 1153 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, 1154 UndefElts2, Depth + 1); 1155 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } 1156 1157 // Output elements are undefined if both are undefined. 1158 UndefElts &= UndefElts2; 1159 break; 1160 } 1161 case Instruction::BitCast: { 1162 // Vector->vector casts only. 1163 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1164 if (!VTy) break; 1165 unsigned InVWidth = VTy->getNumElements(); 1166 APInt InputDemandedElts(InVWidth, 0); 1167 UndefElts2 = APInt(InVWidth, 0); 1168 unsigned Ratio; 1169 1170 if (VWidth == InVWidth) { 1171 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1172 // elements as are demanded of us. 1173 Ratio = 1; 1174 InputDemandedElts = DemandedElts; 1175 } else if ((VWidth % InVWidth) == 0) { 1176 // If the number of elements in the output is a multiple of the number of 1177 // elements in the input then an input element is live if any of the 1178 // corresponding output elements are live. 1179 Ratio = VWidth / InVWidth; 1180 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1181 if (DemandedElts[OutIdx]) 1182 InputDemandedElts.setBit(OutIdx / Ratio); 1183 } else if ((InVWidth % VWidth) == 0) { 1184 // If the number of elements in the input is a multiple of the number of 1185 // elements in the output then an input element is live if the 1186 // corresponding output element is live. 1187 Ratio = InVWidth / VWidth; 1188 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1189 if (DemandedElts[InIdx / Ratio]) 1190 InputDemandedElts.setBit(InIdx); 1191 } else { 1192 // Unsupported so far. 1193 break; 1194 } 1195 1196 // div/rem demand all inputs, because they don't want divide by zero. 1197 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, 1198 UndefElts2, Depth + 1); 1199 if (TmpV) { 1200 I->setOperand(0, TmpV); 1201 MadeChange = true; 1202 } 1203 1204 if (VWidth == InVWidth) { 1205 UndefElts = UndefElts2; 1206 } else if ((VWidth % InVWidth) == 0) { 1207 // If the number of elements in the output is a multiple of the number of 1208 // elements in the input then an output element is undef if the 1209 // corresponding input element is undef. 1210 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1211 if (UndefElts2[OutIdx / Ratio]) 1212 UndefElts.setBit(OutIdx); 1213 } else if ((InVWidth % VWidth) == 0) { 1214 // If the number of elements in the input is a multiple of the number of 1215 // elements in the output then an output element is undef if all of the 1216 // corresponding input elements are undef. 1217 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1218 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1219 if (SubUndef.countPopulation() == Ratio) 1220 UndefElts.setBit(OutIdx); 1221 } 1222 } else { 1223 llvm_unreachable("Unimp"); 1224 } 1225 break; 1226 } 1227 case Instruction::And: 1228 case Instruction::Or: 1229 case Instruction::Xor: 1230 case Instruction::Add: 1231 case Instruction::Sub: 1232 case Instruction::Mul: 1233 // div/rem demand all inputs, because they don't want divide by zero. 1234 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1235 Depth + 1); 1236 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1237 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, 1238 UndefElts2, Depth + 1); 1239 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1240 1241 // Output elements are undefined if both are undefined. Consider things 1242 // like undef&0. The result is known zero, not undef. 1243 UndefElts &= UndefElts2; 1244 break; 1245 case Instruction::FPTrunc: 1246 case Instruction::FPExt: 1247 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1248 Depth + 1); 1249 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1250 break; 1251 1252 case Instruction::Call: { 1253 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1254 if (!II) break; 1255 switch (II->getIntrinsicID()) { 1256 default: break; 1257 1258 case Intrinsic::x86_xop_vfrcz_ss: 1259 case Intrinsic::x86_xop_vfrcz_sd: 1260 // The instructions for these intrinsics are speced to zero upper bits not 1261 // pass them through like other scalar intrinsics. So we shouldn't just 1262 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1263 // Instead we should return a zero vector. 1264 if (!DemandedElts[0]) { 1265 Worklist.Add(II); 1266 return ConstantAggregateZero::get(II->getType()); 1267 } 1268 1269 // Only the lower element is used. 1270 DemandedElts = 1; 1271 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1272 UndefElts, Depth + 1); 1273 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1274 1275 // Only the lower element is undefined. The high elements are zero. 1276 UndefElts = UndefElts[0]; 1277 break; 1278 1279 // Unary scalar-as-vector operations that work column-wise. 1280 case Intrinsic::x86_sse_rcp_ss: 1281 case Intrinsic::x86_sse_rsqrt_ss: 1282 case Intrinsic::x86_sse_sqrt_ss: 1283 case Intrinsic::x86_sse2_sqrt_sd: 1284 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1285 UndefElts, Depth + 1); 1286 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1287 1288 // If lowest element of a scalar op isn't used then use Arg0. 1289 if (!DemandedElts[0]) { 1290 Worklist.Add(II); 1291 return II->getArgOperand(0); 1292 } 1293 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1294 // checks). 1295 break; 1296 1297 // Binary scalar-as-vector operations that work column-wise. The high 1298 // elements come from operand 0. The low element is a function of both 1299 // operands. 1300 case Intrinsic::x86_sse_min_ss: 1301 case Intrinsic::x86_sse_max_ss: 1302 case Intrinsic::x86_sse_cmp_ss: 1303 case Intrinsic::x86_sse2_min_sd: 1304 case Intrinsic::x86_sse2_max_sd: 1305 case Intrinsic::x86_sse2_cmp_sd: { 1306 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1307 UndefElts, Depth + 1); 1308 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1309 1310 // If lowest element of a scalar op isn't used then use Arg0. 1311 if (!DemandedElts[0]) { 1312 Worklist.Add(II); 1313 return II->getArgOperand(0); 1314 } 1315 1316 // Only lower element is used for operand 1. 1317 DemandedElts = 1; 1318 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1319 UndefElts2, Depth + 1); 1320 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1321 1322 // Lower element is undefined if both lower elements are undefined. 1323 // Consider things like undef&0. The result is known zero, not undef. 1324 if (!UndefElts2[0]) 1325 UndefElts.clearBit(0); 1326 1327 break; 1328 } 1329 1330 // Binary scalar-as-vector operations that work column-wise. The high 1331 // elements come from operand 0 and the low element comes from operand 1. 1332 case Intrinsic::x86_sse41_round_ss: 1333 case Intrinsic::x86_sse41_round_sd: { 1334 // Don't use the low element of operand 0. 1335 APInt DemandedElts2 = DemandedElts; 1336 DemandedElts2.clearBit(0); 1337 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2, 1338 UndefElts, Depth + 1); 1339 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1340 1341 // If lowest element of a scalar op isn't used then use Arg0. 1342 if (!DemandedElts[0]) { 1343 Worklist.Add(II); 1344 return II->getArgOperand(0); 1345 } 1346 1347 // Only lower element is used for operand 1. 1348 DemandedElts = 1; 1349 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1350 UndefElts2, Depth + 1); 1351 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1352 1353 // Take the high undef elements from operand 0 and take the lower element 1354 // from operand 1. 1355 UndefElts.clearBit(0); 1356 UndefElts |= UndefElts2[0]; 1357 break; 1358 } 1359 1360 // Three input scalar-as-vector operations that work column-wise. The high 1361 // elements come from operand 0 and the low element is a function of all 1362 // three inputs. 1363 case Intrinsic::x86_avx512_mask_add_ss_round: 1364 case Intrinsic::x86_avx512_mask_div_ss_round: 1365 case Intrinsic::x86_avx512_mask_mul_ss_round: 1366 case Intrinsic::x86_avx512_mask_sub_ss_round: 1367 case Intrinsic::x86_avx512_mask_max_ss_round: 1368 case Intrinsic::x86_avx512_mask_min_ss_round: 1369 case Intrinsic::x86_avx512_mask_add_sd_round: 1370 case Intrinsic::x86_avx512_mask_div_sd_round: 1371 case Intrinsic::x86_avx512_mask_mul_sd_round: 1372 case Intrinsic::x86_avx512_mask_sub_sd_round: 1373 case Intrinsic::x86_avx512_mask_max_sd_round: 1374 case Intrinsic::x86_avx512_mask_min_sd_round: 1375 case Intrinsic::x86_fma_vfmadd_ss: 1376 case Intrinsic::x86_fma_vfmsub_ss: 1377 case Intrinsic::x86_fma_vfnmadd_ss: 1378 case Intrinsic::x86_fma_vfnmsub_ss: 1379 case Intrinsic::x86_fma_vfmadd_sd: 1380 case Intrinsic::x86_fma_vfmsub_sd: 1381 case Intrinsic::x86_fma_vfnmadd_sd: 1382 case Intrinsic::x86_fma_vfnmsub_sd: 1383 case Intrinsic::x86_avx512_mask_vfmadd_ss: 1384 case Intrinsic::x86_avx512_mask_vfmadd_sd: 1385 case Intrinsic::x86_avx512_maskz_vfmadd_ss: 1386 case Intrinsic::x86_avx512_maskz_vfmadd_sd: 1387 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1388 UndefElts, Depth + 1); 1389 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1390 1391 // If lowest element of a scalar op isn't used then use Arg0. 1392 if (!DemandedElts[0]) { 1393 Worklist.Add(II); 1394 return II->getArgOperand(0); 1395 } 1396 1397 // Only lower element is used for operand 1 and 2. 1398 DemandedElts = 1; 1399 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1400 UndefElts2, Depth + 1); 1401 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1402 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, 1403 UndefElts3, Depth + 1); 1404 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } 1405 1406 // Lower element is undefined if all three lower elements are undefined. 1407 // Consider things like undef&0. The result is known zero, not undef. 1408 if (!UndefElts2[0] || !UndefElts3[0]) 1409 UndefElts.clearBit(0); 1410 1411 break; 1412 1413 case Intrinsic::x86_avx512_mask3_vfmadd_ss: 1414 case Intrinsic::x86_avx512_mask3_vfmadd_sd: 1415 case Intrinsic::x86_avx512_mask3_vfmsub_ss: 1416 case Intrinsic::x86_avx512_mask3_vfmsub_sd: 1417 case Intrinsic::x86_avx512_mask3_vfnmsub_ss: 1418 case Intrinsic::x86_avx512_mask3_vfnmsub_sd: 1419 // These intrinsics get the passthru bits from operand 2. 1420 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, 1421 UndefElts, Depth + 1); 1422 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } 1423 1424 // If lowest element of a scalar op isn't used then use Arg2. 1425 if (!DemandedElts[0]) { 1426 Worklist.Add(II); 1427 return II->getArgOperand(2); 1428 } 1429 1430 // Only lower element is used for operand 0 and 1. 1431 DemandedElts = 1; 1432 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1433 UndefElts2, Depth + 1); 1434 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1435 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1436 UndefElts3, Depth + 1); 1437 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1438 1439 // Lower element is undefined if all three lower elements are undefined. 1440 // Consider things like undef&0. The result is known zero, not undef. 1441 if (!UndefElts2[0] || !UndefElts3[0]) 1442 UndefElts.clearBit(0); 1443 1444 break; 1445 1446 case Intrinsic::x86_sse2_pmulu_dq: 1447 case Intrinsic::x86_sse41_pmuldq: 1448 case Intrinsic::x86_avx2_pmul_dq: 1449 case Intrinsic::x86_avx2_pmulu_dq: 1450 case Intrinsic::x86_avx512_pmul_dq_512: 1451 case Intrinsic::x86_avx512_pmulu_dq_512: { 1452 Value *Op0 = II->getArgOperand(0); 1453 Value *Op1 = II->getArgOperand(1); 1454 unsigned InnerVWidth = Op0->getType()->getVectorNumElements(); 1455 assert((VWidth * 2) == InnerVWidth && "Unexpected input size"); 1456 1457 APInt InnerDemandedElts(InnerVWidth, 0); 1458 for (unsigned i = 0; i != VWidth; ++i) 1459 if (DemandedElts[i]) 1460 InnerDemandedElts.setBit(i * 2); 1461 1462 UndefElts2 = APInt(InnerVWidth, 0); 1463 TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2, 1464 Depth + 1); 1465 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1466 1467 UndefElts3 = APInt(InnerVWidth, 0); 1468 TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3, 1469 Depth + 1); 1470 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1471 1472 break; 1473 } 1474 1475 // PSHUFB 1476 case Intrinsic::x86_ssse3_pshuf_b_128: 1477 case Intrinsic::x86_avx2_pshuf_b: 1478 case Intrinsic::x86_avx512_pshuf_b_512: 1479 // PERMILVAR 1480 case Intrinsic::x86_avx_vpermilvar_ps: 1481 case Intrinsic::x86_avx_vpermilvar_ps_256: 1482 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1483 case Intrinsic::x86_avx_vpermilvar_pd: 1484 case Intrinsic::x86_avx_vpermilvar_pd_256: 1485 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1486 // PERMV 1487 case Intrinsic::x86_avx2_permd: 1488 case Intrinsic::x86_avx2_permps: { 1489 Value *Op1 = II->getArgOperand(1); 1490 TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts, 1491 Depth + 1); 1492 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1493 break; 1494 } 1495 1496 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1497 // in an undefined state. 1498 case Intrinsic::x86_sse4a_extrq: 1499 case Intrinsic::x86_sse4a_extrqi: 1500 case Intrinsic::x86_sse4a_insertq: 1501 case Intrinsic::x86_sse4a_insertqi: 1502 UndefElts |= APInt::getHighBitsSet(VWidth, VWidth / 2); 1503 break; 1504 } 1505 break; 1506 } 1507 } 1508 return MadeChange ? I : nullptr; 1509 } 1510