1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/IntrinsicsAMDGPU.h" 18 #include "llvm/IR/IntrinsicsX86.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 namespace { 28 29 struct AMDGPUImageDMaskIntrinsic { 30 unsigned Intr; 31 }; 32 33 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 34 #include "InstCombineTables.inc" 35 36 } // end anonymous namespace 37 38 /// Check to see if the specified operand of the specified instruction is a 39 /// constant integer. If so, check to see if there are any bits set in the 40 /// constant that are not demanded. If so, shrink the constant and return true. 41 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 42 const APInt &Demanded) { 43 assert(I && "No instruction?"); 44 assert(OpNo < I->getNumOperands() && "Operand index too large"); 45 46 // The operand must be a constant integer or splat integer. 47 Value *Op = I->getOperand(OpNo); 48 const APInt *C; 49 if (!match(Op, m_APInt(C))) 50 return false; 51 52 // If there are no bits set that aren't demanded, nothing to do. 53 if (C->isSubsetOf(Demanded)) 54 return false; 55 56 // This instruction is producing bits that are not demanded. Shrink the RHS. 57 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 58 59 return true; 60 } 61 62 63 64 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 65 /// the instruction has any properties that allow us to simplify its operands. 66 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 67 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 68 KnownBits Known(BitWidth); 69 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 70 71 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 72 0, &Inst); 73 if (!V) return false; 74 if (V == &Inst) return true; 75 replaceInstUsesWith(Inst, V); 76 return true; 77 } 78 79 /// This form of SimplifyDemandedBits simplifies the specified instruction 80 /// operand if possible, updating it in place. It returns true if it made any 81 /// change and false otherwise. 82 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 83 const APInt &DemandedMask, 84 KnownBits &Known, 85 unsigned Depth) { 86 Use &U = I->getOperandUse(OpNo); 87 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 88 Depth, I); 89 if (!NewVal) return false; 90 U = NewVal; 91 return true; 92 } 93 94 95 /// This function attempts to replace V with a simpler value based on the 96 /// demanded bits. When this function is called, it is known that only the bits 97 /// set in DemandedMask of the result of V are ever used downstream. 98 /// Consequently, depending on the mask and V, it may be possible to replace V 99 /// with a constant or one of its operands. In such cases, this function does 100 /// the replacement and returns true. In all other cases, it returns false after 101 /// analyzing the expression and setting KnownOne and known to be one in the 102 /// expression. Known.Zero contains all the bits that are known to be zero in 103 /// the expression. These are provided to potentially allow the caller (which 104 /// might recursively be SimplifyDemandedBits itself) to simplify the 105 /// expression. 106 /// Known.One and Known.Zero always follow the invariant that: 107 /// Known.One & Known.Zero == 0. 108 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 109 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 110 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 111 /// be the same. 112 /// 113 /// This returns null if it did not change anything and it permits no 114 /// simplification. This returns V itself if it did some simplification of V's 115 /// operands based on the information about what bits are demanded. This returns 116 /// some other non-null value if it found out that V is equal to another value 117 /// in the context where the specified bits are demanded, but not for all users. 118 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 119 KnownBits &Known, unsigned Depth, 120 Instruction *CxtI) { 121 assert(V != nullptr && "Null pointer of Value???"); 122 assert(Depth <= 6 && "Limit Search Depth"); 123 uint32_t BitWidth = DemandedMask.getBitWidth(); 124 Type *VTy = V->getType(); 125 assert( 126 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 127 Known.getBitWidth() == BitWidth && 128 "Value *V, DemandedMask and Known must have same BitWidth"); 129 130 if (isa<Constant>(V)) { 131 computeKnownBits(V, Known, Depth, CxtI); 132 return nullptr; 133 } 134 135 Known.resetAll(); 136 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 137 return UndefValue::get(VTy); 138 139 if (Depth == 6) // Limit search depth. 140 return nullptr; 141 142 Instruction *I = dyn_cast<Instruction>(V); 143 if (!I) { 144 computeKnownBits(V, Known, Depth, CxtI); 145 return nullptr; // Only analyze instructions. 146 } 147 148 // If there are multiple uses of this value and we aren't at the root, then 149 // we can't do any simplifications of the operands, because DemandedMask 150 // only reflects the bits demanded by *one* of the users. 151 if (Depth != 0 && !I->hasOneUse()) 152 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 153 154 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 155 156 // If this is the root being simplified, allow it to have multiple uses, 157 // just set the DemandedMask to all bits so that we can try to simplify the 158 // operands. This allows visitTruncInst (for example) to simplify the 159 // operand of a trunc without duplicating all the logic below. 160 if (Depth == 0 && !V->hasOneUse()) 161 DemandedMask.setAllBits(); 162 163 switch (I->getOpcode()) { 164 default: 165 computeKnownBits(I, Known, Depth, CxtI); 166 break; 167 case Instruction::And: { 168 // If either the LHS or the RHS are Zero, the result is zero. 169 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 170 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 171 Depth + 1)) 172 return I; 173 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 174 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 175 176 // Output known-0 are known to be clear if zero in either the LHS | RHS. 177 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 178 // Output known-1 bits are only known if set in both the LHS & RHS. 179 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 180 181 // If the client is only demanding bits that we know, return the known 182 // constant. 183 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 184 return Constant::getIntegerValue(VTy, IKnownOne); 185 186 // If all of the demanded bits are known 1 on one side, return the other. 187 // These bits cannot contribute to the result of the 'and'. 188 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 189 return I->getOperand(0); 190 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 191 return I->getOperand(1); 192 193 // If the RHS is a constant, see if we can simplify it. 194 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 195 return I; 196 197 Known.Zero = std::move(IKnownZero); 198 Known.One = std::move(IKnownOne); 199 break; 200 } 201 case Instruction::Or: { 202 // If either the LHS or the RHS are One, the result is One. 203 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 204 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 205 Depth + 1)) 206 return I; 207 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 208 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 209 210 // Output known-0 bits are only known if clear in both the LHS & RHS. 211 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 212 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 213 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 214 215 // If the client is only demanding bits that we know, return the known 216 // constant. 217 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 218 return Constant::getIntegerValue(VTy, IKnownOne); 219 220 // If all of the demanded bits are known zero on one side, return the other. 221 // These bits cannot contribute to the result of the 'or'. 222 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 223 return I->getOperand(0); 224 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 225 return I->getOperand(1); 226 227 // If the RHS is a constant, see if we can simplify it. 228 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 229 return I; 230 231 Known.Zero = std::move(IKnownZero); 232 Known.One = std::move(IKnownOne); 233 break; 234 } 235 case Instruction::Xor: { 236 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 237 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 238 return I; 239 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 240 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 241 242 // Output known-0 bits are known if clear or set in both the LHS & RHS. 243 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 244 (RHSKnown.One & LHSKnown.One); 245 // Output known-1 are known to be set if set in only one of the LHS, RHS. 246 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 247 (RHSKnown.One & LHSKnown.Zero); 248 249 // If the client is only demanding bits that we know, return the known 250 // constant. 251 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 252 return Constant::getIntegerValue(VTy, IKnownOne); 253 254 // If all of the demanded bits are known zero on one side, return the other. 255 // These bits cannot contribute to the result of the 'xor'. 256 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 257 return I->getOperand(0); 258 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 259 return I->getOperand(1); 260 261 // If all of the demanded bits are known to be zero on one side or the 262 // other, turn this into an *inclusive* or. 263 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 264 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 265 Instruction *Or = 266 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 267 I->getName()); 268 return InsertNewInstWith(Or, *I); 269 } 270 271 // If all of the demanded bits on one side are known, and all of the set 272 // bits on that side are also known to be set on the other side, turn this 273 // into an AND, as we know the bits will be cleared. 274 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 275 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 276 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 277 Constant *AndC = Constant::getIntegerValue(VTy, 278 ~RHSKnown.One & DemandedMask); 279 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 280 return InsertNewInstWith(And, *I); 281 } 282 283 // If the RHS is a constant, see if we can simplify it. 284 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 285 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 286 return I; 287 288 // If our LHS is an 'and' and if it has one use, and if any of the bits we 289 // are flipping are known to be set, then the xor is just resetting those 290 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 291 // simplifying both of them. 292 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 293 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 294 isa<ConstantInt>(I->getOperand(1)) && 295 isa<ConstantInt>(LHSInst->getOperand(1)) && 296 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 297 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 298 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 299 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 300 301 Constant *AndC = 302 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 303 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 304 InsertNewInstWith(NewAnd, *I); 305 306 Constant *XorC = 307 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 308 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 309 return InsertNewInstWith(NewXor, *I); 310 } 311 312 // Output known-0 bits are known if clear or set in both the LHS & RHS. 313 Known.Zero = std::move(IKnownZero); 314 // Output known-1 are known to be set if set in only one of the LHS, RHS. 315 Known.One = std::move(IKnownOne); 316 break; 317 } 318 case Instruction::Select: { 319 Value *LHS, *RHS; 320 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 321 if (SPF == SPF_UMAX) { 322 // UMax(A, C) == A if ... 323 // The lowest non-zero bit of DemandMask is higher than the highest 324 // non-zero bit of C. 325 const APInt *C; 326 unsigned CTZ = DemandedMask.countTrailingZeros(); 327 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 328 return LHS; 329 } else if (SPF == SPF_UMIN) { 330 // UMin(A, C) == A if ... 331 // The lowest non-zero bit of DemandMask is higher than the highest 332 // non-one bit of C. 333 // This comes from using DeMorgans on the above umax example. 334 const APInt *C; 335 unsigned CTZ = DemandedMask.countTrailingZeros(); 336 if (match(RHS, m_APInt(C)) && 337 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 338 return LHS; 339 } 340 341 // If this is a select as part of any other min/max pattern, don't simplify 342 // any further in case we break the structure. 343 if (SPF != SPF_UNKNOWN) 344 return nullptr; 345 346 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 347 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 348 return I; 349 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 350 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 351 352 // If the operands are constants, see if we can simplify them. 353 // This is similar to ShrinkDemandedConstant, but for a select we want to 354 // try to keep the selected constants the same as icmp value constants, if 355 // we can. This helps not break apart (or helps put back together) 356 // canonical patterns like min and max. 357 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 358 APInt DemandedMask) { 359 const APInt *SelC; 360 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 361 return false; 362 363 // Get the constant out of the ICmp, if there is one. 364 const APInt *CmpC; 365 ICmpInst::Predicate Pred; 366 if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) || 367 CmpC->getBitWidth() != SelC->getBitWidth()) 368 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 369 370 // If the constant is already the same as the ICmp, leave it as-is. 371 if (*CmpC == *SelC) 372 return false; 373 // If the constants are not already the same, but can be with the demand 374 // mask, use the constant value from the ICmp. 375 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 376 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 377 return true; 378 } 379 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 380 }; 381 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 382 CanonicalizeSelectConstant(I, 2, DemandedMask)) 383 return I; 384 385 // Only known if known in both the LHS and RHS. 386 Known.One = RHSKnown.One & LHSKnown.One; 387 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 388 break; 389 } 390 case Instruction::ZExt: 391 case Instruction::Trunc: { 392 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 393 394 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 395 KnownBits InputKnown(SrcBitWidth); 396 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 397 return I; 398 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 399 Known = InputKnown.zextOrTrunc(BitWidth); 400 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 401 break; 402 } 403 case Instruction::BitCast: 404 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 405 return nullptr; // vector->int or fp->int? 406 407 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 408 if (VectorType *SrcVTy = 409 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 410 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 411 // Don't touch a bitcast between vectors of different element counts. 412 return nullptr; 413 } else 414 // Don't touch a scalar-to-vector bitcast. 415 return nullptr; 416 } else if (I->getOperand(0)->getType()->isVectorTy()) 417 // Don't touch a vector-to-scalar bitcast. 418 return nullptr; 419 420 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 421 return I; 422 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 423 break; 424 case Instruction::SExt: { 425 // Compute the bits in the result that are not present in the input. 426 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 427 428 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 429 430 // If any of the sign extended bits are demanded, we know that the sign 431 // bit is demanded. 432 if (DemandedMask.getActiveBits() > SrcBitWidth) 433 InputDemandedBits.setBit(SrcBitWidth-1); 434 435 KnownBits InputKnown(SrcBitWidth); 436 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 437 return I; 438 439 // If the input sign bit is known zero, or if the NewBits are not demanded 440 // convert this into a zero extension. 441 if (InputKnown.isNonNegative() || 442 DemandedMask.getActiveBits() <= SrcBitWidth) { 443 // Convert to ZExt cast. 444 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 445 return InsertNewInstWith(NewCast, *I); 446 } 447 448 // If the sign bit of the input is known set or clear, then we know the 449 // top bits of the result. 450 Known = InputKnown.sext(BitWidth); 451 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 452 break; 453 } 454 case Instruction::Add: 455 case Instruction::Sub: { 456 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 457 /// about the high bits of the operands. 458 unsigned NLZ = DemandedMask.countLeadingZeros(); 459 // Right fill the mask of bits for this ADD/SUB to demand the most 460 // significant bit and all those below it. 461 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 462 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 463 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 464 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 465 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 466 if (NLZ > 0) { 467 // Disable the nsw and nuw flags here: We can no longer guarantee that 468 // we won't wrap after simplification. Removing the nsw/nuw flags is 469 // legal here because the top bit is not demanded. 470 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 471 BinOP.setHasNoSignedWrap(false); 472 BinOP.setHasNoUnsignedWrap(false); 473 } 474 return I; 475 } 476 477 // If we are known to be adding/subtracting zeros to every bit below 478 // the highest demanded bit, we just return the other side. 479 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 480 return I->getOperand(0); 481 // We can't do this with the LHS for subtraction, unless we are only 482 // demanding the LSB. 483 if ((I->getOpcode() == Instruction::Add || 484 DemandedFromOps.isOneValue()) && 485 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 486 return I->getOperand(1); 487 488 // Otherwise just compute the known bits of the result. 489 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 490 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 491 NSW, LHSKnown, RHSKnown); 492 break; 493 } 494 case Instruction::Shl: { 495 const APInt *SA; 496 if (match(I->getOperand(1), m_APInt(SA))) { 497 const APInt *ShrAmt; 498 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 499 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 500 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 501 DemandedMask, Known)) 502 return R; 503 504 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 505 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 506 507 // If the shift is NUW/NSW, then it does demand the high bits. 508 ShlOperator *IOp = cast<ShlOperator>(I); 509 if (IOp->hasNoSignedWrap()) 510 DemandedMaskIn.setHighBits(ShiftAmt+1); 511 else if (IOp->hasNoUnsignedWrap()) 512 DemandedMaskIn.setHighBits(ShiftAmt); 513 514 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 515 return I; 516 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 517 Known.Zero <<= ShiftAmt; 518 Known.One <<= ShiftAmt; 519 // low bits known zero. 520 if (ShiftAmt) 521 Known.Zero.setLowBits(ShiftAmt); 522 } 523 break; 524 } 525 case Instruction::LShr: { 526 const APInt *SA; 527 if (match(I->getOperand(1), m_APInt(SA))) { 528 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 529 530 // Unsigned shift right. 531 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 532 533 // If the shift is exact, then it does demand the low bits (and knows that 534 // they are zero). 535 if (cast<LShrOperator>(I)->isExact()) 536 DemandedMaskIn.setLowBits(ShiftAmt); 537 538 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 539 return I; 540 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 541 Known.Zero.lshrInPlace(ShiftAmt); 542 Known.One.lshrInPlace(ShiftAmt); 543 if (ShiftAmt) 544 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 545 } 546 break; 547 } 548 case Instruction::AShr: { 549 // If this is an arithmetic shift right and only the low-bit is set, we can 550 // always convert this into a logical shr, even if the shift amount is 551 // variable. The low bit of the shift cannot be an input sign bit unless 552 // the shift amount is >= the size of the datatype, which is undefined. 553 if (DemandedMask.isOneValue()) { 554 // Perform the logical shift right. 555 Instruction *NewVal = BinaryOperator::CreateLShr( 556 I->getOperand(0), I->getOperand(1), I->getName()); 557 return InsertNewInstWith(NewVal, *I); 558 } 559 560 // If the sign bit is the only bit demanded by this ashr, then there is no 561 // need to do it, the shift doesn't change the high bit. 562 if (DemandedMask.isSignMask()) 563 return I->getOperand(0); 564 565 const APInt *SA; 566 if (match(I->getOperand(1), m_APInt(SA))) { 567 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 568 569 // Signed shift right. 570 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 571 // If any of the high bits are demanded, we should set the sign bit as 572 // demanded. 573 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 574 DemandedMaskIn.setSignBit(); 575 576 // If the shift is exact, then it does demand the low bits (and knows that 577 // they are zero). 578 if (cast<AShrOperator>(I)->isExact()) 579 DemandedMaskIn.setLowBits(ShiftAmt); 580 581 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 582 return I; 583 584 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 585 586 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 587 // Compute the new bits that are at the top now plus sign bits. 588 APInt HighBits(APInt::getHighBitsSet( 589 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 590 Known.Zero.lshrInPlace(ShiftAmt); 591 Known.One.lshrInPlace(ShiftAmt); 592 593 // If the input sign bit is known to be zero, or if none of the top bits 594 // are demanded, turn this into an unsigned shift right. 595 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 596 if (Known.Zero[BitWidth-ShiftAmt-1] || 597 !DemandedMask.intersects(HighBits)) { 598 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 599 I->getOperand(1)); 600 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 601 return InsertNewInstWith(LShr, *I); 602 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 603 Known.One |= HighBits; 604 } 605 } 606 break; 607 } 608 case Instruction::UDiv: { 609 // UDiv doesn't demand low bits that are zero in the divisor. 610 const APInt *SA; 611 if (match(I->getOperand(1), m_APInt(SA))) { 612 // If the shift is exact, then it does demand the low bits. 613 if (cast<UDivOperator>(I)->isExact()) 614 break; 615 616 // FIXME: Take the demanded mask of the result into account. 617 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 618 APInt DemandedMaskIn = 619 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 620 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 621 return I; 622 623 // Propagate zero bits from the input. 624 Known.Zero.setHighBits(std::min( 625 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 626 } 627 break; 628 } 629 case Instruction::SRem: 630 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 631 // X % -1 demands all the bits because we don't want to introduce 632 // INT_MIN % -1 (== undef) by accident. 633 if (Rem->isMinusOne()) 634 break; 635 APInt RA = Rem->getValue().abs(); 636 if (RA.isPowerOf2()) { 637 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 638 return I->getOperand(0); 639 640 APInt LowBits = RA - 1; 641 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 642 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 643 return I; 644 645 // The low bits of LHS are unchanged by the srem. 646 Known.Zero = LHSKnown.Zero & LowBits; 647 Known.One = LHSKnown.One & LowBits; 648 649 // If LHS is non-negative or has all low bits zero, then the upper bits 650 // are all zero. 651 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 652 Known.Zero |= ~LowBits; 653 654 // If LHS is negative and not all low bits are zero, then the upper bits 655 // are all one. 656 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 657 Known.One |= ~LowBits; 658 659 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 660 break; 661 } 662 } 663 664 // The sign bit is the LHS's sign bit, except when the result of the 665 // remainder is zero. 666 if (DemandedMask.isSignBitSet()) { 667 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 668 // If it's known zero, our sign bit is also zero. 669 if (LHSKnown.isNonNegative()) 670 Known.makeNonNegative(); 671 } 672 break; 673 case Instruction::URem: { 674 KnownBits Known2(BitWidth); 675 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 676 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 677 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 678 return I; 679 680 unsigned Leaders = Known2.countMinLeadingZeros(); 681 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 682 break; 683 } 684 case Instruction::Call: 685 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 686 switch (II->getIntrinsicID()) { 687 default: break; 688 case Intrinsic::bswap: { 689 // If the only bits demanded come from one byte of the bswap result, 690 // just shift the input byte into position to eliminate the bswap. 691 unsigned NLZ = DemandedMask.countLeadingZeros(); 692 unsigned NTZ = DemandedMask.countTrailingZeros(); 693 694 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 695 // we need all the bits down to bit 8. Likewise, round NLZ. If we 696 // have 14 leading zeros, round to 8. 697 NLZ &= ~7; 698 NTZ &= ~7; 699 // If we need exactly one byte, we can do this transformation. 700 if (BitWidth-NLZ-NTZ == 8) { 701 unsigned ResultBit = NTZ; 702 unsigned InputBit = BitWidth-NTZ-8; 703 704 // Replace this with either a left or right shift to get the byte into 705 // the right place. 706 Instruction *NewVal; 707 if (InputBit > ResultBit) 708 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 709 ConstantInt::get(I->getType(), InputBit-ResultBit)); 710 else 711 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 712 ConstantInt::get(I->getType(), ResultBit-InputBit)); 713 NewVal->takeName(I); 714 return InsertNewInstWith(NewVal, *I); 715 } 716 717 // TODO: Could compute known zero/one bits based on the input. 718 break; 719 } 720 case Intrinsic::fshr: 721 case Intrinsic::fshl: { 722 const APInt *SA; 723 if (!match(I->getOperand(2), m_APInt(SA))) 724 break; 725 726 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 727 // defined, so no need to special-case zero shifts here. 728 uint64_t ShiftAmt = SA->urem(BitWidth); 729 if (II->getIntrinsicID() == Intrinsic::fshr) 730 ShiftAmt = BitWidth - ShiftAmt; 731 732 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 733 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 734 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 735 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 736 return I; 737 738 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 739 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 740 Known.One = LHSKnown.One.shl(ShiftAmt) | 741 RHSKnown.One.lshr(BitWidth - ShiftAmt); 742 break; 743 } 744 case Intrinsic::x86_mmx_pmovmskb: 745 case Intrinsic::x86_sse_movmsk_ps: 746 case Intrinsic::x86_sse2_movmsk_pd: 747 case Intrinsic::x86_sse2_pmovmskb_128: 748 case Intrinsic::x86_avx_movmsk_ps_256: 749 case Intrinsic::x86_avx_movmsk_pd_256: 750 case Intrinsic::x86_avx2_pmovmskb: { 751 // MOVMSK copies the vector elements' sign bits to the low bits 752 // and zeros the high bits. 753 unsigned ArgWidth; 754 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 755 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 756 } else { 757 auto Arg = II->getArgOperand(0); 758 auto ArgType = cast<VectorType>(Arg->getType()); 759 ArgWidth = ArgType->getNumElements(); 760 } 761 762 // If we don't need any of low bits then return zero, 763 // we know that DemandedMask is non-zero already. 764 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 765 if (DemandedElts.isNullValue()) 766 return ConstantInt::getNullValue(VTy); 767 768 // We know that the upper bits are set to zero. 769 Known.Zero.setBitsFrom(ArgWidth); 770 return nullptr; 771 } 772 case Intrinsic::x86_sse42_crc32_64_64: 773 Known.Zero.setBitsFrom(32); 774 return nullptr; 775 } 776 } 777 computeKnownBits(V, Known, Depth, CxtI); 778 break; 779 } 780 781 // If the client is only demanding bits that we know, return the known 782 // constant. 783 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 784 return Constant::getIntegerValue(VTy, Known.One); 785 return nullptr; 786 } 787 788 /// Helper routine of SimplifyDemandedUseBits. It computes Known 789 /// bits. It also tries to handle simplifications that can be done based on 790 /// DemandedMask, but without modifying the Instruction. 791 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 792 const APInt &DemandedMask, 793 KnownBits &Known, 794 unsigned Depth, 795 Instruction *CxtI) { 796 unsigned BitWidth = DemandedMask.getBitWidth(); 797 Type *ITy = I->getType(); 798 799 KnownBits LHSKnown(BitWidth); 800 KnownBits RHSKnown(BitWidth); 801 802 // Despite the fact that we can't simplify this instruction in all User's 803 // context, we can at least compute the known bits, and we can 804 // do simplifications that apply to *just* the one user if we know that 805 // this instruction has a simpler value in that context. 806 switch (I->getOpcode()) { 807 case Instruction::And: { 808 // If either the LHS or the RHS are Zero, the result is zero. 809 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 810 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 811 CxtI); 812 813 // Output known-0 are known to be clear if zero in either the LHS | RHS. 814 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 815 // Output known-1 bits are only known if set in both the LHS & RHS. 816 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 817 818 // If the client is only demanding bits that we know, return the known 819 // constant. 820 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 821 return Constant::getIntegerValue(ITy, IKnownOne); 822 823 // If all of the demanded bits are known 1 on one side, return the other. 824 // These bits cannot contribute to the result of the 'and' in this 825 // context. 826 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 827 return I->getOperand(0); 828 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 829 return I->getOperand(1); 830 831 Known.Zero = std::move(IKnownZero); 832 Known.One = std::move(IKnownOne); 833 break; 834 } 835 case Instruction::Or: { 836 // We can simplify (X|Y) -> X or Y in the user's context if we know that 837 // only bits from X or Y are demanded. 838 839 // If either the LHS or the RHS are One, the result is One. 840 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 841 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 842 CxtI); 843 844 // Output known-0 bits are only known if clear in both the LHS & RHS. 845 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 846 // Output known-1 are known to be set if set in either the LHS | RHS. 847 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 848 849 // If the client is only demanding bits that we know, return the known 850 // constant. 851 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 852 return Constant::getIntegerValue(ITy, IKnownOne); 853 854 // If all of the demanded bits are known zero on one side, return the 855 // other. These bits cannot contribute to the result of the 'or' in this 856 // context. 857 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 858 return I->getOperand(0); 859 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 860 return I->getOperand(1); 861 862 Known.Zero = std::move(IKnownZero); 863 Known.One = std::move(IKnownOne); 864 break; 865 } 866 case Instruction::Xor: { 867 // We can simplify (X^Y) -> X or Y in the user's context if we know that 868 // only bits from X or Y are demanded. 869 870 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 871 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 872 CxtI); 873 874 // Output known-0 bits are known if clear or set in both the LHS & RHS. 875 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 876 (RHSKnown.One & LHSKnown.One); 877 // Output known-1 are known to be set if set in only one of the LHS, RHS. 878 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 879 (RHSKnown.One & LHSKnown.Zero); 880 881 // If the client is only demanding bits that we know, return the known 882 // constant. 883 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 884 return Constant::getIntegerValue(ITy, IKnownOne); 885 886 // If all of the demanded bits are known zero on one side, return the 887 // other. 888 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 889 return I->getOperand(0); 890 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 891 return I->getOperand(1); 892 893 // Output known-0 bits are known if clear or set in both the LHS & RHS. 894 Known.Zero = std::move(IKnownZero); 895 // Output known-1 are known to be set if set in only one of the LHS, RHS. 896 Known.One = std::move(IKnownOne); 897 break; 898 } 899 default: 900 // Compute the Known bits to simplify things downstream. 901 computeKnownBits(I, Known, Depth, CxtI); 902 903 // If this user is only demanding bits that we know, return the known 904 // constant. 905 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 906 return Constant::getIntegerValue(ITy, Known.One); 907 908 break; 909 } 910 911 return nullptr; 912 } 913 914 915 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 916 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 917 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 918 /// of "C2-C1". 919 /// 920 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 921 /// ..., bn}, without considering the specific value X is holding. 922 /// This transformation is legal iff one of following conditions is hold: 923 /// 1) All the bit in S are 0, in this case E1 == E2. 924 /// 2) We don't care those bits in S, per the input DemandedMask. 925 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 926 /// rest bits. 927 /// 928 /// Currently we only test condition 2). 929 /// 930 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 931 /// not successful. 932 Value * 933 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 934 Instruction *Shl, const APInt &ShlOp1, 935 const APInt &DemandedMask, 936 KnownBits &Known) { 937 if (!ShlOp1 || !ShrOp1) 938 return nullptr; // No-op. 939 940 Value *VarX = Shr->getOperand(0); 941 Type *Ty = VarX->getType(); 942 unsigned BitWidth = Ty->getScalarSizeInBits(); 943 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 944 return nullptr; // Undef. 945 946 unsigned ShlAmt = ShlOp1.getZExtValue(); 947 unsigned ShrAmt = ShrOp1.getZExtValue(); 948 949 Known.One.clearAllBits(); 950 Known.Zero.setLowBits(ShlAmt - 1); 951 Known.Zero &= DemandedMask; 952 953 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 954 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 955 956 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 957 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 958 (BitMask1.ashr(ShrAmt) << ShlAmt); 959 960 if (ShrAmt <= ShlAmt) { 961 BitMask2 <<= (ShlAmt - ShrAmt); 962 } else { 963 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 964 BitMask2.ashr(ShrAmt - ShlAmt); 965 } 966 967 // Check if condition-2 (see the comment to this function) is satified. 968 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 969 if (ShrAmt == ShlAmt) 970 return VarX; 971 972 if (!Shr->hasOneUse()) 973 return nullptr; 974 975 BinaryOperator *New; 976 if (ShrAmt < ShlAmt) { 977 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 978 New = BinaryOperator::CreateShl(VarX, Amt); 979 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 980 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 981 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 982 } else { 983 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 984 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 985 BinaryOperator::CreateAShr(VarX, Amt); 986 if (cast<BinaryOperator>(Shr)->isExact()) 987 New->setIsExact(true); 988 } 989 990 return InsertNewInstWith(New, *Shl); 991 } 992 993 return nullptr; 994 } 995 996 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 997 /// 998 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 999 /// struct returns. 1000 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, 1001 APInt DemandedElts, 1002 int DMaskIdx) { 1003 1004 // FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported. 1005 if (DMaskIdx < 0 && 1006 II->getType()->getScalarSizeInBits() != 32 && 1007 DemandedElts.getActiveBits() == 3) 1008 return nullptr; 1009 1010 unsigned VWidth = II->getType()->getVectorNumElements(); 1011 if (VWidth == 1) 1012 return nullptr; 1013 1014 IRBuilderBase::InsertPointGuard Guard(Builder); 1015 Builder.SetInsertPoint(II); 1016 1017 // Assume the arguments are unchanged and later override them, if needed. 1018 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 1019 1020 if (DMaskIdx < 0) { 1021 // Buffer case. 1022 1023 const unsigned ActiveBits = DemandedElts.getActiveBits(); 1024 const unsigned UnusedComponentsAtFront = DemandedElts.countTrailingZeros(); 1025 1026 // Start assuming the prefix of elements is demanded, but possibly clear 1027 // some other bits if there are trailing zeros (unused components at front) 1028 // and update offset. 1029 DemandedElts = (1 << ActiveBits) - 1; 1030 1031 if (UnusedComponentsAtFront > 0) { 1032 static const unsigned InvalidOffsetIdx = 0xf; 1033 1034 unsigned OffsetIdx; 1035 switch (II->getIntrinsicID()) { 1036 case Intrinsic::amdgcn_raw_buffer_load: 1037 OffsetIdx = 1; 1038 break; 1039 case Intrinsic::amdgcn_s_buffer_load: 1040 // If resulting type is vec3, there is no point in trimming the 1041 // load with updated offset, as the vec3 would most likely be widened to 1042 // vec4 anyway during lowering. 1043 if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1044 OffsetIdx = InvalidOffsetIdx; 1045 else 1046 OffsetIdx = 1; 1047 break; 1048 case Intrinsic::amdgcn_struct_buffer_load: 1049 OffsetIdx = 2; 1050 break; 1051 default: 1052 // TODO: handle tbuffer* intrinsics. 1053 OffsetIdx = InvalidOffsetIdx; 1054 break; 1055 } 1056 1057 if (OffsetIdx != InvalidOffsetIdx) { 1058 // Clear demanded bits and update the offset. 1059 DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1060 auto *Offset = II->getArgOperand(OffsetIdx); 1061 unsigned SingleComponentSizeInBits = 1062 getDataLayout().getTypeSizeInBits(II->getType()->getScalarType()); 1063 unsigned OffsetAdd = 1064 UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1065 auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1066 Args[OffsetIdx] = Builder.CreateAdd(Offset, OffsetAddVal); 1067 } 1068 } 1069 } else { 1070 // Image case. 1071 1072 ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx)); 1073 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1074 1075 // Mask off values that are undefined because the dmask doesn't cover them 1076 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; 1077 1078 unsigned NewDMaskVal = 0; 1079 unsigned OrigLoadIdx = 0; 1080 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1081 const unsigned Bit = 1 << SrcIdx; 1082 if (!!(DMaskVal & Bit)) { 1083 if (!!DemandedElts[OrigLoadIdx]) 1084 NewDMaskVal |= Bit; 1085 OrigLoadIdx++; 1086 } 1087 } 1088 1089 if (DMaskVal != NewDMaskVal) 1090 Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1091 } 1092 1093 unsigned NewNumElts = DemandedElts.countPopulation(); 1094 if (!NewNumElts) 1095 return UndefValue::get(II->getType()); 1096 1097 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1098 if (DMaskIdx >= 0) 1099 II->setArgOperand(DMaskIdx, Args[DMaskIdx]); 1100 return nullptr; 1101 } 1102 1103 // Determine the overload types of the original intrinsic. 1104 auto IID = II->getIntrinsicID(); 1105 SmallVector<Intrinsic::IITDescriptor, 16> Table; 1106 getIntrinsicInfoTableEntries(IID, Table); 1107 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1108 1109 // Validate function argument and return types, extracting overloaded types 1110 // along the way. 1111 FunctionType *FTy = II->getCalledFunction()->getFunctionType(); 1112 SmallVector<Type *, 6> OverloadTys; 1113 Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys); 1114 1115 Module *M = II->getParent()->getParent()->getParent(); 1116 Type *EltTy = II->getType()->getVectorElementType(); 1117 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts); 1118 1119 OverloadTys[0] = NewTy; 1120 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys); 1121 1122 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); 1123 NewCall->takeName(II); 1124 NewCall->copyMetadata(*II); 1125 1126 if (NewNumElts == 1) { 1127 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall, 1128 DemandedElts.countTrailingZeros()); 1129 } 1130 1131 SmallVector<uint32_t, 8> EltMask; 1132 unsigned NewLoadIdx = 0; 1133 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1134 if (!!DemandedElts[OrigLoadIdx]) 1135 EltMask.push_back(NewLoadIdx++); 1136 else 1137 EltMask.push_back(NewNumElts); 1138 } 1139 1140 Value *Shuffle = 1141 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask); 1142 1143 return Shuffle; 1144 } 1145 1146 /// The specified value produces a vector with any number of elements. 1147 /// This method analyzes which elements of the operand are undef and returns 1148 /// that information in UndefElts. 1149 /// 1150 /// DemandedElts contains the set of elements that are actually used by the 1151 /// caller, and by default (AllowMultipleUsers equals false) the value is 1152 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1153 /// to true, DemandedElts refers to the union of sets of elements that are 1154 /// used by all callers. 1155 /// 1156 /// If the information about demanded elements can be used to simplify the 1157 /// operation, the operation is simplified, then the resultant value is 1158 /// returned. This returns null if no change was made. 1159 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 1160 APInt &UndefElts, 1161 unsigned Depth, 1162 bool AllowMultipleUsers) { 1163 unsigned VWidth = V->getType()->getVectorNumElements(); 1164 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1165 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1166 1167 if (isa<UndefValue>(V)) { 1168 // If the entire vector is undefined, just return this info. 1169 UndefElts = EltMask; 1170 return nullptr; 1171 } 1172 1173 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 1174 UndefElts = EltMask; 1175 return UndefValue::get(V->getType()); 1176 } 1177 1178 UndefElts = 0; 1179 1180 if (auto *C = dyn_cast<Constant>(V)) { 1181 // Check if this is identity. If so, return 0 since we are not simplifying 1182 // anything. 1183 if (DemandedElts.isAllOnesValue()) 1184 return nullptr; 1185 1186 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1187 Constant *Undef = UndefValue::get(EltTy); 1188 SmallVector<Constant*, 16> Elts; 1189 for (unsigned i = 0; i != VWidth; ++i) { 1190 if (!DemandedElts[i]) { // If not demanded, set to undef. 1191 Elts.push_back(Undef); 1192 UndefElts.setBit(i); 1193 continue; 1194 } 1195 1196 Constant *Elt = C->getAggregateElement(i); 1197 if (!Elt) return nullptr; 1198 1199 if (isa<UndefValue>(Elt)) { // Already undef. 1200 Elts.push_back(Undef); 1201 UndefElts.setBit(i); 1202 } else { // Otherwise, defined. 1203 Elts.push_back(Elt); 1204 } 1205 } 1206 1207 // If we changed the constant, return it. 1208 Constant *NewCV = ConstantVector::get(Elts); 1209 return NewCV != C ? NewCV : nullptr; 1210 } 1211 1212 // Limit search depth. 1213 if (Depth == 10) 1214 return nullptr; 1215 1216 if (!AllowMultipleUsers) { 1217 // If multiple users are using the root value, proceed with 1218 // simplification conservatively assuming that all elements 1219 // are needed. 1220 if (!V->hasOneUse()) { 1221 // Quit if we find multiple users of a non-root value though. 1222 // They'll be handled when it's their turn to be visited by 1223 // the main instcombine process. 1224 if (Depth != 0) 1225 // TODO: Just compute the UndefElts information recursively. 1226 return nullptr; 1227 1228 // Conservatively assume that all elements are needed. 1229 DemandedElts = EltMask; 1230 } 1231 } 1232 1233 Instruction *I = dyn_cast<Instruction>(V); 1234 if (!I) return nullptr; // Only analyze instructions. 1235 1236 bool MadeChange = false; 1237 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1238 APInt Demanded, APInt &Undef) { 1239 auto *II = dyn_cast<IntrinsicInst>(Inst); 1240 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1241 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1242 if (II) 1243 II->setArgOperand(OpNum, V); 1244 else 1245 Inst->setOperand(OpNum, V); 1246 MadeChange = true; 1247 } 1248 }; 1249 1250 APInt UndefElts2(VWidth, 0); 1251 APInt UndefElts3(VWidth, 0); 1252 switch (I->getOpcode()) { 1253 default: break; 1254 1255 case Instruction::GetElementPtr: { 1256 // The LangRef requires that struct geps have all constant indices. As 1257 // such, we can't convert any operand to partial undef. 1258 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1259 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1260 I != E; I++) 1261 if (I.isStruct()) 1262 return true;; 1263 return false; 1264 }; 1265 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1266 break; 1267 1268 // Conservatively track the demanded elements back through any vector 1269 // operands we may have. We know there must be at least one, or we 1270 // wouldn't have a vector result to get here. Note that we intentionally 1271 // merge the undef bits here since gepping with either an undef base or 1272 // index results in undef. 1273 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1274 if (isa<UndefValue>(I->getOperand(i))) { 1275 // If the entire vector is undefined, just return this info. 1276 UndefElts = EltMask; 1277 return nullptr; 1278 } 1279 if (I->getOperand(i)->getType()->isVectorTy()) { 1280 APInt UndefEltsOp(VWidth, 0); 1281 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1282 UndefElts |= UndefEltsOp; 1283 } 1284 } 1285 1286 break; 1287 } 1288 case Instruction::InsertElement: { 1289 // If this is a variable index, we don't know which element it overwrites. 1290 // demand exactly the same input as we produce. 1291 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1292 if (!Idx) { 1293 // Note that we can't propagate undef elt info, because we don't know 1294 // which elt is getting updated. 1295 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1296 break; 1297 } 1298 1299 // The element inserted overwrites whatever was there, so the input demanded 1300 // set is simpler than the output set. 1301 unsigned IdxNo = Idx->getZExtValue(); 1302 APInt PreInsertDemandedElts = DemandedElts; 1303 if (IdxNo < VWidth) 1304 PreInsertDemandedElts.clearBit(IdxNo); 1305 1306 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1307 1308 // If this is inserting an element that isn't demanded, remove this 1309 // insertelement. 1310 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1311 Worklist.push(I); 1312 return I->getOperand(0); 1313 } 1314 1315 // The inserted element is defined. 1316 UndefElts.clearBit(IdxNo); 1317 break; 1318 } 1319 case Instruction::ShuffleVector: { 1320 auto *Shuffle = cast<ShuffleVectorInst>(I); 1321 assert(Shuffle->getOperand(0)->getType() == 1322 Shuffle->getOperand(1)->getType() && 1323 "Expected shuffle operands to have same type"); 1324 unsigned OpWidth = 1325 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1326 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1327 for (unsigned i = 0; i < VWidth; i++) { 1328 if (DemandedElts[i]) { 1329 unsigned MaskVal = Shuffle->getMaskValue(i); 1330 if (MaskVal != -1u) { 1331 assert(MaskVal < OpWidth * 2 && 1332 "shufflevector mask index out of range!"); 1333 if (MaskVal < OpWidth) 1334 LeftDemanded.setBit(MaskVal); 1335 else 1336 RightDemanded.setBit(MaskVal - OpWidth); 1337 } 1338 } 1339 } 1340 1341 APInt LHSUndefElts(OpWidth, 0); 1342 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1343 1344 APInt RHSUndefElts(OpWidth, 0); 1345 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1346 1347 // If this shuffle does not change the vector length and the elements 1348 // demanded by this shuffle are an identity mask, then this shuffle is 1349 // unnecessary. 1350 // 1351 // We are assuming canonical form for the mask, so the source vector is 1352 // operand 0 and operand 1 is not used. 1353 // 1354 // Note that if an element is demanded and this shuffle mask is undefined 1355 // for that element, then the shuffle is not considered an identity 1356 // operation. The shuffle prevents poison from the operand vector from 1357 // leaking to the result by replacing poison with an undefined value. 1358 if (VWidth == OpWidth) { 1359 bool IsIdentityShuffle = true; 1360 for (unsigned i = 0; i < VWidth; i++) { 1361 unsigned MaskVal = Shuffle->getMaskValue(i); 1362 if (DemandedElts[i] && i != MaskVal) { 1363 IsIdentityShuffle = false; 1364 break; 1365 } 1366 } 1367 if (IsIdentityShuffle) 1368 return Shuffle->getOperand(0); 1369 } 1370 1371 bool NewUndefElts = false; 1372 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1373 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1374 bool LHSUniform = true; 1375 bool RHSUniform = true; 1376 for (unsigned i = 0; i < VWidth; i++) { 1377 unsigned MaskVal = Shuffle->getMaskValue(i); 1378 if (MaskVal == -1u) { 1379 UndefElts.setBit(i); 1380 } else if (!DemandedElts[i]) { 1381 NewUndefElts = true; 1382 UndefElts.setBit(i); 1383 } else if (MaskVal < OpWidth) { 1384 if (LHSUndefElts[MaskVal]) { 1385 NewUndefElts = true; 1386 UndefElts.setBit(i); 1387 } else { 1388 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1389 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1390 LHSUniform = LHSUniform && (MaskVal == i); 1391 } 1392 } else { 1393 if (RHSUndefElts[MaskVal - OpWidth]) { 1394 NewUndefElts = true; 1395 UndefElts.setBit(i); 1396 } else { 1397 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1398 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1399 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1400 } 1401 } 1402 } 1403 1404 // Try to transform shuffle with constant vector and single element from 1405 // this constant vector to single insertelement instruction. 1406 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1407 // insertelement V, C[ci], ci-n 1408 if (OpWidth == Shuffle->getType()->getNumElements()) { 1409 Value *Op = nullptr; 1410 Constant *Value = nullptr; 1411 unsigned Idx = -1u; 1412 1413 // Find constant vector with the single element in shuffle (LHS or RHS). 1414 if (LHSIdx < OpWidth && RHSUniform) { 1415 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1416 Op = Shuffle->getOperand(1); 1417 Value = CV->getOperand(LHSValIdx); 1418 Idx = LHSIdx; 1419 } 1420 } 1421 if (RHSIdx < OpWidth && LHSUniform) { 1422 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1423 Op = Shuffle->getOperand(0); 1424 Value = CV->getOperand(RHSValIdx); 1425 Idx = RHSIdx; 1426 } 1427 } 1428 // Found constant vector with single element - convert to insertelement. 1429 if (Op && Value) { 1430 Instruction *New = InsertElementInst::Create( 1431 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1432 Shuffle->getName()); 1433 InsertNewInstWith(New, *Shuffle); 1434 return New; 1435 } 1436 } 1437 if (NewUndefElts) { 1438 // Add additional discovered undefs. 1439 SmallVector<Constant*, 16> Elts; 1440 for (unsigned i = 0; i < VWidth; ++i) { 1441 if (UndefElts[i]) 1442 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1443 else 1444 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1445 Shuffle->getMaskValue(i))); 1446 } 1447 I->setOperand(2, ConstantVector::get(Elts)); 1448 MadeChange = true; 1449 } 1450 break; 1451 } 1452 case Instruction::Select: { 1453 // If this is a vector select, try to transform the select condition based 1454 // on the current demanded elements. 1455 SelectInst *Sel = cast<SelectInst>(I); 1456 if (Sel->getCondition()->getType()->isVectorTy()) { 1457 // TODO: We are not doing anything with UndefElts based on this call. 1458 // It is overwritten below based on the other select operands. If an 1459 // element of the select condition is known undef, then we are free to 1460 // choose the output value from either arm of the select. If we know that 1461 // one of those values is undef, then the output can be undef. 1462 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1463 } 1464 1465 // Next, see if we can transform the arms of the select. 1466 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1467 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1468 for (unsigned i = 0; i < VWidth; i++) { 1469 // isNullValue() always returns false when called on a ConstantExpr. 1470 // Skip constant expressions to avoid propagating incorrect information. 1471 Constant *CElt = CV->getAggregateElement(i); 1472 if (isa<ConstantExpr>(CElt)) 1473 continue; 1474 // TODO: If a select condition element is undef, we can demand from 1475 // either side. If one side is known undef, choosing that side would 1476 // propagate undef. 1477 if (CElt->isNullValue()) 1478 DemandedLHS.clearBit(i); 1479 else 1480 DemandedRHS.clearBit(i); 1481 } 1482 } 1483 1484 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1485 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1486 1487 // Output elements are undefined if the element from each arm is undefined. 1488 // TODO: This can be improved. See comment in select condition handling. 1489 UndefElts = UndefElts2 & UndefElts3; 1490 break; 1491 } 1492 case Instruction::BitCast: { 1493 // Vector->vector casts only. 1494 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1495 if (!VTy) break; 1496 unsigned InVWidth = VTy->getNumElements(); 1497 APInt InputDemandedElts(InVWidth, 0); 1498 UndefElts2 = APInt(InVWidth, 0); 1499 unsigned Ratio; 1500 1501 if (VWidth == InVWidth) { 1502 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1503 // elements as are demanded of us. 1504 Ratio = 1; 1505 InputDemandedElts = DemandedElts; 1506 } else if ((VWidth % InVWidth) == 0) { 1507 // If the number of elements in the output is a multiple of the number of 1508 // elements in the input then an input element is live if any of the 1509 // corresponding output elements are live. 1510 Ratio = VWidth / InVWidth; 1511 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1512 if (DemandedElts[OutIdx]) 1513 InputDemandedElts.setBit(OutIdx / Ratio); 1514 } else if ((InVWidth % VWidth) == 0) { 1515 // If the number of elements in the input is a multiple of the number of 1516 // elements in the output then an input element is live if the 1517 // corresponding output element is live. 1518 Ratio = InVWidth / VWidth; 1519 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1520 if (DemandedElts[InIdx / Ratio]) 1521 InputDemandedElts.setBit(InIdx); 1522 } else { 1523 // Unsupported so far. 1524 break; 1525 } 1526 1527 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1528 1529 if (VWidth == InVWidth) { 1530 UndefElts = UndefElts2; 1531 } else if ((VWidth % InVWidth) == 0) { 1532 // If the number of elements in the output is a multiple of the number of 1533 // elements in the input then an output element is undef if the 1534 // corresponding input element is undef. 1535 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1536 if (UndefElts2[OutIdx / Ratio]) 1537 UndefElts.setBit(OutIdx); 1538 } else if ((InVWidth % VWidth) == 0) { 1539 // If the number of elements in the input is a multiple of the number of 1540 // elements in the output then an output element is undef if all of the 1541 // corresponding input elements are undef. 1542 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1543 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1544 if (SubUndef.countPopulation() == Ratio) 1545 UndefElts.setBit(OutIdx); 1546 } 1547 } else { 1548 llvm_unreachable("Unimp"); 1549 } 1550 break; 1551 } 1552 case Instruction::FPTrunc: 1553 case Instruction::FPExt: 1554 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1555 break; 1556 1557 case Instruction::Call: { 1558 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1559 if (!II) break; 1560 switch (II->getIntrinsicID()) { 1561 case Intrinsic::masked_gather: // fallthrough 1562 case Intrinsic::masked_load: { 1563 // Subtlety: If we load from a pointer, the pointer must be valid 1564 // regardless of whether the element is demanded. Doing otherwise risks 1565 // segfaults which didn't exist in the original program. 1566 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1567 DemandedPassThrough(DemandedElts); 1568 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1569 for (unsigned i = 0; i < VWidth; i++) { 1570 Constant *CElt = CV->getAggregateElement(i); 1571 if (CElt->isNullValue()) 1572 DemandedPtrs.clearBit(i); 1573 else if (CElt->isAllOnesValue()) 1574 DemandedPassThrough.clearBit(i); 1575 } 1576 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1577 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1578 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1579 1580 // Output elements are undefined if the element from both sources are. 1581 // TODO: can strengthen via mask as well. 1582 UndefElts = UndefElts2 & UndefElts3; 1583 break; 1584 } 1585 case Intrinsic::x86_xop_vfrcz_ss: 1586 case Intrinsic::x86_xop_vfrcz_sd: 1587 // The instructions for these intrinsics are speced to zero upper bits not 1588 // pass them through like other scalar intrinsics. So we shouldn't just 1589 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1590 // Instead we should return a zero vector. 1591 if (!DemandedElts[0]) { 1592 Worklist.push(II); 1593 return ConstantAggregateZero::get(II->getType()); 1594 } 1595 1596 // Only the lower element is used. 1597 DemandedElts = 1; 1598 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1599 1600 // Only the lower element is undefined. The high elements are zero. 1601 UndefElts = UndefElts[0]; 1602 break; 1603 1604 // Unary scalar-as-vector operations that work column-wise. 1605 case Intrinsic::x86_sse_rcp_ss: 1606 case Intrinsic::x86_sse_rsqrt_ss: 1607 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1608 1609 // If lowest element of a scalar op isn't used then use Arg0. 1610 if (!DemandedElts[0]) { 1611 Worklist.push(II); 1612 return II->getArgOperand(0); 1613 } 1614 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1615 // checks). 1616 break; 1617 1618 // Binary scalar-as-vector operations that work column-wise. The high 1619 // elements come from operand 0. The low element is a function of both 1620 // operands. 1621 case Intrinsic::x86_sse_min_ss: 1622 case Intrinsic::x86_sse_max_ss: 1623 case Intrinsic::x86_sse_cmp_ss: 1624 case Intrinsic::x86_sse2_min_sd: 1625 case Intrinsic::x86_sse2_max_sd: 1626 case Intrinsic::x86_sse2_cmp_sd: { 1627 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1628 1629 // If lowest element of a scalar op isn't used then use Arg0. 1630 if (!DemandedElts[0]) { 1631 Worklist.push(II); 1632 return II->getArgOperand(0); 1633 } 1634 1635 // Only lower element is used for operand 1. 1636 DemandedElts = 1; 1637 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1638 1639 // Lower element is undefined if both lower elements are undefined. 1640 // Consider things like undef&0. The result is known zero, not undef. 1641 if (!UndefElts2[0]) 1642 UndefElts.clearBit(0); 1643 1644 break; 1645 } 1646 1647 // Binary scalar-as-vector operations that work column-wise. The high 1648 // elements come from operand 0 and the low element comes from operand 1. 1649 case Intrinsic::x86_sse41_round_ss: 1650 case Intrinsic::x86_sse41_round_sd: { 1651 // Don't use the low element of operand 0. 1652 APInt DemandedElts2 = DemandedElts; 1653 DemandedElts2.clearBit(0); 1654 simplifyAndSetOp(II, 0, DemandedElts2, UndefElts); 1655 1656 // If lowest element of a scalar op isn't used then use Arg0. 1657 if (!DemandedElts[0]) { 1658 Worklist.push(II); 1659 return II->getArgOperand(0); 1660 } 1661 1662 // Only lower element is used for operand 1. 1663 DemandedElts = 1; 1664 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1665 1666 // Take the high undef elements from operand 0 and take the lower element 1667 // from operand 1. 1668 UndefElts.clearBit(0); 1669 UndefElts |= UndefElts2[0]; 1670 break; 1671 } 1672 1673 // Three input scalar-as-vector operations that work column-wise. The high 1674 // elements come from operand 0 and the low element is a function of all 1675 // three inputs. 1676 case Intrinsic::x86_avx512_mask_add_ss_round: 1677 case Intrinsic::x86_avx512_mask_div_ss_round: 1678 case Intrinsic::x86_avx512_mask_mul_ss_round: 1679 case Intrinsic::x86_avx512_mask_sub_ss_round: 1680 case Intrinsic::x86_avx512_mask_max_ss_round: 1681 case Intrinsic::x86_avx512_mask_min_ss_round: 1682 case Intrinsic::x86_avx512_mask_add_sd_round: 1683 case Intrinsic::x86_avx512_mask_div_sd_round: 1684 case Intrinsic::x86_avx512_mask_mul_sd_round: 1685 case Intrinsic::x86_avx512_mask_sub_sd_round: 1686 case Intrinsic::x86_avx512_mask_max_sd_round: 1687 case Intrinsic::x86_avx512_mask_min_sd_round: 1688 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1689 1690 // If lowest element of a scalar op isn't used then use Arg0. 1691 if (!DemandedElts[0]) { 1692 Worklist.push(II); 1693 return II->getArgOperand(0); 1694 } 1695 1696 // Only lower element is used for operand 1 and 2. 1697 DemandedElts = 1; 1698 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1699 simplifyAndSetOp(II, 2, DemandedElts, UndefElts3); 1700 1701 // Lower element is undefined if all three lower elements are undefined. 1702 // Consider things like undef&0. The result is known zero, not undef. 1703 if (!UndefElts2[0] || !UndefElts3[0]) 1704 UndefElts.clearBit(0); 1705 1706 break; 1707 1708 case Intrinsic::x86_sse2_packssdw_128: 1709 case Intrinsic::x86_sse2_packsswb_128: 1710 case Intrinsic::x86_sse2_packuswb_128: 1711 case Intrinsic::x86_sse41_packusdw: 1712 case Intrinsic::x86_avx2_packssdw: 1713 case Intrinsic::x86_avx2_packsswb: 1714 case Intrinsic::x86_avx2_packusdw: 1715 case Intrinsic::x86_avx2_packuswb: 1716 case Intrinsic::x86_avx512_packssdw_512: 1717 case Intrinsic::x86_avx512_packsswb_512: 1718 case Intrinsic::x86_avx512_packusdw_512: 1719 case Intrinsic::x86_avx512_packuswb_512: { 1720 auto *Ty0 = II->getArgOperand(0)->getType(); 1721 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1722 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1723 1724 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1725 unsigned VWidthPerLane = VWidth / NumLanes; 1726 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1727 1728 // Per lane, pack the elements of the first input and then the second. 1729 // e.g. 1730 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1731 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1732 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1733 APInt OpDemandedElts(InnerVWidth, 0); 1734 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1735 unsigned LaneIdx = Lane * VWidthPerLane; 1736 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1737 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1738 if (DemandedElts[Idx]) 1739 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1740 } 1741 } 1742 1743 // Demand elements from the operand. 1744 APInt OpUndefElts(InnerVWidth, 0); 1745 simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts); 1746 1747 // Pack the operand's UNDEF elements, one lane at a time. 1748 OpUndefElts = OpUndefElts.zext(VWidth); 1749 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1750 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1751 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1752 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1753 UndefElts |= LaneElts; 1754 } 1755 } 1756 break; 1757 } 1758 1759 // PSHUFB 1760 case Intrinsic::x86_ssse3_pshuf_b_128: 1761 case Intrinsic::x86_avx2_pshuf_b: 1762 case Intrinsic::x86_avx512_pshuf_b_512: 1763 // PERMILVAR 1764 case Intrinsic::x86_avx_vpermilvar_ps: 1765 case Intrinsic::x86_avx_vpermilvar_ps_256: 1766 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1767 case Intrinsic::x86_avx_vpermilvar_pd: 1768 case Intrinsic::x86_avx_vpermilvar_pd_256: 1769 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1770 // PERMV 1771 case Intrinsic::x86_avx2_permd: 1772 case Intrinsic::x86_avx2_permps: { 1773 simplifyAndSetOp(II, 1, DemandedElts, UndefElts); 1774 break; 1775 } 1776 1777 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1778 // in an undefined state. 1779 case Intrinsic::x86_sse4a_extrq: 1780 case Intrinsic::x86_sse4a_extrqi: 1781 case Intrinsic::x86_sse4a_insertq: 1782 case Intrinsic::x86_sse4a_insertqi: 1783 UndefElts.setHighBits(VWidth / 2); 1784 break; 1785 case Intrinsic::amdgcn_buffer_load: 1786 case Intrinsic::amdgcn_buffer_load_format: 1787 case Intrinsic::amdgcn_raw_buffer_load: 1788 case Intrinsic::amdgcn_raw_buffer_load_format: 1789 case Intrinsic::amdgcn_raw_tbuffer_load: 1790 case Intrinsic::amdgcn_s_buffer_load: 1791 case Intrinsic::amdgcn_struct_buffer_load: 1792 case Intrinsic::amdgcn_struct_buffer_load_format: 1793 case Intrinsic::amdgcn_struct_tbuffer_load: 1794 case Intrinsic::amdgcn_tbuffer_load: 1795 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts); 1796 default: { 1797 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) 1798 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0); 1799 1800 break; 1801 } 1802 } // switch on IntrinsicID 1803 break; 1804 } // case Call 1805 } // switch on Opcode 1806 1807 // TODO: We bail completely on integer div/rem and shifts because they have 1808 // UB/poison potential, but that should be refined. 1809 BinaryOperator *BO; 1810 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1811 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1812 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1813 1814 // Any change to an instruction with potential poison must clear those flags 1815 // because we can not guarantee those constraints now. Other analysis may 1816 // determine that it is safe to re-apply the flags. 1817 if (MadeChange) 1818 BO->dropPoisonGeneratingFlags(); 1819 1820 // Output elements are undefined if both are undefined. Consider things 1821 // like undef & 0. The result is known zero, not undef. 1822 UndefElts &= UndefElts2; 1823 } 1824 1825 // If we've proven all of the lanes undef, return an undef value. 1826 // TODO: Intersect w/demanded lanes 1827 if (UndefElts.isAllOnesValue()) 1828 return UndefValue::get(I->getType());; 1829 1830 return MadeChange ? I : nullptr; 1831 } 1832