1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains logic for simplifying instructions based on information 11 // about how they are used. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombineInternal.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 21 using namespace llvm; 22 using namespace llvm::PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 /// Check to see if the specified operand of the specified instruction is a 27 /// constant integer. If so, check to see if there are any bits set in the 28 /// constant that are not demanded. If so, shrink the constant and return true. 29 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 30 const APInt &Demanded) { 31 assert(I && "No instruction?"); 32 assert(OpNo < I->getNumOperands() && "Operand index too large"); 33 34 // The operand must be a constant integer or splat integer. 35 Value *Op = I->getOperand(OpNo); 36 const APInt *C; 37 if (!match(Op, m_APInt(C))) 38 return false; 39 40 // If there are no bits set that aren't demanded, nothing to do. 41 if (C->isSubsetOf(Demanded)) 42 return false; 43 44 // This instruction is producing bits that are not demanded. Shrink the RHS. 45 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 46 47 return true; 48 } 49 50 51 52 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 53 /// the instruction has any properties that allow us to simplify its operands. 54 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 55 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 56 KnownBits Known(BitWidth); 57 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 58 59 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 60 0, &Inst); 61 if (!V) return false; 62 if (V == &Inst) return true; 63 replaceInstUsesWith(Inst, V); 64 return true; 65 } 66 67 /// This form of SimplifyDemandedBits simplifies the specified instruction 68 /// operand if possible, updating it in place. It returns true if it made any 69 /// change and false otherwise. 70 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 71 const APInt &DemandedMask, 72 KnownBits &Known, 73 unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 U = NewVal; 79 return true; 80 } 81 82 83 /// This function attempts to replace V with a simpler value based on the 84 /// demanded bits. When this function is called, it is known that only the bits 85 /// set in DemandedMask of the result of V are ever used downstream. 86 /// Consequently, depending on the mask and V, it may be possible to replace V 87 /// with a constant or one of its operands. In such cases, this function does 88 /// the replacement and returns true. In all other cases, it returns false after 89 /// analyzing the expression and setting KnownOne and known to be one in the 90 /// expression. Known.Zero contains all the bits that are known to be zero in 91 /// the expression. These are provided to potentially allow the caller (which 92 /// might recursively be SimplifyDemandedBits itself) to simplify the 93 /// expression. 94 /// Known.One and Known.Zero always follow the invariant that: 95 /// Known.One & Known.Zero == 0. 96 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 97 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 98 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 99 /// be the same. 100 /// 101 /// This returns null if it did not change anything and it permits no 102 /// simplification. This returns V itself if it did some simplification of V's 103 /// operands based on the information about what bits are demanded. This returns 104 /// some other non-null value if it found out that V is equal to another value 105 /// in the context where the specified bits are demanded, but not for all users. 106 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 107 KnownBits &Known, unsigned Depth, 108 Instruction *CxtI) { 109 assert(V != nullptr && "Null pointer of Value???"); 110 assert(Depth <= 6 && "Limit Search Depth"); 111 uint32_t BitWidth = DemandedMask.getBitWidth(); 112 Type *VTy = V->getType(); 113 assert( 114 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 115 Known.getBitWidth() == BitWidth && 116 "Value *V, DemandedMask and Known must have same BitWidth"); 117 118 if (isa<Constant>(V)) { 119 computeKnownBits(V, Known, Depth, CxtI); 120 return nullptr; 121 } 122 123 Known.resetAll(); 124 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 125 return UndefValue::get(VTy); 126 127 if (Depth == 6) // Limit search depth. 128 return nullptr; 129 130 Instruction *I = dyn_cast<Instruction>(V); 131 if (!I) { 132 computeKnownBits(V, Known, Depth, CxtI); 133 return nullptr; // Only analyze instructions. 134 } 135 136 // If there are multiple uses of this value and we aren't at the root, then 137 // we can't do any simplifications of the operands, because DemandedMask 138 // only reflects the bits demanded by *one* of the users. 139 if (Depth != 0 && !I->hasOneUse()) 140 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 141 142 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 143 144 // If this is the root being simplified, allow it to have multiple uses, 145 // just set the DemandedMask to all bits so that we can try to simplify the 146 // operands. This allows visitTruncInst (for example) to simplify the 147 // operand of a trunc without duplicating all the logic below. 148 if (Depth == 0 && !V->hasOneUse()) 149 DemandedMask.setAllBits(); 150 151 switch (I->getOpcode()) { 152 default: 153 computeKnownBits(I, Known, Depth, CxtI); 154 break; 155 case Instruction::And: { 156 // If either the LHS or the RHS are Zero, the result is zero. 157 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 158 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 159 Depth + 1)) 160 return I; 161 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 162 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 163 164 // Output known-0 are known to be clear if zero in either the LHS | RHS. 165 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 166 // Output known-1 bits are only known if set in both the LHS & RHS. 167 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 168 169 // If the client is only demanding bits that we know, return the known 170 // constant. 171 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 172 return Constant::getIntegerValue(VTy, IKnownOne); 173 174 // If all of the demanded bits are known 1 on one side, return the other. 175 // These bits cannot contribute to the result of the 'and'. 176 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 177 return I->getOperand(0); 178 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 179 return I->getOperand(1); 180 181 // If the RHS is a constant, see if we can simplify it. 182 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 183 return I; 184 185 Known.Zero = std::move(IKnownZero); 186 Known.One = std::move(IKnownOne); 187 break; 188 } 189 case Instruction::Or: { 190 // If either the LHS or the RHS are One, the result is One. 191 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 192 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 193 Depth + 1)) 194 return I; 195 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 196 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 197 198 // Output known-0 bits are only known if clear in both the LHS & RHS. 199 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 200 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 201 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 202 203 // If the client is only demanding bits that we know, return the known 204 // constant. 205 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 206 return Constant::getIntegerValue(VTy, IKnownOne); 207 208 // If all of the demanded bits are known zero on one side, return the other. 209 // These bits cannot contribute to the result of the 'or'. 210 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 211 return I->getOperand(0); 212 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 213 return I->getOperand(1); 214 215 // If the RHS is a constant, see if we can simplify it. 216 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 217 return I; 218 219 Known.Zero = std::move(IKnownZero); 220 Known.One = std::move(IKnownOne); 221 break; 222 } 223 case Instruction::Xor: { 224 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 225 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 226 return I; 227 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 228 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 229 230 // Output known-0 bits are known if clear or set in both the LHS & RHS. 231 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 232 (RHSKnown.One & LHSKnown.One); 233 // Output known-1 are known to be set if set in only one of the LHS, RHS. 234 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 235 (RHSKnown.One & LHSKnown.Zero); 236 237 // If the client is only demanding bits that we know, return the known 238 // constant. 239 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 240 return Constant::getIntegerValue(VTy, IKnownOne); 241 242 // If all of the demanded bits are known zero on one side, return the other. 243 // These bits cannot contribute to the result of the 'xor'. 244 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 245 return I->getOperand(0); 246 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 247 return I->getOperand(1); 248 249 // If all of the demanded bits are known to be zero on one side or the 250 // other, turn this into an *inclusive* or. 251 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 252 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 253 Instruction *Or = 254 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 255 I->getName()); 256 return InsertNewInstWith(Or, *I); 257 } 258 259 // If all of the demanded bits on one side are known, and all of the set 260 // bits on that side are also known to be set on the other side, turn this 261 // into an AND, as we know the bits will be cleared. 262 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 263 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 264 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 265 Constant *AndC = Constant::getIntegerValue(VTy, 266 ~RHSKnown.One & DemandedMask); 267 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 268 return InsertNewInstWith(And, *I); 269 } 270 271 // If the RHS is a constant, see if we can simplify it. 272 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 273 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 274 return I; 275 276 // If our LHS is an 'and' and if it has one use, and if any of the bits we 277 // are flipping are known to be set, then the xor is just resetting those 278 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 279 // simplifying both of them. 280 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 281 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 282 isa<ConstantInt>(I->getOperand(1)) && 283 isa<ConstantInt>(LHSInst->getOperand(1)) && 284 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 285 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 286 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 287 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 288 289 Constant *AndC = 290 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 291 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 292 InsertNewInstWith(NewAnd, *I); 293 294 Constant *XorC = 295 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 296 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 297 return InsertNewInstWith(NewXor, *I); 298 } 299 300 // Output known-0 bits are known if clear or set in both the LHS & RHS. 301 Known.Zero = std::move(IKnownZero); 302 // Output known-1 are known to be set if set in only one of the LHS, RHS. 303 Known.One = std::move(IKnownOne); 304 break; 305 } 306 case Instruction::Select: 307 // If this is a select as part of a min/max pattern, don't simplify any 308 // further in case we break the structure. 309 Value *LHS, *RHS; 310 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN) 311 return nullptr; 312 313 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 314 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 315 return I; 316 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 317 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 318 319 // If the operands are constants, see if we can simplify them. 320 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 321 ShrinkDemandedConstant(I, 2, DemandedMask)) 322 return I; 323 324 // Only known if known in both the LHS and RHS. 325 Known.One = RHSKnown.One & LHSKnown.One; 326 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 327 break; 328 case Instruction::ZExt: 329 case Instruction::Trunc: { 330 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 331 332 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 333 KnownBits InputKnown(SrcBitWidth); 334 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 335 return I; 336 Known = Known.zextOrTrunc(BitWidth); 337 // Any top bits are known to be zero. 338 if (BitWidth > SrcBitWidth) 339 Known.Zero.setBitsFrom(SrcBitWidth); 340 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 341 break; 342 } 343 case Instruction::BitCast: 344 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 345 return nullptr; // vector->int or fp->int? 346 347 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 348 if (VectorType *SrcVTy = 349 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 350 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 351 // Don't touch a bitcast between vectors of different element counts. 352 return nullptr; 353 } else 354 // Don't touch a scalar-to-vector bitcast. 355 return nullptr; 356 } else if (I->getOperand(0)->getType()->isVectorTy()) 357 // Don't touch a vector-to-scalar bitcast. 358 return nullptr; 359 360 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 361 return I; 362 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 363 break; 364 case Instruction::SExt: { 365 // Compute the bits in the result that are not present in the input. 366 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 367 368 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 369 370 // If any of the sign extended bits are demanded, we know that the sign 371 // bit is demanded. 372 if (DemandedMask.getActiveBits() > SrcBitWidth) 373 InputDemandedBits.setBit(SrcBitWidth-1); 374 375 KnownBits InputKnown(SrcBitWidth); 376 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 377 return I; 378 379 // If the input sign bit is known zero, or if the NewBits are not demanded 380 // convert this into a zero extension. 381 if (InputKnown.isNonNegative() || 382 DemandedMask.getActiveBits() <= SrcBitWidth) { 383 // Convert to ZExt cast. 384 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 385 return InsertNewInstWith(NewCast, *I); 386 } 387 388 // If the sign bit of the input is known set or clear, then we know the 389 // top bits of the result. 390 Known = InputKnown.sext(BitWidth); 391 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 392 break; 393 } 394 case Instruction::Add: 395 case Instruction::Sub: { 396 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 397 /// about the high bits of the operands. 398 unsigned NLZ = DemandedMask.countLeadingZeros(); 399 // Right fill the mask of bits for this ADD/SUB to demand the most 400 // significant bit and all those below it. 401 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 402 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 403 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 404 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 405 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 406 if (NLZ > 0) { 407 // Disable the nsw and nuw flags here: We can no longer guarantee that 408 // we won't wrap after simplification. Removing the nsw/nuw flags is 409 // legal here because the top bit is not demanded. 410 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 411 BinOP.setHasNoSignedWrap(false); 412 BinOP.setHasNoUnsignedWrap(false); 413 } 414 return I; 415 } 416 417 // If we are known to be adding/subtracting zeros to every bit below 418 // the highest demanded bit, we just return the other side. 419 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 420 return I->getOperand(0); 421 // We can't do this with the LHS for subtraction, unless we are only 422 // demanding the LSB. 423 if ((I->getOpcode() == Instruction::Add || 424 DemandedFromOps.isOneValue()) && 425 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 426 return I->getOperand(1); 427 428 // Otherwise just compute the known bits of the result. 429 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 430 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 431 NSW, LHSKnown, RHSKnown); 432 break; 433 } 434 case Instruction::Shl: { 435 const APInt *SA; 436 if (match(I->getOperand(1), m_APInt(SA))) { 437 const APInt *ShrAmt; 438 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) { 439 Instruction *Shr = cast<Instruction>(I->getOperand(0)); 440 if (Value *R = simplifyShrShlDemandedBits( 441 Shr, *ShrAmt, I, *SA, DemandedMask, Known)) 442 return R; 443 } 444 445 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 446 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 447 448 // If the shift is NUW/NSW, then it does demand the high bits. 449 ShlOperator *IOp = cast<ShlOperator>(I); 450 if (IOp->hasNoSignedWrap()) 451 DemandedMaskIn.setHighBits(ShiftAmt+1); 452 else if (IOp->hasNoUnsignedWrap()) 453 DemandedMaskIn.setHighBits(ShiftAmt); 454 455 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 456 return I; 457 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 458 Known.Zero <<= ShiftAmt; 459 Known.One <<= ShiftAmt; 460 // low bits known zero. 461 if (ShiftAmt) 462 Known.Zero.setLowBits(ShiftAmt); 463 } 464 break; 465 } 466 case Instruction::LShr: { 467 const APInt *SA; 468 if (match(I->getOperand(1), m_APInt(SA))) { 469 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 470 471 // Unsigned shift right. 472 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 473 474 // If the shift is exact, then it does demand the low bits (and knows that 475 // they are zero). 476 if (cast<LShrOperator>(I)->isExact()) 477 DemandedMaskIn.setLowBits(ShiftAmt); 478 479 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 480 return I; 481 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 482 Known.Zero.lshrInPlace(ShiftAmt); 483 Known.One.lshrInPlace(ShiftAmt); 484 if (ShiftAmt) 485 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 486 } 487 break; 488 } 489 case Instruction::AShr: { 490 // If this is an arithmetic shift right and only the low-bit is set, we can 491 // always convert this into a logical shr, even if the shift amount is 492 // variable. The low bit of the shift cannot be an input sign bit unless 493 // the shift amount is >= the size of the datatype, which is undefined. 494 if (DemandedMask.isOneValue()) { 495 // Perform the logical shift right. 496 Instruction *NewVal = BinaryOperator::CreateLShr( 497 I->getOperand(0), I->getOperand(1), I->getName()); 498 return InsertNewInstWith(NewVal, *I); 499 } 500 501 // If the sign bit is the only bit demanded by this ashr, then there is no 502 // need to do it, the shift doesn't change the high bit. 503 if (DemandedMask.isSignMask()) 504 return I->getOperand(0); 505 506 const APInt *SA; 507 if (match(I->getOperand(1), m_APInt(SA))) { 508 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 509 510 // Signed shift right. 511 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 512 // If any of the high bits are demanded, we should set the sign bit as 513 // demanded. 514 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 515 DemandedMaskIn.setSignBit(); 516 517 // If the shift is exact, then it does demand the low bits (and knows that 518 // they are zero). 519 if (cast<AShrOperator>(I)->isExact()) 520 DemandedMaskIn.setLowBits(ShiftAmt); 521 522 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 523 return I; 524 525 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 526 527 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 528 // Compute the new bits that are at the top now plus sign bits. 529 APInt HighBits(APInt::getHighBitsSet( 530 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 531 Known.Zero.lshrInPlace(ShiftAmt); 532 Known.One.lshrInPlace(ShiftAmt); 533 534 // If the input sign bit is known to be zero, or if none of the top bits 535 // are demanded, turn this into an unsigned shift right. 536 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 537 if (Known.Zero[BitWidth-ShiftAmt-1] || 538 !DemandedMask.intersects(HighBits)) { 539 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 540 I->getOperand(1)); 541 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 542 return InsertNewInstWith(LShr, *I); 543 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 544 Known.One |= HighBits; 545 } 546 } 547 break; 548 } 549 case Instruction::SRem: 550 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 551 // X % -1 demands all the bits because we don't want to introduce 552 // INT_MIN % -1 (== undef) by accident. 553 if (Rem->isMinusOne()) 554 break; 555 APInt RA = Rem->getValue().abs(); 556 if (RA.isPowerOf2()) { 557 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 558 return I->getOperand(0); 559 560 APInt LowBits = RA - 1; 561 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 562 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 563 return I; 564 565 // The low bits of LHS are unchanged by the srem. 566 Known.Zero = LHSKnown.Zero & LowBits; 567 Known.One = LHSKnown.One & LowBits; 568 569 // If LHS is non-negative or has all low bits zero, then the upper bits 570 // are all zero. 571 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 572 Known.Zero |= ~LowBits; 573 574 // If LHS is negative and not all low bits are zero, then the upper bits 575 // are all one. 576 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 577 Known.One |= ~LowBits; 578 579 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 580 break; 581 } 582 } 583 584 // The sign bit is the LHS's sign bit, except when the result of the 585 // remainder is zero. 586 if (DemandedMask.isSignBitSet()) { 587 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 588 // If it's known zero, our sign bit is also zero. 589 if (LHSKnown.isNonNegative()) 590 Known.makeNonNegative(); 591 } 592 break; 593 case Instruction::URem: { 594 KnownBits Known2(BitWidth); 595 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 596 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 597 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 598 return I; 599 600 unsigned Leaders = Known2.countMinLeadingZeros(); 601 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 602 break; 603 } 604 case Instruction::Call: 605 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 606 switch (II->getIntrinsicID()) { 607 default: break; 608 case Intrinsic::bswap: { 609 // If the only bits demanded come from one byte of the bswap result, 610 // just shift the input byte into position to eliminate the bswap. 611 unsigned NLZ = DemandedMask.countLeadingZeros(); 612 unsigned NTZ = DemandedMask.countTrailingZeros(); 613 614 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 615 // we need all the bits down to bit 8. Likewise, round NLZ. If we 616 // have 14 leading zeros, round to 8. 617 NLZ &= ~7; 618 NTZ &= ~7; 619 // If we need exactly one byte, we can do this transformation. 620 if (BitWidth-NLZ-NTZ == 8) { 621 unsigned ResultBit = NTZ; 622 unsigned InputBit = BitWidth-NTZ-8; 623 624 // Replace this with either a left or right shift to get the byte into 625 // the right place. 626 Instruction *NewVal; 627 if (InputBit > ResultBit) 628 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 629 ConstantInt::get(I->getType(), InputBit-ResultBit)); 630 else 631 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 632 ConstantInt::get(I->getType(), ResultBit-InputBit)); 633 NewVal->takeName(I); 634 return InsertNewInstWith(NewVal, *I); 635 } 636 637 // TODO: Could compute known zero/one bits based on the input. 638 break; 639 } 640 case Intrinsic::x86_mmx_pmovmskb: 641 case Intrinsic::x86_sse_movmsk_ps: 642 case Intrinsic::x86_sse2_movmsk_pd: 643 case Intrinsic::x86_sse2_pmovmskb_128: 644 case Intrinsic::x86_avx_movmsk_ps_256: 645 case Intrinsic::x86_avx_movmsk_pd_256: 646 case Intrinsic::x86_avx2_pmovmskb: { 647 // MOVMSK copies the vector elements' sign bits to the low bits 648 // and zeros the high bits. 649 unsigned ArgWidth; 650 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 651 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 652 } else { 653 auto Arg = II->getArgOperand(0); 654 auto ArgType = cast<VectorType>(Arg->getType()); 655 ArgWidth = ArgType->getNumElements(); 656 } 657 658 // If we don't need any of low bits then return zero, 659 // we know that DemandedMask is non-zero already. 660 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 661 if (DemandedElts.isNullValue()) 662 return ConstantInt::getNullValue(VTy); 663 664 // We know that the upper bits are set to zero. 665 Known.Zero.setBitsFrom(ArgWidth); 666 return nullptr; 667 } 668 case Intrinsic::x86_sse42_crc32_64_64: 669 Known.Zero.setBitsFrom(32); 670 return nullptr; 671 } 672 } 673 computeKnownBits(V, Known, Depth, CxtI); 674 break; 675 } 676 677 // If the client is only demanding bits that we know, return the known 678 // constant. 679 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 680 return Constant::getIntegerValue(VTy, Known.One); 681 return nullptr; 682 } 683 684 /// Helper routine of SimplifyDemandedUseBits. It computes Known 685 /// bits. It also tries to handle simplifications that can be done based on 686 /// DemandedMask, but without modifying the Instruction. 687 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 688 const APInt &DemandedMask, 689 KnownBits &Known, 690 unsigned Depth, 691 Instruction *CxtI) { 692 unsigned BitWidth = DemandedMask.getBitWidth(); 693 Type *ITy = I->getType(); 694 695 KnownBits LHSKnown(BitWidth); 696 KnownBits RHSKnown(BitWidth); 697 698 // Despite the fact that we can't simplify this instruction in all User's 699 // context, we can at least compute the known bits, and we can 700 // do simplifications that apply to *just* the one user if we know that 701 // this instruction has a simpler value in that context. 702 switch (I->getOpcode()) { 703 case Instruction::And: { 704 // If either the LHS or the RHS are Zero, the result is zero. 705 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 706 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 707 CxtI); 708 709 // Output known-0 are known to be clear if zero in either the LHS | RHS. 710 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 711 // Output known-1 bits are only known if set in both the LHS & RHS. 712 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 713 714 // If the client is only demanding bits that we know, return the known 715 // constant. 716 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 717 return Constant::getIntegerValue(ITy, IKnownOne); 718 719 // If all of the demanded bits are known 1 on one side, return the other. 720 // These bits cannot contribute to the result of the 'and' in this 721 // context. 722 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 723 return I->getOperand(0); 724 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 725 return I->getOperand(1); 726 727 Known.Zero = std::move(IKnownZero); 728 Known.One = std::move(IKnownOne); 729 break; 730 } 731 case Instruction::Or: { 732 // We can simplify (X|Y) -> X or Y in the user's context if we know that 733 // only bits from X or Y are demanded. 734 735 // If either the LHS or the RHS are One, the result is One. 736 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 737 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 738 CxtI); 739 740 // Output known-0 bits are only known if clear in both the LHS & RHS. 741 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 742 // Output known-1 are known to be set if set in either the LHS | RHS. 743 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 744 745 // If the client is only demanding bits that we know, return the known 746 // constant. 747 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 748 return Constant::getIntegerValue(ITy, IKnownOne); 749 750 // If all of the demanded bits are known zero on one side, return the 751 // other. These bits cannot contribute to the result of the 'or' in this 752 // context. 753 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 754 return I->getOperand(0); 755 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 756 return I->getOperand(1); 757 758 Known.Zero = std::move(IKnownZero); 759 Known.One = std::move(IKnownOne); 760 break; 761 } 762 case Instruction::Xor: { 763 // We can simplify (X^Y) -> X or Y in the user's context if we know that 764 // only bits from X or Y are demanded. 765 766 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 767 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 768 CxtI); 769 770 // Output known-0 bits are known if clear or set in both the LHS & RHS. 771 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 772 (RHSKnown.One & LHSKnown.One); 773 // Output known-1 are known to be set if set in only one of the LHS, RHS. 774 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 775 (RHSKnown.One & LHSKnown.Zero); 776 777 // If the client is only demanding bits that we know, return the known 778 // constant. 779 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 780 return Constant::getIntegerValue(ITy, IKnownOne); 781 782 // If all of the demanded bits are known zero on one side, return the 783 // other. 784 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 785 return I->getOperand(0); 786 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 787 return I->getOperand(1); 788 789 // Output known-0 bits are known if clear or set in both the LHS & RHS. 790 Known.Zero = std::move(IKnownZero); 791 // Output known-1 are known to be set if set in only one of the LHS, RHS. 792 Known.One = std::move(IKnownOne); 793 break; 794 } 795 default: 796 // Compute the Known bits to simplify things downstream. 797 computeKnownBits(I, Known, Depth, CxtI); 798 799 // If this user is only demanding bits that we know, return the known 800 // constant. 801 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 802 return Constant::getIntegerValue(ITy, Known.One); 803 804 break; 805 } 806 807 return nullptr; 808 } 809 810 811 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 812 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 813 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 814 /// of "C2-C1". 815 /// 816 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 817 /// ..., bn}, without considering the specific value X is holding. 818 /// This transformation is legal iff one of following conditions is hold: 819 /// 1) All the bit in S are 0, in this case E1 == E2. 820 /// 2) We don't care those bits in S, per the input DemandedMask. 821 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 822 /// rest bits. 823 /// 824 /// Currently we only test condition 2). 825 /// 826 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 827 /// not successful. 828 Value * 829 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 830 Instruction *Shl, const APInt &ShlOp1, 831 const APInt &DemandedMask, 832 KnownBits &Known) { 833 if (!ShlOp1 || !ShrOp1) 834 return nullptr; // No-op. 835 836 Value *VarX = Shr->getOperand(0); 837 Type *Ty = VarX->getType(); 838 unsigned BitWidth = Ty->getScalarSizeInBits(); 839 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 840 return nullptr; // Undef. 841 842 unsigned ShlAmt = ShlOp1.getZExtValue(); 843 unsigned ShrAmt = ShrOp1.getZExtValue(); 844 845 Known.One.clearAllBits(); 846 Known.Zero.setLowBits(ShlAmt - 1); 847 Known.Zero &= DemandedMask; 848 849 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 850 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 851 852 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 853 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 854 (BitMask1.ashr(ShrAmt) << ShlAmt); 855 856 if (ShrAmt <= ShlAmt) { 857 BitMask2 <<= (ShlAmt - ShrAmt); 858 } else { 859 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 860 BitMask2.ashr(ShrAmt - ShlAmt); 861 } 862 863 // Check if condition-2 (see the comment to this function) is satified. 864 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 865 if (ShrAmt == ShlAmt) 866 return VarX; 867 868 if (!Shr->hasOneUse()) 869 return nullptr; 870 871 BinaryOperator *New; 872 if (ShrAmt < ShlAmt) { 873 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 874 New = BinaryOperator::CreateShl(VarX, Amt); 875 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 876 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 877 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 878 } else { 879 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 880 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 881 BinaryOperator::CreateAShr(VarX, Amt); 882 if (cast<BinaryOperator>(Shr)->isExact()) 883 New->setIsExact(true); 884 } 885 886 return InsertNewInstWith(New, *Shl); 887 } 888 889 return nullptr; 890 } 891 892 /// The specified value produces a vector with any number of elements. 893 /// DemandedElts contains the set of elements that are actually used by the 894 /// caller. This method analyzes which elements of the operand are undef and 895 /// returns that information in UndefElts. 896 /// 897 /// If the information about demanded elements can be used to simplify the 898 /// operation, the operation is simplified, then the resultant value is 899 /// returned. This returns null if no change was made. 900 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 901 APInt &UndefElts, 902 unsigned Depth) { 903 unsigned VWidth = V->getType()->getVectorNumElements(); 904 APInt EltMask(APInt::getAllOnesValue(VWidth)); 905 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 906 907 if (isa<UndefValue>(V)) { 908 // If the entire vector is undefined, just return this info. 909 UndefElts = EltMask; 910 return nullptr; 911 } 912 913 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 914 UndefElts = EltMask; 915 return UndefValue::get(V->getType()); 916 } 917 918 UndefElts = 0; 919 920 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. 921 if (Constant *C = dyn_cast<Constant>(V)) { 922 // Check if this is identity. If so, return 0 since we are not simplifying 923 // anything. 924 if (DemandedElts.isAllOnesValue()) 925 return nullptr; 926 927 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 928 Constant *Undef = UndefValue::get(EltTy); 929 930 SmallVector<Constant*, 16> Elts; 931 for (unsigned i = 0; i != VWidth; ++i) { 932 if (!DemandedElts[i]) { // If not demanded, set to undef. 933 Elts.push_back(Undef); 934 UndefElts.setBit(i); 935 continue; 936 } 937 938 Constant *Elt = C->getAggregateElement(i); 939 if (!Elt) return nullptr; 940 941 if (isa<UndefValue>(Elt)) { // Already undef. 942 Elts.push_back(Undef); 943 UndefElts.setBit(i); 944 } else { // Otherwise, defined. 945 Elts.push_back(Elt); 946 } 947 } 948 949 // If we changed the constant, return it. 950 Constant *NewCV = ConstantVector::get(Elts); 951 return NewCV != C ? NewCV : nullptr; 952 } 953 954 // Limit search depth. 955 if (Depth == 10) 956 return nullptr; 957 958 // If multiple users are using the root value, proceed with 959 // simplification conservatively assuming that all elements 960 // are needed. 961 if (!V->hasOneUse()) { 962 // Quit if we find multiple users of a non-root value though. 963 // They'll be handled when it's their turn to be visited by 964 // the main instcombine process. 965 if (Depth != 0) 966 // TODO: Just compute the UndefElts information recursively. 967 return nullptr; 968 969 // Conservatively assume that all elements are needed. 970 DemandedElts = EltMask; 971 } 972 973 Instruction *I = dyn_cast<Instruction>(V); 974 if (!I) return nullptr; // Only analyze instructions. 975 976 bool MadeChange = false; 977 APInt UndefElts2(VWidth, 0); 978 APInt UndefElts3(VWidth, 0); 979 Value *TmpV; 980 switch (I->getOpcode()) { 981 default: break; 982 983 case Instruction::InsertElement: { 984 // If this is a variable index, we don't know which element it overwrites. 985 // demand exactly the same input as we produce. 986 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 987 if (!Idx) { 988 // Note that we can't propagate undef elt info, because we don't know 989 // which elt is getting updated. 990 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 991 UndefElts2, Depth + 1); 992 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 993 break; 994 } 995 996 // The element inserted overwrites whatever was there, so the input demanded 997 // set is simpler than the output set. 998 unsigned IdxNo = Idx->getZExtValue(); 999 APInt PreInsertDemandedElts = DemandedElts; 1000 if (IdxNo < VWidth) 1001 PreInsertDemandedElts.clearBit(IdxNo); 1002 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), PreInsertDemandedElts, 1003 UndefElts, Depth + 1); 1004 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1005 1006 // If this is inserting an element that isn't demanded, remove this 1007 // insertelement. 1008 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1009 Worklist.Add(I); 1010 return I->getOperand(0); 1011 } 1012 1013 // The inserted element is defined. 1014 UndefElts.clearBit(IdxNo); 1015 break; 1016 } 1017 case Instruction::ShuffleVector: { 1018 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1019 unsigned LHSVWidth = 1020 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1021 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1022 for (unsigned i = 0; i < VWidth; i++) { 1023 if (DemandedElts[i]) { 1024 unsigned MaskVal = Shuffle->getMaskValue(i); 1025 if (MaskVal != -1u) { 1026 assert(MaskVal < LHSVWidth * 2 && 1027 "shufflevector mask index out of range!"); 1028 if (MaskVal < LHSVWidth) 1029 LeftDemanded.setBit(MaskVal); 1030 else 1031 RightDemanded.setBit(MaskVal - LHSVWidth); 1032 } 1033 } 1034 } 1035 1036 APInt LHSUndefElts(LHSVWidth, 0); 1037 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, 1038 LHSUndefElts, Depth + 1); 1039 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1040 1041 APInt RHSUndefElts(LHSVWidth, 0); 1042 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, 1043 RHSUndefElts, Depth + 1); 1044 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1045 1046 bool NewUndefElts = false; 1047 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1048 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1049 bool LHSUniform = true; 1050 bool RHSUniform = true; 1051 for (unsigned i = 0; i < VWidth; i++) { 1052 unsigned MaskVal = Shuffle->getMaskValue(i); 1053 if (MaskVal == -1u) { 1054 UndefElts.setBit(i); 1055 } else if (!DemandedElts[i]) { 1056 NewUndefElts = true; 1057 UndefElts.setBit(i); 1058 } else if (MaskVal < LHSVWidth) { 1059 if (LHSUndefElts[MaskVal]) { 1060 NewUndefElts = true; 1061 UndefElts.setBit(i); 1062 } else { 1063 LHSIdx = LHSIdx == -1u ? i : LHSVWidth; 1064 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth; 1065 LHSUniform = LHSUniform && (MaskVal == i); 1066 } 1067 } else { 1068 if (RHSUndefElts[MaskVal - LHSVWidth]) { 1069 NewUndefElts = true; 1070 UndefElts.setBit(i); 1071 } else { 1072 RHSIdx = RHSIdx == -1u ? i : LHSVWidth; 1073 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth; 1074 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i); 1075 } 1076 } 1077 } 1078 1079 // Try to transform shuffle with constant vector and single element from 1080 // this constant vector to single insertelement instruction. 1081 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1082 // insertelement V, C[ci], ci-n 1083 if (LHSVWidth == Shuffle->getType()->getNumElements()) { 1084 Value *Op = nullptr; 1085 Constant *Value = nullptr; 1086 unsigned Idx = -1u; 1087 1088 // Find constant vector with the single element in shuffle (LHS or RHS). 1089 if (LHSIdx < LHSVWidth && RHSUniform) { 1090 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1091 Op = Shuffle->getOperand(1); 1092 Value = CV->getOperand(LHSValIdx); 1093 Idx = LHSIdx; 1094 } 1095 } 1096 if (RHSIdx < LHSVWidth && LHSUniform) { 1097 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1098 Op = Shuffle->getOperand(0); 1099 Value = CV->getOperand(RHSValIdx); 1100 Idx = RHSIdx; 1101 } 1102 } 1103 // Found constant vector with single element - convert to insertelement. 1104 if (Op && Value) { 1105 Instruction *New = InsertElementInst::Create( 1106 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1107 Shuffle->getName()); 1108 InsertNewInstWith(New, *Shuffle); 1109 return New; 1110 } 1111 } 1112 if (NewUndefElts) { 1113 // Add additional discovered undefs. 1114 SmallVector<Constant*, 16> Elts; 1115 for (unsigned i = 0; i < VWidth; ++i) { 1116 if (UndefElts[i]) 1117 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1118 else 1119 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1120 Shuffle->getMaskValue(i))); 1121 } 1122 I->setOperand(2, ConstantVector::get(Elts)); 1123 MadeChange = true; 1124 } 1125 break; 1126 } 1127 case Instruction::Select: { 1128 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); 1129 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) { 1130 for (unsigned i = 0; i < VWidth; i++) { 1131 Constant *CElt = CV->getAggregateElement(i); 1132 // Method isNullValue always returns false when called on a 1133 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to 1134 // to avoid propagating incorrect information. 1135 if (isa<ConstantExpr>(CElt)) 1136 continue; 1137 if (CElt->isNullValue()) 1138 LeftDemanded.clearBit(i); 1139 else 1140 RightDemanded.clearBit(i); 1141 } 1142 } 1143 1144 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts, 1145 Depth + 1); 1146 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1147 1148 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, 1149 UndefElts2, Depth + 1); 1150 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } 1151 1152 // Output elements are undefined if both are undefined. 1153 UndefElts &= UndefElts2; 1154 break; 1155 } 1156 case Instruction::BitCast: { 1157 // Vector->vector casts only. 1158 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1159 if (!VTy) break; 1160 unsigned InVWidth = VTy->getNumElements(); 1161 APInt InputDemandedElts(InVWidth, 0); 1162 UndefElts2 = APInt(InVWidth, 0); 1163 unsigned Ratio; 1164 1165 if (VWidth == InVWidth) { 1166 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1167 // elements as are demanded of us. 1168 Ratio = 1; 1169 InputDemandedElts = DemandedElts; 1170 } else if ((VWidth % InVWidth) == 0) { 1171 // If the number of elements in the output is a multiple of the number of 1172 // elements in the input then an input element is live if any of the 1173 // corresponding output elements are live. 1174 Ratio = VWidth / InVWidth; 1175 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1176 if (DemandedElts[OutIdx]) 1177 InputDemandedElts.setBit(OutIdx / Ratio); 1178 } else if ((InVWidth % VWidth) == 0) { 1179 // If the number of elements in the input is a multiple of the number of 1180 // elements in the output then an input element is live if the 1181 // corresponding output element is live. 1182 Ratio = InVWidth / VWidth; 1183 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1184 if (DemandedElts[InIdx / Ratio]) 1185 InputDemandedElts.setBit(InIdx); 1186 } else { 1187 // Unsupported so far. 1188 break; 1189 } 1190 1191 // div/rem demand all inputs, because they don't want divide by zero. 1192 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, 1193 UndefElts2, Depth + 1); 1194 if (TmpV) { 1195 I->setOperand(0, TmpV); 1196 MadeChange = true; 1197 } 1198 1199 if (VWidth == InVWidth) { 1200 UndefElts = UndefElts2; 1201 } else if ((VWidth % InVWidth) == 0) { 1202 // If the number of elements in the output is a multiple of the number of 1203 // elements in the input then an output element is undef if the 1204 // corresponding input element is undef. 1205 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1206 if (UndefElts2[OutIdx / Ratio]) 1207 UndefElts.setBit(OutIdx); 1208 } else if ((InVWidth % VWidth) == 0) { 1209 // If the number of elements in the input is a multiple of the number of 1210 // elements in the output then an output element is undef if all of the 1211 // corresponding input elements are undef. 1212 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1213 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1214 if (SubUndef.countPopulation() == Ratio) 1215 UndefElts.setBit(OutIdx); 1216 } 1217 } else { 1218 llvm_unreachable("Unimp"); 1219 } 1220 break; 1221 } 1222 case Instruction::And: 1223 case Instruction::Or: 1224 case Instruction::Xor: 1225 case Instruction::Add: 1226 case Instruction::Sub: 1227 case Instruction::Mul: 1228 // div/rem demand all inputs, because they don't want divide by zero. 1229 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1230 Depth + 1); 1231 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1232 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, 1233 UndefElts2, Depth + 1); 1234 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1235 1236 // Output elements are undefined if both are undefined. Consider things 1237 // like undef&0. The result is known zero, not undef. 1238 UndefElts &= UndefElts2; 1239 break; 1240 case Instruction::FPTrunc: 1241 case Instruction::FPExt: 1242 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1243 Depth + 1); 1244 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1245 break; 1246 1247 case Instruction::Call: { 1248 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1249 if (!II) break; 1250 switch (II->getIntrinsicID()) { 1251 default: break; 1252 1253 case Intrinsic::x86_xop_vfrcz_ss: 1254 case Intrinsic::x86_xop_vfrcz_sd: 1255 // The instructions for these intrinsics are speced to zero upper bits not 1256 // pass them through like other scalar intrinsics. So we shouldn't just 1257 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1258 // Instead we should return a zero vector. 1259 if (!DemandedElts[0]) { 1260 Worklist.Add(II); 1261 return ConstantAggregateZero::get(II->getType()); 1262 } 1263 1264 // Only the lower element is used. 1265 DemandedElts = 1; 1266 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1267 UndefElts, Depth + 1); 1268 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1269 1270 // Only the lower element is undefined. The high elements are zero. 1271 UndefElts = UndefElts[0]; 1272 break; 1273 1274 // Unary scalar-as-vector operations that work column-wise. 1275 case Intrinsic::x86_sse_rcp_ss: 1276 case Intrinsic::x86_sse_rsqrt_ss: 1277 case Intrinsic::x86_sse_sqrt_ss: 1278 case Intrinsic::x86_sse2_sqrt_sd: 1279 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1280 UndefElts, Depth + 1); 1281 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1282 1283 // If lowest element of a scalar op isn't used then use Arg0. 1284 if (!DemandedElts[0]) { 1285 Worklist.Add(II); 1286 return II->getArgOperand(0); 1287 } 1288 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1289 // checks). 1290 break; 1291 1292 // Binary scalar-as-vector operations that work column-wise. The high 1293 // elements come from operand 0. The low element is a function of both 1294 // operands. 1295 case Intrinsic::x86_sse_min_ss: 1296 case Intrinsic::x86_sse_max_ss: 1297 case Intrinsic::x86_sse_cmp_ss: 1298 case Intrinsic::x86_sse2_min_sd: 1299 case Intrinsic::x86_sse2_max_sd: 1300 case Intrinsic::x86_sse2_cmp_sd: { 1301 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1302 UndefElts, Depth + 1); 1303 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1304 1305 // If lowest element of a scalar op isn't used then use Arg0. 1306 if (!DemandedElts[0]) { 1307 Worklist.Add(II); 1308 return II->getArgOperand(0); 1309 } 1310 1311 // Only lower element is used for operand 1. 1312 DemandedElts = 1; 1313 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1314 UndefElts2, Depth + 1); 1315 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1316 1317 // Lower element is undefined if both lower elements are undefined. 1318 // Consider things like undef&0. The result is known zero, not undef. 1319 if (!UndefElts2[0]) 1320 UndefElts.clearBit(0); 1321 1322 break; 1323 } 1324 1325 // Binary scalar-as-vector operations that work column-wise. The high 1326 // elements come from operand 0 and the low element comes from operand 1. 1327 case Intrinsic::x86_sse41_round_ss: 1328 case Intrinsic::x86_sse41_round_sd: { 1329 // Don't use the low element of operand 0. 1330 APInt DemandedElts2 = DemandedElts; 1331 DemandedElts2.clearBit(0); 1332 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2, 1333 UndefElts, Depth + 1); 1334 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1335 1336 // If lowest element of a scalar op isn't used then use Arg0. 1337 if (!DemandedElts[0]) { 1338 Worklist.Add(II); 1339 return II->getArgOperand(0); 1340 } 1341 1342 // Only lower element is used for operand 1. 1343 DemandedElts = 1; 1344 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1345 UndefElts2, Depth + 1); 1346 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1347 1348 // Take the high undef elements from operand 0 and take the lower element 1349 // from operand 1. 1350 UndefElts.clearBit(0); 1351 UndefElts |= UndefElts2[0]; 1352 break; 1353 } 1354 1355 // Three input scalar-as-vector operations that work column-wise. The high 1356 // elements come from operand 0 and the low element is a function of all 1357 // three inputs. 1358 case Intrinsic::x86_avx512_mask_add_ss_round: 1359 case Intrinsic::x86_avx512_mask_div_ss_round: 1360 case Intrinsic::x86_avx512_mask_mul_ss_round: 1361 case Intrinsic::x86_avx512_mask_sub_ss_round: 1362 case Intrinsic::x86_avx512_mask_max_ss_round: 1363 case Intrinsic::x86_avx512_mask_min_ss_round: 1364 case Intrinsic::x86_avx512_mask_add_sd_round: 1365 case Intrinsic::x86_avx512_mask_div_sd_round: 1366 case Intrinsic::x86_avx512_mask_mul_sd_round: 1367 case Intrinsic::x86_avx512_mask_sub_sd_round: 1368 case Intrinsic::x86_avx512_mask_max_sd_round: 1369 case Intrinsic::x86_avx512_mask_min_sd_round: 1370 case Intrinsic::x86_fma_vfmadd_ss: 1371 case Intrinsic::x86_fma_vfmsub_ss: 1372 case Intrinsic::x86_fma_vfnmadd_ss: 1373 case Intrinsic::x86_fma_vfnmsub_ss: 1374 case Intrinsic::x86_fma_vfmadd_sd: 1375 case Intrinsic::x86_fma_vfmsub_sd: 1376 case Intrinsic::x86_fma_vfnmadd_sd: 1377 case Intrinsic::x86_fma_vfnmsub_sd: 1378 case Intrinsic::x86_avx512_mask_vfmadd_ss: 1379 case Intrinsic::x86_avx512_mask_vfmadd_sd: 1380 case Intrinsic::x86_avx512_maskz_vfmadd_ss: 1381 case Intrinsic::x86_avx512_maskz_vfmadd_sd: 1382 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1383 UndefElts, Depth + 1); 1384 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1385 1386 // If lowest element of a scalar op isn't used then use Arg0. 1387 if (!DemandedElts[0]) { 1388 Worklist.Add(II); 1389 return II->getArgOperand(0); 1390 } 1391 1392 // Only lower element is used for operand 1 and 2. 1393 DemandedElts = 1; 1394 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1395 UndefElts2, Depth + 1); 1396 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1397 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, 1398 UndefElts3, Depth + 1); 1399 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } 1400 1401 // Lower element is undefined if all three lower elements are undefined. 1402 // Consider things like undef&0. The result is known zero, not undef. 1403 if (!UndefElts2[0] || !UndefElts3[0]) 1404 UndefElts.clearBit(0); 1405 1406 break; 1407 1408 case Intrinsic::x86_avx512_mask3_vfmadd_ss: 1409 case Intrinsic::x86_avx512_mask3_vfmadd_sd: 1410 case Intrinsic::x86_avx512_mask3_vfmsub_ss: 1411 case Intrinsic::x86_avx512_mask3_vfmsub_sd: 1412 case Intrinsic::x86_avx512_mask3_vfnmsub_ss: 1413 case Intrinsic::x86_avx512_mask3_vfnmsub_sd: 1414 // These intrinsics get the passthru bits from operand 2. 1415 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, 1416 UndefElts, Depth + 1); 1417 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } 1418 1419 // If lowest element of a scalar op isn't used then use Arg2. 1420 if (!DemandedElts[0]) { 1421 Worklist.Add(II); 1422 return II->getArgOperand(2); 1423 } 1424 1425 // Only lower element is used for operand 0 and 1. 1426 DemandedElts = 1; 1427 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1428 UndefElts2, Depth + 1); 1429 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1430 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1431 UndefElts3, Depth + 1); 1432 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1433 1434 // Lower element is undefined if all three lower elements are undefined. 1435 // Consider things like undef&0. The result is known zero, not undef. 1436 if (!UndefElts2[0] || !UndefElts3[0]) 1437 UndefElts.clearBit(0); 1438 1439 break; 1440 1441 case Intrinsic::x86_sse2_pmulu_dq: 1442 case Intrinsic::x86_sse41_pmuldq: 1443 case Intrinsic::x86_avx2_pmul_dq: 1444 case Intrinsic::x86_avx2_pmulu_dq: 1445 case Intrinsic::x86_avx512_pmul_dq_512: 1446 case Intrinsic::x86_avx512_pmulu_dq_512: { 1447 Value *Op0 = II->getArgOperand(0); 1448 Value *Op1 = II->getArgOperand(1); 1449 unsigned InnerVWidth = Op0->getType()->getVectorNumElements(); 1450 assert((VWidth * 2) == InnerVWidth && "Unexpected input size"); 1451 1452 APInt InnerDemandedElts(InnerVWidth, 0); 1453 for (unsigned i = 0; i != VWidth; ++i) 1454 if (DemandedElts[i]) 1455 InnerDemandedElts.setBit(i * 2); 1456 1457 UndefElts2 = APInt(InnerVWidth, 0); 1458 TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2, 1459 Depth + 1); 1460 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1461 1462 UndefElts3 = APInt(InnerVWidth, 0); 1463 TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3, 1464 Depth + 1); 1465 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1466 1467 break; 1468 } 1469 1470 case Intrinsic::x86_sse2_packssdw_128: 1471 case Intrinsic::x86_sse2_packsswb_128: 1472 case Intrinsic::x86_sse2_packuswb_128: 1473 case Intrinsic::x86_sse41_packusdw: 1474 case Intrinsic::x86_avx2_packssdw: 1475 case Intrinsic::x86_avx2_packsswb: 1476 case Intrinsic::x86_avx2_packusdw: 1477 case Intrinsic::x86_avx2_packuswb: 1478 case Intrinsic::x86_avx512_packssdw_512: 1479 case Intrinsic::x86_avx512_packsswb_512: 1480 case Intrinsic::x86_avx512_packusdw_512: 1481 case Intrinsic::x86_avx512_packuswb_512: { 1482 auto *Ty0 = II->getArgOperand(0)->getType(); 1483 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1484 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1485 1486 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1487 unsigned VWidthPerLane = VWidth / NumLanes; 1488 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1489 1490 // Per lane, pack the elements of the first input and then the second. 1491 // e.g. 1492 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1493 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1494 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1495 APInt OpDemandedElts(InnerVWidth, 0); 1496 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1497 unsigned LaneIdx = Lane * VWidthPerLane; 1498 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1499 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1500 if (DemandedElts[Idx]) 1501 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1502 } 1503 } 1504 1505 // Demand elements from the operand. 1506 auto *Op = II->getArgOperand(OpNum); 1507 APInt OpUndefElts(InnerVWidth, 0); 1508 TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts, 1509 Depth + 1); 1510 if (TmpV) { 1511 II->setArgOperand(OpNum, TmpV); 1512 MadeChange = true; 1513 } 1514 1515 // Pack the operand's UNDEF elements, one lane at a time. 1516 OpUndefElts = OpUndefElts.zext(VWidth); 1517 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1518 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1519 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1520 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1521 UndefElts |= LaneElts; 1522 } 1523 } 1524 break; 1525 } 1526 1527 // PSHUFB 1528 case Intrinsic::x86_ssse3_pshuf_b_128: 1529 case Intrinsic::x86_avx2_pshuf_b: 1530 case Intrinsic::x86_avx512_pshuf_b_512: 1531 // PERMILVAR 1532 case Intrinsic::x86_avx_vpermilvar_ps: 1533 case Intrinsic::x86_avx_vpermilvar_ps_256: 1534 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1535 case Intrinsic::x86_avx_vpermilvar_pd: 1536 case Intrinsic::x86_avx_vpermilvar_pd_256: 1537 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1538 // PERMV 1539 case Intrinsic::x86_avx2_permd: 1540 case Intrinsic::x86_avx2_permps: { 1541 Value *Op1 = II->getArgOperand(1); 1542 TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts, 1543 Depth + 1); 1544 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1545 break; 1546 } 1547 1548 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1549 // in an undefined state. 1550 case Intrinsic::x86_sse4a_extrq: 1551 case Intrinsic::x86_sse4a_extrqi: 1552 case Intrinsic::x86_sse4a_insertq: 1553 case Intrinsic::x86_sse4a_insertqi: 1554 UndefElts.setHighBits(VWidth / 2); 1555 break; 1556 case Intrinsic::amdgcn_buffer_load: 1557 case Intrinsic::amdgcn_buffer_load_format: 1558 case Intrinsic::amdgcn_image_sample: 1559 case Intrinsic::amdgcn_image_sample_cl: 1560 case Intrinsic::amdgcn_image_sample_d: 1561 case Intrinsic::amdgcn_image_sample_d_cl: 1562 case Intrinsic::amdgcn_image_sample_l: 1563 case Intrinsic::amdgcn_image_sample_b: 1564 case Intrinsic::amdgcn_image_sample_b_cl: 1565 case Intrinsic::amdgcn_image_sample_lz: 1566 case Intrinsic::amdgcn_image_sample_cd: 1567 case Intrinsic::amdgcn_image_sample_cd_cl: 1568 1569 case Intrinsic::amdgcn_image_sample_c: 1570 case Intrinsic::amdgcn_image_sample_c_cl: 1571 case Intrinsic::amdgcn_image_sample_c_d: 1572 case Intrinsic::amdgcn_image_sample_c_d_cl: 1573 case Intrinsic::amdgcn_image_sample_c_l: 1574 case Intrinsic::amdgcn_image_sample_c_b: 1575 case Intrinsic::amdgcn_image_sample_c_b_cl: 1576 case Intrinsic::amdgcn_image_sample_c_lz: 1577 case Intrinsic::amdgcn_image_sample_c_cd: 1578 case Intrinsic::amdgcn_image_sample_c_cd_cl: 1579 1580 case Intrinsic::amdgcn_image_sample_o: 1581 case Intrinsic::amdgcn_image_sample_cl_o: 1582 case Intrinsic::amdgcn_image_sample_d_o: 1583 case Intrinsic::amdgcn_image_sample_d_cl_o: 1584 case Intrinsic::amdgcn_image_sample_l_o: 1585 case Intrinsic::amdgcn_image_sample_b_o: 1586 case Intrinsic::amdgcn_image_sample_b_cl_o: 1587 case Intrinsic::amdgcn_image_sample_lz_o: 1588 case Intrinsic::amdgcn_image_sample_cd_o: 1589 case Intrinsic::amdgcn_image_sample_cd_cl_o: 1590 1591 case Intrinsic::amdgcn_image_sample_c_o: 1592 case Intrinsic::amdgcn_image_sample_c_cl_o: 1593 case Intrinsic::amdgcn_image_sample_c_d_o: 1594 case Intrinsic::amdgcn_image_sample_c_d_cl_o: 1595 case Intrinsic::amdgcn_image_sample_c_l_o: 1596 case Intrinsic::amdgcn_image_sample_c_b_o: 1597 case Intrinsic::amdgcn_image_sample_c_b_cl_o: 1598 case Intrinsic::amdgcn_image_sample_c_lz_o: 1599 case Intrinsic::amdgcn_image_sample_c_cd_o: 1600 case Intrinsic::amdgcn_image_sample_c_cd_cl_o: 1601 1602 case Intrinsic::amdgcn_image_getlod: { 1603 if (VWidth == 1 || !DemandedElts.isMask()) 1604 return nullptr; 1605 1606 // TODO: Handle 3 vectors when supported in code gen. 1607 unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes()); 1608 if (NewNumElts == VWidth) 1609 return nullptr; 1610 1611 Module *M = II->getParent()->getParent()->getParent(); 1612 Type *EltTy = V->getType()->getVectorElementType(); 1613 1614 Type *NewTy = (NewNumElts == 1) ? EltTy : 1615 VectorType::get(EltTy, NewNumElts); 1616 1617 auto IID = II->getIntrinsicID(); 1618 1619 bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load || 1620 IID == Intrinsic::amdgcn_buffer_load_format; 1621 1622 Function *NewIntrin = IsBuffer ? 1623 Intrinsic::getDeclaration(M, IID, NewTy) : 1624 // Samplers have 3 mangled types. 1625 Intrinsic::getDeclaration(M, IID, 1626 { NewTy, II->getArgOperand(0)->getType(), 1627 II->getArgOperand(1)->getType()}); 1628 1629 SmallVector<Value *, 5> Args; 1630 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I) 1631 Args.push_back(II->getArgOperand(I)); 1632 1633 IRBuilderBase::InsertPointGuard Guard(Builder); 1634 Builder.SetInsertPoint(II); 1635 1636 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); 1637 NewCall->takeName(II); 1638 NewCall->copyMetadata(*II); 1639 1640 if (!IsBuffer) { 1641 ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3)); 1642 if (DMask) { 1643 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1644 1645 unsigned PopCnt = 0; 1646 unsigned NewDMask = 0; 1647 for (unsigned I = 0; I < 4; ++I) { 1648 const unsigned Bit = 1 << I; 1649 if (!!(DMaskVal & Bit)) { 1650 if (++PopCnt > NewNumElts) 1651 break; 1652 1653 NewDMask |= Bit; 1654 } 1655 } 1656 1657 NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask)); 1658 } 1659 } 1660 1661 1662 if (NewNumElts == 1) { 1663 return Builder.CreateInsertElement(UndefValue::get(V->getType()), 1664 NewCall, static_cast<uint64_t>(0)); 1665 } 1666 1667 SmallVector<uint32_t, 8> EltMask; 1668 for (unsigned I = 0; I < VWidth; ++I) 1669 EltMask.push_back(I); 1670 1671 Value *Shuffle = Builder.CreateShuffleVector( 1672 NewCall, UndefValue::get(NewTy), EltMask); 1673 1674 MadeChange = true; 1675 return Shuffle; 1676 } 1677 } 1678 break; 1679 } 1680 } 1681 return MadeChange ? I : nullptr; 1682 } 1683