1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstCombineInternal.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 
21 using namespace llvm;
22 using namespace llvm::PatternMatch;
23 
24 #define DEBUG_TYPE "instcombine"
25 
26 /// Check to see if the specified operand of the specified instruction is a
27 /// constant integer. If so, check to see if there are any bits set in the
28 /// constant that are not demanded. If so, shrink the constant and return true.
29 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
30                                    const APInt &Demanded) {
31   assert(I && "No instruction?");
32   assert(OpNo < I->getNumOperands() && "Operand index too large");
33 
34   // The operand must be a constant integer or splat integer.
35   Value *Op = I->getOperand(OpNo);
36   const APInt *C;
37   if (!match(Op, m_APInt(C)))
38     return false;
39 
40   // If there are no bits set that aren't demanded, nothing to do.
41   if (C->isSubsetOf(Demanded))
42     return false;
43 
44   // This instruction is producing bits that are not demanded. Shrink the RHS.
45   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
46 
47   return true;
48 }
49 
50 
51 
52 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
53 /// the instruction has any properties that allow us to simplify its operands.
54 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
55   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
56   KnownBits Known(BitWidth);
57   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
58 
59   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
60                                      0, &Inst);
61   if (!V) return false;
62   if (V == &Inst) return true;
63   replaceInstUsesWith(Inst, V);
64   return true;
65 }
66 
67 /// This form of SimplifyDemandedBits simplifies the specified instruction
68 /// operand if possible, updating it in place. It returns true if it made any
69 /// change and false otherwise.
70 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
71                                         const APInt &DemandedMask,
72                                         KnownBits &Known,
73                                         unsigned Depth) {
74   Use &U = I->getOperandUse(OpNo);
75   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
76                                           Depth, I);
77   if (!NewVal) return false;
78   U = NewVal;
79   return true;
80 }
81 
82 
83 /// This function attempts to replace V with a simpler value based on the
84 /// demanded bits. When this function is called, it is known that only the bits
85 /// set in DemandedMask of the result of V are ever used downstream.
86 /// Consequently, depending on the mask and V, it may be possible to replace V
87 /// with a constant or one of its operands. In such cases, this function does
88 /// the replacement and returns true. In all other cases, it returns false after
89 /// analyzing the expression and setting KnownOne and known to be one in the
90 /// expression. Known.Zero contains all the bits that are known to be zero in
91 /// the expression. These are provided to potentially allow the caller (which
92 /// might recursively be SimplifyDemandedBits itself) to simplify the
93 /// expression.
94 /// Known.One and Known.Zero always follow the invariant that:
95 ///   Known.One & Known.Zero == 0.
96 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
97 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
98 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
99 /// be the same.
100 ///
101 /// This returns null if it did not change anything and it permits no
102 /// simplification.  This returns V itself if it did some simplification of V's
103 /// operands based on the information about what bits are demanded. This returns
104 /// some other non-null value if it found out that V is equal to another value
105 /// in the context where the specified bits are demanded, but not for all users.
106 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
107                                              KnownBits &Known, unsigned Depth,
108                                              Instruction *CxtI) {
109   assert(V != nullptr && "Null pointer of Value???");
110   assert(Depth <= 6 && "Limit Search Depth");
111   uint32_t BitWidth = DemandedMask.getBitWidth();
112   Type *VTy = V->getType();
113   assert(
114       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
115       Known.getBitWidth() == BitWidth &&
116       "Value *V, DemandedMask and Known must have same BitWidth");
117 
118   if (isa<Constant>(V)) {
119     computeKnownBits(V, Known, Depth, CxtI);
120     return nullptr;
121   }
122 
123   Known.resetAll();
124   if (DemandedMask.isNullValue())     // Not demanding any bits from V.
125     return UndefValue::get(VTy);
126 
127   if (Depth == 6)        // Limit search depth.
128     return nullptr;
129 
130   Instruction *I = dyn_cast<Instruction>(V);
131   if (!I) {
132     computeKnownBits(V, Known, Depth, CxtI);
133     return nullptr;        // Only analyze instructions.
134   }
135 
136   // If there are multiple uses of this value and we aren't at the root, then
137   // we can't do any simplifications of the operands, because DemandedMask
138   // only reflects the bits demanded by *one* of the users.
139   if (Depth != 0 && !I->hasOneUse())
140     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
141 
142   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
143 
144   // If this is the root being simplified, allow it to have multiple uses,
145   // just set the DemandedMask to all bits so that we can try to simplify the
146   // operands.  This allows visitTruncInst (for example) to simplify the
147   // operand of a trunc without duplicating all the logic below.
148   if (Depth == 0 && !V->hasOneUse())
149     DemandedMask.setAllBits();
150 
151   switch (I->getOpcode()) {
152   default:
153     computeKnownBits(I, Known, Depth, CxtI);
154     break;
155   case Instruction::And: {
156     // If either the LHS or the RHS are Zero, the result is zero.
157     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
158         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
159                              Depth + 1))
160       return I;
161     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
162     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
163 
164     // Output known-0 are known to be clear if zero in either the LHS | RHS.
165     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
166     // Output known-1 bits are only known if set in both the LHS & RHS.
167     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
168 
169     // If the client is only demanding bits that we know, return the known
170     // constant.
171     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
172       return Constant::getIntegerValue(VTy, IKnownOne);
173 
174     // If all of the demanded bits are known 1 on one side, return the other.
175     // These bits cannot contribute to the result of the 'and'.
176     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
177       return I->getOperand(0);
178     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
179       return I->getOperand(1);
180 
181     // If the RHS is a constant, see if we can simplify it.
182     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
183       return I;
184 
185     Known.Zero = std::move(IKnownZero);
186     Known.One  = std::move(IKnownOne);
187     break;
188   }
189   case Instruction::Or: {
190     // If either the LHS or the RHS are One, the result is One.
191     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
192         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
193                              Depth + 1))
194       return I;
195     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
196     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
197 
198     // Output known-0 bits are only known if clear in both the LHS & RHS.
199     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
200     // Output known-1 are known. to be set if s.et in either the LHS | RHS.
201     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
202 
203     // If the client is only demanding bits that we know, return the known
204     // constant.
205     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
206       return Constant::getIntegerValue(VTy, IKnownOne);
207 
208     // If all of the demanded bits are known zero on one side, return the other.
209     // These bits cannot contribute to the result of the 'or'.
210     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
211       return I->getOperand(0);
212     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
213       return I->getOperand(1);
214 
215     // If the RHS is a constant, see if we can simplify it.
216     if (ShrinkDemandedConstant(I, 1, DemandedMask))
217       return I;
218 
219     Known.Zero = std::move(IKnownZero);
220     Known.One  = std::move(IKnownOne);
221     break;
222   }
223   case Instruction::Xor: {
224     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
225         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
226       return I;
227     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
228     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
229 
230     // Output known-0 bits are known if clear or set in both the LHS & RHS.
231     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
232                        (RHSKnown.One & LHSKnown.One);
233     // Output known-1 are known to be set if set in only one of the LHS, RHS.
234     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
235                        (RHSKnown.One & LHSKnown.Zero);
236 
237     // If the client is only demanding bits that we know, return the known
238     // constant.
239     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
240       return Constant::getIntegerValue(VTy, IKnownOne);
241 
242     // If all of the demanded bits are known zero on one side, return the other.
243     // These bits cannot contribute to the result of the 'xor'.
244     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
245       return I->getOperand(0);
246     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
247       return I->getOperand(1);
248 
249     // If all of the demanded bits are known to be zero on one side or the
250     // other, turn this into an *inclusive* or.
251     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
252     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
253       Instruction *Or =
254         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
255                                  I->getName());
256       return InsertNewInstWith(Or, *I);
257     }
258 
259     // If all of the demanded bits on one side are known, and all of the set
260     // bits on that side are also known to be set on the other side, turn this
261     // into an AND, as we know the bits will be cleared.
262     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
263     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
264         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
265       Constant *AndC = Constant::getIntegerValue(VTy,
266                                                  ~RHSKnown.One & DemandedMask);
267       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
268       return InsertNewInstWith(And, *I);
269     }
270 
271     // If the RHS is a constant, see if we can simplify it.
272     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
273     if (ShrinkDemandedConstant(I, 1, DemandedMask))
274       return I;
275 
276     // If our LHS is an 'and' and if it has one use, and if any of the bits we
277     // are flipping are known to be set, then the xor is just resetting those
278     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
279     // simplifying both of them.
280     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
281       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
282           isa<ConstantInt>(I->getOperand(1)) &&
283           isa<ConstantInt>(LHSInst->getOperand(1)) &&
284           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
285         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
286         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
287         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
288 
289         Constant *AndC =
290           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
291         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
292         InsertNewInstWith(NewAnd, *I);
293 
294         Constant *XorC =
295           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
296         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
297         return InsertNewInstWith(NewXor, *I);
298       }
299 
300     // Output known-0 bits are known if clear or set in both the LHS & RHS.
301     Known.Zero = std::move(IKnownZero);
302     // Output known-1 are known to be set if set in only one of the LHS, RHS.
303     Known.One  = std::move(IKnownOne);
304     break;
305   }
306   case Instruction::Select:
307     // If this is a select as part of a min/max pattern, don't simplify any
308     // further in case we break the structure.
309     Value *LHS, *RHS;
310     if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
311       return nullptr;
312 
313     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
314         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
315       return I;
316     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
317     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
318 
319     // If the operands are constants, see if we can simplify them.
320     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
321         ShrinkDemandedConstant(I, 2, DemandedMask))
322       return I;
323 
324     // Only known if known in both the LHS and RHS.
325     Known.One = RHSKnown.One & LHSKnown.One;
326     Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
327     break;
328   case Instruction::ZExt:
329   case Instruction::Trunc: {
330     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
331 
332     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
333     KnownBits InputKnown(SrcBitWidth);
334     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
335       return I;
336     Known = Known.zextOrTrunc(BitWidth);
337     // Any top bits are known to be zero.
338     if (BitWidth > SrcBitWidth)
339       Known.Zero.setBitsFrom(SrcBitWidth);
340     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
341     break;
342   }
343   case Instruction::BitCast:
344     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
345       return nullptr;  // vector->int or fp->int?
346 
347     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
348       if (VectorType *SrcVTy =
349             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
350         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
351           // Don't touch a bitcast between vectors of different element counts.
352           return nullptr;
353       } else
354         // Don't touch a scalar-to-vector bitcast.
355         return nullptr;
356     } else if (I->getOperand(0)->getType()->isVectorTy())
357       // Don't touch a vector-to-scalar bitcast.
358       return nullptr;
359 
360     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
361       return I;
362     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
363     break;
364   case Instruction::SExt: {
365     // Compute the bits in the result that are not present in the input.
366     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
367 
368     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
369 
370     // If any of the sign extended bits are demanded, we know that the sign
371     // bit is demanded.
372     if (DemandedMask.getActiveBits() > SrcBitWidth)
373       InputDemandedBits.setBit(SrcBitWidth-1);
374 
375     KnownBits InputKnown(SrcBitWidth);
376     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
377       return I;
378 
379     // If the input sign bit is known zero, or if the NewBits are not demanded
380     // convert this into a zero extension.
381     if (InputKnown.isNonNegative() ||
382         DemandedMask.getActiveBits() <= SrcBitWidth) {
383       // Convert to ZExt cast.
384       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
385       return InsertNewInstWith(NewCast, *I);
386      }
387 
388     // If the sign bit of the input is known set or clear, then we know the
389     // top bits of the result.
390     Known = InputKnown.sext(BitWidth);
391     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
392     break;
393   }
394   case Instruction::Add:
395   case Instruction::Sub: {
396     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
397     /// about the high bits of the operands.
398     unsigned NLZ = DemandedMask.countLeadingZeros();
399     if (NLZ > 0) {
400       // Right fill the mask of bits for this ADD/SUB to demand the most
401       // significant bit and all those below it.
402       APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
403       if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
404           SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
405           ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
406           SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
407         // Disable the nsw and nuw flags here: We can no longer guarantee that
408         // we won't wrap after simplification. Removing the nsw/nuw flags is
409         // legal here because the top bit is not demanded.
410         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
411         BinOP.setHasNoSignedWrap(false);
412         BinOP.setHasNoUnsignedWrap(false);
413         return I;
414       }
415 
416       // If we are known to be adding/subtracting zeros to every bit below
417       // the highest demanded bit, we just return the other side.
418       if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
419         return I->getOperand(0);
420       // We can't do this with the LHS for subtraction, unless we are only
421       // demanding the LSB.
422       if ((I->getOpcode() == Instruction::Add ||
423            DemandedFromOps.isOneValue()) &&
424           DemandedFromOps.isSubsetOf(LHSKnown.Zero))
425         return I->getOperand(1);
426     }
427 
428     // Otherwise just hand the add/sub off to computeKnownBits to fill in
429     // the known zeros and ones.
430     computeKnownBits(V, Known, Depth, CxtI);
431     break;
432   }
433   case Instruction::Shl: {
434     const APInt *SA;
435     if (match(I->getOperand(1), m_APInt(SA))) {
436       const APInt *ShrAmt;
437       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) {
438         Instruction *Shr = cast<Instruction>(I->getOperand(0));
439         if (Value *R = simplifyShrShlDemandedBits(
440                 Shr, *ShrAmt, I, *SA, DemandedMask, Known))
441           return R;
442       }
443 
444       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
445       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
446 
447       // If the shift is NUW/NSW, then it does demand the high bits.
448       ShlOperator *IOp = cast<ShlOperator>(I);
449       if (IOp->hasNoSignedWrap())
450         DemandedMaskIn.setHighBits(ShiftAmt+1);
451       else if (IOp->hasNoUnsignedWrap())
452         DemandedMaskIn.setHighBits(ShiftAmt);
453 
454       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
455         return I;
456       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
457       Known.Zero <<= ShiftAmt;
458       Known.One  <<= ShiftAmt;
459       // low bits known zero.
460       if (ShiftAmt)
461         Known.Zero.setLowBits(ShiftAmt);
462     }
463     break;
464   }
465   case Instruction::LShr: {
466     const APInt *SA;
467     if (match(I->getOperand(1), m_APInt(SA))) {
468       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
469 
470       // Unsigned shift right.
471       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
472 
473       // If the shift is exact, then it does demand the low bits (and knows that
474       // they are zero).
475       if (cast<LShrOperator>(I)->isExact())
476         DemandedMaskIn.setLowBits(ShiftAmt);
477 
478       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
479         return I;
480       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
481       Known.Zero.lshrInPlace(ShiftAmt);
482       Known.One.lshrInPlace(ShiftAmt);
483       if (ShiftAmt)
484         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
485     }
486     break;
487   }
488   case Instruction::AShr: {
489     // If this is an arithmetic shift right and only the low-bit is set, we can
490     // always convert this into a logical shr, even if the shift amount is
491     // variable.  The low bit of the shift cannot be an input sign bit unless
492     // the shift amount is >= the size of the datatype, which is undefined.
493     if (DemandedMask.isOneValue()) {
494       // Perform the logical shift right.
495       Instruction *NewVal = BinaryOperator::CreateLShr(
496                         I->getOperand(0), I->getOperand(1), I->getName());
497       return InsertNewInstWith(NewVal, *I);
498     }
499 
500     // If the sign bit is the only bit demanded by this ashr, then there is no
501     // need to do it, the shift doesn't change the high bit.
502     if (DemandedMask.isSignMask())
503       return I->getOperand(0);
504 
505     const APInt *SA;
506     if (match(I->getOperand(1), m_APInt(SA))) {
507       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
508 
509       // Signed shift right.
510       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
511       // If any of the high bits are demanded, we should set the sign bit as
512       // demanded.
513       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
514         DemandedMaskIn.setSignBit();
515 
516       // If the shift is exact, then it does demand the low bits (and knows that
517       // they are zero).
518       if (cast<AShrOperator>(I)->isExact())
519         DemandedMaskIn.setLowBits(ShiftAmt);
520 
521       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
522         return I;
523 
524       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
525       // Compute the new bits that are at the top now.
526       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
527       Known.Zero.lshrInPlace(ShiftAmt);
528       Known.One.lshrInPlace(ShiftAmt);
529 
530       // If the input sign bit is known to be zero, or if none of the top bits
531       // are demanded, turn this into an unsigned shift right.
532       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
533       if (Known.Zero[BitWidth-ShiftAmt-1] ||
534           !DemandedMask.intersects(HighBits)) {
535         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
536                                                           I->getOperand(1));
537         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
538         return InsertNewInstWith(LShr, *I);
539       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
540         Known.One |= HighBits;
541       }
542     }
543     break;
544   }
545   case Instruction::SRem:
546     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
547       // X % -1 demands all the bits because we don't want to introduce
548       // INT_MIN % -1 (== undef) by accident.
549       if (Rem->isMinusOne())
550         break;
551       APInt RA = Rem->getValue().abs();
552       if (RA.isPowerOf2()) {
553         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
554           return I->getOperand(0);
555 
556         APInt LowBits = RA - 1;
557         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
558         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
559           return I;
560 
561         // The low bits of LHS are unchanged by the srem.
562         Known.Zero = LHSKnown.Zero & LowBits;
563         Known.One = LHSKnown.One & LowBits;
564 
565         // If LHS is non-negative or has all low bits zero, then the upper bits
566         // are all zero.
567         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
568           Known.Zero |= ~LowBits;
569 
570         // If LHS is negative and not all low bits are zero, then the upper bits
571         // are all one.
572         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
573           Known.One |= ~LowBits;
574 
575         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
576         break;
577       }
578     }
579 
580     // The sign bit is the LHS's sign bit, except when the result of the
581     // remainder is zero.
582     if (DemandedMask.isSignBitSet()) {
583       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
584       // If it's known zero, our sign bit is also zero.
585       if (LHSKnown.isNonNegative())
586         Known.makeNonNegative();
587     }
588     break;
589   case Instruction::URem: {
590     KnownBits Known2(BitWidth);
591     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
592     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
593         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
594       return I;
595 
596     unsigned Leaders = Known2.countMinLeadingZeros();
597     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
598     break;
599   }
600   case Instruction::Call:
601     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
602       switch (II->getIntrinsicID()) {
603       default: break;
604       case Intrinsic::bswap: {
605         // If the only bits demanded come from one byte of the bswap result,
606         // just shift the input byte into position to eliminate the bswap.
607         unsigned NLZ = DemandedMask.countLeadingZeros();
608         unsigned NTZ = DemandedMask.countTrailingZeros();
609 
610         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
611         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
612         // have 14 leading zeros, round to 8.
613         NLZ &= ~7;
614         NTZ &= ~7;
615         // If we need exactly one byte, we can do this transformation.
616         if (BitWidth-NLZ-NTZ == 8) {
617           unsigned ResultBit = NTZ;
618           unsigned InputBit = BitWidth-NTZ-8;
619 
620           // Replace this with either a left or right shift to get the byte into
621           // the right place.
622           Instruction *NewVal;
623           if (InputBit > ResultBit)
624             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
625                     ConstantInt::get(I->getType(), InputBit-ResultBit));
626           else
627             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
628                     ConstantInt::get(I->getType(), ResultBit-InputBit));
629           NewVal->takeName(I);
630           return InsertNewInstWith(NewVal, *I);
631         }
632 
633         // TODO: Could compute known zero/one bits based on the input.
634         break;
635       }
636       case Intrinsic::x86_mmx_pmovmskb:
637       case Intrinsic::x86_sse_movmsk_ps:
638       case Intrinsic::x86_sse2_movmsk_pd:
639       case Intrinsic::x86_sse2_pmovmskb_128:
640       case Intrinsic::x86_avx_movmsk_ps_256:
641       case Intrinsic::x86_avx_movmsk_pd_256:
642       case Intrinsic::x86_avx2_pmovmskb: {
643         // MOVMSK copies the vector elements' sign bits to the low bits
644         // and zeros the high bits.
645         unsigned ArgWidth;
646         if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
647           ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
648         } else {
649           auto Arg = II->getArgOperand(0);
650           auto ArgType = cast<VectorType>(Arg->getType());
651           ArgWidth = ArgType->getNumElements();
652         }
653 
654         // If we don't need any of low bits then return zero,
655         // we know that DemandedMask is non-zero already.
656         APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
657         if (DemandedElts.isNullValue())
658           return ConstantInt::getNullValue(VTy);
659 
660         // We know that the upper bits are set to zero.
661         Known.Zero.setBitsFrom(ArgWidth);
662         return nullptr;
663       }
664       case Intrinsic::x86_sse42_crc32_64_64:
665         Known.Zero.setBitsFrom(32);
666         return nullptr;
667       }
668     }
669     computeKnownBits(V, Known, Depth, CxtI);
670     break;
671   }
672 
673   // If the client is only demanding bits that we know, return the known
674   // constant.
675   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
676     return Constant::getIntegerValue(VTy, Known.One);
677   return nullptr;
678 }
679 
680 /// Helper routine of SimplifyDemandedUseBits. It computes Known
681 /// bits. It also tries to handle simplifications that can be done based on
682 /// DemandedMask, but without modifying the Instruction.
683 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
684                                                      const APInt &DemandedMask,
685                                                      KnownBits &Known,
686                                                      unsigned Depth,
687                                                      Instruction *CxtI) {
688   unsigned BitWidth = DemandedMask.getBitWidth();
689   Type *ITy = I->getType();
690 
691   KnownBits LHSKnown(BitWidth);
692   KnownBits RHSKnown(BitWidth);
693 
694   // Despite the fact that we can't simplify this instruction in all User's
695   // context, we can at least compute the known bits, and we can
696   // do simplifications that apply to *just* the one user if we know that
697   // this instruction has a simpler value in that context.
698   switch (I->getOpcode()) {
699   case Instruction::And: {
700     // If either the LHS or the RHS are Zero, the result is zero.
701     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
702     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
703                      CxtI);
704 
705     // Output known-0 are known to be clear if zero in either the LHS | RHS.
706     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
707     // Output known-1 bits are only known if set in both the LHS & RHS.
708     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
709 
710     // If the client is only demanding bits that we know, return the known
711     // constant.
712     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
713       return Constant::getIntegerValue(ITy, IKnownOne);
714 
715     // If all of the demanded bits are known 1 on one side, return the other.
716     // These bits cannot contribute to the result of the 'and' in this
717     // context.
718     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
719       return I->getOperand(0);
720     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
721       return I->getOperand(1);
722 
723     Known.Zero = std::move(IKnownZero);
724     Known.One  = std::move(IKnownOne);
725     break;
726   }
727   case Instruction::Or: {
728     // We can simplify (X|Y) -> X or Y in the user's context if we know that
729     // only bits from X or Y are demanded.
730 
731     // If either the LHS or the RHS are One, the result is One.
732     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
733     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
734                      CxtI);
735 
736     // Output known-0 bits are only known if clear in both the LHS & RHS.
737     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
738     // Output known-1 are known to be set if set in either the LHS | RHS.
739     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
740 
741     // If the client is only demanding bits that we know, return the known
742     // constant.
743     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
744       return Constant::getIntegerValue(ITy, IKnownOne);
745 
746     // If all of the demanded bits are known zero on one side, return the
747     // other.  These bits cannot contribute to the result of the 'or' in this
748     // context.
749     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
750       return I->getOperand(0);
751     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
752       return I->getOperand(1);
753 
754     Known.Zero = std::move(IKnownZero);
755     Known.One  = std::move(IKnownOne);
756     break;
757   }
758   case Instruction::Xor: {
759     // We can simplify (X^Y) -> X or Y in the user's context if we know that
760     // only bits from X or Y are demanded.
761 
762     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
763     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
764                      CxtI);
765 
766     // Output known-0 bits are known if clear or set in both the LHS & RHS.
767     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
768                        (RHSKnown.One & LHSKnown.One);
769     // Output known-1 are known to be set if set in only one of the LHS, RHS.
770     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
771                        (RHSKnown.One & LHSKnown.Zero);
772 
773     // If the client is only demanding bits that we know, return the known
774     // constant.
775     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
776       return Constant::getIntegerValue(ITy, IKnownOne);
777 
778     // If all of the demanded bits are known zero on one side, return the
779     // other.
780     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
781       return I->getOperand(0);
782     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
783       return I->getOperand(1);
784 
785     // Output known-0 bits are known if clear or set in both the LHS & RHS.
786     Known.Zero = std::move(IKnownZero);
787     // Output known-1 are known to be set if set in only one of the LHS, RHS.
788     Known.One  = std::move(IKnownOne);
789     break;
790   }
791   default:
792     // Compute the Known bits to simplify things downstream.
793     computeKnownBits(I, Known, Depth, CxtI);
794 
795     // If this user is only demanding bits that we know, return the known
796     // constant.
797     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
798       return Constant::getIntegerValue(ITy, Known.One);
799 
800     break;
801   }
802 
803   return nullptr;
804 }
805 
806 
807 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
808 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
809 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
810 /// of "C2-C1".
811 ///
812 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
813 /// ..., bn}, without considering the specific value X is holding.
814 /// This transformation is legal iff one of following conditions is hold:
815 ///  1) All the bit in S are 0, in this case E1 == E2.
816 ///  2) We don't care those bits in S, per the input DemandedMask.
817 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
818 ///     rest bits.
819 ///
820 /// Currently we only test condition 2).
821 ///
822 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
823 /// not successful.
824 Value *
825 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
826                                          Instruction *Shl, const APInt &ShlOp1,
827                                          const APInt &DemandedMask,
828                                          KnownBits &Known) {
829   if (!ShlOp1 || !ShrOp1)
830     return nullptr; // No-op.
831 
832   Value *VarX = Shr->getOperand(0);
833   Type *Ty = VarX->getType();
834   unsigned BitWidth = Ty->getScalarSizeInBits();
835   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
836     return nullptr; // Undef.
837 
838   unsigned ShlAmt = ShlOp1.getZExtValue();
839   unsigned ShrAmt = ShrOp1.getZExtValue();
840 
841   Known.One.clearAllBits();
842   Known.Zero.setLowBits(ShlAmt - 1);
843   Known.Zero &= DemandedMask;
844 
845   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
846   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
847 
848   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
849   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
850                       (BitMask1.ashr(ShrAmt) << ShlAmt);
851 
852   if (ShrAmt <= ShlAmt) {
853     BitMask2 <<= (ShlAmt - ShrAmt);
854   } else {
855     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
856                         BitMask2.ashr(ShrAmt - ShlAmt);
857   }
858 
859   // Check if condition-2 (see the comment to this function) is satified.
860   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
861     if (ShrAmt == ShlAmt)
862       return VarX;
863 
864     if (!Shr->hasOneUse())
865       return nullptr;
866 
867     BinaryOperator *New;
868     if (ShrAmt < ShlAmt) {
869       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
870       New = BinaryOperator::CreateShl(VarX, Amt);
871       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
872       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
873       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
874     } else {
875       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
876       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
877                      BinaryOperator::CreateAShr(VarX, Amt);
878       if (cast<BinaryOperator>(Shr)->isExact())
879         New->setIsExact(true);
880     }
881 
882     return InsertNewInstWith(New, *Shl);
883   }
884 
885   return nullptr;
886 }
887 
888 /// The specified value produces a vector with any number of elements.
889 /// DemandedElts contains the set of elements that are actually used by the
890 /// caller. This method analyzes which elements of the operand are undef and
891 /// returns that information in UndefElts.
892 ///
893 /// If the information about demanded elements can be used to simplify the
894 /// operation, the operation is simplified, then the resultant value is
895 /// returned.  This returns null if no change was made.
896 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
897                                                 APInt &UndefElts,
898                                                 unsigned Depth) {
899   unsigned VWidth = V->getType()->getVectorNumElements();
900   APInt EltMask(APInt::getAllOnesValue(VWidth));
901   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
902 
903   if (isa<UndefValue>(V)) {
904     // If the entire vector is undefined, just return this info.
905     UndefElts = EltMask;
906     return nullptr;
907   }
908 
909   if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
910     UndefElts = EltMask;
911     return UndefValue::get(V->getType());
912   }
913 
914   UndefElts = 0;
915 
916   // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
917   if (Constant *C = dyn_cast<Constant>(V)) {
918     // Check if this is identity. If so, return 0 since we are not simplifying
919     // anything.
920     if (DemandedElts.isAllOnesValue())
921       return nullptr;
922 
923     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
924     Constant *Undef = UndefValue::get(EltTy);
925 
926     SmallVector<Constant*, 16> Elts;
927     for (unsigned i = 0; i != VWidth; ++i) {
928       if (!DemandedElts[i]) {   // If not demanded, set to undef.
929         Elts.push_back(Undef);
930         UndefElts.setBit(i);
931         continue;
932       }
933 
934       Constant *Elt = C->getAggregateElement(i);
935       if (!Elt) return nullptr;
936 
937       if (isa<UndefValue>(Elt)) {   // Already undef.
938         Elts.push_back(Undef);
939         UndefElts.setBit(i);
940       } else {                               // Otherwise, defined.
941         Elts.push_back(Elt);
942       }
943     }
944 
945     // If we changed the constant, return it.
946     Constant *NewCV = ConstantVector::get(Elts);
947     return NewCV != C ? NewCV : nullptr;
948   }
949 
950   // Limit search depth.
951   if (Depth == 10)
952     return nullptr;
953 
954   // If multiple users are using the root value, proceed with
955   // simplification conservatively assuming that all elements
956   // are needed.
957   if (!V->hasOneUse()) {
958     // Quit if we find multiple users of a non-root value though.
959     // They'll be handled when it's their turn to be visited by
960     // the main instcombine process.
961     if (Depth != 0)
962       // TODO: Just compute the UndefElts information recursively.
963       return nullptr;
964 
965     // Conservatively assume that all elements are needed.
966     DemandedElts = EltMask;
967   }
968 
969   Instruction *I = dyn_cast<Instruction>(V);
970   if (!I) return nullptr;        // Only analyze instructions.
971 
972   bool MadeChange = false;
973   APInt UndefElts2(VWidth, 0);
974   APInt UndefElts3(VWidth, 0);
975   Value *TmpV;
976   switch (I->getOpcode()) {
977   default: break;
978 
979   case Instruction::InsertElement: {
980     // If this is a variable index, we don't know which element it overwrites.
981     // demand exactly the same input as we produce.
982     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
983     if (!Idx) {
984       // Note that we can't propagate undef elt info, because we don't know
985       // which elt is getting updated.
986       TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
987                                         UndefElts2, Depth + 1);
988       if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
989       break;
990     }
991 
992     // If this is inserting an element that isn't demanded, remove this
993     // insertelement.
994     unsigned IdxNo = Idx->getZExtValue();
995     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
996       Worklist.Add(I);
997       return I->getOperand(0);
998     }
999 
1000     // Otherwise, the element inserted overwrites whatever was there, so the
1001     // input demanded set is simpler than the output set.
1002     APInt DemandedElts2 = DemandedElts;
1003     DemandedElts2.clearBit(IdxNo);
1004     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
1005                                       UndefElts, Depth + 1);
1006     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1007 
1008     // The inserted element is defined.
1009     UndefElts.clearBit(IdxNo);
1010     break;
1011   }
1012   case Instruction::ShuffleVector: {
1013     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1014     unsigned LHSVWidth =
1015       Shuffle->getOperand(0)->getType()->getVectorNumElements();
1016     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1017     for (unsigned i = 0; i < VWidth; i++) {
1018       if (DemandedElts[i]) {
1019         unsigned MaskVal = Shuffle->getMaskValue(i);
1020         if (MaskVal != -1u) {
1021           assert(MaskVal < LHSVWidth * 2 &&
1022                  "shufflevector mask index out of range!");
1023           if (MaskVal < LHSVWidth)
1024             LeftDemanded.setBit(MaskVal);
1025           else
1026             RightDemanded.setBit(MaskVal - LHSVWidth);
1027         }
1028       }
1029     }
1030 
1031     APInt LHSUndefElts(LHSVWidth, 0);
1032     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1033                                       LHSUndefElts, Depth + 1);
1034     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1035 
1036     APInt RHSUndefElts(LHSVWidth, 0);
1037     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1038                                       RHSUndefElts, Depth + 1);
1039     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1040 
1041     bool NewUndefElts = false;
1042     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1043     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1044     bool LHSUniform = true;
1045     bool RHSUniform = true;
1046     for (unsigned i = 0; i < VWidth; i++) {
1047       unsigned MaskVal = Shuffle->getMaskValue(i);
1048       if (MaskVal == -1u) {
1049         UndefElts.setBit(i);
1050       } else if (!DemandedElts[i]) {
1051         NewUndefElts = true;
1052         UndefElts.setBit(i);
1053       } else if (MaskVal < LHSVWidth) {
1054         if (LHSUndefElts[MaskVal]) {
1055           NewUndefElts = true;
1056           UndefElts.setBit(i);
1057         } else {
1058           LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1059           LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
1060           LHSUniform = LHSUniform && (MaskVal == i);
1061         }
1062       } else {
1063         if (RHSUndefElts[MaskVal - LHSVWidth]) {
1064           NewUndefElts = true;
1065           UndefElts.setBit(i);
1066         } else {
1067           RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1068           RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
1069           RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
1070         }
1071       }
1072     }
1073 
1074     // Try to transform shuffle with constant vector and single element from
1075     // this constant vector to single insertelement instruction.
1076     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1077     // insertelement V, C[ci], ci-n
1078     if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1079       Value *Op = nullptr;
1080       Constant *Value = nullptr;
1081       unsigned Idx = -1u;
1082 
1083       // Find constant vector with the single element in shuffle (LHS or RHS).
1084       if (LHSIdx < LHSVWidth && RHSUniform) {
1085         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1086           Op = Shuffle->getOperand(1);
1087           Value = CV->getOperand(LHSValIdx);
1088           Idx = LHSIdx;
1089         }
1090       }
1091       if (RHSIdx < LHSVWidth && LHSUniform) {
1092         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1093           Op = Shuffle->getOperand(0);
1094           Value = CV->getOperand(RHSValIdx);
1095           Idx = RHSIdx;
1096         }
1097       }
1098       // Found constant vector with single element - convert to insertelement.
1099       if (Op && Value) {
1100         Instruction *New = InsertElementInst::Create(
1101             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1102             Shuffle->getName());
1103         InsertNewInstWith(New, *Shuffle);
1104         return New;
1105       }
1106     }
1107     if (NewUndefElts) {
1108       // Add additional discovered undefs.
1109       SmallVector<Constant*, 16> Elts;
1110       for (unsigned i = 0; i < VWidth; ++i) {
1111         if (UndefElts[i])
1112           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1113         else
1114           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1115                                           Shuffle->getMaskValue(i)));
1116       }
1117       I->setOperand(2, ConstantVector::get(Elts));
1118       MadeChange = true;
1119     }
1120     break;
1121   }
1122   case Instruction::Select: {
1123     APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1124     if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1125       for (unsigned i = 0; i < VWidth; i++) {
1126         Constant *CElt = CV->getAggregateElement(i);
1127         // Method isNullValue always returns false when called on a
1128         // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1129         // to avoid propagating incorrect information.
1130         if (isa<ConstantExpr>(CElt))
1131           continue;
1132         if (CElt->isNullValue())
1133           LeftDemanded.clearBit(i);
1134         else
1135           RightDemanded.clearBit(i);
1136       }
1137     }
1138 
1139     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1140                                       Depth + 1);
1141     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1142 
1143     TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1144                                       UndefElts2, Depth + 1);
1145     if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1146 
1147     // Output elements are undefined if both are undefined.
1148     UndefElts &= UndefElts2;
1149     break;
1150   }
1151   case Instruction::BitCast: {
1152     // Vector->vector casts only.
1153     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1154     if (!VTy) break;
1155     unsigned InVWidth = VTy->getNumElements();
1156     APInt InputDemandedElts(InVWidth, 0);
1157     UndefElts2 = APInt(InVWidth, 0);
1158     unsigned Ratio;
1159 
1160     if (VWidth == InVWidth) {
1161       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1162       // elements as are demanded of us.
1163       Ratio = 1;
1164       InputDemandedElts = DemandedElts;
1165     } else if ((VWidth % InVWidth) == 0) {
1166       // If the number of elements in the output is a multiple of the number of
1167       // elements in the input then an input element is live if any of the
1168       // corresponding output elements are live.
1169       Ratio = VWidth / InVWidth;
1170       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1171         if (DemandedElts[OutIdx])
1172           InputDemandedElts.setBit(OutIdx / Ratio);
1173     } else if ((InVWidth % VWidth) == 0) {
1174       // If the number of elements in the input is a multiple of the number of
1175       // elements in the output then an input element is live if the
1176       // corresponding output element is live.
1177       Ratio = InVWidth / VWidth;
1178       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1179         if (DemandedElts[InIdx / Ratio])
1180           InputDemandedElts.setBit(InIdx);
1181     } else {
1182       // Unsupported so far.
1183       break;
1184     }
1185 
1186     // div/rem demand all inputs, because they don't want divide by zero.
1187     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1188                                       UndefElts2, Depth + 1);
1189     if (TmpV) {
1190       I->setOperand(0, TmpV);
1191       MadeChange = true;
1192     }
1193 
1194     if (VWidth == InVWidth) {
1195       UndefElts = UndefElts2;
1196     } else if ((VWidth % InVWidth) == 0) {
1197       // If the number of elements in the output is a multiple of the number of
1198       // elements in the input then an output element is undef if the
1199       // corresponding input element is undef.
1200       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1201         if (UndefElts2[OutIdx / Ratio])
1202           UndefElts.setBit(OutIdx);
1203     } else if ((InVWidth % VWidth) == 0) {
1204       // If the number of elements in the input is a multiple of the number of
1205       // elements in the output then an output element is undef if all of the
1206       // corresponding input elements are undef.
1207       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1208         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1209         if (SubUndef.countPopulation() == Ratio)
1210           UndefElts.setBit(OutIdx);
1211       }
1212     } else {
1213       llvm_unreachable("Unimp");
1214     }
1215     break;
1216   }
1217   case Instruction::And:
1218   case Instruction::Or:
1219   case Instruction::Xor:
1220   case Instruction::Add:
1221   case Instruction::Sub:
1222   case Instruction::Mul:
1223     // div/rem demand all inputs, because they don't want divide by zero.
1224     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1225                                       Depth + 1);
1226     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1227     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1228                                       UndefElts2, Depth + 1);
1229     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1230 
1231     // Output elements are undefined if both are undefined.  Consider things
1232     // like undef&0.  The result is known zero, not undef.
1233     UndefElts &= UndefElts2;
1234     break;
1235   case Instruction::FPTrunc:
1236   case Instruction::FPExt:
1237     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1238                                       Depth + 1);
1239     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1240     break;
1241 
1242   case Instruction::Call: {
1243     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1244     if (!II) break;
1245     switch (II->getIntrinsicID()) {
1246     default: break;
1247 
1248     case Intrinsic::x86_xop_vfrcz_ss:
1249     case Intrinsic::x86_xop_vfrcz_sd:
1250       // The instructions for these intrinsics are speced to zero upper bits not
1251       // pass them through like other scalar intrinsics. So we shouldn't just
1252       // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1253       // Instead we should return a zero vector.
1254       if (!DemandedElts[0]) {
1255         Worklist.Add(II);
1256         return ConstantAggregateZero::get(II->getType());
1257       }
1258 
1259       // Only the lower element is used.
1260       DemandedElts = 1;
1261       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1262                                         UndefElts, Depth + 1);
1263       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1264 
1265       // Only the lower element is undefined. The high elements are zero.
1266       UndefElts = UndefElts[0];
1267       break;
1268 
1269     // Unary scalar-as-vector operations that work column-wise.
1270     case Intrinsic::x86_sse_rcp_ss:
1271     case Intrinsic::x86_sse_rsqrt_ss:
1272     case Intrinsic::x86_sse_sqrt_ss:
1273     case Intrinsic::x86_sse2_sqrt_sd:
1274       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1275                                         UndefElts, Depth + 1);
1276       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1277 
1278       // If lowest element of a scalar op isn't used then use Arg0.
1279       if (!DemandedElts[0]) {
1280         Worklist.Add(II);
1281         return II->getArgOperand(0);
1282       }
1283       // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1284       // checks).
1285       break;
1286 
1287     // Binary scalar-as-vector operations that work column-wise. The high
1288     // elements come from operand 0. The low element is a function of both
1289     // operands.
1290     case Intrinsic::x86_sse_min_ss:
1291     case Intrinsic::x86_sse_max_ss:
1292     case Intrinsic::x86_sse_cmp_ss:
1293     case Intrinsic::x86_sse2_min_sd:
1294     case Intrinsic::x86_sse2_max_sd:
1295     case Intrinsic::x86_sse2_cmp_sd: {
1296       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1297                                         UndefElts, Depth + 1);
1298       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1299 
1300       // If lowest element of a scalar op isn't used then use Arg0.
1301       if (!DemandedElts[0]) {
1302         Worklist.Add(II);
1303         return II->getArgOperand(0);
1304       }
1305 
1306       // Only lower element is used for operand 1.
1307       DemandedElts = 1;
1308       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1309                                         UndefElts2, Depth + 1);
1310       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1311 
1312       // Lower element is undefined if both lower elements are undefined.
1313       // Consider things like undef&0.  The result is known zero, not undef.
1314       if (!UndefElts2[0])
1315         UndefElts.clearBit(0);
1316 
1317       break;
1318     }
1319 
1320     // Binary scalar-as-vector operations that work column-wise. The high
1321     // elements come from operand 0 and the low element comes from operand 1.
1322     case Intrinsic::x86_sse41_round_ss:
1323     case Intrinsic::x86_sse41_round_sd: {
1324       // Don't use the low element of operand 0.
1325       APInt DemandedElts2 = DemandedElts;
1326       DemandedElts2.clearBit(0);
1327       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2,
1328                                         UndefElts, Depth + 1);
1329       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1330 
1331       // If lowest element of a scalar op isn't used then use Arg0.
1332       if (!DemandedElts[0]) {
1333         Worklist.Add(II);
1334         return II->getArgOperand(0);
1335       }
1336 
1337       // Only lower element is used for operand 1.
1338       DemandedElts = 1;
1339       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1340                                         UndefElts2, Depth + 1);
1341       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1342 
1343       // Take the high undef elements from operand 0 and take the lower element
1344       // from operand 1.
1345       UndefElts.clearBit(0);
1346       UndefElts |= UndefElts2[0];
1347       break;
1348     }
1349 
1350     // Three input scalar-as-vector operations that work column-wise. The high
1351     // elements come from operand 0 and the low element is a function of all
1352     // three inputs.
1353     case Intrinsic::x86_avx512_mask_add_ss_round:
1354     case Intrinsic::x86_avx512_mask_div_ss_round:
1355     case Intrinsic::x86_avx512_mask_mul_ss_round:
1356     case Intrinsic::x86_avx512_mask_sub_ss_round:
1357     case Intrinsic::x86_avx512_mask_max_ss_round:
1358     case Intrinsic::x86_avx512_mask_min_ss_round:
1359     case Intrinsic::x86_avx512_mask_add_sd_round:
1360     case Intrinsic::x86_avx512_mask_div_sd_round:
1361     case Intrinsic::x86_avx512_mask_mul_sd_round:
1362     case Intrinsic::x86_avx512_mask_sub_sd_round:
1363     case Intrinsic::x86_avx512_mask_max_sd_round:
1364     case Intrinsic::x86_avx512_mask_min_sd_round:
1365     case Intrinsic::x86_fma_vfmadd_ss:
1366     case Intrinsic::x86_fma_vfmsub_ss:
1367     case Intrinsic::x86_fma_vfnmadd_ss:
1368     case Intrinsic::x86_fma_vfnmsub_ss:
1369     case Intrinsic::x86_fma_vfmadd_sd:
1370     case Intrinsic::x86_fma_vfmsub_sd:
1371     case Intrinsic::x86_fma_vfnmadd_sd:
1372     case Intrinsic::x86_fma_vfnmsub_sd:
1373     case Intrinsic::x86_avx512_mask_vfmadd_ss:
1374     case Intrinsic::x86_avx512_mask_vfmadd_sd:
1375     case Intrinsic::x86_avx512_maskz_vfmadd_ss:
1376     case Intrinsic::x86_avx512_maskz_vfmadd_sd:
1377       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1378                                         UndefElts, Depth + 1);
1379       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1380 
1381       // If lowest element of a scalar op isn't used then use Arg0.
1382       if (!DemandedElts[0]) {
1383         Worklist.Add(II);
1384         return II->getArgOperand(0);
1385       }
1386 
1387       // Only lower element is used for operand 1 and 2.
1388       DemandedElts = 1;
1389       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1390                                         UndefElts2, Depth + 1);
1391       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1392       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1393                                         UndefElts3, Depth + 1);
1394       if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1395 
1396       // Lower element is undefined if all three lower elements are undefined.
1397       // Consider things like undef&0.  The result is known zero, not undef.
1398       if (!UndefElts2[0] || !UndefElts3[0])
1399         UndefElts.clearBit(0);
1400 
1401       break;
1402 
1403     case Intrinsic::x86_avx512_mask3_vfmadd_ss:
1404     case Intrinsic::x86_avx512_mask3_vfmadd_sd:
1405     case Intrinsic::x86_avx512_mask3_vfmsub_ss:
1406     case Intrinsic::x86_avx512_mask3_vfmsub_sd:
1407     case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
1408     case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
1409       // These intrinsics get the passthru bits from operand 2.
1410       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1411                                         UndefElts, Depth + 1);
1412       if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1413 
1414       // If lowest element of a scalar op isn't used then use Arg2.
1415       if (!DemandedElts[0]) {
1416         Worklist.Add(II);
1417         return II->getArgOperand(2);
1418       }
1419 
1420       // Only lower element is used for operand 0 and 1.
1421       DemandedElts = 1;
1422       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1423                                         UndefElts2, Depth + 1);
1424       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1425       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1426                                         UndefElts3, Depth + 1);
1427       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1428 
1429       // Lower element is undefined if all three lower elements are undefined.
1430       // Consider things like undef&0.  The result is known zero, not undef.
1431       if (!UndefElts2[0] || !UndefElts3[0])
1432         UndefElts.clearBit(0);
1433 
1434       break;
1435 
1436     case Intrinsic::x86_sse2_pmulu_dq:
1437     case Intrinsic::x86_sse41_pmuldq:
1438     case Intrinsic::x86_avx2_pmul_dq:
1439     case Intrinsic::x86_avx2_pmulu_dq:
1440     case Intrinsic::x86_avx512_pmul_dq_512:
1441     case Intrinsic::x86_avx512_pmulu_dq_512: {
1442       Value *Op0 = II->getArgOperand(0);
1443       Value *Op1 = II->getArgOperand(1);
1444       unsigned InnerVWidth = Op0->getType()->getVectorNumElements();
1445       assert((VWidth * 2) == InnerVWidth && "Unexpected input size");
1446 
1447       APInt InnerDemandedElts(InnerVWidth, 0);
1448       for (unsigned i = 0; i != VWidth; ++i)
1449         if (DemandedElts[i])
1450           InnerDemandedElts.setBit(i * 2);
1451 
1452       UndefElts2 = APInt(InnerVWidth, 0);
1453       TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2,
1454                                         Depth + 1);
1455       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1456 
1457       UndefElts3 = APInt(InnerVWidth, 0);
1458       TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3,
1459                                         Depth + 1);
1460       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1461 
1462       break;
1463     }
1464 
1465     case Intrinsic::x86_sse2_packssdw_128:
1466     case Intrinsic::x86_sse2_packsswb_128:
1467     case Intrinsic::x86_sse2_packuswb_128:
1468     case Intrinsic::x86_sse41_packusdw:
1469     case Intrinsic::x86_avx2_packssdw:
1470     case Intrinsic::x86_avx2_packsswb:
1471     case Intrinsic::x86_avx2_packusdw:
1472     case Intrinsic::x86_avx2_packuswb:
1473     case Intrinsic::x86_avx512_packssdw_512:
1474     case Intrinsic::x86_avx512_packsswb_512:
1475     case Intrinsic::x86_avx512_packusdw_512:
1476     case Intrinsic::x86_avx512_packuswb_512: {
1477       auto *Ty0 = II->getArgOperand(0)->getType();
1478       unsigned InnerVWidth = Ty0->getVectorNumElements();
1479       assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1480 
1481       unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1482       unsigned VWidthPerLane = VWidth / NumLanes;
1483       unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1484 
1485       // Per lane, pack the elements of the first input and then the second.
1486       // e.g.
1487       // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1488       // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1489       for (int OpNum = 0; OpNum != 2; ++OpNum) {
1490         APInt OpDemandedElts(InnerVWidth, 0);
1491         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1492           unsigned LaneIdx = Lane * VWidthPerLane;
1493           for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1494             unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1495             if (DemandedElts[Idx])
1496               OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1497           }
1498         }
1499 
1500         // Demand elements from the operand.
1501         auto *Op = II->getArgOperand(OpNum);
1502         APInt OpUndefElts(InnerVWidth, 0);
1503         TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts,
1504                                           Depth + 1);
1505         if (TmpV) {
1506           II->setArgOperand(OpNum, TmpV);
1507           MadeChange = true;
1508         }
1509 
1510         // Pack the operand's UNDEF elements, one lane at a time.
1511         OpUndefElts = OpUndefElts.zext(VWidth);
1512         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1513           APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1514           LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1515           LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
1516           UndefElts |= LaneElts;
1517         }
1518       }
1519       break;
1520     }
1521 
1522     // PSHUFB
1523     case Intrinsic::x86_ssse3_pshuf_b_128:
1524     case Intrinsic::x86_avx2_pshuf_b:
1525     case Intrinsic::x86_avx512_pshuf_b_512:
1526     // PERMILVAR
1527     case Intrinsic::x86_avx_vpermilvar_ps:
1528     case Intrinsic::x86_avx_vpermilvar_ps_256:
1529     case Intrinsic::x86_avx512_vpermilvar_ps_512:
1530     case Intrinsic::x86_avx_vpermilvar_pd:
1531     case Intrinsic::x86_avx_vpermilvar_pd_256:
1532     case Intrinsic::x86_avx512_vpermilvar_pd_512:
1533     // PERMV
1534     case Intrinsic::x86_avx2_permd:
1535     case Intrinsic::x86_avx2_permps: {
1536       Value *Op1 = II->getArgOperand(1);
1537       TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts,
1538                                         Depth + 1);
1539       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1540       break;
1541     }
1542 
1543     // SSE4A instructions leave the upper 64-bits of the 128-bit result
1544     // in an undefined state.
1545     case Intrinsic::x86_sse4a_extrq:
1546     case Intrinsic::x86_sse4a_extrqi:
1547     case Intrinsic::x86_sse4a_insertq:
1548     case Intrinsic::x86_sse4a_insertqi:
1549       UndefElts.setHighBits(VWidth / 2);
1550       break;
1551     case Intrinsic::amdgcn_buffer_load:
1552     case Intrinsic::amdgcn_buffer_load_format:
1553     case Intrinsic::amdgcn_image_sample:
1554     case Intrinsic::amdgcn_image_sample_cl:
1555     case Intrinsic::amdgcn_image_sample_d:
1556     case Intrinsic::amdgcn_image_sample_d_cl:
1557     case Intrinsic::amdgcn_image_sample_l:
1558     case Intrinsic::amdgcn_image_sample_b:
1559     case Intrinsic::amdgcn_image_sample_b_cl:
1560     case Intrinsic::amdgcn_image_sample_lz:
1561     case Intrinsic::amdgcn_image_sample_cd:
1562     case Intrinsic::amdgcn_image_sample_cd_cl:
1563 
1564     case Intrinsic::amdgcn_image_sample_c:
1565     case Intrinsic::amdgcn_image_sample_c_cl:
1566     case Intrinsic::amdgcn_image_sample_c_d:
1567     case Intrinsic::amdgcn_image_sample_c_d_cl:
1568     case Intrinsic::amdgcn_image_sample_c_l:
1569     case Intrinsic::amdgcn_image_sample_c_b:
1570     case Intrinsic::amdgcn_image_sample_c_b_cl:
1571     case Intrinsic::amdgcn_image_sample_c_lz:
1572     case Intrinsic::amdgcn_image_sample_c_cd:
1573     case Intrinsic::amdgcn_image_sample_c_cd_cl:
1574 
1575     case Intrinsic::amdgcn_image_sample_o:
1576     case Intrinsic::amdgcn_image_sample_cl_o:
1577     case Intrinsic::amdgcn_image_sample_d_o:
1578     case Intrinsic::amdgcn_image_sample_d_cl_o:
1579     case Intrinsic::amdgcn_image_sample_l_o:
1580     case Intrinsic::amdgcn_image_sample_b_o:
1581     case Intrinsic::amdgcn_image_sample_b_cl_o:
1582     case Intrinsic::amdgcn_image_sample_lz_o:
1583     case Intrinsic::amdgcn_image_sample_cd_o:
1584     case Intrinsic::amdgcn_image_sample_cd_cl_o:
1585 
1586     case Intrinsic::amdgcn_image_sample_c_o:
1587     case Intrinsic::amdgcn_image_sample_c_cl_o:
1588     case Intrinsic::amdgcn_image_sample_c_d_o:
1589     case Intrinsic::amdgcn_image_sample_c_d_cl_o:
1590     case Intrinsic::amdgcn_image_sample_c_l_o:
1591     case Intrinsic::amdgcn_image_sample_c_b_o:
1592     case Intrinsic::amdgcn_image_sample_c_b_cl_o:
1593     case Intrinsic::amdgcn_image_sample_c_lz_o:
1594     case Intrinsic::amdgcn_image_sample_c_cd_o:
1595     case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
1596 
1597     case Intrinsic::amdgcn_image_getlod: {
1598       if (VWidth == 1 || !DemandedElts.isMask())
1599         return nullptr;
1600 
1601       // TODO: Handle 3 vectors when supported in code gen.
1602       unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes());
1603       if (NewNumElts == VWidth)
1604         return nullptr;
1605 
1606       Module *M = II->getParent()->getParent()->getParent();
1607       Type *EltTy = V->getType()->getVectorElementType();
1608 
1609       Type *NewTy = (NewNumElts == 1) ? EltTy :
1610         VectorType::get(EltTy, NewNumElts);
1611 
1612       auto IID = II->getIntrinsicID();
1613 
1614       bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load ||
1615                       IID == Intrinsic::amdgcn_buffer_load_format;
1616 
1617       Function *NewIntrin = IsBuffer ?
1618         Intrinsic::getDeclaration(M, IID, NewTy) :
1619         // Samplers have 3 mangled types.
1620         Intrinsic::getDeclaration(M, IID,
1621                                   { NewTy, II->getArgOperand(0)->getType(),
1622                                       II->getArgOperand(1)->getType()});
1623 
1624       SmallVector<Value *, 5> Args;
1625       for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1626         Args.push_back(II->getArgOperand(I));
1627 
1628       IRBuilderBase::InsertPointGuard Guard(Builder);
1629       Builder.SetInsertPoint(II);
1630 
1631       CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
1632       NewCall->takeName(II);
1633       NewCall->copyMetadata(*II);
1634 
1635       if (!IsBuffer) {
1636         ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3));
1637         if (DMask) {
1638           unsigned DMaskVal = DMask->getZExtValue() & 0xf;
1639 
1640           unsigned PopCnt = 0;
1641           unsigned NewDMask = 0;
1642           for (unsigned I = 0; I < 4; ++I) {
1643             const unsigned Bit = 1 << I;
1644             if (!!(DMaskVal & Bit)) {
1645               if (++PopCnt > NewNumElts)
1646                 break;
1647 
1648               NewDMask |= Bit;
1649             }
1650           }
1651 
1652           NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask));
1653         }
1654       }
1655 
1656 
1657       if (NewNumElts == 1) {
1658         return Builder.CreateInsertElement(UndefValue::get(V->getType()),
1659                                            NewCall, static_cast<uint64_t>(0));
1660       }
1661 
1662       SmallVector<uint32_t, 8> EltMask;
1663       for (unsigned I = 0; I < VWidth; ++I)
1664         EltMask.push_back(I);
1665 
1666       Value *Shuffle = Builder.CreateShuffleVector(
1667         NewCall, UndefValue::get(NewTy), EltMask);
1668 
1669       MadeChange = true;
1670       return Shuffle;
1671     }
1672     }
1673     break;
1674   }
1675   }
1676   return MadeChange ? I : nullptr;
1677 }
1678