1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21 
22 using namespace llvm;
23 using namespace llvm::PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Check to see if the specified operand of the specified instruction is a
28 /// constant integer. If so, check to see if there are any bits set in the
29 /// constant that are not demanded. If so, shrink the constant and return true.
30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
31                                    const APInt &Demanded) {
32   assert(I && "No instruction?");
33   assert(OpNo < I->getNumOperands() && "Operand index too large");
34 
35   // The operand must be a constant integer or splat integer.
36   Value *Op = I->getOperand(OpNo);
37   const APInt *C;
38   if (!match(Op, m_APInt(C)))
39     return false;
40 
41   // If there are no bits set that aren't demanded, nothing to do.
42   if (C->isSubsetOf(Demanded))
43     return false;
44 
45   // This instruction is producing bits that are not demanded. Shrink the RHS.
46   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
47 
48   return true;
49 }
50 
51 
52 
53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54 /// the instruction has any properties that allow us to simplify its operands.
55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
56   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57   KnownBits Known(BitWidth);
58   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
59 
60   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
61                                      0, &Inst);
62   if (!V) return false;
63   if (V == &Inst) return true;
64   replaceInstUsesWith(Inst, V);
65   return true;
66 }
67 
68 /// This form of SimplifyDemandedBits simplifies the specified instruction
69 /// operand if possible, updating it in place. It returns true if it made any
70 /// change and false otherwise.
71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
72                                             const APInt &DemandedMask,
73                                             KnownBits &Known, unsigned Depth) {
74   Use &U = I->getOperandUse(OpNo);
75   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
76                                           Depth, I);
77   if (!NewVal) return false;
78   if (Instruction* OpInst = dyn_cast<Instruction>(U))
79     salvageDebugInfo(*OpInst);
80 
81   replaceUse(U, NewVal);
82   return true;
83 }
84 
85 /// This function attempts to replace V with a simpler value based on the
86 /// demanded bits. When this function is called, it is known that only the bits
87 /// set in DemandedMask of the result of V are ever used downstream.
88 /// Consequently, depending on the mask and V, it may be possible to replace V
89 /// with a constant or one of its operands. In such cases, this function does
90 /// the replacement and returns true. In all other cases, it returns false after
91 /// analyzing the expression and setting KnownOne and known to be one in the
92 /// expression. Known.Zero contains all the bits that are known to be zero in
93 /// the expression. These are provided to potentially allow the caller (which
94 /// might recursively be SimplifyDemandedBits itself) to simplify the
95 /// expression.
96 /// Known.One and Known.Zero always follow the invariant that:
97 ///   Known.One & Known.Zero == 0.
98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
101 /// be the same.
102 ///
103 /// This returns null if it did not change anything and it permits no
104 /// simplification.  This returns V itself if it did some simplification of V's
105 /// operands based on the information about what bits are demanded. This returns
106 /// some other non-null value if it found out that V is equal to another value
107 /// in the context where the specified bits are demanded, but not for all users.
108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
109                                                  KnownBits &Known,
110                                                  unsigned Depth,
111                                                  Instruction *CxtI) {
112   assert(V != nullptr && "Null pointer of Value???");
113   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
114   uint32_t BitWidth = DemandedMask.getBitWidth();
115   Type *VTy = V->getType();
116   assert(
117       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
118       Known.getBitWidth() == BitWidth &&
119       "Value *V, DemandedMask and Known must have same BitWidth");
120 
121   if (isa<Constant>(V)) {
122     computeKnownBits(V, Known, Depth, CxtI);
123     return nullptr;
124   }
125 
126   Known.resetAll();
127   if (DemandedMask.isNullValue())     // Not demanding any bits from V.
128     return UndefValue::get(VTy);
129 
130   if (Depth == MaxAnalysisRecursionDepth)
131     return nullptr;
132 
133   if (isa<ScalableVectorType>(VTy))
134     return nullptr;
135 
136   Instruction *I = dyn_cast<Instruction>(V);
137   if (!I) {
138     computeKnownBits(V, Known, Depth, CxtI);
139     return nullptr;        // Only analyze instructions.
140   }
141 
142   // If there are multiple uses of this value and we aren't at the root, then
143   // we can't do any simplifications of the operands, because DemandedMask
144   // only reflects the bits demanded by *one* of the users.
145   if (Depth != 0 && !I->hasOneUse())
146     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
147 
148   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
149 
150   // If this is the root being simplified, allow it to have multiple uses,
151   // just set the DemandedMask to all bits so that we can try to simplify the
152   // operands.  This allows visitTruncInst (for example) to simplify the
153   // operand of a trunc without duplicating all the logic below.
154   if (Depth == 0 && !V->hasOneUse())
155     DemandedMask.setAllBits();
156 
157   switch (I->getOpcode()) {
158   default:
159     computeKnownBits(I, Known, Depth, CxtI);
160     break;
161   case Instruction::And: {
162     // If either the LHS or the RHS are Zero, the result is zero.
163     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
164         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
165                              Depth + 1))
166       return I;
167     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
168     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
169 
170     Known = LHSKnown & RHSKnown;
171 
172     // If the client is only demanding bits that we know, return the known
173     // constant.
174     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
175       return Constant::getIntegerValue(VTy, Known.One);
176 
177     // If all of the demanded bits are known 1 on one side, return the other.
178     // These bits cannot contribute to the result of the 'and'.
179     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
180       return I->getOperand(0);
181     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
182       return I->getOperand(1);
183 
184     // If the RHS is a constant, see if we can simplify it.
185     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
186       return I;
187 
188     break;
189   }
190   case Instruction::Or: {
191     // If either the LHS or the RHS are One, the result is One.
192     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
193         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
194                              Depth + 1))
195       return I;
196     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
197     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
198 
199     Known = LHSKnown | RHSKnown;
200 
201     // If the client is only demanding bits that we know, return the known
202     // constant.
203     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
204       return Constant::getIntegerValue(VTy, Known.One);
205 
206     // If all of the demanded bits are known zero on one side, return the other.
207     // These bits cannot contribute to the result of the 'or'.
208     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
209       return I->getOperand(0);
210     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
211       return I->getOperand(1);
212 
213     // If the RHS is a constant, see if we can simplify it.
214     if (ShrinkDemandedConstant(I, 1, DemandedMask))
215       return I;
216 
217     break;
218   }
219   case Instruction::Xor: {
220     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
221         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
222       return I;
223     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
224     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
225 
226     Known = LHSKnown ^ RHSKnown;
227 
228     // If the client is only demanding bits that we know, return the known
229     // constant.
230     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
231       return Constant::getIntegerValue(VTy, Known.One);
232 
233     // If all of the demanded bits are known zero on one side, return the other.
234     // These bits cannot contribute to the result of the 'xor'.
235     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
236       return I->getOperand(0);
237     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
238       return I->getOperand(1);
239 
240     // If all of the demanded bits are known to be zero on one side or the
241     // other, turn this into an *inclusive* or.
242     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
243     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
244       Instruction *Or =
245         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
246                                  I->getName());
247       return InsertNewInstWith(Or, *I);
248     }
249 
250     // If all of the demanded bits on one side are known, and all of the set
251     // bits on that side are also known to be set on the other side, turn this
252     // into an AND, as we know the bits will be cleared.
253     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
254     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
255         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
256       Constant *AndC = Constant::getIntegerValue(VTy,
257                                                  ~RHSKnown.One & DemandedMask);
258       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
259       return InsertNewInstWith(And, *I);
260     }
261 
262     // If the RHS is a constant, see if we can change it. Don't alter a -1
263     // constant because that's a canonical 'not' op, and that is better for
264     // combining, SCEV, and codegen.
265     const APInt *C;
266     if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnesValue()) {
267       if ((*C | ~DemandedMask).isAllOnesValue()) {
268         // Force bits to 1 to create a 'not' op.
269         I->setOperand(1, ConstantInt::getAllOnesValue(VTy));
270         return I;
271       }
272       // If we can't turn this into a 'not', try to shrink the constant.
273       if (ShrinkDemandedConstant(I, 1, DemandedMask))
274         return I;
275     }
276 
277     // If our LHS is an 'and' and if it has one use, and if any of the bits we
278     // are flipping are known to be set, then the xor is just resetting those
279     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
280     // simplifying both of them.
281     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
282       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
283           isa<ConstantInt>(I->getOperand(1)) &&
284           isa<ConstantInt>(LHSInst->getOperand(1)) &&
285           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
286         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
287         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
288         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
289 
290         Constant *AndC =
291           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
292         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
293         InsertNewInstWith(NewAnd, *I);
294 
295         Constant *XorC =
296           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
297         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
298         return InsertNewInstWith(NewXor, *I);
299       }
300 
301     break;
302   }
303   case Instruction::Select: {
304     Value *LHS, *RHS;
305     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
306     if (SPF == SPF_UMAX) {
307       // UMax(A, C) == A if ...
308       // The lowest non-zero bit of DemandMask is higher than the highest
309       // non-zero bit of C.
310       const APInt *C;
311       unsigned CTZ = DemandedMask.countTrailingZeros();
312       if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
313         return LHS;
314     } else if (SPF == SPF_UMIN) {
315       // UMin(A, C) == A if ...
316       // The lowest non-zero bit of DemandMask is higher than the highest
317       // non-one bit of C.
318       // This comes from using DeMorgans on the above umax example.
319       const APInt *C;
320       unsigned CTZ = DemandedMask.countTrailingZeros();
321       if (match(RHS, m_APInt(C)) &&
322           CTZ >= C->getBitWidth() - C->countLeadingOnes())
323         return LHS;
324     }
325 
326     // If this is a select as part of any other min/max pattern, don't simplify
327     // any further in case we break the structure.
328     if (SPF != SPF_UNKNOWN)
329       return nullptr;
330 
331     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
332         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
333       return I;
334     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
335     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
336 
337     // If the operands are constants, see if we can simplify them.
338     // This is similar to ShrinkDemandedConstant, but for a select we want to
339     // try to keep the selected constants the same as icmp value constants, if
340     // we can. This helps not break apart (or helps put back together)
341     // canonical patterns like min and max.
342     auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
343                                          APInt DemandedMask) {
344       const APInt *SelC;
345       if (!match(I->getOperand(OpNo), m_APInt(SelC)))
346         return false;
347 
348       // Get the constant out of the ICmp, if there is one.
349       const APInt *CmpC;
350       ICmpInst::Predicate Pred;
351       if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) ||
352           CmpC->getBitWidth() != SelC->getBitWidth())
353         return ShrinkDemandedConstant(I, OpNo, DemandedMask);
354 
355       // If the constant is already the same as the ICmp, leave it as-is.
356       if (*CmpC == *SelC)
357         return false;
358       // If the constants are not already the same, but can be with the demand
359       // mask, use the constant value from the ICmp.
360       if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
361         I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
362         return true;
363       }
364       return ShrinkDemandedConstant(I, OpNo, DemandedMask);
365     };
366     if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
367         CanonicalizeSelectConstant(I, 2, DemandedMask))
368       return I;
369 
370     // Only known if known in both the LHS and RHS.
371     Known.One = RHSKnown.One & LHSKnown.One;
372     Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
373     break;
374   }
375   case Instruction::ZExt:
376   case Instruction::Trunc: {
377     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
378 
379     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
380     KnownBits InputKnown(SrcBitWidth);
381     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
382       return I;
383     assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
384     Known = InputKnown.zextOrTrunc(BitWidth);
385     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
386     break;
387   }
388   case Instruction::BitCast:
389     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
390       return nullptr;  // vector->int or fp->int?
391 
392     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
393       if (VectorType *SrcVTy =
394             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
395         if (cast<FixedVectorType>(DstVTy)->getNumElements() !=
396             cast<FixedVectorType>(SrcVTy)->getNumElements())
397           // Don't touch a bitcast between vectors of different element counts.
398           return nullptr;
399       } else
400         // Don't touch a scalar-to-vector bitcast.
401         return nullptr;
402     } else if (I->getOperand(0)->getType()->isVectorTy())
403       // Don't touch a vector-to-scalar bitcast.
404       return nullptr;
405 
406     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
407       return I;
408     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
409     break;
410   case Instruction::SExt: {
411     // Compute the bits in the result that are not present in the input.
412     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
413 
414     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
415 
416     // If any of the sign extended bits are demanded, we know that the sign
417     // bit is demanded.
418     if (DemandedMask.getActiveBits() > SrcBitWidth)
419       InputDemandedBits.setBit(SrcBitWidth-1);
420 
421     KnownBits InputKnown(SrcBitWidth);
422     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
423       return I;
424 
425     // If the input sign bit is known zero, or if the NewBits are not demanded
426     // convert this into a zero extension.
427     if (InputKnown.isNonNegative() ||
428         DemandedMask.getActiveBits() <= SrcBitWidth) {
429       // Convert to ZExt cast.
430       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
431       return InsertNewInstWith(NewCast, *I);
432      }
433 
434     // If the sign bit of the input is known set or clear, then we know the
435     // top bits of the result.
436     Known = InputKnown.sext(BitWidth);
437     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
438     break;
439   }
440   case Instruction::Add:
441     if ((DemandedMask & 1) == 0) {
442       // If we do not need the low bit, try to convert bool math to logic:
443       // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
444       Value *X, *Y;
445       if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
446                            m_OneUse(m_SExt(m_Value(Y))))) &&
447           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
448         // Truth table for inputs and output signbits:
449         //       X:0 | X:1
450         //      ----------
451         // Y:0  |  0 | 0 |
452         // Y:1  | -1 | 0 |
453         //      ----------
454         IRBuilderBase::InsertPointGuard Guard(Builder);
455         Builder.SetInsertPoint(I);
456         Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
457         return Builder.CreateSExt(AndNot, VTy);
458       }
459 
460       // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
461       // TODO: Relax the one-use checks because we are removing an instruction?
462       if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))),
463                          m_OneUse(m_SExt(m_Value(Y))))) &&
464           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
465         // Truth table for inputs and output signbits:
466         //       X:0 | X:1
467         //      -----------
468         // Y:0  | -1 | -1 |
469         // Y:1  | -1 |  0 |
470         //      -----------
471         IRBuilderBase::InsertPointGuard Guard(Builder);
472         Builder.SetInsertPoint(I);
473         Value *Or = Builder.CreateOr(X, Y);
474         return Builder.CreateSExt(Or, VTy);
475       }
476     }
477     LLVM_FALLTHROUGH;
478   case Instruction::Sub: {
479     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
480     /// about the high bits of the operands.
481     unsigned NLZ = DemandedMask.countLeadingZeros();
482     // Right fill the mask of bits for this ADD/SUB to demand the most
483     // significant bit and all those below it.
484     APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
485     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
486         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
487         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
488         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
489       if (NLZ > 0) {
490         // Disable the nsw and nuw flags here: We can no longer guarantee that
491         // we won't wrap after simplification. Removing the nsw/nuw flags is
492         // legal here because the top bit is not demanded.
493         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
494         BinOP.setHasNoSignedWrap(false);
495         BinOP.setHasNoUnsignedWrap(false);
496       }
497       return I;
498     }
499 
500     // If we are known to be adding/subtracting zeros to every bit below
501     // the highest demanded bit, we just return the other side.
502     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
503       return I->getOperand(0);
504     // We can't do this with the LHS for subtraction, unless we are only
505     // demanding the LSB.
506     if ((I->getOpcode() == Instruction::Add ||
507          DemandedFromOps.isOneValue()) &&
508         DemandedFromOps.isSubsetOf(LHSKnown.Zero))
509       return I->getOperand(1);
510 
511     // Otherwise just compute the known bits of the result.
512     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
513     Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
514                                         NSW, LHSKnown, RHSKnown);
515     break;
516   }
517   case Instruction::Shl: {
518     const APInt *SA;
519     if (match(I->getOperand(1), m_APInt(SA))) {
520       const APInt *ShrAmt;
521       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
522         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
523           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
524                                                     DemandedMask, Known))
525             return R;
526 
527       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
528       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
529 
530       // If the shift is NUW/NSW, then it does demand the high bits.
531       ShlOperator *IOp = cast<ShlOperator>(I);
532       if (IOp->hasNoSignedWrap())
533         DemandedMaskIn.setHighBits(ShiftAmt+1);
534       else if (IOp->hasNoUnsignedWrap())
535         DemandedMaskIn.setHighBits(ShiftAmt);
536 
537       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
538         return I;
539       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
540 
541       bool SignBitZero = Known.Zero.isSignBitSet();
542       bool SignBitOne = Known.One.isSignBitSet();
543       Known.Zero <<= ShiftAmt;
544       Known.One  <<= ShiftAmt;
545       // low bits known zero.
546       if (ShiftAmt)
547         Known.Zero.setLowBits(ShiftAmt);
548 
549       // If this shift has "nsw" keyword, then the result is either a poison
550       // value or has the same sign bit as the first operand.
551       if (IOp->hasNoSignedWrap()) {
552         if (SignBitZero)
553           Known.Zero.setSignBit();
554         else if (SignBitOne)
555           Known.One.setSignBit();
556         if (Known.hasConflict())
557           return UndefValue::get(I->getType());
558       }
559     } else {
560       computeKnownBits(I, Known, Depth, CxtI);
561     }
562     break;
563   }
564   case Instruction::LShr: {
565     const APInt *SA;
566     if (match(I->getOperand(1), m_APInt(SA))) {
567       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
568 
569       // Unsigned shift right.
570       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
571 
572       // If the shift is exact, then it does demand the low bits (and knows that
573       // they are zero).
574       if (cast<LShrOperator>(I)->isExact())
575         DemandedMaskIn.setLowBits(ShiftAmt);
576 
577       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
578         return I;
579       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
580       Known.Zero.lshrInPlace(ShiftAmt);
581       Known.One.lshrInPlace(ShiftAmt);
582       if (ShiftAmt)
583         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
584     } else {
585       computeKnownBits(I, Known, Depth, CxtI);
586     }
587     break;
588   }
589   case Instruction::AShr: {
590     // If this is an arithmetic shift right and only the low-bit is set, we can
591     // always convert this into a logical shr, even if the shift amount is
592     // variable.  The low bit of the shift cannot be an input sign bit unless
593     // the shift amount is >= the size of the datatype, which is undefined.
594     if (DemandedMask.isOneValue()) {
595       // Perform the logical shift right.
596       Instruction *NewVal = BinaryOperator::CreateLShr(
597                         I->getOperand(0), I->getOperand(1), I->getName());
598       return InsertNewInstWith(NewVal, *I);
599     }
600 
601     // If the sign bit is the only bit demanded by this ashr, then there is no
602     // need to do it, the shift doesn't change the high bit.
603     if (DemandedMask.isSignMask())
604       return I->getOperand(0);
605 
606     const APInt *SA;
607     if (match(I->getOperand(1), m_APInt(SA))) {
608       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
609 
610       // Signed shift right.
611       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
612       // If any of the high bits are demanded, we should set the sign bit as
613       // demanded.
614       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
615         DemandedMaskIn.setSignBit();
616 
617       // If the shift is exact, then it does demand the low bits (and knows that
618       // they are zero).
619       if (cast<AShrOperator>(I)->isExact())
620         DemandedMaskIn.setLowBits(ShiftAmt);
621 
622       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
623         return I;
624 
625       unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
626 
627       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
628       // Compute the new bits that are at the top now plus sign bits.
629       APInt HighBits(APInt::getHighBitsSet(
630           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
631       Known.Zero.lshrInPlace(ShiftAmt);
632       Known.One.lshrInPlace(ShiftAmt);
633 
634       // If the input sign bit is known to be zero, or if none of the top bits
635       // are demanded, turn this into an unsigned shift right.
636       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
637       if (Known.Zero[BitWidth-ShiftAmt-1] ||
638           !DemandedMask.intersects(HighBits)) {
639         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
640                                                           I->getOperand(1));
641         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
642         return InsertNewInstWith(LShr, *I);
643       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
644         Known.One |= HighBits;
645       }
646     } else {
647       computeKnownBits(I, Known, Depth, CxtI);
648     }
649     break;
650   }
651   case Instruction::UDiv: {
652     // UDiv doesn't demand low bits that are zero in the divisor.
653     const APInt *SA;
654     if (match(I->getOperand(1), m_APInt(SA))) {
655       // If the shift is exact, then it does demand the low bits.
656       if (cast<UDivOperator>(I)->isExact())
657         break;
658 
659       // FIXME: Take the demanded mask of the result into account.
660       unsigned RHSTrailingZeros = SA->countTrailingZeros();
661       APInt DemandedMaskIn =
662           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
663       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
664         return I;
665 
666       // Propagate zero bits from the input.
667       Known.Zero.setHighBits(std::min(
668           BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
669     } else {
670       computeKnownBits(I, Known, Depth, CxtI);
671     }
672     break;
673   }
674   case Instruction::SRem:
675     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
676       // X % -1 demands all the bits because we don't want to introduce
677       // INT_MIN % -1 (== undef) by accident.
678       if (Rem->isMinusOne())
679         break;
680       APInt RA = Rem->getValue().abs();
681       if (RA.isPowerOf2()) {
682         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
683           return I->getOperand(0);
684 
685         APInt LowBits = RA - 1;
686         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
687         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
688           return I;
689 
690         // The low bits of LHS are unchanged by the srem.
691         Known.Zero = LHSKnown.Zero & LowBits;
692         Known.One = LHSKnown.One & LowBits;
693 
694         // If LHS is non-negative or has all low bits zero, then the upper bits
695         // are all zero.
696         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
697           Known.Zero |= ~LowBits;
698 
699         // If LHS is negative and not all low bits are zero, then the upper bits
700         // are all one.
701         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
702           Known.One |= ~LowBits;
703 
704         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
705         break;
706       }
707     }
708 
709     // The sign bit is the LHS's sign bit, except when the result of the
710     // remainder is zero.
711     if (DemandedMask.isSignBitSet()) {
712       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
713       // If it's known zero, our sign bit is also zero.
714       if (LHSKnown.isNonNegative())
715         Known.makeNonNegative();
716     }
717     break;
718   case Instruction::URem: {
719     KnownBits Known2(BitWidth);
720     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
721     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
722         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
723       return I;
724 
725     unsigned Leaders = Known2.countMinLeadingZeros();
726     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
727     break;
728   }
729   case Instruction::Call: {
730     bool KnownBitsComputed = false;
731     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
732       switch (II->getIntrinsicID()) {
733       case Intrinsic::bswap: {
734         // If the only bits demanded come from one byte of the bswap result,
735         // just shift the input byte into position to eliminate the bswap.
736         unsigned NLZ = DemandedMask.countLeadingZeros();
737         unsigned NTZ = DemandedMask.countTrailingZeros();
738 
739         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
740         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
741         // have 14 leading zeros, round to 8.
742         NLZ &= ~7;
743         NTZ &= ~7;
744         // If we need exactly one byte, we can do this transformation.
745         if (BitWidth-NLZ-NTZ == 8) {
746           unsigned ResultBit = NTZ;
747           unsigned InputBit = BitWidth-NTZ-8;
748 
749           // Replace this with either a left or right shift to get the byte into
750           // the right place.
751           Instruction *NewVal;
752           if (InputBit > ResultBit)
753             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
754                     ConstantInt::get(I->getType(), InputBit-ResultBit));
755           else
756             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
757                     ConstantInt::get(I->getType(), ResultBit-InputBit));
758           NewVal->takeName(I);
759           return InsertNewInstWith(NewVal, *I);
760         }
761         break;
762       }
763       case Intrinsic::fshr:
764       case Intrinsic::fshl: {
765         const APInt *SA;
766         if (!match(I->getOperand(2), m_APInt(SA)))
767           break;
768 
769         // Normalize to funnel shift left. APInt shifts of BitWidth are well-
770         // defined, so no need to special-case zero shifts here.
771         uint64_t ShiftAmt = SA->urem(BitWidth);
772         if (II->getIntrinsicID() == Intrinsic::fshr)
773           ShiftAmt = BitWidth - ShiftAmt;
774 
775         APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
776         APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
777         if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
778             SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
779           return I;
780 
781         Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
782                      RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
783         Known.One = LHSKnown.One.shl(ShiftAmt) |
784                     RHSKnown.One.lshr(BitWidth - ShiftAmt);
785         KnownBitsComputed = true;
786         break;
787       }
788       default: {
789         // Handle target specific intrinsics
790         Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
791             *II, DemandedMask, Known, KnownBitsComputed);
792         if (V.hasValue())
793           return V.getValue();
794         break;
795       }
796       }
797     }
798 
799     if (!KnownBitsComputed)
800       computeKnownBits(V, Known, Depth, CxtI);
801     break;
802   }
803   }
804 
805   // If the client is only demanding bits that we know, return the known
806   // constant.
807   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
808     return Constant::getIntegerValue(VTy, Known.One);
809   return nullptr;
810 }
811 
812 /// Helper routine of SimplifyDemandedUseBits. It computes Known
813 /// bits. It also tries to handle simplifications that can be done based on
814 /// DemandedMask, but without modifying the Instruction.
815 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
816     Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
817     Instruction *CxtI) {
818   unsigned BitWidth = DemandedMask.getBitWidth();
819   Type *ITy = I->getType();
820 
821   KnownBits LHSKnown(BitWidth);
822   KnownBits RHSKnown(BitWidth);
823 
824   // Despite the fact that we can't simplify this instruction in all User's
825   // context, we can at least compute the known bits, and we can
826   // do simplifications that apply to *just* the one user if we know that
827   // this instruction has a simpler value in that context.
828   switch (I->getOpcode()) {
829   case Instruction::And: {
830     // If either the LHS or the RHS are Zero, the result is zero.
831     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
832     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
833                      CxtI);
834 
835     Known = LHSKnown & RHSKnown;
836 
837     // If the client is only demanding bits that we know, return the known
838     // constant.
839     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
840       return Constant::getIntegerValue(ITy, Known.One);
841 
842     // If all of the demanded bits are known 1 on one side, return the other.
843     // These bits cannot contribute to the result of the 'and' in this
844     // context.
845     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
846       return I->getOperand(0);
847     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
848       return I->getOperand(1);
849 
850     break;
851   }
852   case Instruction::Or: {
853     // We can simplify (X|Y) -> X or Y in the user's context if we know that
854     // only bits from X or Y are demanded.
855 
856     // If either the LHS or the RHS are One, the result is One.
857     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
858     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
859                      CxtI);
860 
861     Known = LHSKnown | RHSKnown;
862 
863     // If the client is only demanding bits that we know, return the known
864     // constant.
865     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
866       return Constant::getIntegerValue(ITy, Known.One);
867 
868     // If all of the demanded bits are known zero on one side, return the
869     // other.  These bits cannot contribute to the result of the 'or' in this
870     // context.
871     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
872       return I->getOperand(0);
873     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
874       return I->getOperand(1);
875 
876     break;
877   }
878   case Instruction::Xor: {
879     // We can simplify (X^Y) -> X or Y in the user's context if we know that
880     // only bits from X or Y are demanded.
881 
882     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
883     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
884                      CxtI);
885 
886     Known = LHSKnown ^ RHSKnown;
887 
888     // If the client is only demanding bits that we know, return the known
889     // constant.
890     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
891       return Constant::getIntegerValue(ITy, Known.One);
892 
893     // If all of the demanded bits are known zero on one side, return the
894     // other.
895     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
896       return I->getOperand(0);
897     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
898       return I->getOperand(1);
899 
900     break;
901   }
902   default:
903     // Compute the Known bits to simplify things downstream.
904     computeKnownBits(I, Known, Depth, CxtI);
905 
906     // If this user is only demanding bits that we know, return the known
907     // constant.
908     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
909       return Constant::getIntegerValue(ITy, Known.One);
910 
911     break;
912   }
913 
914   return nullptr;
915 }
916 
917 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
918 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
919 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
920 /// of "C2-C1".
921 ///
922 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
923 /// ..., bn}, without considering the specific value X is holding.
924 /// This transformation is legal iff one of following conditions is hold:
925 ///  1) All the bit in S are 0, in this case E1 == E2.
926 ///  2) We don't care those bits in S, per the input DemandedMask.
927 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
928 ///     rest bits.
929 ///
930 /// Currently we only test condition 2).
931 ///
932 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
933 /// not successful.
934 Value *InstCombinerImpl::simplifyShrShlDemandedBits(
935     Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
936     const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
937   if (!ShlOp1 || !ShrOp1)
938     return nullptr; // No-op.
939 
940   Value *VarX = Shr->getOperand(0);
941   Type *Ty = VarX->getType();
942   unsigned BitWidth = Ty->getScalarSizeInBits();
943   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
944     return nullptr; // Undef.
945 
946   unsigned ShlAmt = ShlOp1.getZExtValue();
947   unsigned ShrAmt = ShrOp1.getZExtValue();
948 
949   Known.One.clearAllBits();
950   Known.Zero.setLowBits(ShlAmt - 1);
951   Known.Zero &= DemandedMask;
952 
953   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
954   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
955 
956   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
957   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
958                       (BitMask1.ashr(ShrAmt) << ShlAmt);
959 
960   if (ShrAmt <= ShlAmt) {
961     BitMask2 <<= (ShlAmt - ShrAmt);
962   } else {
963     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
964                         BitMask2.ashr(ShrAmt - ShlAmt);
965   }
966 
967   // Check if condition-2 (see the comment to this function) is satified.
968   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
969     if (ShrAmt == ShlAmt)
970       return VarX;
971 
972     if (!Shr->hasOneUse())
973       return nullptr;
974 
975     BinaryOperator *New;
976     if (ShrAmt < ShlAmt) {
977       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
978       New = BinaryOperator::CreateShl(VarX, Amt);
979       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
980       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
981       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
982     } else {
983       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
984       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
985                      BinaryOperator::CreateAShr(VarX, Amt);
986       if (cast<BinaryOperator>(Shr)->isExact())
987         New->setIsExact(true);
988     }
989 
990     return InsertNewInstWith(New, *Shl);
991   }
992 
993   return nullptr;
994 }
995 
996 /// The specified value produces a vector with any number of elements.
997 /// This method analyzes which elements of the operand are undef and returns
998 /// that information in UndefElts.
999 ///
1000 /// DemandedElts contains the set of elements that are actually used by the
1001 /// caller, and by default (AllowMultipleUsers equals false) the value is
1002 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1003 /// to true, DemandedElts refers to the union of sets of elements that are
1004 /// used by all callers.
1005 ///
1006 /// If the information about demanded elements can be used to simplify the
1007 /// operation, the operation is simplified, then the resultant value is
1008 /// returned.  This returns null if no change was made.
1009 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
1010                                                     APInt DemandedElts,
1011                                                     APInt &UndefElts,
1012                                                     unsigned Depth,
1013                                                     bool AllowMultipleUsers) {
1014   // Cannot analyze scalable type. The number of vector elements is not a
1015   // compile-time constant.
1016   if (isa<ScalableVectorType>(V->getType()))
1017     return nullptr;
1018 
1019   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
1020   APInt EltMask(APInt::getAllOnesValue(VWidth));
1021   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1022 
1023   if (isa<UndefValue>(V)) {
1024     // If the entire vector is undefined, just return this info.
1025     UndefElts = EltMask;
1026     return nullptr;
1027   }
1028 
1029   if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
1030     UndefElts = EltMask;
1031     return UndefValue::get(V->getType());
1032   }
1033 
1034   UndefElts = 0;
1035 
1036   if (auto *C = dyn_cast<Constant>(V)) {
1037     // Check if this is identity. If so, return 0 since we are not simplifying
1038     // anything.
1039     if (DemandedElts.isAllOnesValue())
1040       return nullptr;
1041 
1042     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1043     Constant *Undef = UndefValue::get(EltTy);
1044     SmallVector<Constant*, 16> Elts;
1045     for (unsigned i = 0; i != VWidth; ++i) {
1046       if (!DemandedElts[i]) {   // If not demanded, set to undef.
1047         Elts.push_back(Undef);
1048         UndefElts.setBit(i);
1049         continue;
1050       }
1051 
1052       Constant *Elt = C->getAggregateElement(i);
1053       if (!Elt) return nullptr;
1054 
1055       if (isa<UndefValue>(Elt)) {   // Already undef.
1056         Elts.push_back(Undef);
1057         UndefElts.setBit(i);
1058       } else {                               // Otherwise, defined.
1059         Elts.push_back(Elt);
1060       }
1061     }
1062 
1063     // If we changed the constant, return it.
1064     Constant *NewCV = ConstantVector::get(Elts);
1065     return NewCV != C ? NewCV : nullptr;
1066   }
1067 
1068   // Limit search depth.
1069   if (Depth == 10)
1070     return nullptr;
1071 
1072   if (!AllowMultipleUsers) {
1073     // If multiple users are using the root value, proceed with
1074     // simplification conservatively assuming that all elements
1075     // are needed.
1076     if (!V->hasOneUse()) {
1077       // Quit if we find multiple users of a non-root value though.
1078       // They'll be handled when it's their turn to be visited by
1079       // the main instcombine process.
1080       if (Depth != 0)
1081         // TODO: Just compute the UndefElts information recursively.
1082         return nullptr;
1083 
1084       // Conservatively assume that all elements are needed.
1085       DemandedElts = EltMask;
1086     }
1087   }
1088 
1089   Instruction *I = dyn_cast<Instruction>(V);
1090   if (!I) return nullptr;        // Only analyze instructions.
1091 
1092   bool MadeChange = false;
1093   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1094                               APInt Demanded, APInt &Undef) {
1095     auto *II = dyn_cast<IntrinsicInst>(Inst);
1096     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1097     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1098       replaceOperand(*Inst, OpNum, V);
1099       MadeChange = true;
1100     }
1101   };
1102 
1103   APInt UndefElts2(VWidth, 0);
1104   APInt UndefElts3(VWidth, 0);
1105   switch (I->getOpcode()) {
1106   default: break;
1107 
1108   case Instruction::GetElementPtr: {
1109     // The LangRef requires that struct geps have all constant indices.  As
1110     // such, we can't convert any operand to partial undef.
1111     auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1112       for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1113            I != E; I++)
1114         if (I.isStruct())
1115           return true;;
1116       return false;
1117     };
1118     if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1119       break;
1120 
1121     // Conservatively track the demanded elements back through any vector
1122     // operands we may have.  We know there must be at least one, or we
1123     // wouldn't have a vector result to get here. Note that we intentionally
1124     // merge the undef bits here since gepping with either an undef base or
1125     // index results in undef.
1126     for (unsigned i = 0; i < I->getNumOperands(); i++) {
1127       if (isa<UndefValue>(I->getOperand(i))) {
1128         // If the entire vector is undefined, just return this info.
1129         UndefElts = EltMask;
1130         return nullptr;
1131       }
1132       if (I->getOperand(i)->getType()->isVectorTy()) {
1133         APInt UndefEltsOp(VWidth, 0);
1134         simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1135         UndefElts |= UndefEltsOp;
1136       }
1137     }
1138 
1139     break;
1140   }
1141   case Instruction::InsertElement: {
1142     // If this is a variable index, we don't know which element it overwrites.
1143     // demand exactly the same input as we produce.
1144     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1145     if (!Idx) {
1146       // Note that we can't propagate undef elt info, because we don't know
1147       // which elt is getting updated.
1148       simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1149       break;
1150     }
1151 
1152     // The element inserted overwrites whatever was there, so the input demanded
1153     // set is simpler than the output set.
1154     unsigned IdxNo = Idx->getZExtValue();
1155     APInt PreInsertDemandedElts = DemandedElts;
1156     if (IdxNo < VWidth)
1157       PreInsertDemandedElts.clearBit(IdxNo);
1158 
1159     // If we only demand the element that is being inserted and that element
1160     // was extracted from the same index in another vector with the same type,
1161     // replace this insert with that other vector.
1162     // Note: This is attempted before the call to simplifyAndSetOp because that
1163     //       may change UndefElts to a value that does not match with Vec.
1164     Value *Vec;
1165     if (PreInsertDemandedElts == 0 &&
1166         match(I->getOperand(1),
1167               m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) &&
1168         Vec->getType() == I->getType()) {
1169       return Vec;
1170     }
1171 
1172     simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1173 
1174     // If this is inserting an element that isn't demanded, remove this
1175     // insertelement.
1176     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1177       Worklist.push(I);
1178       return I->getOperand(0);
1179     }
1180 
1181     // The inserted element is defined.
1182     UndefElts.clearBit(IdxNo);
1183     break;
1184   }
1185   case Instruction::ShuffleVector: {
1186     auto *Shuffle = cast<ShuffleVectorInst>(I);
1187     assert(Shuffle->getOperand(0)->getType() ==
1188            Shuffle->getOperand(1)->getType() &&
1189            "Expected shuffle operands to have same type");
1190     unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType())
1191                            ->getNumElements();
1192     // Handle trivial case of a splat. Only check the first element of LHS
1193     // operand.
1194     if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
1195         DemandedElts.isAllOnesValue()) {
1196       if (!isa<UndefValue>(I->getOperand(1))) {
1197         I->setOperand(1, UndefValue::get(I->getOperand(1)->getType()));
1198         MadeChange = true;
1199       }
1200       APInt LeftDemanded(OpWidth, 1);
1201       APInt LHSUndefElts(OpWidth, 0);
1202       simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1203       if (LHSUndefElts[0])
1204         UndefElts = EltMask;
1205       else
1206         UndefElts.clearAllBits();
1207       break;
1208     }
1209 
1210     APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1211     for (unsigned i = 0; i < VWidth; i++) {
1212       if (DemandedElts[i]) {
1213         unsigned MaskVal = Shuffle->getMaskValue(i);
1214         if (MaskVal != -1u) {
1215           assert(MaskVal < OpWidth * 2 &&
1216                  "shufflevector mask index out of range!");
1217           if (MaskVal < OpWidth)
1218             LeftDemanded.setBit(MaskVal);
1219           else
1220             RightDemanded.setBit(MaskVal - OpWidth);
1221         }
1222       }
1223     }
1224 
1225     APInt LHSUndefElts(OpWidth, 0);
1226     simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1227 
1228     APInt RHSUndefElts(OpWidth, 0);
1229     simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1230 
1231     // If this shuffle does not change the vector length and the elements
1232     // demanded by this shuffle are an identity mask, then this shuffle is
1233     // unnecessary.
1234     //
1235     // We are assuming canonical form for the mask, so the source vector is
1236     // operand 0 and operand 1 is not used.
1237     //
1238     // Note that if an element is demanded and this shuffle mask is undefined
1239     // for that element, then the shuffle is not considered an identity
1240     // operation. The shuffle prevents poison from the operand vector from
1241     // leaking to the result by replacing poison with an undefined value.
1242     if (VWidth == OpWidth) {
1243       bool IsIdentityShuffle = true;
1244       for (unsigned i = 0; i < VWidth; i++) {
1245         unsigned MaskVal = Shuffle->getMaskValue(i);
1246         if (DemandedElts[i] && i != MaskVal) {
1247           IsIdentityShuffle = false;
1248           break;
1249         }
1250       }
1251       if (IsIdentityShuffle)
1252         return Shuffle->getOperand(0);
1253     }
1254 
1255     bool NewUndefElts = false;
1256     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1257     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1258     bool LHSUniform = true;
1259     bool RHSUniform = true;
1260     for (unsigned i = 0; i < VWidth; i++) {
1261       unsigned MaskVal = Shuffle->getMaskValue(i);
1262       if (MaskVal == -1u) {
1263         UndefElts.setBit(i);
1264       } else if (!DemandedElts[i]) {
1265         NewUndefElts = true;
1266         UndefElts.setBit(i);
1267       } else if (MaskVal < OpWidth) {
1268         if (LHSUndefElts[MaskVal]) {
1269           NewUndefElts = true;
1270           UndefElts.setBit(i);
1271         } else {
1272           LHSIdx = LHSIdx == -1u ? i : OpWidth;
1273           LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1274           LHSUniform = LHSUniform && (MaskVal == i);
1275         }
1276       } else {
1277         if (RHSUndefElts[MaskVal - OpWidth]) {
1278           NewUndefElts = true;
1279           UndefElts.setBit(i);
1280         } else {
1281           RHSIdx = RHSIdx == -1u ? i : OpWidth;
1282           RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1283           RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1284         }
1285       }
1286     }
1287 
1288     // Try to transform shuffle with constant vector and single element from
1289     // this constant vector to single insertelement instruction.
1290     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1291     // insertelement V, C[ci], ci-n
1292     if (OpWidth ==
1293         cast<FixedVectorType>(Shuffle->getType())->getNumElements()) {
1294       Value *Op = nullptr;
1295       Constant *Value = nullptr;
1296       unsigned Idx = -1u;
1297 
1298       // Find constant vector with the single element in shuffle (LHS or RHS).
1299       if (LHSIdx < OpWidth && RHSUniform) {
1300         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1301           Op = Shuffle->getOperand(1);
1302           Value = CV->getOperand(LHSValIdx);
1303           Idx = LHSIdx;
1304         }
1305       }
1306       if (RHSIdx < OpWidth && LHSUniform) {
1307         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1308           Op = Shuffle->getOperand(0);
1309           Value = CV->getOperand(RHSValIdx);
1310           Idx = RHSIdx;
1311         }
1312       }
1313       // Found constant vector with single element - convert to insertelement.
1314       if (Op && Value) {
1315         Instruction *New = InsertElementInst::Create(
1316             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1317             Shuffle->getName());
1318         InsertNewInstWith(New, *Shuffle);
1319         return New;
1320       }
1321     }
1322     if (NewUndefElts) {
1323       // Add additional discovered undefs.
1324       SmallVector<int, 16> Elts;
1325       for (unsigned i = 0; i < VWidth; ++i) {
1326         if (UndefElts[i])
1327           Elts.push_back(UndefMaskElem);
1328         else
1329           Elts.push_back(Shuffle->getMaskValue(i));
1330       }
1331       Shuffle->setShuffleMask(Elts);
1332       MadeChange = true;
1333     }
1334     break;
1335   }
1336   case Instruction::Select: {
1337     // If this is a vector select, try to transform the select condition based
1338     // on the current demanded elements.
1339     SelectInst *Sel = cast<SelectInst>(I);
1340     if (Sel->getCondition()->getType()->isVectorTy()) {
1341       // TODO: We are not doing anything with UndefElts based on this call.
1342       // It is overwritten below based on the other select operands. If an
1343       // element of the select condition is known undef, then we are free to
1344       // choose the output value from either arm of the select. If we know that
1345       // one of those values is undef, then the output can be undef.
1346       simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1347     }
1348 
1349     // Next, see if we can transform the arms of the select.
1350     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1351     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1352       for (unsigned i = 0; i < VWidth; i++) {
1353         // isNullValue() always returns false when called on a ConstantExpr.
1354         // Skip constant expressions to avoid propagating incorrect information.
1355         Constant *CElt = CV->getAggregateElement(i);
1356         if (isa<ConstantExpr>(CElt))
1357           continue;
1358         // TODO: If a select condition element is undef, we can demand from
1359         // either side. If one side is known undef, choosing that side would
1360         // propagate undef.
1361         if (CElt->isNullValue())
1362           DemandedLHS.clearBit(i);
1363         else
1364           DemandedRHS.clearBit(i);
1365       }
1366     }
1367 
1368     simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1369     simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1370 
1371     // Output elements are undefined if the element from each arm is undefined.
1372     // TODO: This can be improved. See comment in select condition handling.
1373     UndefElts = UndefElts2 & UndefElts3;
1374     break;
1375   }
1376   case Instruction::BitCast: {
1377     // Vector->vector casts only.
1378     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1379     if (!VTy) break;
1380     unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements();
1381     APInt InputDemandedElts(InVWidth, 0);
1382     UndefElts2 = APInt(InVWidth, 0);
1383     unsigned Ratio;
1384 
1385     if (VWidth == InVWidth) {
1386       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1387       // elements as are demanded of us.
1388       Ratio = 1;
1389       InputDemandedElts = DemandedElts;
1390     } else if ((VWidth % InVWidth) == 0) {
1391       // If the number of elements in the output is a multiple of the number of
1392       // elements in the input then an input element is live if any of the
1393       // corresponding output elements are live.
1394       Ratio = VWidth / InVWidth;
1395       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1396         if (DemandedElts[OutIdx])
1397           InputDemandedElts.setBit(OutIdx / Ratio);
1398     } else if ((InVWidth % VWidth) == 0) {
1399       // If the number of elements in the input is a multiple of the number of
1400       // elements in the output then an input element is live if the
1401       // corresponding output element is live.
1402       Ratio = InVWidth / VWidth;
1403       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1404         if (DemandedElts[InIdx / Ratio])
1405           InputDemandedElts.setBit(InIdx);
1406     } else {
1407       // Unsupported so far.
1408       break;
1409     }
1410 
1411     simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1412 
1413     if (VWidth == InVWidth) {
1414       UndefElts = UndefElts2;
1415     } else if ((VWidth % InVWidth) == 0) {
1416       // If the number of elements in the output is a multiple of the number of
1417       // elements in the input then an output element is undef if the
1418       // corresponding input element is undef.
1419       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1420         if (UndefElts2[OutIdx / Ratio])
1421           UndefElts.setBit(OutIdx);
1422     } else if ((InVWidth % VWidth) == 0) {
1423       // If the number of elements in the input is a multiple of the number of
1424       // elements in the output then an output element is undef if all of the
1425       // corresponding input elements are undef.
1426       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1427         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1428         if (SubUndef.countPopulation() == Ratio)
1429           UndefElts.setBit(OutIdx);
1430       }
1431     } else {
1432       llvm_unreachable("Unimp");
1433     }
1434     break;
1435   }
1436   case Instruction::FPTrunc:
1437   case Instruction::FPExt:
1438     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1439     break;
1440 
1441   case Instruction::Call: {
1442     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1443     if (!II) break;
1444     switch (II->getIntrinsicID()) {
1445     case Intrinsic::masked_gather: // fallthrough
1446     case Intrinsic::masked_load: {
1447       // Subtlety: If we load from a pointer, the pointer must be valid
1448       // regardless of whether the element is demanded.  Doing otherwise risks
1449       // segfaults which didn't exist in the original program.
1450       APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)),
1451         DemandedPassThrough(DemandedElts);
1452       if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1453         for (unsigned i = 0; i < VWidth; i++) {
1454           Constant *CElt = CV->getAggregateElement(i);
1455           if (CElt->isNullValue())
1456             DemandedPtrs.clearBit(i);
1457           else if (CElt->isAllOnesValue())
1458             DemandedPassThrough.clearBit(i);
1459         }
1460       if (II->getIntrinsicID() == Intrinsic::masked_gather)
1461         simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1462       simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1463 
1464       // Output elements are undefined if the element from both sources are.
1465       // TODO: can strengthen via mask as well.
1466       UndefElts = UndefElts2 & UndefElts3;
1467       break;
1468     }
1469     default: {
1470       // Handle target specific intrinsics
1471       Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
1472           *II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
1473           simplifyAndSetOp);
1474       if (V.hasValue())
1475         return V.getValue();
1476       break;
1477     }
1478     } // switch on IntrinsicID
1479     break;
1480   } // case Call
1481   } // switch on Opcode
1482 
1483   // TODO: We bail completely on integer div/rem and shifts because they have
1484   // UB/poison potential, but that should be refined.
1485   BinaryOperator *BO;
1486   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1487     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1488     simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1489 
1490     // Any change to an instruction with potential poison must clear those flags
1491     // because we can not guarantee those constraints now. Other analysis may
1492     // determine that it is safe to re-apply the flags.
1493     if (MadeChange)
1494       BO->dropPoisonGeneratingFlags();
1495 
1496     // Output elements are undefined if both are undefined. Consider things
1497     // like undef & 0. The result is known zero, not undef.
1498     UndefElts &= UndefElts2;
1499   }
1500 
1501   // If we've proven all of the lanes undef, return an undef value.
1502   // TODO: Intersect w/demanded lanes
1503   if (UndefElts.isAllOnesValue())
1504     return UndefValue::get(I->getType());;
1505 
1506   return MadeChange ? I : nullptr;
1507 }
1508