1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/GetElementPtrTypeIterator.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21 
22 using namespace llvm;
23 using namespace llvm::PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Check to see if the specified operand of the specified instruction is a
28 /// constant integer. If so, check to see if there are any bits set in the
29 /// constant that are not demanded. If so, shrink the constant and return true.
30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
31                                    const APInt &Demanded) {
32   assert(I && "No instruction?");
33   assert(OpNo < I->getNumOperands() && "Operand index too large");
34 
35   // The operand must be a constant integer or splat integer.
36   Value *Op = I->getOperand(OpNo);
37   const APInt *C;
38   if (!match(Op, m_APInt(C)))
39     return false;
40 
41   // If there are no bits set that aren't demanded, nothing to do.
42   if (C->isSubsetOf(Demanded))
43     return false;
44 
45   // This instruction is producing bits that are not demanded. Shrink the RHS.
46   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
47 
48   return true;
49 }
50 
51 
52 
53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54 /// the instruction has any properties that allow us to simplify its operands.
55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
56   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57   KnownBits Known(BitWidth);
58   APInt DemandedMask(APInt::getAllOnes(BitWidth));
59 
60   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
61                                      0, &Inst);
62   if (!V) return false;
63   if (V == &Inst) return true;
64   replaceInstUsesWith(Inst, V);
65   return true;
66 }
67 
68 /// This form of SimplifyDemandedBits simplifies the specified instruction
69 /// operand if possible, updating it in place. It returns true if it made any
70 /// change and false otherwise.
71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
72                                             const APInt &DemandedMask,
73                                             KnownBits &Known, unsigned Depth) {
74   Use &U = I->getOperandUse(OpNo);
75   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
76                                           Depth, I);
77   if (!NewVal) return false;
78   if (Instruction* OpInst = dyn_cast<Instruction>(U))
79     salvageDebugInfo(*OpInst);
80 
81   replaceUse(U, NewVal);
82   return true;
83 }
84 
85 /// This function attempts to replace V with a simpler value based on the
86 /// demanded bits. When this function is called, it is known that only the bits
87 /// set in DemandedMask of the result of V are ever used downstream.
88 /// Consequently, depending on the mask and V, it may be possible to replace V
89 /// with a constant or one of its operands. In such cases, this function does
90 /// the replacement and returns true. In all other cases, it returns false after
91 /// analyzing the expression and setting KnownOne and known to be one in the
92 /// expression. Known.Zero contains all the bits that are known to be zero in
93 /// the expression. These are provided to potentially allow the caller (which
94 /// might recursively be SimplifyDemandedBits itself) to simplify the
95 /// expression.
96 /// Known.One and Known.Zero always follow the invariant that:
97 ///   Known.One & Known.Zero == 0.
98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
101 /// be the same.
102 ///
103 /// This returns null if it did not change anything and it permits no
104 /// simplification.  This returns V itself if it did some simplification of V's
105 /// operands based on the information about what bits are demanded. This returns
106 /// some other non-null value if it found out that V is equal to another value
107 /// in the context where the specified bits are demanded, but not for all users.
108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
109                                                  KnownBits &Known,
110                                                  unsigned Depth,
111                                                  Instruction *CxtI) {
112   assert(V != nullptr && "Null pointer of Value???");
113   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
114   uint32_t BitWidth = DemandedMask.getBitWidth();
115   Type *VTy = V->getType();
116   assert(
117       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
118       Known.getBitWidth() == BitWidth &&
119       "Value *V, DemandedMask and Known must have same BitWidth");
120 
121   if (isa<Constant>(V)) {
122     computeKnownBits(V, Known, Depth, CxtI);
123     return nullptr;
124   }
125 
126   Known.resetAll();
127   if (DemandedMask.isZero()) // Not demanding any bits from V.
128     return UndefValue::get(VTy);
129 
130   if (Depth == MaxAnalysisRecursionDepth)
131     return nullptr;
132 
133   if (isa<ScalableVectorType>(VTy))
134     return nullptr;
135 
136   Instruction *I = dyn_cast<Instruction>(V);
137   if (!I) {
138     computeKnownBits(V, Known, Depth, CxtI);
139     return nullptr;        // Only analyze instructions.
140   }
141 
142   // If there are multiple uses of this value and we aren't at the root, then
143   // we can't do any simplifications of the operands, because DemandedMask
144   // only reflects the bits demanded by *one* of the users.
145   if (Depth != 0 && !I->hasOneUse())
146     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
147 
148   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
149 
150   // If this is the root being simplified, allow it to have multiple uses,
151   // just set the DemandedMask to all bits so that we can try to simplify the
152   // operands.  This allows visitTruncInst (for example) to simplify the
153   // operand of a trunc without duplicating all the logic below.
154   if (Depth == 0 && !V->hasOneUse())
155     DemandedMask.setAllBits();
156 
157   // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care
158   // about the high bits of the operands.
159   auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) {
160     unsigned NLZ = DemandedMask.countLeadingZeros();
161     // Right fill the mask of bits for the operands to demand the most
162     // significant bit and all those below it.
163     DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
164     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
165         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
166         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
167         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
168       if (NLZ > 0) {
169         // Disable the nsw and nuw flags here: We can no longer guarantee that
170         // we won't wrap after simplification. Removing the nsw/nuw flags is
171         // legal here because the top bit is not demanded.
172         I->setHasNoSignedWrap(false);
173         I->setHasNoUnsignedWrap(false);
174       }
175       return true;
176     }
177     return false;
178   };
179 
180   switch (I->getOpcode()) {
181   default:
182     computeKnownBits(I, Known, Depth, CxtI);
183     break;
184   case Instruction::And: {
185     // If either the LHS or the RHS are Zero, the result is zero.
186     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
187         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
188                              Depth + 1))
189       return I;
190     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
191     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
192 
193     Known = LHSKnown & RHSKnown;
194 
195     // If the client is only demanding bits that we know, return the known
196     // constant.
197     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
198       return Constant::getIntegerValue(VTy, Known.One);
199 
200     // If all of the demanded bits are known 1 on one side, return the other.
201     // These bits cannot contribute to the result of the 'and'.
202     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
203       return I->getOperand(0);
204     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
205       return I->getOperand(1);
206 
207     // If the RHS is a constant, see if we can simplify it.
208     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
209       return I;
210 
211     break;
212   }
213   case Instruction::Or: {
214     // If either the LHS or the RHS are One, the result is One.
215     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
216         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
217                              Depth + 1))
218       return I;
219     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
220     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
221 
222     Known = LHSKnown | RHSKnown;
223 
224     // If the client is only demanding bits that we know, return the known
225     // constant.
226     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
227       return Constant::getIntegerValue(VTy, Known.One);
228 
229     // If all of the demanded bits are known zero on one side, return the other.
230     // These bits cannot contribute to the result of the 'or'.
231     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
232       return I->getOperand(0);
233     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
234       return I->getOperand(1);
235 
236     // If the RHS is a constant, see if we can simplify it.
237     if (ShrinkDemandedConstant(I, 1, DemandedMask))
238       return I;
239 
240     break;
241   }
242   case Instruction::Xor: {
243     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
244         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
245       return I;
246     Value *LHS, *RHS;
247     if (DemandedMask == 1 &&
248         match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) &&
249         match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) {
250       // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1
251       IRBuilderBase::InsertPointGuard Guard(Builder);
252       Builder.SetInsertPoint(I);
253       auto *Xor = Builder.CreateXor(LHS, RHS);
254       return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor);
255     }
256 
257     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
258     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
259 
260     Known = LHSKnown ^ RHSKnown;
261 
262     // If the client is only demanding bits that we know, return the known
263     // constant.
264     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
265       return Constant::getIntegerValue(VTy, Known.One);
266 
267     // If all of the demanded bits are known zero on one side, return the other.
268     // These bits cannot contribute to the result of the 'xor'.
269     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
270       return I->getOperand(0);
271     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
272       return I->getOperand(1);
273 
274     // If all of the demanded bits are known to be zero on one side or the
275     // other, turn this into an *inclusive* or.
276     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
277     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
278       Instruction *Or =
279         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
280                                  I->getName());
281       return InsertNewInstWith(Or, *I);
282     }
283 
284     // If all of the demanded bits on one side are known, and all of the set
285     // bits on that side are also known to be set on the other side, turn this
286     // into an AND, as we know the bits will be cleared.
287     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
288     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
289         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
290       Constant *AndC = Constant::getIntegerValue(VTy,
291                                                  ~RHSKnown.One & DemandedMask);
292       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
293       return InsertNewInstWith(And, *I);
294     }
295 
296     // If the RHS is a constant, see if we can change it. Don't alter a -1
297     // constant because that's a canonical 'not' op, and that is better for
298     // combining, SCEV, and codegen.
299     const APInt *C;
300     if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) {
301       if ((*C | ~DemandedMask).isAllOnes()) {
302         // Force bits to 1 to create a 'not' op.
303         I->setOperand(1, ConstantInt::getAllOnesValue(VTy));
304         return I;
305       }
306       // If we can't turn this into a 'not', try to shrink the constant.
307       if (ShrinkDemandedConstant(I, 1, DemandedMask))
308         return I;
309     }
310 
311     // If our LHS is an 'and' and if it has one use, and if any of the bits we
312     // are flipping are known to be set, then the xor is just resetting those
313     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
314     // simplifying both of them.
315     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) {
316       ConstantInt *AndRHS, *XorRHS;
317       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
318           match(I->getOperand(1), m_ConstantInt(XorRHS)) &&
319           match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) &&
320           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
321         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
322 
323         Constant *AndC =
324             ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
325         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
326         InsertNewInstWith(NewAnd, *I);
327 
328         Constant *XorC =
329             ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
330         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
331         return InsertNewInstWith(NewXor, *I);
332       }
333     }
334     break;
335   }
336   case Instruction::Select: {
337     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
338         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
339       return I;
340     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
341     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
342 
343     // If the operands are constants, see if we can simplify them.
344     // This is similar to ShrinkDemandedConstant, but for a select we want to
345     // try to keep the selected constants the same as icmp value constants, if
346     // we can. This helps not break apart (or helps put back together)
347     // canonical patterns like min and max.
348     auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
349                                          const APInt &DemandedMask) {
350       const APInt *SelC;
351       if (!match(I->getOperand(OpNo), m_APInt(SelC)))
352         return false;
353 
354       // Get the constant out of the ICmp, if there is one.
355       // Only try this when exactly 1 operand is a constant (if both operands
356       // are constant, the icmp should eventually simplify). Otherwise, we may
357       // invert the transform that reduces set bits and infinite-loop.
358       Value *X;
359       const APInt *CmpC;
360       ICmpInst::Predicate Pred;
361       if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) ||
362           isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth())
363         return ShrinkDemandedConstant(I, OpNo, DemandedMask);
364 
365       // If the constant is already the same as the ICmp, leave it as-is.
366       if (*CmpC == *SelC)
367         return false;
368       // If the constants are not already the same, but can be with the demand
369       // mask, use the constant value from the ICmp.
370       if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
371         I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
372         return true;
373       }
374       return ShrinkDemandedConstant(I, OpNo, DemandedMask);
375     };
376     if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
377         CanonicalizeSelectConstant(I, 2, DemandedMask))
378       return I;
379 
380     // Only known if known in both the LHS and RHS.
381     Known = KnownBits::commonBits(LHSKnown, RHSKnown);
382     break;
383   }
384   case Instruction::Trunc: {
385     // If we do not demand the high bits of a right-shifted and truncated value,
386     // then we may be able to truncate it before the shift.
387     Value *X;
388     const APInt *C;
389     if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
390       // The shift amount must be valid (not poison) in the narrow type, and
391       // it must not be greater than the high bits demanded of the result.
392       if (C->ult(I->getType()->getScalarSizeInBits()) &&
393           C->ule(DemandedMask.countLeadingZeros())) {
394         // trunc (lshr X, C) --> lshr (trunc X), C
395         IRBuilderBase::InsertPointGuard Guard(Builder);
396         Builder.SetInsertPoint(I);
397         Value *Trunc = Builder.CreateTrunc(X, I->getType());
398         return Builder.CreateLShr(Trunc, C->getZExtValue());
399       }
400     }
401   }
402     LLVM_FALLTHROUGH;
403   case Instruction::ZExt: {
404     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
405 
406     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
407     KnownBits InputKnown(SrcBitWidth);
408     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
409       return I;
410     assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
411     Known = InputKnown.zextOrTrunc(BitWidth);
412     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
413     break;
414   }
415   case Instruction::BitCast:
416     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
417       return nullptr;  // vector->int or fp->int?
418 
419     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
420       if (VectorType *SrcVTy =
421             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
422         if (cast<FixedVectorType>(DstVTy)->getNumElements() !=
423             cast<FixedVectorType>(SrcVTy)->getNumElements())
424           // Don't touch a bitcast between vectors of different element counts.
425           return nullptr;
426       } else
427         // Don't touch a scalar-to-vector bitcast.
428         return nullptr;
429     } else if (I->getOperand(0)->getType()->isVectorTy())
430       // Don't touch a vector-to-scalar bitcast.
431       return nullptr;
432 
433     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
434       return I;
435     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
436     break;
437   case Instruction::SExt: {
438     // Compute the bits in the result that are not present in the input.
439     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
440 
441     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
442 
443     // If any of the sign extended bits are demanded, we know that the sign
444     // bit is demanded.
445     if (DemandedMask.getActiveBits() > SrcBitWidth)
446       InputDemandedBits.setBit(SrcBitWidth-1);
447 
448     KnownBits InputKnown(SrcBitWidth);
449     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
450       return I;
451 
452     // If the input sign bit is known zero, or if the NewBits are not demanded
453     // convert this into a zero extension.
454     if (InputKnown.isNonNegative() ||
455         DemandedMask.getActiveBits() <= SrcBitWidth) {
456       // Convert to ZExt cast.
457       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
458       return InsertNewInstWith(NewCast, *I);
459      }
460 
461     // If the sign bit of the input is known set or clear, then we know the
462     // top bits of the result.
463     Known = InputKnown.sext(BitWidth);
464     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
465     break;
466   }
467   case Instruction::Add:
468     if ((DemandedMask & 1) == 0) {
469       // If we do not need the low bit, try to convert bool math to logic:
470       // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
471       Value *X, *Y;
472       if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
473                            m_OneUse(m_SExt(m_Value(Y))))) &&
474           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
475         // Truth table for inputs and output signbits:
476         //       X:0 | X:1
477         //      ----------
478         // Y:0  |  0 | 0 |
479         // Y:1  | -1 | 0 |
480         //      ----------
481         IRBuilderBase::InsertPointGuard Guard(Builder);
482         Builder.SetInsertPoint(I);
483         Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
484         return Builder.CreateSExt(AndNot, VTy);
485       }
486 
487       // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
488       // TODO: Relax the one-use checks because we are removing an instruction?
489       if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))),
490                          m_OneUse(m_SExt(m_Value(Y))))) &&
491           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
492         // Truth table for inputs and output signbits:
493         //       X:0 | X:1
494         //      -----------
495         // Y:0  | -1 | -1 |
496         // Y:1  | -1 |  0 |
497         //      -----------
498         IRBuilderBase::InsertPointGuard Guard(Builder);
499         Builder.SetInsertPoint(I);
500         Value *Or = Builder.CreateOr(X, Y);
501         return Builder.CreateSExt(Or, VTy);
502       }
503     }
504     LLVM_FALLTHROUGH;
505   case Instruction::Sub: {
506     APInt DemandedFromOps;
507     if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps))
508       return I;
509 
510     // If we are known to be adding/subtracting zeros to every bit below
511     // the highest demanded bit, we just return the other side.
512     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
513       return I->getOperand(0);
514     // We can't do this with the LHS for subtraction, unless we are only
515     // demanding the LSB.
516     if ((I->getOpcode() == Instruction::Add || DemandedFromOps.isOne()) &&
517         DemandedFromOps.isSubsetOf(LHSKnown.Zero))
518       return I->getOperand(1);
519 
520     // Otherwise just compute the known bits of the result.
521     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
522     Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
523                                         NSW, LHSKnown, RHSKnown);
524     break;
525   }
526   case Instruction::Mul: {
527     APInt DemandedFromOps;
528     if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps))
529       return I;
530 
531     if (DemandedMask.isPowerOf2()) {
532       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
533       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
534       // odd (has LSB set), then the left-shifted low bit of X is the answer.
535       unsigned CTZ = DemandedMask.countTrailingZeros();
536       const APInt *C;
537       if (match(I->getOperand(1), m_APInt(C)) &&
538           C->countTrailingZeros() == CTZ) {
539         Constant *ShiftC = ConstantInt::get(I->getType(), CTZ);
540         Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC);
541         return InsertNewInstWith(Shl, *I);
542       }
543     }
544     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
545     // X * X is odd iff X is odd.
546     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
547     if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) {
548       Constant *One = ConstantInt::get(VTy, 1);
549       Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One);
550       return InsertNewInstWith(And1, *I);
551     }
552 
553     computeKnownBits(I, Known, Depth, CxtI);
554     break;
555   }
556   case Instruction::Shl: {
557     const APInt *SA;
558     if (match(I->getOperand(1), m_APInt(SA))) {
559       const APInt *ShrAmt;
560       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
561         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
562           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
563                                                     DemandedMask, Known))
564             return R;
565 
566       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
567       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
568 
569       // If the shift is NUW/NSW, then it does demand the high bits.
570       ShlOperator *IOp = cast<ShlOperator>(I);
571       if (IOp->hasNoSignedWrap())
572         DemandedMaskIn.setHighBits(ShiftAmt+1);
573       else if (IOp->hasNoUnsignedWrap())
574         DemandedMaskIn.setHighBits(ShiftAmt);
575 
576       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
577         return I;
578       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
579 
580       bool SignBitZero = Known.Zero.isSignBitSet();
581       bool SignBitOne = Known.One.isSignBitSet();
582       Known.Zero <<= ShiftAmt;
583       Known.One  <<= ShiftAmt;
584       // low bits known zero.
585       if (ShiftAmt)
586         Known.Zero.setLowBits(ShiftAmt);
587 
588       // If this shift has "nsw" keyword, then the result is either a poison
589       // value or has the same sign bit as the first operand.
590       if (IOp->hasNoSignedWrap()) {
591         if (SignBitZero)
592           Known.Zero.setSignBit();
593         else if (SignBitOne)
594           Known.One.setSignBit();
595         if (Known.hasConflict())
596           return UndefValue::get(I->getType());
597       }
598     } else {
599       // This is a variable shift, so we can't shift the demand mask by a known
600       // amount. But if we are not demanding high bits, then we are not
601       // demanding those bits from the pre-shifted operand either.
602       if (unsigned CTLZ = DemandedMask.countLeadingZeros()) {
603         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
604         if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) {
605           // We can't guarantee that nsw/nuw hold after simplifying the operand.
606           I->dropPoisonGeneratingFlags();
607           return I;
608         }
609       }
610       computeKnownBits(I, Known, Depth, CxtI);
611     }
612     break;
613   }
614   case Instruction::LShr: {
615     const APInt *SA;
616     if (match(I->getOperand(1), m_APInt(SA))) {
617       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
618 
619       // Unsigned shift right.
620       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
621 
622       // If the shift is exact, then it does demand the low bits (and knows that
623       // they are zero).
624       if (cast<LShrOperator>(I)->isExact())
625         DemandedMaskIn.setLowBits(ShiftAmt);
626 
627       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
628         return I;
629       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
630       Known.Zero.lshrInPlace(ShiftAmt);
631       Known.One.lshrInPlace(ShiftAmt);
632       if (ShiftAmt)
633         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
634     } else {
635       computeKnownBits(I, Known, Depth, CxtI);
636     }
637     break;
638   }
639   case Instruction::AShr: {
640     unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
641 
642     // If we only want bits that already match the signbit then we don't need
643     // to shift.
644     unsigned NumHiDemandedBits = BitWidth - DemandedMask.countTrailingZeros();
645     if (SignBits >= NumHiDemandedBits)
646       return I->getOperand(0);
647 
648     // If this is an arithmetic shift right and only the low-bit is set, we can
649     // always convert this into a logical shr, even if the shift amount is
650     // variable.  The low bit of the shift cannot be an input sign bit unless
651     // the shift amount is >= the size of the datatype, which is undefined.
652     if (DemandedMask.isOne()) {
653       // Perform the logical shift right.
654       Instruction *NewVal = BinaryOperator::CreateLShr(
655                         I->getOperand(0), I->getOperand(1), I->getName());
656       return InsertNewInstWith(NewVal, *I);
657     }
658 
659     const APInt *SA;
660     if (match(I->getOperand(1), m_APInt(SA))) {
661       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
662 
663       // Signed shift right.
664       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
665       // If any of the high bits are demanded, we should set the sign bit as
666       // demanded.
667       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
668         DemandedMaskIn.setSignBit();
669 
670       // If the shift is exact, then it does demand the low bits (and knows that
671       // they are zero).
672       if (cast<AShrOperator>(I)->isExact())
673         DemandedMaskIn.setLowBits(ShiftAmt);
674 
675       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
676         return I;
677 
678       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
679       // Compute the new bits that are at the top now plus sign bits.
680       APInt HighBits(APInt::getHighBitsSet(
681           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
682       Known.Zero.lshrInPlace(ShiftAmt);
683       Known.One.lshrInPlace(ShiftAmt);
684 
685       // If the input sign bit is known to be zero, or if none of the top bits
686       // are demanded, turn this into an unsigned shift right.
687       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
688       if (Known.Zero[BitWidth-ShiftAmt-1] ||
689           !DemandedMask.intersects(HighBits)) {
690         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
691                                                           I->getOperand(1));
692         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
693         return InsertNewInstWith(LShr, *I);
694       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
695         Known.One |= HighBits;
696       }
697     } else {
698       computeKnownBits(I, Known, Depth, CxtI);
699     }
700     break;
701   }
702   case Instruction::UDiv: {
703     // UDiv doesn't demand low bits that are zero in the divisor.
704     const APInt *SA;
705     if (match(I->getOperand(1), m_APInt(SA))) {
706       // If the shift is exact, then it does demand the low bits.
707       if (cast<UDivOperator>(I)->isExact())
708         break;
709 
710       // FIXME: Take the demanded mask of the result into account.
711       unsigned RHSTrailingZeros = SA->countTrailingZeros();
712       APInt DemandedMaskIn =
713           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
714       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
715         return I;
716 
717       // Propagate zero bits from the input.
718       Known.Zero.setHighBits(std::min(
719           BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
720     } else {
721       computeKnownBits(I, Known, Depth, CxtI);
722     }
723     break;
724   }
725   case Instruction::SRem: {
726     ConstantInt *Rem;
727     if (match(I->getOperand(1), m_ConstantInt(Rem))) {
728       // X % -1 demands all the bits because we don't want to introduce
729       // INT_MIN % -1 (== undef) by accident.
730       if (Rem->isMinusOne())
731         break;
732       APInt RA = Rem->getValue().abs();
733       if (RA.isPowerOf2()) {
734         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
735           return I->getOperand(0);
736 
737         APInt LowBits = RA - 1;
738         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
739         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
740           return I;
741 
742         // The low bits of LHS are unchanged by the srem.
743         Known.Zero = LHSKnown.Zero & LowBits;
744         Known.One = LHSKnown.One & LowBits;
745 
746         // If LHS is non-negative or has all low bits zero, then the upper bits
747         // are all zero.
748         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
749           Known.Zero |= ~LowBits;
750 
751         // If LHS is negative and not all low bits are zero, then the upper bits
752         // are all one.
753         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
754           Known.One |= ~LowBits;
755 
756         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
757         break;
758       }
759     }
760 
761     // The sign bit is the LHS's sign bit, except when the result of the
762     // remainder is zero.
763     if (DemandedMask.isSignBitSet()) {
764       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
765       // If it's known zero, our sign bit is also zero.
766       if (LHSKnown.isNonNegative())
767         Known.makeNonNegative();
768     }
769     break;
770   }
771   case Instruction::URem: {
772     KnownBits Known2(BitWidth);
773     APInt AllOnes = APInt::getAllOnes(BitWidth);
774     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
775         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
776       return I;
777 
778     unsigned Leaders = Known2.countMinLeadingZeros();
779     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
780     break;
781   }
782   case Instruction::Call: {
783     bool KnownBitsComputed = false;
784     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
785       switch (II->getIntrinsicID()) {
786       case Intrinsic::abs: {
787         if (DemandedMask == 1)
788           return II->getArgOperand(0);
789         break;
790       }
791       case Intrinsic::ctpop: {
792         // Checking if the number of clear bits is odd (parity)? If the type has
793         // an even number of bits, that's the same as checking if the number of
794         // set bits is odd, so we can eliminate the 'not' op.
795         Value *X;
796         if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 &&
797             match(II->getArgOperand(0), m_Not(m_Value(X)))) {
798           Function *Ctpop = Intrinsic::getDeclaration(
799               II->getModule(), Intrinsic::ctpop, II->getType());
800           return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I);
801         }
802         break;
803       }
804       case Intrinsic::bswap: {
805         // If the only bits demanded come from one byte of the bswap result,
806         // just shift the input byte into position to eliminate the bswap.
807         unsigned NLZ = DemandedMask.countLeadingZeros();
808         unsigned NTZ = DemandedMask.countTrailingZeros();
809 
810         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
811         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
812         // have 14 leading zeros, round to 8.
813         NLZ = alignDown(NLZ, 8);
814         NTZ = alignDown(NTZ, 8);
815         // If we need exactly one byte, we can do this transformation.
816         if (BitWidth - NLZ - NTZ == 8) {
817           // Replace this with either a left or right shift to get the byte into
818           // the right place.
819           Instruction *NewVal;
820           if (NLZ > NTZ)
821             NewVal = BinaryOperator::CreateLShr(
822                 II->getArgOperand(0),
823                 ConstantInt::get(I->getType(), NLZ - NTZ));
824           else
825             NewVal = BinaryOperator::CreateShl(
826                 II->getArgOperand(0),
827                 ConstantInt::get(I->getType(), NTZ - NLZ));
828           NewVal->takeName(I);
829           return InsertNewInstWith(NewVal, *I);
830         }
831         break;
832       }
833       case Intrinsic::fshr:
834       case Intrinsic::fshl: {
835         const APInt *SA;
836         if (!match(I->getOperand(2), m_APInt(SA)))
837           break;
838 
839         // Normalize to funnel shift left. APInt shifts of BitWidth are well-
840         // defined, so no need to special-case zero shifts here.
841         uint64_t ShiftAmt = SA->urem(BitWidth);
842         if (II->getIntrinsicID() == Intrinsic::fshr)
843           ShiftAmt = BitWidth - ShiftAmt;
844 
845         APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
846         APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
847         if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
848             SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
849           return I;
850 
851         Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
852                      RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
853         Known.One = LHSKnown.One.shl(ShiftAmt) |
854                     RHSKnown.One.lshr(BitWidth - ShiftAmt);
855         KnownBitsComputed = true;
856         break;
857       }
858       case Intrinsic::umax: {
859         // UMax(A, C) == A if ...
860         // The lowest non-zero bit of DemandMask is higher than the highest
861         // non-zero bit of C.
862         const APInt *C;
863         unsigned CTZ = DemandedMask.countTrailingZeros();
864         if (match(II->getArgOperand(1), m_APInt(C)) &&
865             CTZ >= C->getActiveBits())
866           return II->getArgOperand(0);
867         break;
868       }
869       case Intrinsic::umin: {
870         // UMin(A, C) == A if ...
871         // The lowest non-zero bit of DemandMask is higher than the highest
872         // non-one bit of C.
873         // This comes from using DeMorgans on the above umax example.
874         const APInt *C;
875         unsigned CTZ = DemandedMask.countTrailingZeros();
876         if (match(II->getArgOperand(1), m_APInt(C)) &&
877             CTZ >= C->getBitWidth() - C->countLeadingOnes())
878           return II->getArgOperand(0);
879         break;
880       }
881       default: {
882         // Handle target specific intrinsics
883         Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
884             *II, DemandedMask, Known, KnownBitsComputed);
885         if (V.hasValue())
886           return V.getValue();
887         break;
888       }
889       }
890     }
891 
892     if (!KnownBitsComputed)
893       computeKnownBits(V, Known, Depth, CxtI);
894     break;
895   }
896   }
897 
898   // If the client is only demanding bits that we know, return the known
899   // constant.
900   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
901     return Constant::getIntegerValue(VTy, Known.One);
902   return nullptr;
903 }
904 
905 /// Helper routine of SimplifyDemandedUseBits. It computes Known
906 /// bits. It also tries to handle simplifications that can be done based on
907 /// DemandedMask, but without modifying the Instruction.
908 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
909     Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
910     Instruction *CxtI) {
911   unsigned BitWidth = DemandedMask.getBitWidth();
912   Type *ITy = I->getType();
913 
914   KnownBits LHSKnown(BitWidth);
915   KnownBits RHSKnown(BitWidth);
916 
917   // Despite the fact that we can't simplify this instruction in all User's
918   // context, we can at least compute the known bits, and we can
919   // do simplifications that apply to *just* the one user if we know that
920   // this instruction has a simpler value in that context.
921   switch (I->getOpcode()) {
922   case Instruction::And: {
923     // If either the LHS or the RHS are Zero, the result is zero.
924     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
925     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
926                      CxtI);
927 
928     Known = LHSKnown & RHSKnown;
929 
930     // If the client is only demanding bits that we know, return the known
931     // constant.
932     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
933       return Constant::getIntegerValue(ITy, Known.One);
934 
935     // If all of the demanded bits are known 1 on one side, return the other.
936     // These bits cannot contribute to the result of the 'and' in this
937     // context.
938     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
939       return I->getOperand(0);
940     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
941       return I->getOperand(1);
942 
943     break;
944   }
945   case Instruction::Or: {
946     // We can simplify (X|Y) -> X or Y in the user's context if we know that
947     // only bits from X or Y are demanded.
948 
949     // If either the LHS or the RHS are One, the result is One.
950     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
951     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
952                      CxtI);
953 
954     Known = LHSKnown | RHSKnown;
955 
956     // If the client is only demanding bits that we know, return the known
957     // constant.
958     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
959       return Constant::getIntegerValue(ITy, Known.One);
960 
961     // If all of the demanded bits are known zero on one side, return the
962     // other.  These bits cannot contribute to the result of the 'or' in this
963     // context.
964     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
965       return I->getOperand(0);
966     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
967       return I->getOperand(1);
968 
969     break;
970   }
971   case Instruction::Xor: {
972     // We can simplify (X^Y) -> X or Y in the user's context if we know that
973     // only bits from X or Y are demanded.
974 
975     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
976     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
977                      CxtI);
978 
979     Known = LHSKnown ^ RHSKnown;
980 
981     // If the client is only demanding bits that we know, return the known
982     // constant.
983     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
984       return Constant::getIntegerValue(ITy, Known.One);
985 
986     // If all of the demanded bits are known zero on one side, return the
987     // other.
988     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
989       return I->getOperand(0);
990     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
991       return I->getOperand(1);
992 
993     break;
994   }
995   case Instruction::AShr: {
996     // Compute the Known bits to simplify things downstream.
997     computeKnownBits(I, Known, Depth, CxtI);
998 
999     // If this user is only demanding bits that we know, return the known
1000     // constant.
1001     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1002       return Constant::getIntegerValue(ITy, Known.One);
1003 
1004     // If the right shift operand 0 is a result of a left shift by the same
1005     // amount, this is probably a zero/sign extension, which may be unnecessary,
1006     // if we do not demand any of the new sign bits. So, return the original
1007     // operand instead.
1008     const APInt *ShiftRC;
1009     const APInt *ShiftLC;
1010     Value *X;
1011     unsigned BitWidth = DemandedMask.getBitWidth();
1012     if (match(I,
1013               m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) &&
1014         ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) &&
1015         DemandedMask.isSubsetOf(APInt::getLowBitsSet(
1016             BitWidth, BitWidth - ShiftRC->getZExtValue()))) {
1017       return X;
1018     }
1019 
1020     break;
1021   }
1022   default:
1023     // Compute the Known bits to simplify things downstream.
1024     computeKnownBits(I, Known, Depth, CxtI);
1025 
1026     // If this user is only demanding bits that we know, return the known
1027     // constant.
1028     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
1029       return Constant::getIntegerValue(ITy, Known.One);
1030 
1031     break;
1032   }
1033 
1034   return nullptr;
1035 }
1036 
1037 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
1038 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
1039 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
1040 /// of "C2-C1".
1041 ///
1042 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
1043 /// ..., bn}, without considering the specific value X is holding.
1044 /// This transformation is legal iff one of following conditions is hold:
1045 ///  1) All the bit in S are 0, in this case E1 == E2.
1046 ///  2) We don't care those bits in S, per the input DemandedMask.
1047 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
1048 ///     rest bits.
1049 ///
1050 /// Currently we only test condition 2).
1051 ///
1052 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
1053 /// not successful.
1054 Value *InstCombinerImpl::simplifyShrShlDemandedBits(
1055     Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
1056     const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
1057   if (!ShlOp1 || !ShrOp1)
1058     return nullptr; // No-op.
1059 
1060   Value *VarX = Shr->getOperand(0);
1061   Type *Ty = VarX->getType();
1062   unsigned BitWidth = Ty->getScalarSizeInBits();
1063   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
1064     return nullptr; // Undef.
1065 
1066   unsigned ShlAmt = ShlOp1.getZExtValue();
1067   unsigned ShrAmt = ShrOp1.getZExtValue();
1068 
1069   Known.One.clearAllBits();
1070   Known.Zero.setLowBits(ShlAmt - 1);
1071   Known.Zero &= DemandedMask;
1072 
1073   APInt BitMask1(APInt::getAllOnes(BitWidth));
1074   APInt BitMask2(APInt::getAllOnes(BitWidth));
1075 
1076   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
1077   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
1078                       (BitMask1.ashr(ShrAmt) << ShlAmt);
1079 
1080   if (ShrAmt <= ShlAmt) {
1081     BitMask2 <<= (ShlAmt - ShrAmt);
1082   } else {
1083     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
1084                         BitMask2.ashr(ShrAmt - ShlAmt);
1085   }
1086 
1087   // Check if condition-2 (see the comment to this function) is satified.
1088   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
1089     if (ShrAmt == ShlAmt)
1090       return VarX;
1091 
1092     if (!Shr->hasOneUse())
1093       return nullptr;
1094 
1095     BinaryOperator *New;
1096     if (ShrAmt < ShlAmt) {
1097       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
1098       New = BinaryOperator::CreateShl(VarX, Amt);
1099       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
1100       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
1101       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
1102     } else {
1103       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
1104       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
1105                      BinaryOperator::CreateAShr(VarX, Amt);
1106       if (cast<BinaryOperator>(Shr)->isExact())
1107         New->setIsExact(true);
1108     }
1109 
1110     return InsertNewInstWith(New, *Shl);
1111   }
1112 
1113   return nullptr;
1114 }
1115 
1116 /// The specified value produces a vector with any number of elements.
1117 /// This method analyzes which elements of the operand are undef or poison and
1118 /// returns that information in UndefElts.
1119 ///
1120 /// DemandedElts contains the set of elements that are actually used by the
1121 /// caller, and by default (AllowMultipleUsers equals false) the value is
1122 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1123 /// to true, DemandedElts refers to the union of sets of elements that are
1124 /// used by all callers.
1125 ///
1126 /// If the information about demanded elements can be used to simplify the
1127 /// operation, the operation is simplified, then the resultant value is
1128 /// returned.  This returns null if no change was made.
1129 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
1130                                                     APInt DemandedElts,
1131                                                     APInt &UndefElts,
1132                                                     unsigned Depth,
1133                                                     bool AllowMultipleUsers) {
1134   // Cannot analyze scalable type. The number of vector elements is not a
1135   // compile-time constant.
1136   if (isa<ScalableVectorType>(V->getType()))
1137     return nullptr;
1138 
1139   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
1140   APInt EltMask(APInt::getAllOnes(VWidth));
1141   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1142 
1143   if (match(V, m_Undef())) {
1144     // If the entire vector is undef or poison, just return this info.
1145     UndefElts = EltMask;
1146     return nullptr;
1147   }
1148 
1149   if (DemandedElts.isZero()) { // If nothing is demanded, provide poison.
1150     UndefElts = EltMask;
1151     return PoisonValue::get(V->getType());
1152   }
1153 
1154   UndefElts = 0;
1155 
1156   if (auto *C = dyn_cast<Constant>(V)) {
1157     // Check if this is identity. If so, return 0 since we are not simplifying
1158     // anything.
1159     if (DemandedElts.isAllOnes())
1160       return nullptr;
1161 
1162     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1163     Constant *Poison = PoisonValue::get(EltTy);
1164     SmallVector<Constant*, 16> Elts;
1165     for (unsigned i = 0; i != VWidth; ++i) {
1166       if (!DemandedElts[i]) {   // If not demanded, set to poison.
1167         Elts.push_back(Poison);
1168         UndefElts.setBit(i);
1169         continue;
1170       }
1171 
1172       Constant *Elt = C->getAggregateElement(i);
1173       if (!Elt) return nullptr;
1174 
1175       Elts.push_back(Elt);
1176       if (isa<UndefValue>(Elt))   // Already undef or poison.
1177         UndefElts.setBit(i);
1178     }
1179 
1180     // If we changed the constant, return it.
1181     Constant *NewCV = ConstantVector::get(Elts);
1182     return NewCV != C ? NewCV : nullptr;
1183   }
1184 
1185   // Limit search depth.
1186   if (Depth == 10)
1187     return nullptr;
1188 
1189   if (!AllowMultipleUsers) {
1190     // If multiple users are using the root value, proceed with
1191     // simplification conservatively assuming that all elements
1192     // are needed.
1193     if (!V->hasOneUse()) {
1194       // Quit if we find multiple users of a non-root value though.
1195       // They'll be handled when it's their turn to be visited by
1196       // the main instcombine process.
1197       if (Depth != 0)
1198         // TODO: Just compute the UndefElts information recursively.
1199         return nullptr;
1200 
1201       // Conservatively assume that all elements are needed.
1202       DemandedElts = EltMask;
1203     }
1204   }
1205 
1206   Instruction *I = dyn_cast<Instruction>(V);
1207   if (!I) return nullptr;        // Only analyze instructions.
1208 
1209   bool MadeChange = false;
1210   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1211                               APInt Demanded, APInt &Undef) {
1212     auto *II = dyn_cast<IntrinsicInst>(Inst);
1213     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1214     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1215       replaceOperand(*Inst, OpNum, V);
1216       MadeChange = true;
1217     }
1218   };
1219 
1220   APInt UndefElts2(VWidth, 0);
1221   APInt UndefElts3(VWidth, 0);
1222   switch (I->getOpcode()) {
1223   default: break;
1224 
1225   case Instruction::GetElementPtr: {
1226     // The LangRef requires that struct geps have all constant indices.  As
1227     // such, we can't convert any operand to partial undef.
1228     auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1229       for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1230            I != E; I++)
1231         if (I.isStruct())
1232           return true;
1233       return false;
1234     };
1235     if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1236       break;
1237 
1238     // Conservatively track the demanded elements back through any vector
1239     // operands we may have.  We know there must be at least one, or we
1240     // wouldn't have a vector result to get here. Note that we intentionally
1241     // merge the undef bits here since gepping with either an poison base or
1242     // index results in poison.
1243     for (unsigned i = 0; i < I->getNumOperands(); i++) {
1244       if (i == 0 ? match(I->getOperand(i), m_Undef())
1245                  : match(I->getOperand(i), m_Poison())) {
1246         // If the entire vector is undefined, just return this info.
1247         UndefElts = EltMask;
1248         return nullptr;
1249       }
1250       if (I->getOperand(i)->getType()->isVectorTy()) {
1251         APInt UndefEltsOp(VWidth, 0);
1252         simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1253         // gep(x, undef) is not undef, so skip considering idx ops here
1254         // Note that we could propagate poison, but we can't distinguish between
1255         // undef & poison bits ATM
1256         if (i == 0)
1257           UndefElts |= UndefEltsOp;
1258       }
1259     }
1260 
1261     break;
1262   }
1263   case Instruction::InsertElement: {
1264     // If this is a variable index, we don't know which element it overwrites.
1265     // demand exactly the same input as we produce.
1266     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1267     if (!Idx) {
1268       // Note that we can't propagate undef elt info, because we don't know
1269       // which elt is getting updated.
1270       simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1271       break;
1272     }
1273 
1274     // The element inserted overwrites whatever was there, so the input demanded
1275     // set is simpler than the output set.
1276     unsigned IdxNo = Idx->getZExtValue();
1277     APInt PreInsertDemandedElts = DemandedElts;
1278     if (IdxNo < VWidth)
1279       PreInsertDemandedElts.clearBit(IdxNo);
1280 
1281     // If we only demand the element that is being inserted and that element
1282     // was extracted from the same index in another vector with the same type,
1283     // replace this insert with that other vector.
1284     // Note: This is attempted before the call to simplifyAndSetOp because that
1285     //       may change UndefElts to a value that does not match with Vec.
1286     Value *Vec;
1287     if (PreInsertDemandedElts == 0 &&
1288         match(I->getOperand(1),
1289               m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) &&
1290         Vec->getType() == I->getType()) {
1291       return Vec;
1292     }
1293 
1294     simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1295 
1296     // If this is inserting an element that isn't demanded, remove this
1297     // insertelement.
1298     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1299       Worklist.push(I);
1300       return I->getOperand(0);
1301     }
1302 
1303     // The inserted element is defined.
1304     UndefElts.clearBit(IdxNo);
1305     break;
1306   }
1307   case Instruction::ShuffleVector: {
1308     auto *Shuffle = cast<ShuffleVectorInst>(I);
1309     assert(Shuffle->getOperand(0)->getType() ==
1310            Shuffle->getOperand(1)->getType() &&
1311            "Expected shuffle operands to have same type");
1312     unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType())
1313                            ->getNumElements();
1314     // Handle trivial case of a splat. Only check the first element of LHS
1315     // operand.
1316     if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
1317         DemandedElts.isAllOnes()) {
1318       if (!match(I->getOperand(1), m_Undef())) {
1319         I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType()));
1320         MadeChange = true;
1321       }
1322       APInt LeftDemanded(OpWidth, 1);
1323       APInt LHSUndefElts(OpWidth, 0);
1324       simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1325       if (LHSUndefElts[0])
1326         UndefElts = EltMask;
1327       else
1328         UndefElts.clearAllBits();
1329       break;
1330     }
1331 
1332     APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1333     for (unsigned i = 0; i < VWidth; i++) {
1334       if (DemandedElts[i]) {
1335         unsigned MaskVal = Shuffle->getMaskValue(i);
1336         if (MaskVal != -1u) {
1337           assert(MaskVal < OpWidth * 2 &&
1338                  "shufflevector mask index out of range!");
1339           if (MaskVal < OpWidth)
1340             LeftDemanded.setBit(MaskVal);
1341           else
1342             RightDemanded.setBit(MaskVal - OpWidth);
1343         }
1344       }
1345     }
1346 
1347     APInt LHSUndefElts(OpWidth, 0);
1348     simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1349 
1350     APInt RHSUndefElts(OpWidth, 0);
1351     simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1352 
1353     // If this shuffle does not change the vector length and the elements
1354     // demanded by this shuffle are an identity mask, then this shuffle is
1355     // unnecessary.
1356     //
1357     // We are assuming canonical form for the mask, so the source vector is
1358     // operand 0 and operand 1 is not used.
1359     //
1360     // Note that if an element is demanded and this shuffle mask is undefined
1361     // for that element, then the shuffle is not considered an identity
1362     // operation. The shuffle prevents poison from the operand vector from
1363     // leaking to the result by replacing poison with an undefined value.
1364     if (VWidth == OpWidth) {
1365       bool IsIdentityShuffle = true;
1366       for (unsigned i = 0; i < VWidth; i++) {
1367         unsigned MaskVal = Shuffle->getMaskValue(i);
1368         if (DemandedElts[i] && i != MaskVal) {
1369           IsIdentityShuffle = false;
1370           break;
1371         }
1372       }
1373       if (IsIdentityShuffle)
1374         return Shuffle->getOperand(0);
1375     }
1376 
1377     bool NewUndefElts = false;
1378     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1379     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1380     bool LHSUniform = true;
1381     bool RHSUniform = true;
1382     for (unsigned i = 0; i < VWidth; i++) {
1383       unsigned MaskVal = Shuffle->getMaskValue(i);
1384       if (MaskVal == -1u) {
1385         UndefElts.setBit(i);
1386       } else if (!DemandedElts[i]) {
1387         NewUndefElts = true;
1388         UndefElts.setBit(i);
1389       } else if (MaskVal < OpWidth) {
1390         if (LHSUndefElts[MaskVal]) {
1391           NewUndefElts = true;
1392           UndefElts.setBit(i);
1393         } else {
1394           LHSIdx = LHSIdx == -1u ? i : OpWidth;
1395           LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1396           LHSUniform = LHSUniform && (MaskVal == i);
1397         }
1398       } else {
1399         if (RHSUndefElts[MaskVal - OpWidth]) {
1400           NewUndefElts = true;
1401           UndefElts.setBit(i);
1402         } else {
1403           RHSIdx = RHSIdx == -1u ? i : OpWidth;
1404           RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1405           RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1406         }
1407       }
1408     }
1409 
1410     // Try to transform shuffle with constant vector and single element from
1411     // this constant vector to single insertelement instruction.
1412     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1413     // insertelement V, C[ci], ci-n
1414     if (OpWidth ==
1415         cast<FixedVectorType>(Shuffle->getType())->getNumElements()) {
1416       Value *Op = nullptr;
1417       Constant *Value = nullptr;
1418       unsigned Idx = -1u;
1419 
1420       // Find constant vector with the single element in shuffle (LHS or RHS).
1421       if (LHSIdx < OpWidth && RHSUniform) {
1422         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1423           Op = Shuffle->getOperand(1);
1424           Value = CV->getOperand(LHSValIdx);
1425           Idx = LHSIdx;
1426         }
1427       }
1428       if (RHSIdx < OpWidth && LHSUniform) {
1429         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1430           Op = Shuffle->getOperand(0);
1431           Value = CV->getOperand(RHSValIdx);
1432           Idx = RHSIdx;
1433         }
1434       }
1435       // Found constant vector with single element - convert to insertelement.
1436       if (Op && Value) {
1437         Instruction *New = InsertElementInst::Create(
1438             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1439             Shuffle->getName());
1440         InsertNewInstWith(New, *Shuffle);
1441         return New;
1442       }
1443     }
1444     if (NewUndefElts) {
1445       // Add additional discovered undefs.
1446       SmallVector<int, 16> Elts;
1447       for (unsigned i = 0; i < VWidth; ++i) {
1448         if (UndefElts[i])
1449           Elts.push_back(UndefMaskElem);
1450         else
1451           Elts.push_back(Shuffle->getMaskValue(i));
1452       }
1453       Shuffle->setShuffleMask(Elts);
1454       MadeChange = true;
1455     }
1456     break;
1457   }
1458   case Instruction::Select: {
1459     // If this is a vector select, try to transform the select condition based
1460     // on the current demanded elements.
1461     SelectInst *Sel = cast<SelectInst>(I);
1462     if (Sel->getCondition()->getType()->isVectorTy()) {
1463       // TODO: We are not doing anything with UndefElts based on this call.
1464       // It is overwritten below based on the other select operands. If an
1465       // element of the select condition is known undef, then we are free to
1466       // choose the output value from either arm of the select. If we know that
1467       // one of those values is undef, then the output can be undef.
1468       simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1469     }
1470 
1471     // Next, see if we can transform the arms of the select.
1472     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1473     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1474       for (unsigned i = 0; i < VWidth; i++) {
1475         // isNullValue() always returns false when called on a ConstantExpr.
1476         // Skip constant expressions to avoid propagating incorrect information.
1477         Constant *CElt = CV->getAggregateElement(i);
1478         if (isa<ConstantExpr>(CElt))
1479           continue;
1480         // TODO: If a select condition element is undef, we can demand from
1481         // either side. If one side is known undef, choosing that side would
1482         // propagate undef.
1483         if (CElt->isNullValue())
1484           DemandedLHS.clearBit(i);
1485         else
1486           DemandedRHS.clearBit(i);
1487       }
1488     }
1489 
1490     simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1491     simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1492 
1493     // Output elements are undefined if the element from each arm is undefined.
1494     // TODO: This can be improved. See comment in select condition handling.
1495     UndefElts = UndefElts2 & UndefElts3;
1496     break;
1497   }
1498   case Instruction::BitCast: {
1499     // Vector->vector casts only.
1500     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1501     if (!VTy) break;
1502     unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements();
1503     APInt InputDemandedElts(InVWidth, 0);
1504     UndefElts2 = APInt(InVWidth, 0);
1505     unsigned Ratio;
1506 
1507     if (VWidth == InVWidth) {
1508       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1509       // elements as are demanded of us.
1510       Ratio = 1;
1511       InputDemandedElts = DemandedElts;
1512     } else if ((VWidth % InVWidth) == 0) {
1513       // If the number of elements in the output is a multiple of the number of
1514       // elements in the input then an input element is live if any of the
1515       // corresponding output elements are live.
1516       Ratio = VWidth / InVWidth;
1517       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1518         if (DemandedElts[OutIdx])
1519           InputDemandedElts.setBit(OutIdx / Ratio);
1520     } else if ((InVWidth % VWidth) == 0) {
1521       // If the number of elements in the input is a multiple of the number of
1522       // elements in the output then an input element is live if the
1523       // corresponding output element is live.
1524       Ratio = InVWidth / VWidth;
1525       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1526         if (DemandedElts[InIdx / Ratio])
1527           InputDemandedElts.setBit(InIdx);
1528     } else {
1529       // Unsupported so far.
1530       break;
1531     }
1532 
1533     simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1534 
1535     if (VWidth == InVWidth) {
1536       UndefElts = UndefElts2;
1537     } else if ((VWidth % InVWidth) == 0) {
1538       // If the number of elements in the output is a multiple of the number of
1539       // elements in the input then an output element is undef if the
1540       // corresponding input element is undef.
1541       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1542         if (UndefElts2[OutIdx / Ratio])
1543           UndefElts.setBit(OutIdx);
1544     } else if ((InVWidth % VWidth) == 0) {
1545       // If the number of elements in the input is a multiple of the number of
1546       // elements in the output then an output element is undef if all of the
1547       // corresponding input elements are undef.
1548       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1549         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1550         if (SubUndef.countPopulation() == Ratio)
1551           UndefElts.setBit(OutIdx);
1552       }
1553     } else {
1554       llvm_unreachable("Unimp");
1555     }
1556     break;
1557   }
1558   case Instruction::FPTrunc:
1559   case Instruction::FPExt:
1560     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1561     break;
1562 
1563   case Instruction::Call: {
1564     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1565     if (!II) break;
1566     switch (II->getIntrinsicID()) {
1567     case Intrinsic::masked_gather: // fallthrough
1568     case Intrinsic::masked_load: {
1569       // Subtlety: If we load from a pointer, the pointer must be valid
1570       // regardless of whether the element is demanded.  Doing otherwise risks
1571       // segfaults which didn't exist in the original program.
1572       APInt DemandedPtrs(APInt::getAllOnes(VWidth)),
1573           DemandedPassThrough(DemandedElts);
1574       if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1575         for (unsigned i = 0; i < VWidth; i++) {
1576           Constant *CElt = CV->getAggregateElement(i);
1577           if (CElt->isNullValue())
1578             DemandedPtrs.clearBit(i);
1579           else if (CElt->isAllOnesValue())
1580             DemandedPassThrough.clearBit(i);
1581         }
1582       if (II->getIntrinsicID() == Intrinsic::masked_gather)
1583         simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1584       simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1585 
1586       // Output elements are undefined if the element from both sources are.
1587       // TODO: can strengthen via mask as well.
1588       UndefElts = UndefElts2 & UndefElts3;
1589       break;
1590     }
1591     default: {
1592       // Handle target specific intrinsics
1593       Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
1594           *II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
1595           simplifyAndSetOp);
1596       if (V.hasValue())
1597         return V.getValue();
1598       break;
1599     }
1600     } // switch on IntrinsicID
1601     break;
1602   } // case Call
1603   } // switch on Opcode
1604 
1605   // TODO: We bail completely on integer div/rem and shifts because they have
1606   // UB/poison potential, but that should be refined.
1607   BinaryOperator *BO;
1608   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1609     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1610     simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1611 
1612     // Output elements are undefined if both are undefined. Consider things
1613     // like undef & 0. The result is known zero, not undef.
1614     UndefElts &= UndefElts2;
1615   }
1616 
1617   // If we've proven all of the lanes undef, return an undef value.
1618   // TODO: Intersect w/demanded lanes
1619   if (UndefElts.isAllOnes())
1620     return UndefValue::get(I->getType());;
1621 
1622   return MadeChange ? I : nullptr;
1623 }
1624