1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains logic for simplifying instructions based on information 11 // about how they are used. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombineInternal.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 21 using namespace llvm; 22 using namespace llvm::PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 /// Check to see if the specified operand of the specified instruction is a 27 /// constant integer. If so, check to see if there are any bits set in the 28 /// constant that are not demanded. If so, shrink the constant and return true. 29 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 30 const APInt &Demanded) { 31 assert(I && "No instruction?"); 32 assert(OpNo < I->getNumOperands() && "Operand index too large"); 33 34 // The operand must be a constant integer or splat integer. 35 Value *Op = I->getOperand(OpNo); 36 const APInt *C; 37 if (!match(Op, m_APInt(C))) 38 return false; 39 40 // If there are no bits set that aren't demanded, nothing to do. 41 if (C->isSubsetOf(Demanded)) 42 return false; 43 44 // This instruction is producing bits that are not demanded. Shrink the RHS. 45 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 46 47 return true; 48 } 49 50 51 52 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 53 /// the instruction has any properties that allow us to simplify its operands. 54 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 55 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 56 KnownBits Known(BitWidth); 57 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 58 59 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 60 0, &Inst); 61 if (!V) return false; 62 if (V == &Inst) return true; 63 replaceInstUsesWith(Inst, V); 64 return true; 65 } 66 67 /// This form of SimplifyDemandedBits simplifies the specified instruction 68 /// operand if possible, updating it in place. It returns true if it made any 69 /// change and false otherwise. 70 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 71 const APInt &DemandedMask, 72 KnownBits &Known, 73 unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 U = NewVal; 79 return true; 80 } 81 82 83 /// This function attempts to replace V with a simpler value based on the 84 /// demanded bits. When this function is called, it is known that only the bits 85 /// set in DemandedMask of the result of V are ever used downstream. 86 /// Consequently, depending on the mask and V, it may be possible to replace V 87 /// with a constant or one of its operands. In such cases, this function does 88 /// the replacement and returns true. In all other cases, it returns false after 89 /// analyzing the expression and setting KnownOne and known to be one in the 90 /// expression. Known.Zero contains all the bits that are known to be zero in 91 /// the expression. These are provided to potentially allow the caller (which 92 /// might recursively be SimplifyDemandedBits itself) to simplify the 93 /// expression. 94 /// Known.One and Known.Zero always follow the invariant that: 95 /// Known.One & Known.Zero == 0. 96 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 97 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 98 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 99 /// be the same. 100 /// 101 /// This returns null if it did not change anything and it permits no 102 /// simplification. This returns V itself if it did some simplification of V's 103 /// operands based on the information about what bits are demanded. This returns 104 /// some other non-null value if it found out that V is equal to another value 105 /// in the context where the specified bits are demanded, but not for all users. 106 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 107 KnownBits &Known, unsigned Depth, 108 Instruction *CxtI) { 109 assert(V != nullptr && "Null pointer of Value???"); 110 assert(Depth <= 6 && "Limit Search Depth"); 111 uint32_t BitWidth = DemandedMask.getBitWidth(); 112 Type *VTy = V->getType(); 113 assert( 114 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 115 Known.getBitWidth() == BitWidth && 116 "Value *V, DemandedMask and Known must have same BitWidth"); 117 118 if (isa<Constant>(V)) { 119 computeKnownBits(V, Known, Depth, CxtI); 120 return nullptr; 121 } 122 123 Known.resetAll(); 124 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 125 return UndefValue::get(VTy); 126 127 if (Depth == 6) // Limit search depth. 128 return nullptr; 129 130 Instruction *I = dyn_cast<Instruction>(V); 131 if (!I) { 132 computeKnownBits(V, Known, Depth, CxtI); 133 return nullptr; // Only analyze instructions. 134 } 135 136 // If there are multiple uses of this value and we aren't at the root, then 137 // we can't do any simplifications of the operands, because DemandedMask 138 // only reflects the bits demanded by *one* of the users. 139 if (Depth != 0 && !I->hasOneUse()) 140 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 141 142 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 143 144 // If this is the root being simplified, allow it to have multiple uses, 145 // just set the DemandedMask to all bits so that we can try to simplify the 146 // operands. This allows visitTruncInst (for example) to simplify the 147 // operand of a trunc without duplicating all the logic below. 148 if (Depth == 0 && !V->hasOneUse()) 149 DemandedMask.setAllBits(); 150 151 switch (I->getOpcode()) { 152 default: 153 computeKnownBits(I, Known, Depth, CxtI); 154 break; 155 case Instruction::And: { 156 // If either the LHS or the RHS are Zero, the result is zero. 157 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 158 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 159 Depth + 1)) 160 return I; 161 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 162 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 163 164 // Output known-0 are known to be clear if zero in either the LHS | RHS. 165 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 166 // Output known-1 bits are only known if set in both the LHS & RHS. 167 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 168 169 // If the client is only demanding bits that we know, return the known 170 // constant. 171 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 172 return Constant::getIntegerValue(VTy, IKnownOne); 173 174 // If all of the demanded bits are known 1 on one side, return the other. 175 // These bits cannot contribute to the result of the 'and'. 176 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 177 return I->getOperand(0); 178 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 179 return I->getOperand(1); 180 181 // If the RHS is a constant, see if we can simplify it. 182 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 183 return I; 184 185 Known.Zero = std::move(IKnownZero); 186 Known.One = std::move(IKnownOne); 187 break; 188 } 189 case Instruction::Or: { 190 // If either the LHS or the RHS are One, the result is One. 191 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 192 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 193 Depth + 1)) 194 return I; 195 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 196 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 197 198 // Output known-0 bits are only known if clear in both the LHS & RHS. 199 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 200 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 201 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 202 203 // If the client is only demanding bits that we know, return the known 204 // constant. 205 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 206 return Constant::getIntegerValue(VTy, IKnownOne); 207 208 // If all of the demanded bits are known zero on one side, return the other. 209 // These bits cannot contribute to the result of the 'or'. 210 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 211 return I->getOperand(0); 212 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 213 return I->getOperand(1); 214 215 // If the RHS is a constant, see if we can simplify it. 216 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 217 return I; 218 219 Known.Zero = std::move(IKnownZero); 220 Known.One = std::move(IKnownOne); 221 break; 222 } 223 case Instruction::Xor: { 224 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 225 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 226 return I; 227 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 228 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 229 230 // Output known-0 bits are known if clear or set in both the LHS & RHS. 231 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 232 (RHSKnown.One & LHSKnown.One); 233 // Output known-1 are known to be set if set in only one of the LHS, RHS. 234 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 235 (RHSKnown.One & LHSKnown.Zero); 236 237 // If the client is only demanding bits that we know, return the known 238 // constant. 239 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 240 return Constant::getIntegerValue(VTy, IKnownOne); 241 242 // If all of the demanded bits are known zero on one side, return the other. 243 // These bits cannot contribute to the result of the 'xor'. 244 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 245 return I->getOperand(0); 246 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 247 return I->getOperand(1); 248 249 // If all of the demanded bits are known to be zero on one side or the 250 // other, turn this into an *inclusive* or. 251 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 252 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 253 Instruction *Or = 254 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 255 I->getName()); 256 return InsertNewInstWith(Or, *I); 257 } 258 259 // If all of the demanded bits on one side are known, and all of the set 260 // bits on that side are also known to be set on the other side, turn this 261 // into an AND, as we know the bits will be cleared. 262 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 263 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 264 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 265 Constant *AndC = Constant::getIntegerValue(VTy, 266 ~RHSKnown.One & DemandedMask); 267 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 268 return InsertNewInstWith(And, *I); 269 } 270 271 // If the RHS is a constant, see if we can simplify it. 272 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 273 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 274 return I; 275 276 // If our LHS is an 'and' and if it has one use, and if any of the bits we 277 // are flipping are known to be set, then the xor is just resetting those 278 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 279 // simplifying both of them. 280 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 281 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 282 isa<ConstantInt>(I->getOperand(1)) && 283 isa<ConstantInt>(LHSInst->getOperand(1)) && 284 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 285 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 286 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 287 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 288 289 Constant *AndC = 290 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 291 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 292 InsertNewInstWith(NewAnd, *I); 293 294 Constant *XorC = 295 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 296 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 297 return InsertNewInstWith(NewXor, *I); 298 } 299 300 // Output known-0 bits are known if clear or set in both the LHS & RHS. 301 Known.Zero = std::move(IKnownZero); 302 // Output known-1 are known to be set if set in only one of the LHS, RHS. 303 Known.One = std::move(IKnownOne); 304 break; 305 } 306 case Instruction::Select: 307 // If this is a select as part of a min/max pattern, don't simplify any 308 // further in case we break the structure. 309 Value *LHS, *RHS; 310 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN) 311 return nullptr; 312 313 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 314 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 315 return I; 316 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 317 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 318 319 // If the operands are constants, see if we can simplify them. 320 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 321 ShrinkDemandedConstant(I, 2, DemandedMask)) 322 return I; 323 324 // Only known if known in both the LHS and RHS. 325 Known.One = RHSKnown.One & LHSKnown.One; 326 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 327 break; 328 case Instruction::ZExt: 329 case Instruction::Trunc: { 330 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 331 332 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 333 KnownBits InputKnown(SrcBitWidth); 334 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 335 return I; 336 Known = Known.zextOrTrunc(BitWidth); 337 // Any top bits are known to be zero. 338 if (BitWidth > SrcBitWidth) 339 Known.Zero.setBitsFrom(SrcBitWidth); 340 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 341 break; 342 } 343 case Instruction::BitCast: 344 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 345 return nullptr; // vector->int or fp->int? 346 347 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 348 if (VectorType *SrcVTy = 349 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 350 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 351 // Don't touch a bitcast between vectors of different element counts. 352 return nullptr; 353 } else 354 // Don't touch a scalar-to-vector bitcast. 355 return nullptr; 356 } else if (I->getOperand(0)->getType()->isVectorTy()) 357 // Don't touch a vector-to-scalar bitcast. 358 return nullptr; 359 360 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 361 return I; 362 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 363 break; 364 case Instruction::SExt: { 365 // Compute the bits in the result that are not present in the input. 366 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 367 368 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 369 370 // If any of the sign extended bits are demanded, we know that the sign 371 // bit is demanded. 372 if (DemandedMask.getActiveBits() > SrcBitWidth) 373 InputDemandedBits.setBit(SrcBitWidth-1); 374 375 KnownBits InputKnown(SrcBitWidth); 376 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 377 return I; 378 379 // If the input sign bit is known zero, or if the NewBits are not demanded 380 // convert this into a zero extension. 381 if (InputKnown.isNonNegative() || 382 DemandedMask.getActiveBits() <= SrcBitWidth) { 383 // Convert to ZExt cast. 384 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 385 return InsertNewInstWith(NewCast, *I); 386 } 387 388 // If the sign bit of the input is known set or clear, then we know the 389 // top bits of the result. 390 Known = InputKnown.sext(BitWidth); 391 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 392 break; 393 } 394 case Instruction::Add: 395 case Instruction::Sub: { 396 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 397 /// about the high bits of the operands. 398 unsigned NLZ = DemandedMask.countLeadingZeros(); 399 if (NLZ > 0) { 400 // Right fill the mask of bits for this ADD/SUB to demand the most 401 // significant bit and all those below it. 402 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 403 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 404 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 405 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 406 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 407 // Disable the nsw and nuw flags here: We can no longer guarantee that 408 // we won't wrap after simplification. Removing the nsw/nuw flags is 409 // legal here because the top bit is not demanded. 410 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 411 BinOP.setHasNoSignedWrap(false); 412 BinOP.setHasNoUnsignedWrap(false); 413 return I; 414 } 415 416 // If we are known to be adding/subtracting zeros to every bit below 417 // the highest demanded bit, we just return the other side. 418 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 419 return I->getOperand(0); 420 // We can't do this with the LHS for subtraction, unless we are only 421 // demanding the LSB. 422 if ((I->getOpcode() == Instruction::Add || 423 DemandedFromOps.isOneValue()) && 424 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 425 return I->getOperand(1); 426 } 427 428 // Otherwise just hand the add/sub off to computeKnownBits to fill in 429 // the known zeros and ones. 430 computeKnownBits(V, Known, Depth, CxtI); 431 break; 432 } 433 case Instruction::Shl: { 434 const APInt *SA; 435 if (match(I->getOperand(1), m_APInt(SA))) { 436 const APInt *ShrAmt; 437 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) { 438 Instruction *Shr = cast<Instruction>(I->getOperand(0)); 439 if (Value *R = simplifyShrShlDemandedBits( 440 Shr, *ShrAmt, I, *SA, DemandedMask, Known)) 441 return R; 442 } 443 444 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 445 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 446 447 // If the shift is NUW/NSW, then it does demand the high bits. 448 ShlOperator *IOp = cast<ShlOperator>(I); 449 if (IOp->hasNoSignedWrap()) 450 DemandedMaskIn.setHighBits(ShiftAmt+1); 451 else if (IOp->hasNoUnsignedWrap()) 452 DemandedMaskIn.setHighBits(ShiftAmt); 453 454 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 455 return I; 456 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 457 Known.Zero <<= ShiftAmt; 458 Known.One <<= ShiftAmt; 459 // low bits known zero. 460 if (ShiftAmt) 461 Known.Zero.setLowBits(ShiftAmt); 462 } 463 break; 464 } 465 case Instruction::LShr: { 466 const APInt *SA; 467 if (match(I->getOperand(1), m_APInt(SA))) { 468 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 469 470 // Unsigned shift right. 471 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 472 473 // If the shift is exact, then it does demand the low bits (and knows that 474 // they are zero). 475 if (cast<LShrOperator>(I)->isExact()) 476 DemandedMaskIn.setLowBits(ShiftAmt); 477 478 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 479 return I; 480 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 481 Known.Zero.lshrInPlace(ShiftAmt); 482 Known.One.lshrInPlace(ShiftAmt); 483 if (ShiftAmt) 484 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 485 } 486 break; 487 } 488 case Instruction::AShr: { 489 // If this is an arithmetic shift right and only the low-bit is set, we can 490 // always convert this into a logical shr, even if the shift amount is 491 // variable. The low bit of the shift cannot be an input sign bit unless 492 // the shift amount is >= the size of the datatype, which is undefined. 493 if (DemandedMask.isOneValue()) { 494 // Perform the logical shift right. 495 Instruction *NewVal = BinaryOperator::CreateLShr( 496 I->getOperand(0), I->getOperand(1), I->getName()); 497 return InsertNewInstWith(NewVal, *I); 498 } 499 500 // If the sign bit is the only bit demanded by this ashr, then there is no 501 // need to do it, the shift doesn't change the high bit. 502 if (DemandedMask.isSignMask()) 503 return I->getOperand(0); 504 505 const APInt *SA; 506 if (match(I->getOperand(1), m_APInt(SA))) { 507 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 508 509 // Signed shift right. 510 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 511 // If any of the high bits are demanded, we should set the sign bit as 512 // demanded. 513 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 514 DemandedMaskIn.setSignBit(); 515 516 // If the shift is exact, then it does demand the low bits (and knows that 517 // they are zero). 518 if (cast<AShrOperator>(I)->isExact()) 519 DemandedMaskIn.setLowBits(ShiftAmt); 520 521 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 522 return I; 523 524 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 525 // Compute the new bits that are at the top now. 526 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 527 Known.Zero.lshrInPlace(ShiftAmt); 528 Known.One.lshrInPlace(ShiftAmt); 529 530 // If the input sign bit is known to be zero, or if none of the top bits 531 // are demanded, turn this into an unsigned shift right. 532 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 533 if (Known.Zero[BitWidth-ShiftAmt-1] || 534 !DemandedMask.intersects(HighBits)) { 535 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 536 I->getOperand(1)); 537 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 538 return InsertNewInstWith(LShr, *I); 539 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 540 Known.One |= HighBits; 541 } 542 } 543 break; 544 } 545 case Instruction::SRem: 546 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 547 // X % -1 demands all the bits because we don't want to introduce 548 // INT_MIN % -1 (== undef) by accident. 549 if (Rem->isMinusOne()) 550 break; 551 APInt RA = Rem->getValue().abs(); 552 if (RA.isPowerOf2()) { 553 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 554 return I->getOperand(0); 555 556 APInt LowBits = RA - 1; 557 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 558 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 559 return I; 560 561 // The low bits of LHS are unchanged by the srem. 562 Known.Zero = LHSKnown.Zero & LowBits; 563 Known.One = LHSKnown.One & LowBits; 564 565 // If LHS is non-negative or has all low bits zero, then the upper bits 566 // are all zero. 567 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 568 Known.Zero |= ~LowBits; 569 570 // If LHS is negative and not all low bits are zero, then the upper bits 571 // are all one. 572 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 573 Known.One |= ~LowBits; 574 575 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 576 break; 577 } 578 } 579 580 // The sign bit is the LHS's sign bit, except when the result of the 581 // remainder is zero. 582 if (DemandedMask.isSignBitSet()) { 583 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 584 // If it's known zero, our sign bit is also zero. 585 if (LHSKnown.isNonNegative()) 586 Known.makeNonNegative(); 587 } 588 break; 589 case Instruction::URem: { 590 KnownBits Known2(BitWidth); 591 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 592 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 593 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 594 return I; 595 596 unsigned Leaders = Known2.countMinLeadingZeros(); 597 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 598 break; 599 } 600 case Instruction::Call: 601 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 602 switch (II->getIntrinsicID()) { 603 default: break; 604 case Intrinsic::bswap: { 605 // If the only bits demanded come from one byte of the bswap result, 606 // just shift the input byte into position to eliminate the bswap. 607 unsigned NLZ = DemandedMask.countLeadingZeros(); 608 unsigned NTZ = DemandedMask.countTrailingZeros(); 609 610 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 611 // we need all the bits down to bit 8. Likewise, round NLZ. If we 612 // have 14 leading zeros, round to 8. 613 NLZ &= ~7; 614 NTZ &= ~7; 615 // If we need exactly one byte, we can do this transformation. 616 if (BitWidth-NLZ-NTZ == 8) { 617 unsigned ResultBit = NTZ; 618 unsigned InputBit = BitWidth-NTZ-8; 619 620 // Replace this with either a left or right shift to get the byte into 621 // the right place. 622 Instruction *NewVal; 623 if (InputBit > ResultBit) 624 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 625 ConstantInt::get(I->getType(), InputBit-ResultBit)); 626 else 627 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 628 ConstantInt::get(I->getType(), ResultBit-InputBit)); 629 NewVal->takeName(I); 630 return InsertNewInstWith(NewVal, *I); 631 } 632 633 // TODO: Could compute known zero/one bits based on the input. 634 break; 635 } 636 case Intrinsic::x86_mmx_pmovmskb: 637 case Intrinsic::x86_sse_movmsk_ps: 638 case Intrinsic::x86_sse2_movmsk_pd: 639 case Intrinsic::x86_sse2_pmovmskb_128: 640 case Intrinsic::x86_avx_movmsk_ps_256: 641 case Intrinsic::x86_avx_movmsk_pd_256: 642 case Intrinsic::x86_avx2_pmovmskb: { 643 // MOVMSK copies the vector elements' sign bits to the low bits 644 // and zeros the high bits. 645 unsigned ArgWidth; 646 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 647 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 648 } else { 649 auto Arg = II->getArgOperand(0); 650 auto ArgType = cast<VectorType>(Arg->getType()); 651 ArgWidth = ArgType->getNumElements(); 652 } 653 654 // If we don't need any of low bits then return zero, 655 // we know that DemandedMask is non-zero already. 656 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 657 if (DemandedElts.isNullValue()) 658 return ConstantInt::getNullValue(VTy); 659 660 // We know that the upper bits are set to zero. 661 Known.Zero.setBitsFrom(ArgWidth); 662 return nullptr; 663 } 664 case Intrinsic::x86_sse42_crc32_64_64: 665 Known.Zero.setBitsFrom(32); 666 return nullptr; 667 } 668 } 669 computeKnownBits(V, Known, Depth, CxtI); 670 break; 671 } 672 673 // If the client is only demanding bits that we know, return the known 674 // constant. 675 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 676 return Constant::getIntegerValue(VTy, Known.One); 677 return nullptr; 678 } 679 680 /// Helper routine of SimplifyDemandedUseBits. It computes Known 681 /// bits. It also tries to handle simplifications that can be done based on 682 /// DemandedMask, but without modifying the Instruction. 683 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 684 const APInt &DemandedMask, 685 KnownBits &Known, 686 unsigned Depth, 687 Instruction *CxtI) { 688 unsigned BitWidth = DemandedMask.getBitWidth(); 689 Type *ITy = I->getType(); 690 691 KnownBits LHSKnown(BitWidth); 692 KnownBits RHSKnown(BitWidth); 693 694 // Despite the fact that we can't simplify this instruction in all User's 695 // context, we can at least compute the known bits, and we can 696 // do simplifications that apply to *just* the one user if we know that 697 // this instruction has a simpler value in that context. 698 switch (I->getOpcode()) { 699 case Instruction::And: { 700 // If either the LHS or the RHS are Zero, the result is zero. 701 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 702 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 703 CxtI); 704 705 // Output known-0 are known to be clear if zero in either the LHS | RHS. 706 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 707 // Output known-1 bits are only known if set in both the LHS & RHS. 708 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 709 710 // If the client is only demanding bits that we know, return the known 711 // constant. 712 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 713 return Constant::getIntegerValue(ITy, IKnownOne); 714 715 // If all of the demanded bits are known 1 on one side, return the other. 716 // These bits cannot contribute to the result of the 'and' in this 717 // context. 718 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 719 return I->getOperand(0); 720 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 721 return I->getOperand(1); 722 723 Known.Zero = std::move(IKnownZero); 724 Known.One = std::move(IKnownOne); 725 break; 726 } 727 case Instruction::Or: { 728 // We can simplify (X|Y) -> X or Y in the user's context if we know that 729 // only bits from X or Y are demanded. 730 731 // If either the LHS or the RHS are One, the result is One. 732 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 733 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 734 CxtI); 735 736 // Output known-0 bits are only known if clear in both the LHS & RHS. 737 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 738 // Output known-1 are known to be set if set in either the LHS | RHS. 739 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 740 741 // If the client is only demanding bits that we know, return the known 742 // constant. 743 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 744 return Constant::getIntegerValue(ITy, IKnownOne); 745 746 // If all of the demanded bits are known zero on one side, return the 747 // other. These bits cannot contribute to the result of the 'or' in this 748 // context. 749 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 750 return I->getOperand(0); 751 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 752 return I->getOperand(1); 753 754 Known.Zero = std::move(IKnownZero); 755 Known.One = std::move(IKnownOne); 756 break; 757 } 758 case Instruction::Xor: { 759 // We can simplify (X^Y) -> X or Y in the user's context if we know that 760 // only bits from X or Y are demanded. 761 762 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 763 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 764 CxtI); 765 766 // Output known-0 bits are known if clear or set in both the LHS & RHS. 767 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 768 (RHSKnown.One & LHSKnown.One); 769 // Output known-1 are known to be set if set in only one of the LHS, RHS. 770 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 771 (RHSKnown.One & LHSKnown.Zero); 772 773 // If the client is only demanding bits that we know, return the known 774 // constant. 775 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 776 return Constant::getIntegerValue(ITy, IKnownOne); 777 778 // If all of the demanded bits are known zero on one side, return the 779 // other. 780 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 781 return I->getOperand(0); 782 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 783 return I->getOperand(1); 784 785 // Output known-0 bits are known if clear or set in both the LHS & RHS. 786 Known.Zero = std::move(IKnownZero); 787 // Output known-1 are known to be set if set in only one of the LHS, RHS. 788 Known.One = std::move(IKnownOne); 789 break; 790 } 791 default: 792 // Compute the Known bits to simplify things downstream. 793 computeKnownBits(I, Known, Depth, CxtI); 794 795 // If this user is only demanding bits that we know, return the known 796 // constant. 797 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 798 return Constant::getIntegerValue(ITy, Known.One); 799 800 break; 801 } 802 803 return nullptr; 804 } 805 806 807 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 808 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 809 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 810 /// of "C2-C1". 811 /// 812 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 813 /// ..., bn}, without considering the specific value X is holding. 814 /// This transformation is legal iff one of following conditions is hold: 815 /// 1) All the bit in S are 0, in this case E1 == E2. 816 /// 2) We don't care those bits in S, per the input DemandedMask. 817 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 818 /// rest bits. 819 /// 820 /// Currently we only test condition 2). 821 /// 822 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 823 /// not successful. 824 Value * 825 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 826 Instruction *Shl, const APInt &ShlOp1, 827 const APInt &DemandedMask, 828 KnownBits &Known) { 829 if (!ShlOp1 || !ShrOp1) 830 return nullptr; // No-op. 831 832 Value *VarX = Shr->getOperand(0); 833 Type *Ty = VarX->getType(); 834 unsigned BitWidth = Ty->getScalarSizeInBits(); 835 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 836 return nullptr; // Undef. 837 838 unsigned ShlAmt = ShlOp1.getZExtValue(); 839 unsigned ShrAmt = ShrOp1.getZExtValue(); 840 841 Known.One.clearAllBits(); 842 Known.Zero.setLowBits(ShlAmt - 1); 843 Known.Zero &= DemandedMask; 844 845 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 846 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 847 848 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 849 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 850 (BitMask1.ashr(ShrAmt) << ShlAmt); 851 852 if (ShrAmt <= ShlAmt) { 853 BitMask2 <<= (ShlAmt - ShrAmt); 854 } else { 855 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 856 BitMask2.ashr(ShrAmt - ShlAmt); 857 } 858 859 // Check if condition-2 (see the comment to this function) is satified. 860 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 861 if (ShrAmt == ShlAmt) 862 return VarX; 863 864 if (!Shr->hasOneUse()) 865 return nullptr; 866 867 BinaryOperator *New; 868 if (ShrAmt < ShlAmt) { 869 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 870 New = BinaryOperator::CreateShl(VarX, Amt); 871 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 872 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 873 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 874 } else { 875 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 876 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 877 BinaryOperator::CreateAShr(VarX, Amt); 878 if (cast<BinaryOperator>(Shr)->isExact()) 879 New->setIsExact(true); 880 } 881 882 return InsertNewInstWith(New, *Shl); 883 } 884 885 return nullptr; 886 } 887 888 /// The specified value produces a vector with any number of elements. 889 /// DemandedElts contains the set of elements that are actually used by the 890 /// caller. This method analyzes which elements of the operand are undef and 891 /// returns that information in UndefElts. 892 /// 893 /// If the information about demanded elements can be used to simplify the 894 /// operation, the operation is simplified, then the resultant value is 895 /// returned. This returns null if no change was made. 896 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 897 APInt &UndefElts, 898 unsigned Depth) { 899 unsigned VWidth = V->getType()->getVectorNumElements(); 900 APInt EltMask(APInt::getAllOnesValue(VWidth)); 901 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 902 903 if (isa<UndefValue>(V)) { 904 // If the entire vector is undefined, just return this info. 905 UndefElts = EltMask; 906 return nullptr; 907 } 908 909 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 910 UndefElts = EltMask; 911 return UndefValue::get(V->getType()); 912 } 913 914 UndefElts = 0; 915 916 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. 917 if (Constant *C = dyn_cast<Constant>(V)) { 918 // Check if this is identity. If so, return 0 since we are not simplifying 919 // anything. 920 if (DemandedElts.isAllOnesValue()) 921 return nullptr; 922 923 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 924 Constant *Undef = UndefValue::get(EltTy); 925 926 SmallVector<Constant*, 16> Elts; 927 for (unsigned i = 0; i != VWidth; ++i) { 928 if (!DemandedElts[i]) { // If not demanded, set to undef. 929 Elts.push_back(Undef); 930 UndefElts.setBit(i); 931 continue; 932 } 933 934 Constant *Elt = C->getAggregateElement(i); 935 if (!Elt) return nullptr; 936 937 if (isa<UndefValue>(Elt)) { // Already undef. 938 Elts.push_back(Undef); 939 UndefElts.setBit(i); 940 } else { // Otherwise, defined. 941 Elts.push_back(Elt); 942 } 943 } 944 945 // If we changed the constant, return it. 946 Constant *NewCV = ConstantVector::get(Elts); 947 return NewCV != C ? NewCV : nullptr; 948 } 949 950 // Limit search depth. 951 if (Depth == 10) 952 return nullptr; 953 954 // If multiple users are using the root value, proceed with 955 // simplification conservatively assuming that all elements 956 // are needed. 957 if (!V->hasOneUse()) { 958 // Quit if we find multiple users of a non-root value though. 959 // They'll be handled when it's their turn to be visited by 960 // the main instcombine process. 961 if (Depth != 0) 962 // TODO: Just compute the UndefElts information recursively. 963 return nullptr; 964 965 // Conservatively assume that all elements are needed. 966 DemandedElts = EltMask; 967 } 968 969 Instruction *I = dyn_cast<Instruction>(V); 970 if (!I) return nullptr; // Only analyze instructions. 971 972 bool MadeChange = false; 973 APInt UndefElts2(VWidth, 0); 974 APInt UndefElts3(VWidth, 0); 975 Value *TmpV; 976 switch (I->getOpcode()) { 977 default: break; 978 979 case Instruction::InsertElement: { 980 // If this is a variable index, we don't know which element it overwrites. 981 // demand exactly the same input as we produce. 982 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 983 if (!Idx) { 984 // Note that we can't propagate undef elt info, because we don't know 985 // which elt is getting updated. 986 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 987 UndefElts2, Depth + 1); 988 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 989 break; 990 } 991 992 // If this is inserting an element that isn't demanded, remove this 993 // insertelement. 994 unsigned IdxNo = Idx->getZExtValue(); 995 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 996 Worklist.Add(I); 997 return I->getOperand(0); 998 } 999 1000 // Otherwise, the element inserted overwrites whatever was there, so the 1001 // input demanded set is simpler than the output set. 1002 APInt DemandedElts2 = DemandedElts; 1003 DemandedElts2.clearBit(IdxNo); 1004 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, 1005 UndefElts, Depth + 1); 1006 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1007 1008 // The inserted element is defined. 1009 UndefElts.clearBit(IdxNo); 1010 break; 1011 } 1012 case Instruction::ShuffleVector: { 1013 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1014 unsigned LHSVWidth = 1015 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1016 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1017 for (unsigned i = 0; i < VWidth; i++) { 1018 if (DemandedElts[i]) { 1019 unsigned MaskVal = Shuffle->getMaskValue(i); 1020 if (MaskVal != -1u) { 1021 assert(MaskVal < LHSVWidth * 2 && 1022 "shufflevector mask index out of range!"); 1023 if (MaskVal < LHSVWidth) 1024 LeftDemanded.setBit(MaskVal); 1025 else 1026 RightDemanded.setBit(MaskVal - LHSVWidth); 1027 } 1028 } 1029 } 1030 1031 APInt LHSUndefElts(LHSVWidth, 0); 1032 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, 1033 LHSUndefElts, Depth + 1); 1034 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1035 1036 APInt RHSUndefElts(LHSVWidth, 0); 1037 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, 1038 RHSUndefElts, Depth + 1); 1039 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1040 1041 bool NewUndefElts = false; 1042 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1043 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1044 bool LHSUniform = true; 1045 bool RHSUniform = true; 1046 for (unsigned i = 0; i < VWidth; i++) { 1047 unsigned MaskVal = Shuffle->getMaskValue(i); 1048 if (MaskVal == -1u) { 1049 UndefElts.setBit(i); 1050 } else if (!DemandedElts[i]) { 1051 NewUndefElts = true; 1052 UndefElts.setBit(i); 1053 } else if (MaskVal < LHSVWidth) { 1054 if (LHSUndefElts[MaskVal]) { 1055 NewUndefElts = true; 1056 UndefElts.setBit(i); 1057 } else { 1058 LHSIdx = LHSIdx == -1u ? i : LHSVWidth; 1059 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth; 1060 LHSUniform = LHSUniform && (MaskVal == i); 1061 } 1062 } else { 1063 if (RHSUndefElts[MaskVal - LHSVWidth]) { 1064 NewUndefElts = true; 1065 UndefElts.setBit(i); 1066 } else { 1067 RHSIdx = RHSIdx == -1u ? i : LHSVWidth; 1068 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth; 1069 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i); 1070 } 1071 } 1072 } 1073 1074 // Try to transform shuffle with constant vector and single element from 1075 // this constant vector to single insertelement instruction. 1076 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1077 // insertelement V, C[ci], ci-n 1078 if (LHSVWidth == Shuffle->getType()->getNumElements()) { 1079 Value *Op = nullptr; 1080 Constant *Value = nullptr; 1081 unsigned Idx = -1u; 1082 1083 // Find constant vector with the single element in shuffle (LHS or RHS). 1084 if (LHSIdx < LHSVWidth && RHSUniform) { 1085 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1086 Op = Shuffle->getOperand(1); 1087 Value = CV->getOperand(LHSValIdx); 1088 Idx = LHSIdx; 1089 } 1090 } 1091 if (RHSIdx < LHSVWidth && LHSUniform) { 1092 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1093 Op = Shuffle->getOperand(0); 1094 Value = CV->getOperand(RHSValIdx); 1095 Idx = RHSIdx; 1096 } 1097 } 1098 // Found constant vector with single element - convert to insertelement. 1099 if (Op && Value) { 1100 Instruction *New = InsertElementInst::Create( 1101 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1102 Shuffle->getName()); 1103 InsertNewInstWith(New, *Shuffle); 1104 return New; 1105 } 1106 } 1107 if (NewUndefElts) { 1108 // Add additional discovered undefs. 1109 SmallVector<Constant*, 16> Elts; 1110 for (unsigned i = 0; i < VWidth; ++i) { 1111 if (UndefElts[i]) 1112 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1113 else 1114 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1115 Shuffle->getMaskValue(i))); 1116 } 1117 I->setOperand(2, ConstantVector::get(Elts)); 1118 MadeChange = true; 1119 } 1120 break; 1121 } 1122 case Instruction::Select: { 1123 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); 1124 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) { 1125 for (unsigned i = 0; i < VWidth; i++) { 1126 Constant *CElt = CV->getAggregateElement(i); 1127 // Method isNullValue always returns false when called on a 1128 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to 1129 // to avoid propagating incorrect information. 1130 if (isa<ConstantExpr>(CElt)) 1131 continue; 1132 if (CElt->isNullValue()) 1133 LeftDemanded.clearBit(i); 1134 else 1135 RightDemanded.clearBit(i); 1136 } 1137 } 1138 1139 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts, 1140 Depth + 1); 1141 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1142 1143 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, 1144 UndefElts2, Depth + 1); 1145 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } 1146 1147 // Output elements are undefined if both are undefined. 1148 UndefElts &= UndefElts2; 1149 break; 1150 } 1151 case Instruction::BitCast: { 1152 // Vector->vector casts only. 1153 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1154 if (!VTy) break; 1155 unsigned InVWidth = VTy->getNumElements(); 1156 APInt InputDemandedElts(InVWidth, 0); 1157 UndefElts2 = APInt(InVWidth, 0); 1158 unsigned Ratio; 1159 1160 if (VWidth == InVWidth) { 1161 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1162 // elements as are demanded of us. 1163 Ratio = 1; 1164 InputDemandedElts = DemandedElts; 1165 } else if ((VWidth % InVWidth) == 0) { 1166 // If the number of elements in the output is a multiple of the number of 1167 // elements in the input then an input element is live if any of the 1168 // corresponding output elements are live. 1169 Ratio = VWidth / InVWidth; 1170 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1171 if (DemandedElts[OutIdx]) 1172 InputDemandedElts.setBit(OutIdx / Ratio); 1173 } else if ((InVWidth % VWidth) == 0) { 1174 // If the number of elements in the input is a multiple of the number of 1175 // elements in the output then an input element is live if the 1176 // corresponding output element is live. 1177 Ratio = InVWidth / VWidth; 1178 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1179 if (DemandedElts[InIdx / Ratio]) 1180 InputDemandedElts.setBit(InIdx); 1181 } else { 1182 // Unsupported so far. 1183 break; 1184 } 1185 1186 // div/rem demand all inputs, because they don't want divide by zero. 1187 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, 1188 UndefElts2, Depth + 1); 1189 if (TmpV) { 1190 I->setOperand(0, TmpV); 1191 MadeChange = true; 1192 } 1193 1194 if (VWidth == InVWidth) { 1195 UndefElts = UndefElts2; 1196 } else if ((VWidth % InVWidth) == 0) { 1197 // If the number of elements in the output is a multiple of the number of 1198 // elements in the input then an output element is undef if the 1199 // corresponding input element is undef. 1200 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1201 if (UndefElts2[OutIdx / Ratio]) 1202 UndefElts.setBit(OutIdx); 1203 } else if ((InVWidth % VWidth) == 0) { 1204 // If the number of elements in the input is a multiple of the number of 1205 // elements in the output then an output element is undef if all of the 1206 // corresponding input elements are undef. 1207 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1208 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1209 if (SubUndef.countPopulation() == Ratio) 1210 UndefElts.setBit(OutIdx); 1211 } 1212 } else { 1213 llvm_unreachable("Unimp"); 1214 } 1215 break; 1216 } 1217 case Instruction::And: 1218 case Instruction::Or: 1219 case Instruction::Xor: 1220 case Instruction::Add: 1221 case Instruction::Sub: 1222 case Instruction::Mul: 1223 // div/rem demand all inputs, because they don't want divide by zero. 1224 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1225 Depth + 1); 1226 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1227 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, 1228 UndefElts2, Depth + 1); 1229 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1230 1231 // Output elements are undefined if both are undefined. Consider things 1232 // like undef&0. The result is known zero, not undef. 1233 UndefElts &= UndefElts2; 1234 break; 1235 case Instruction::FPTrunc: 1236 case Instruction::FPExt: 1237 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1238 Depth + 1); 1239 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1240 break; 1241 1242 case Instruction::Call: { 1243 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1244 if (!II) break; 1245 switch (II->getIntrinsicID()) { 1246 default: break; 1247 1248 case Intrinsic::x86_xop_vfrcz_ss: 1249 case Intrinsic::x86_xop_vfrcz_sd: 1250 // The instructions for these intrinsics are speced to zero upper bits not 1251 // pass them through like other scalar intrinsics. So we shouldn't just 1252 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1253 // Instead we should return a zero vector. 1254 if (!DemandedElts[0]) { 1255 Worklist.Add(II); 1256 return ConstantAggregateZero::get(II->getType()); 1257 } 1258 1259 // Only the lower element is used. 1260 DemandedElts = 1; 1261 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1262 UndefElts, Depth + 1); 1263 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1264 1265 // Only the lower element is undefined. The high elements are zero. 1266 UndefElts = UndefElts[0]; 1267 break; 1268 1269 // Unary scalar-as-vector operations that work column-wise. 1270 case Intrinsic::x86_sse_rcp_ss: 1271 case Intrinsic::x86_sse_rsqrt_ss: 1272 case Intrinsic::x86_sse_sqrt_ss: 1273 case Intrinsic::x86_sse2_sqrt_sd: 1274 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1275 UndefElts, Depth + 1); 1276 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1277 1278 // If lowest element of a scalar op isn't used then use Arg0. 1279 if (!DemandedElts[0]) { 1280 Worklist.Add(II); 1281 return II->getArgOperand(0); 1282 } 1283 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1284 // checks). 1285 break; 1286 1287 // Binary scalar-as-vector operations that work column-wise. The high 1288 // elements come from operand 0. The low element is a function of both 1289 // operands. 1290 case Intrinsic::x86_sse_min_ss: 1291 case Intrinsic::x86_sse_max_ss: 1292 case Intrinsic::x86_sse_cmp_ss: 1293 case Intrinsic::x86_sse2_min_sd: 1294 case Intrinsic::x86_sse2_max_sd: 1295 case Intrinsic::x86_sse2_cmp_sd: { 1296 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1297 UndefElts, Depth + 1); 1298 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1299 1300 // If lowest element of a scalar op isn't used then use Arg0. 1301 if (!DemandedElts[0]) { 1302 Worklist.Add(II); 1303 return II->getArgOperand(0); 1304 } 1305 1306 // Only lower element is used for operand 1. 1307 DemandedElts = 1; 1308 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1309 UndefElts2, Depth + 1); 1310 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1311 1312 // Lower element is undefined if both lower elements are undefined. 1313 // Consider things like undef&0. The result is known zero, not undef. 1314 if (!UndefElts2[0]) 1315 UndefElts.clearBit(0); 1316 1317 break; 1318 } 1319 1320 // Binary scalar-as-vector operations that work column-wise. The high 1321 // elements come from operand 0 and the low element comes from operand 1. 1322 case Intrinsic::x86_sse41_round_ss: 1323 case Intrinsic::x86_sse41_round_sd: { 1324 // Don't use the low element of operand 0. 1325 APInt DemandedElts2 = DemandedElts; 1326 DemandedElts2.clearBit(0); 1327 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2, 1328 UndefElts, Depth + 1); 1329 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1330 1331 // If lowest element of a scalar op isn't used then use Arg0. 1332 if (!DemandedElts[0]) { 1333 Worklist.Add(II); 1334 return II->getArgOperand(0); 1335 } 1336 1337 // Only lower element is used for operand 1. 1338 DemandedElts = 1; 1339 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1340 UndefElts2, Depth + 1); 1341 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1342 1343 // Take the high undef elements from operand 0 and take the lower element 1344 // from operand 1. 1345 UndefElts.clearBit(0); 1346 UndefElts |= UndefElts2[0]; 1347 break; 1348 } 1349 1350 // Three input scalar-as-vector operations that work column-wise. The high 1351 // elements come from operand 0 and the low element is a function of all 1352 // three inputs. 1353 case Intrinsic::x86_avx512_mask_add_ss_round: 1354 case Intrinsic::x86_avx512_mask_div_ss_round: 1355 case Intrinsic::x86_avx512_mask_mul_ss_round: 1356 case Intrinsic::x86_avx512_mask_sub_ss_round: 1357 case Intrinsic::x86_avx512_mask_max_ss_round: 1358 case Intrinsic::x86_avx512_mask_min_ss_round: 1359 case Intrinsic::x86_avx512_mask_add_sd_round: 1360 case Intrinsic::x86_avx512_mask_div_sd_round: 1361 case Intrinsic::x86_avx512_mask_mul_sd_round: 1362 case Intrinsic::x86_avx512_mask_sub_sd_round: 1363 case Intrinsic::x86_avx512_mask_max_sd_round: 1364 case Intrinsic::x86_avx512_mask_min_sd_round: 1365 case Intrinsic::x86_fma_vfmadd_ss: 1366 case Intrinsic::x86_fma_vfmsub_ss: 1367 case Intrinsic::x86_fma_vfnmadd_ss: 1368 case Intrinsic::x86_fma_vfnmsub_ss: 1369 case Intrinsic::x86_fma_vfmadd_sd: 1370 case Intrinsic::x86_fma_vfmsub_sd: 1371 case Intrinsic::x86_fma_vfnmadd_sd: 1372 case Intrinsic::x86_fma_vfnmsub_sd: 1373 case Intrinsic::x86_avx512_mask_vfmadd_ss: 1374 case Intrinsic::x86_avx512_mask_vfmadd_sd: 1375 case Intrinsic::x86_avx512_maskz_vfmadd_ss: 1376 case Intrinsic::x86_avx512_maskz_vfmadd_sd: 1377 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1378 UndefElts, Depth + 1); 1379 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1380 1381 // If lowest element of a scalar op isn't used then use Arg0. 1382 if (!DemandedElts[0]) { 1383 Worklist.Add(II); 1384 return II->getArgOperand(0); 1385 } 1386 1387 // Only lower element is used for operand 1 and 2. 1388 DemandedElts = 1; 1389 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1390 UndefElts2, Depth + 1); 1391 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1392 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, 1393 UndefElts3, Depth + 1); 1394 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } 1395 1396 // Lower element is undefined if all three lower elements are undefined. 1397 // Consider things like undef&0. The result is known zero, not undef. 1398 if (!UndefElts2[0] || !UndefElts3[0]) 1399 UndefElts.clearBit(0); 1400 1401 break; 1402 1403 case Intrinsic::x86_avx512_mask3_vfmadd_ss: 1404 case Intrinsic::x86_avx512_mask3_vfmadd_sd: 1405 case Intrinsic::x86_avx512_mask3_vfmsub_ss: 1406 case Intrinsic::x86_avx512_mask3_vfmsub_sd: 1407 case Intrinsic::x86_avx512_mask3_vfnmsub_ss: 1408 case Intrinsic::x86_avx512_mask3_vfnmsub_sd: 1409 // These intrinsics get the passthru bits from operand 2. 1410 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, 1411 UndefElts, Depth + 1); 1412 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } 1413 1414 // If lowest element of a scalar op isn't used then use Arg2. 1415 if (!DemandedElts[0]) { 1416 Worklist.Add(II); 1417 return II->getArgOperand(2); 1418 } 1419 1420 // Only lower element is used for operand 0 and 1. 1421 DemandedElts = 1; 1422 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1423 UndefElts2, Depth + 1); 1424 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1425 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1426 UndefElts3, Depth + 1); 1427 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1428 1429 // Lower element is undefined if all three lower elements are undefined. 1430 // Consider things like undef&0. The result is known zero, not undef. 1431 if (!UndefElts2[0] || !UndefElts3[0]) 1432 UndefElts.clearBit(0); 1433 1434 break; 1435 1436 case Intrinsic::x86_sse2_pmulu_dq: 1437 case Intrinsic::x86_sse41_pmuldq: 1438 case Intrinsic::x86_avx2_pmul_dq: 1439 case Intrinsic::x86_avx2_pmulu_dq: 1440 case Intrinsic::x86_avx512_pmul_dq_512: 1441 case Intrinsic::x86_avx512_pmulu_dq_512: { 1442 Value *Op0 = II->getArgOperand(0); 1443 Value *Op1 = II->getArgOperand(1); 1444 unsigned InnerVWidth = Op0->getType()->getVectorNumElements(); 1445 assert((VWidth * 2) == InnerVWidth && "Unexpected input size"); 1446 1447 APInt InnerDemandedElts(InnerVWidth, 0); 1448 for (unsigned i = 0; i != VWidth; ++i) 1449 if (DemandedElts[i]) 1450 InnerDemandedElts.setBit(i * 2); 1451 1452 UndefElts2 = APInt(InnerVWidth, 0); 1453 TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2, 1454 Depth + 1); 1455 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1456 1457 UndefElts3 = APInt(InnerVWidth, 0); 1458 TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3, 1459 Depth + 1); 1460 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1461 1462 break; 1463 } 1464 1465 case Intrinsic::x86_sse2_packssdw_128: 1466 case Intrinsic::x86_sse2_packsswb_128: 1467 case Intrinsic::x86_sse2_packuswb_128: 1468 case Intrinsic::x86_sse41_packusdw: 1469 case Intrinsic::x86_avx2_packssdw: 1470 case Intrinsic::x86_avx2_packsswb: 1471 case Intrinsic::x86_avx2_packusdw: 1472 case Intrinsic::x86_avx2_packuswb: 1473 case Intrinsic::x86_avx512_packssdw_512: 1474 case Intrinsic::x86_avx512_packsswb_512: 1475 case Intrinsic::x86_avx512_packusdw_512: 1476 case Intrinsic::x86_avx512_packuswb_512: { 1477 auto *Ty0 = II->getArgOperand(0)->getType(); 1478 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1479 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1480 1481 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1482 unsigned VWidthPerLane = VWidth / NumLanes; 1483 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1484 1485 // Per lane, pack the elements of the first input and then the second. 1486 // e.g. 1487 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1488 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1489 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1490 APInt OpDemandedElts(InnerVWidth, 0); 1491 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1492 unsigned LaneIdx = Lane * VWidthPerLane; 1493 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1494 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1495 if (DemandedElts[Idx]) 1496 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1497 } 1498 } 1499 1500 // Demand elements from the operand. 1501 auto *Op = II->getArgOperand(OpNum); 1502 APInt OpUndefElts(InnerVWidth, 0); 1503 TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts, 1504 Depth + 1); 1505 if (TmpV) { 1506 II->setArgOperand(OpNum, TmpV); 1507 MadeChange = true; 1508 } 1509 1510 // Pack the operand's UNDEF elements, one lane at a time. 1511 OpUndefElts = OpUndefElts.zext(VWidth); 1512 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1513 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1514 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1515 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1516 UndefElts |= LaneElts; 1517 } 1518 } 1519 break; 1520 } 1521 1522 // PSHUFB 1523 case Intrinsic::x86_ssse3_pshuf_b_128: 1524 case Intrinsic::x86_avx2_pshuf_b: 1525 case Intrinsic::x86_avx512_pshuf_b_512: 1526 // PERMILVAR 1527 case Intrinsic::x86_avx_vpermilvar_ps: 1528 case Intrinsic::x86_avx_vpermilvar_ps_256: 1529 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1530 case Intrinsic::x86_avx_vpermilvar_pd: 1531 case Intrinsic::x86_avx_vpermilvar_pd_256: 1532 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1533 // PERMV 1534 case Intrinsic::x86_avx2_permd: 1535 case Intrinsic::x86_avx2_permps: { 1536 Value *Op1 = II->getArgOperand(1); 1537 TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts, 1538 Depth + 1); 1539 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1540 break; 1541 } 1542 1543 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1544 // in an undefined state. 1545 case Intrinsic::x86_sse4a_extrq: 1546 case Intrinsic::x86_sse4a_extrqi: 1547 case Intrinsic::x86_sse4a_insertq: 1548 case Intrinsic::x86_sse4a_insertqi: 1549 UndefElts.setHighBits(VWidth / 2); 1550 break; 1551 case Intrinsic::amdgcn_buffer_load: 1552 case Intrinsic::amdgcn_buffer_load_format: 1553 case Intrinsic::amdgcn_image_sample: 1554 case Intrinsic::amdgcn_image_sample_cl: 1555 case Intrinsic::amdgcn_image_sample_d: 1556 case Intrinsic::amdgcn_image_sample_d_cl: 1557 case Intrinsic::amdgcn_image_sample_l: 1558 case Intrinsic::amdgcn_image_sample_b: 1559 case Intrinsic::amdgcn_image_sample_b_cl: 1560 case Intrinsic::amdgcn_image_sample_lz: 1561 case Intrinsic::amdgcn_image_sample_cd: 1562 case Intrinsic::amdgcn_image_sample_cd_cl: 1563 1564 case Intrinsic::amdgcn_image_sample_c: 1565 case Intrinsic::amdgcn_image_sample_c_cl: 1566 case Intrinsic::amdgcn_image_sample_c_d: 1567 case Intrinsic::amdgcn_image_sample_c_d_cl: 1568 case Intrinsic::amdgcn_image_sample_c_l: 1569 case Intrinsic::amdgcn_image_sample_c_b: 1570 case Intrinsic::amdgcn_image_sample_c_b_cl: 1571 case Intrinsic::amdgcn_image_sample_c_lz: 1572 case Intrinsic::amdgcn_image_sample_c_cd: 1573 case Intrinsic::amdgcn_image_sample_c_cd_cl: 1574 1575 case Intrinsic::amdgcn_image_sample_o: 1576 case Intrinsic::amdgcn_image_sample_cl_o: 1577 case Intrinsic::amdgcn_image_sample_d_o: 1578 case Intrinsic::amdgcn_image_sample_d_cl_o: 1579 case Intrinsic::amdgcn_image_sample_l_o: 1580 case Intrinsic::amdgcn_image_sample_b_o: 1581 case Intrinsic::amdgcn_image_sample_b_cl_o: 1582 case Intrinsic::amdgcn_image_sample_lz_o: 1583 case Intrinsic::amdgcn_image_sample_cd_o: 1584 case Intrinsic::amdgcn_image_sample_cd_cl_o: 1585 1586 case Intrinsic::amdgcn_image_sample_c_o: 1587 case Intrinsic::amdgcn_image_sample_c_cl_o: 1588 case Intrinsic::amdgcn_image_sample_c_d_o: 1589 case Intrinsic::amdgcn_image_sample_c_d_cl_o: 1590 case Intrinsic::amdgcn_image_sample_c_l_o: 1591 case Intrinsic::amdgcn_image_sample_c_b_o: 1592 case Intrinsic::amdgcn_image_sample_c_b_cl_o: 1593 case Intrinsic::amdgcn_image_sample_c_lz_o: 1594 case Intrinsic::amdgcn_image_sample_c_cd_o: 1595 case Intrinsic::amdgcn_image_sample_c_cd_cl_o: 1596 1597 case Intrinsic::amdgcn_image_getlod: { 1598 if (VWidth == 1 || !DemandedElts.isMask()) 1599 return nullptr; 1600 1601 // TODO: Handle 3 vectors when supported in code gen. 1602 unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes()); 1603 if (NewNumElts == VWidth) 1604 return nullptr; 1605 1606 Module *M = II->getParent()->getParent()->getParent(); 1607 Type *EltTy = V->getType()->getVectorElementType(); 1608 1609 Type *NewTy = (NewNumElts == 1) ? EltTy : 1610 VectorType::get(EltTy, NewNumElts); 1611 1612 auto IID = II->getIntrinsicID(); 1613 1614 bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load || 1615 IID == Intrinsic::amdgcn_buffer_load_format; 1616 1617 Function *NewIntrin = IsBuffer ? 1618 Intrinsic::getDeclaration(M, IID, NewTy) : 1619 // Samplers have 3 mangled types. 1620 Intrinsic::getDeclaration(M, IID, 1621 { NewTy, II->getArgOperand(0)->getType(), 1622 II->getArgOperand(1)->getType()}); 1623 1624 SmallVector<Value *, 5> Args; 1625 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I) 1626 Args.push_back(II->getArgOperand(I)); 1627 1628 IRBuilderBase::InsertPointGuard Guard(Builder); 1629 Builder.SetInsertPoint(II); 1630 1631 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); 1632 NewCall->takeName(II); 1633 NewCall->copyMetadata(*II); 1634 1635 if (!IsBuffer) { 1636 ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3)); 1637 if (DMask) { 1638 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1639 1640 unsigned PopCnt = 0; 1641 unsigned NewDMask = 0; 1642 for (unsigned I = 0; I < 4; ++I) { 1643 const unsigned Bit = 1 << I; 1644 if (!!(DMaskVal & Bit)) { 1645 if (++PopCnt > NewNumElts) 1646 break; 1647 1648 NewDMask |= Bit; 1649 } 1650 } 1651 1652 NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask)); 1653 } 1654 } 1655 1656 1657 if (NewNumElts == 1) { 1658 return Builder.CreateInsertElement(UndefValue::get(V->getType()), 1659 NewCall, static_cast<uint64_t>(0)); 1660 } 1661 1662 SmallVector<uint32_t, 8> EltMask; 1663 for (unsigned I = 0; I < VWidth; ++I) 1664 EltMask.push_back(I); 1665 1666 Value *Shuffle = Builder.CreateShuffleVector( 1667 NewCall, UndefValue::get(NewTy), EltMask); 1668 1669 MadeChange = true; 1670 return Shuffle; 1671 } 1672 } 1673 break; 1674 } 1675 } 1676 return MadeChange ? I : nullptr; 1677 } 1678