1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/TargetTransformInfo.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == MaxAnalysisRecursionDepth) 131 return nullptr; 132 133 if (isa<ScalableVectorType>(VTy)) 134 return nullptr; 135 136 Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) { 138 computeKnownBits(V, Known, Depth, CxtI); 139 return nullptr; // Only analyze instructions. 140 } 141 142 // If there are multiple uses of this value and we aren't at the root, then 143 // we can't do any simplifications of the operands, because DemandedMask 144 // only reflects the bits demanded by *one* of the users. 145 if (Depth != 0 && !I->hasOneUse()) 146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 147 148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 149 150 // If this is the root being simplified, allow it to have multiple uses, 151 // just set the DemandedMask to all bits so that we can try to simplify the 152 // operands. This allows visitTruncInst (for example) to simplify the 153 // operand of a trunc without duplicating all the logic below. 154 if (Depth == 0 && !V->hasOneUse()) 155 DemandedMask.setAllBits(); 156 157 switch (I->getOpcode()) { 158 default: 159 computeKnownBits(I, Known, Depth, CxtI); 160 break; 161 case Instruction::And: { 162 // If either the LHS or the RHS are Zero, the result is zero. 163 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 164 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 165 Depth + 1)) 166 return I; 167 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 168 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 169 170 Known = LHSKnown & RHSKnown; 171 172 // If the client is only demanding bits that we know, return the known 173 // constant. 174 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 175 return Constant::getIntegerValue(VTy, Known.One); 176 177 // If all of the demanded bits are known 1 on one side, return the other. 178 // These bits cannot contribute to the result of the 'and'. 179 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 180 return I->getOperand(0); 181 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 182 return I->getOperand(1); 183 184 // If the RHS is a constant, see if we can simplify it. 185 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 186 return I; 187 188 break; 189 } 190 case Instruction::Or: { 191 // If either the LHS or the RHS are One, the result is One. 192 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 193 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 194 Depth + 1)) 195 return I; 196 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 197 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 198 199 Known = LHSKnown | RHSKnown; 200 201 // If the client is only demanding bits that we know, return the known 202 // constant. 203 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 204 return Constant::getIntegerValue(VTy, Known.One); 205 206 // If all of the demanded bits are known zero on one side, return the other. 207 // These bits cannot contribute to the result of the 'or'. 208 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 209 return I->getOperand(0); 210 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 211 return I->getOperand(1); 212 213 // If the RHS is a constant, see if we can simplify it. 214 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 215 return I; 216 217 break; 218 } 219 case Instruction::Xor: { 220 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 221 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 222 return I; 223 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 224 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 225 226 Known = LHSKnown ^ RHSKnown; 227 228 // If the client is only demanding bits that we know, return the known 229 // constant. 230 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 231 return Constant::getIntegerValue(VTy, Known.One); 232 233 // If all of the demanded bits are known zero on one side, return the other. 234 // These bits cannot contribute to the result of the 'xor'. 235 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 236 return I->getOperand(0); 237 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 238 return I->getOperand(1); 239 240 // If all of the demanded bits are known to be zero on one side or the 241 // other, turn this into an *inclusive* or. 242 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 243 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 244 Instruction *Or = 245 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 246 I->getName()); 247 return InsertNewInstWith(Or, *I); 248 } 249 250 // If all of the demanded bits on one side are known, and all of the set 251 // bits on that side are also known to be set on the other side, turn this 252 // into an AND, as we know the bits will be cleared. 253 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 254 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 255 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 256 Constant *AndC = Constant::getIntegerValue(VTy, 257 ~RHSKnown.One & DemandedMask); 258 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 259 return InsertNewInstWith(And, *I); 260 } 261 262 // If the RHS is a constant, see if we can change it. Don't alter a -1 263 // constant because that's a canonical 'not' op, and that is better for 264 // combining, SCEV, and codegen. 265 const APInt *C; 266 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnesValue()) { 267 if ((*C | ~DemandedMask).isAllOnesValue()) { 268 // Force bits to 1 to create a 'not' op. 269 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 270 return I; 271 } 272 // If we can't turn this into a 'not', try to shrink the constant. 273 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 274 return I; 275 } 276 277 // If our LHS is an 'and' and if it has one use, and if any of the bits we 278 // are flipping are known to be set, then the xor is just resetting those 279 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 280 // simplifying both of them. 281 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 282 ConstantInt *AndRHS, *XorRHS; 283 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 284 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 285 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 286 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 287 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 288 289 Constant *AndC = 290 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 291 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 292 InsertNewInstWith(NewAnd, *I); 293 294 Constant *XorC = 295 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 296 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 297 return InsertNewInstWith(NewXor, *I); 298 } 299 } 300 break; 301 } 302 case Instruction::Select: { 303 Value *LHS, *RHS; 304 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 305 if (SPF == SPF_UMAX) { 306 // UMax(A, C) == A if ... 307 // The lowest non-zero bit of DemandMask is higher than the highest 308 // non-zero bit of C. 309 const APInt *C; 310 unsigned CTZ = DemandedMask.countTrailingZeros(); 311 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 312 return LHS; 313 } else if (SPF == SPF_UMIN) { 314 // UMin(A, C) == A if ... 315 // The lowest non-zero bit of DemandMask is higher than the highest 316 // non-one bit of C. 317 // This comes from using DeMorgans on the above umax example. 318 const APInt *C; 319 unsigned CTZ = DemandedMask.countTrailingZeros(); 320 if (match(RHS, m_APInt(C)) && 321 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 322 return LHS; 323 } 324 325 // If this is a select as part of any other min/max pattern, don't simplify 326 // any further in case we break the structure. 327 if (SPF != SPF_UNKNOWN) 328 return nullptr; 329 330 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 331 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 332 return I; 333 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 334 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 335 336 // If the operands are constants, see if we can simplify them. 337 // This is similar to ShrinkDemandedConstant, but for a select we want to 338 // try to keep the selected constants the same as icmp value constants, if 339 // we can. This helps not break apart (or helps put back together) 340 // canonical patterns like min and max. 341 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 342 const APInt &DemandedMask) { 343 const APInt *SelC; 344 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 345 return false; 346 347 // Get the constant out of the ICmp, if there is one. 348 // Only try this when exactly 1 operand is a constant (if both operands 349 // are constant, the icmp should eventually simplify). Otherwise, we may 350 // invert the transform that reduces set bits and infinite-loop. 351 Value *X; 352 const APInt *CmpC; 353 ICmpInst::Predicate Pred; 354 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 355 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 356 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 357 358 // If the constant is already the same as the ICmp, leave it as-is. 359 if (*CmpC == *SelC) 360 return false; 361 // If the constants are not already the same, but can be with the demand 362 // mask, use the constant value from the ICmp. 363 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 364 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 365 return true; 366 } 367 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 368 }; 369 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 370 CanonicalizeSelectConstant(I, 2, DemandedMask)) 371 return I; 372 373 // Only known if known in both the LHS and RHS. 374 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 375 break; 376 } 377 case Instruction::ZExt: 378 case Instruction::Trunc: { 379 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 380 381 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 382 KnownBits InputKnown(SrcBitWidth); 383 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 384 return I; 385 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 386 Known = InputKnown.zextOrTrunc(BitWidth); 387 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 388 break; 389 } 390 case Instruction::BitCast: 391 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 392 return nullptr; // vector->int or fp->int? 393 394 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 395 if (VectorType *SrcVTy = 396 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 397 if (cast<FixedVectorType>(DstVTy)->getNumElements() != 398 cast<FixedVectorType>(SrcVTy)->getNumElements()) 399 // Don't touch a bitcast between vectors of different element counts. 400 return nullptr; 401 } else 402 // Don't touch a scalar-to-vector bitcast. 403 return nullptr; 404 } else if (I->getOperand(0)->getType()->isVectorTy()) 405 // Don't touch a vector-to-scalar bitcast. 406 return nullptr; 407 408 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 409 return I; 410 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 411 break; 412 case Instruction::SExt: { 413 // Compute the bits in the result that are not present in the input. 414 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 415 416 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 417 418 // If any of the sign extended bits are demanded, we know that the sign 419 // bit is demanded. 420 if (DemandedMask.getActiveBits() > SrcBitWidth) 421 InputDemandedBits.setBit(SrcBitWidth-1); 422 423 KnownBits InputKnown(SrcBitWidth); 424 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 425 return I; 426 427 // If the input sign bit is known zero, or if the NewBits are not demanded 428 // convert this into a zero extension. 429 if (InputKnown.isNonNegative() || 430 DemandedMask.getActiveBits() <= SrcBitWidth) { 431 // Convert to ZExt cast. 432 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 433 return InsertNewInstWith(NewCast, *I); 434 } 435 436 // If the sign bit of the input is known set or clear, then we know the 437 // top bits of the result. 438 Known = InputKnown.sext(BitWidth); 439 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 440 break; 441 } 442 case Instruction::Add: 443 if ((DemandedMask & 1) == 0) { 444 // If we do not need the low bit, try to convert bool math to logic: 445 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 446 Value *X, *Y; 447 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 448 m_OneUse(m_SExt(m_Value(Y))))) && 449 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 450 // Truth table for inputs and output signbits: 451 // X:0 | X:1 452 // ---------- 453 // Y:0 | 0 | 0 | 454 // Y:1 | -1 | 0 | 455 // ---------- 456 IRBuilderBase::InsertPointGuard Guard(Builder); 457 Builder.SetInsertPoint(I); 458 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 459 return Builder.CreateSExt(AndNot, VTy); 460 } 461 462 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 463 // TODO: Relax the one-use checks because we are removing an instruction? 464 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 465 m_OneUse(m_SExt(m_Value(Y))))) && 466 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 467 // Truth table for inputs and output signbits: 468 // X:0 | X:1 469 // ----------- 470 // Y:0 | -1 | -1 | 471 // Y:1 | -1 | 0 | 472 // ----------- 473 IRBuilderBase::InsertPointGuard Guard(Builder); 474 Builder.SetInsertPoint(I); 475 Value *Or = Builder.CreateOr(X, Y); 476 return Builder.CreateSExt(Or, VTy); 477 } 478 } 479 LLVM_FALLTHROUGH; 480 case Instruction::Sub: { 481 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 482 /// about the high bits of the operands. 483 unsigned NLZ = DemandedMask.countLeadingZeros(); 484 // Right fill the mask of bits for this ADD/SUB to demand the most 485 // significant bit and all those below it. 486 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 487 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 488 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 489 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 490 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 491 if (NLZ > 0) { 492 // Disable the nsw and nuw flags here: We can no longer guarantee that 493 // we won't wrap after simplification. Removing the nsw/nuw flags is 494 // legal here because the top bit is not demanded. 495 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 496 BinOP.setHasNoSignedWrap(false); 497 BinOP.setHasNoUnsignedWrap(false); 498 } 499 return I; 500 } 501 502 // If we are known to be adding/subtracting zeros to every bit below 503 // the highest demanded bit, we just return the other side. 504 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 505 return I->getOperand(0); 506 // We can't do this with the LHS for subtraction, unless we are only 507 // demanding the LSB. 508 if ((I->getOpcode() == Instruction::Add || 509 DemandedFromOps.isOneValue()) && 510 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 511 return I->getOperand(1); 512 513 // Otherwise just compute the known bits of the result. 514 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 515 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 516 NSW, LHSKnown, RHSKnown); 517 break; 518 } 519 case Instruction::Shl: { 520 const APInt *SA; 521 if (match(I->getOperand(1), m_APInt(SA))) { 522 const APInt *ShrAmt; 523 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 524 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 525 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 526 DemandedMask, Known)) 527 return R; 528 529 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 530 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 531 532 // If the shift is NUW/NSW, then it does demand the high bits. 533 ShlOperator *IOp = cast<ShlOperator>(I); 534 if (IOp->hasNoSignedWrap()) 535 DemandedMaskIn.setHighBits(ShiftAmt+1); 536 else if (IOp->hasNoUnsignedWrap()) 537 DemandedMaskIn.setHighBits(ShiftAmt); 538 539 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 540 return I; 541 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 542 543 bool SignBitZero = Known.Zero.isSignBitSet(); 544 bool SignBitOne = Known.One.isSignBitSet(); 545 Known.Zero <<= ShiftAmt; 546 Known.One <<= ShiftAmt; 547 // low bits known zero. 548 if (ShiftAmt) 549 Known.Zero.setLowBits(ShiftAmt); 550 551 // If this shift has "nsw" keyword, then the result is either a poison 552 // value or has the same sign bit as the first operand. 553 if (IOp->hasNoSignedWrap()) { 554 if (SignBitZero) 555 Known.Zero.setSignBit(); 556 else if (SignBitOne) 557 Known.One.setSignBit(); 558 if (Known.hasConflict()) 559 return UndefValue::get(I->getType()); 560 } 561 } else { 562 // This is a variable shift, so we can't shift the demand mask by a known 563 // amount. But if we are not demanding high bits, then we are not 564 // demanding those bits from the pre-shifted operand either. 565 if (unsigned CTLZ = DemandedMask.countLeadingZeros()) { 566 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 567 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) 568 return I; 569 } 570 computeKnownBits(I, Known, Depth, CxtI); 571 } 572 break; 573 } 574 case Instruction::LShr: { 575 const APInt *SA; 576 if (match(I->getOperand(1), m_APInt(SA))) { 577 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 578 579 // Unsigned shift right. 580 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 581 582 // If the shift is exact, then it does demand the low bits (and knows that 583 // they are zero). 584 if (cast<LShrOperator>(I)->isExact()) 585 DemandedMaskIn.setLowBits(ShiftAmt); 586 587 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 588 return I; 589 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 590 Known.Zero.lshrInPlace(ShiftAmt); 591 Known.One.lshrInPlace(ShiftAmt); 592 if (ShiftAmt) 593 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 594 } else { 595 computeKnownBits(I, Known, Depth, CxtI); 596 } 597 break; 598 } 599 case Instruction::AShr: { 600 // If this is an arithmetic shift right and only the low-bit is set, we can 601 // always convert this into a logical shr, even if the shift amount is 602 // variable. The low bit of the shift cannot be an input sign bit unless 603 // the shift amount is >= the size of the datatype, which is undefined. 604 if (DemandedMask.isOneValue()) { 605 // Perform the logical shift right. 606 Instruction *NewVal = BinaryOperator::CreateLShr( 607 I->getOperand(0), I->getOperand(1), I->getName()); 608 return InsertNewInstWith(NewVal, *I); 609 } 610 611 // If the sign bit is the only bit demanded by this ashr, then there is no 612 // need to do it, the shift doesn't change the high bit. 613 if (DemandedMask.isSignMask()) 614 return I->getOperand(0); 615 616 const APInt *SA; 617 if (match(I->getOperand(1), m_APInt(SA))) { 618 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 619 620 // Signed shift right. 621 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 622 // If any of the high bits are demanded, we should set the sign bit as 623 // demanded. 624 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 625 DemandedMaskIn.setSignBit(); 626 627 // If the shift is exact, then it does demand the low bits (and knows that 628 // they are zero). 629 if (cast<AShrOperator>(I)->isExact()) 630 DemandedMaskIn.setLowBits(ShiftAmt); 631 632 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 633 return I; 634 635 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 636 637 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 638 // Compute the new bits that are at the top now plus sign bits. 639 APInt HighBits(APInt::getHighBitsSet( 640 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 641 Known.Zero.lshrInPlace(ShiftAmt); 642 Known.One.lshrInPlace(ShiftAmt); 643 644 // If the input sign bit is known to be zero, or if none of the top bits 645 // are demanded, turn this into an unsigned shift right. 646 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 647 if (Known.Zero[BitWidth-ShiftAmt-1] || 648 !DemandedMask.intersects(HighBits)) { 649 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 650 I->getOperand(1)); 651 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 652 return InsertNewInstWith(LShr, *I); 653 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 654 Known.One |= HighBits; 655 } 656 } else { 657 computeKnownBits(I, Known, Depth, CxtI); 658 } 659 break; 660 } 661 case Instruction::UDiv: { 662 // UDiv doesn't demand low bits that are zero in the divisor. 663 const APInt *SA; 664 if (match(I->getOperand(1), m_APInt(SA))) { 665 // If the shift is exact, then it does demand the low bits. 666 if (cast<UDivOperator>(I)->isExact()) 667 break; 668 669 // FIXME: Take the demanded mask of the result into account. 670 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 671 APInt DemandedMaskIn = 672 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 673 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 674 return I; 675 676 // Propagate zero bits from the input. 677 Known.Zero.setHighBits(std::min( 678 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 679 } else { 680 computeKnownBits(I, Known, Depth, CxtI); 681 } 682 break; 683 } 684 case Instruction::SRem: { 685 ConstantInt *Rem; 686 if (match(I->getOperand(1), m_ConstantInt(Rem))) { 687 // X % -1 demands all the bits because we don't want to introduce 688 // INT_MIN % -1 (== undef) by accident. 689 if (Rem->isMinusOne()) 690 break; 691 APInt RA = Rem->getValue().abs(); 692 if (RA.isPowerOf2()) { 693 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 694 return I->getOperand(0); 695 696 APInt LowBits = RA - 1; 697 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 698 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 699 return I; 700 701 // The low bits of LHS are unchanged by the srem. 702 Known.Zero = LHSKnown.Zero & LowBits; 703 Known.One = LHSKnown.One & LowBits; 704 705 // If LHS is non-negative or has all low bits zero, then the upper bits 706 // are all zero. 707 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 708 Known.Zero |= ~LowBits; 709 710 // If LHS is negative and not all low bits are zero, then the upper bits 711 // are all one. 712 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 713 Known.One |= ~LowBits; 714 715 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 716 break; 717 } 718 } 719 720 // The sign bit is the LHS's sign bit, except when the result of the 721 // remainder is zero. 722 if (DemandedMask.isSignBitSet()) { 723 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 724 // If it's known zero, our sign bit is also zero. 725 if (LHSKnown.isNonNegative()) 726 Known.makeNonNegative(); 727 } 728 break; 729 } 730 case Instruction::URem: { 731 KnownBits Known2(BitWidth); 732 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 733 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 734 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 735 return I; 736 737 unsigned Leaders = Known2.countMinLeadingZeros(); 738 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 739 break; 740 } 741 case Instruction::Call: { 742 bool KnownBitsComputed = false; 743 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 744 switch (II->getIntrinsicID()) { 745 case Intrinsic::abs: { 746 if (DemandedMask == 1) 747 return II->getArgOperand(0); 748 break; 749 } 750 case Intrinsic::ctpop: { 751 // Checking if the number of clear bits is odd (parity)? If the type has 752 // an even number of bits, that's the same as checking if the number of 753 // set bits is odd, so we can eliminate the 'not' op. 754 Value *X; 755 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && 756 match(II->getArgOperand(0), m_Not(m_Value(X)))) { 757 Function *Ctpop = Intrinsic::getDeclaration( 758 II->getModule(), Intrinsic::ctpop, II->getType()); 759 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I); 760 } 761 break; 762 } 763 case Intrinsic::bswap: { 764 // If the only bits demanded come from one byte of the bswap result, 765 // just shift the input byte into position to eliminate the bswap. 766 unsigned NLZ = DemandedMask.countLeadingZeros(); 767 unsigned NTZ = DemandedMask.countTrailingZeros(); 768 769 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 770 // we need all the bits down to bit 8. Likewise, round NLZ. If we 771 // have 14 leading zeros, round to 8. 772 NLZ &= ~7; 773 NTZ &= ~7; 774 // If we need exactly one byte, we can do this transformation. 775 if (BitWidth-NLZ-NTZ == 8) { 776 unsigned ResultBit = NTZ; 777 unsigned InputBit = BitWidth-NTZ-8; 778 779 // Replace this with either a left or right shift to get the byte into 780 // the right place. 781 Instruction *NewVal; 782 if (InputBit > ResultBit) 783 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 784 ConstantInt::get(I->getType(), InputBit-ResultBit)); 785 else 786 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 787 ConstantInt::get(I->getType(), ResultBit-InputBit)); 788 NewVal->takeName(I); 789 return InsertNewInstWith(NewVal, *I); 790 } 791 break; 792 } 793 case Intrinsic::fshr: 794 case Intrinsic::fshl: { 795 const APInt *SA; 796 if (!match(I->getOperand(2), m_APInt(SA))) 797 break; 798 799 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 800 // defined, so no need to special-case zero shifts here. 801 uint64_t ShiftAmt = SA->urem(BitWidth); 802 if (II->getIntrinsicID() == Intrinsic::fshr) 803 ShiftAmt = BitWidth - ShiftAmt; 804 805 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 806 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 807 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 808 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 809 return I; 810 811 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 812 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 813 Known.One = LHSKnown.One.shl(ShiftAmt) | 814 RHSKnown.One.lshr(BitWidth - ShiftAmt); 815 KnownBitsComputed = true; 816 break; 817 } 818 default: { 819 // Handle target specific intrinsics 820 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 821 *II, DemandedMask, Known, KnownBitsComputed); 822 if (V.hasValue()) 823 return V.getValue(); 824 break; 825 } 826 } 827 } 828 829 if (!KnownBitsComputed) 830 computeKnownBits(V, Known, Depth, CxtI); 831 break; 832 } 833 } 834 835 // If the client is only demanding bits that we know, return the known 836 // constant. 837 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 838 return Constant::getIntegerValue(VTy, Known.One); 839 return nullptr; 840 } 841 842 /// Helper routine of SimplifyDemandedUseBits. It computes Known 843 /// bits. It also tries to handle simplifications that can be done based on 844 /// DemandedMask, but without modifying the Instruction. 845 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 846 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 847 Instruction *CxtI) { 848 unsigned BitWidth = DemandedMask.getBitWidth(); 849 Type *ITy = I->getType(); 850 851 KnownBits LHSKnown(BitWidth); 852 KnownBits RHSKnown(BitWidth); 853 854 // Despite the fact that we can't simplify this instruction in all User's 855 // context, we can at least compute the known bits, and we can 856 // do simplifications that apply to *just* the one user if we know that 857 // this instruction has a simpler value in that context. 858 switch (I->getOpcode()) { 859 case Instruction::And: { 860 // If either the LHS or the RHS are Zero, the result is zero. 861 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 862 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 863 CxtI); 864 865 Known = LHSKnown & RHSKnown; 866 867 // If the client is only demanding bits that we know, return the known 868 // constant. 869 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 870 return Constant::getIntegerValue(ITy, Known.One); 871 872 // If all of the demanded bits are known 1 on one side, return the other. 873 // These bits cannot contribute to the result of the 'and' in this 874 // context. 875 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 876 return I->getOperand(0); 877 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 878 return I->getOperand(1); 879 880 break; 881 } 882 case Instruction::Or: { 883 // We can simplify (X|Y) -> X or Y in the user's context if we know that 884 // only bits from X or Y are demanded. 885 886 // If either the LHS or the RHS are One, the result is One. 887 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 888 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 889 CxtI); 890 891 Known = LHSKnown | RHSKnown; 892 893 // If the client is only demanding bits that we know, return the known 894 // constant. 895 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 896 return Constant::getIntegerValue(ITy, Known.One); 897 898 // If all of the demanded bits are known zero on one side, return the 899 // other. These bits cannot contribute to the result of the 'or' in this 900 // context. 901 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 902 return I->getOperand(0); 903 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 904 return I->getOperand(1); 905 906 break; 907 } 908 case Instruction::Xor: { 909 // We can simplify (X^Y) -> X or Y in the user's context if we know that 910 // only bits from X or Y are demanded. 911 912 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 913 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 914 CxtI); 915 916 Known = LHSKnown ^ RHSKnown; 917 918 // If the client is only demanding bits that we know, return the known 919 // constant. 920 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 921 return Constant::getIntegerValue(ITy, Known.One); 922 923 // If all of the demanded bits are known zero on one side, return the 924 // other. 925 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 926 return I->getOperand(0); 927 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 928 return I->getOperand(1); 929 930 break; 931 } 932 case Instruction::AShr: { 933 // Compute the Known bits to simplify things downstream. 934 computeKnownBits(I, Known, Depth, CxtI); 935 936 // If this user is only demanding bits that we know, return the known 937 // constant. 938 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 939 return Constant::getIntegerValue(ITy, Known.One); 940 941 // If the right shift operand 0 is a result of a left shift by the same 942 // amount, this is probably a zero/sign extension, which may be unnecessary, 943 // if we do not demand any of the new sign bits. So, return the original 944 // operand instead. 945 const APInt *ShiftRC; 946 const APInt *ShiftLC; 947 Value *X; 948 unsigned BitWidth = DemandedMask.getBitWidth(); 949 if (match(I, 950 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 951 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && 952 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 953 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 954 return X; 955 } 956 957 break; 958 } 959 default: 960 // Compute the Known bits to simplify things downstream. 961 computeKnownBits(I, Known, Depth, CxtI); 962 963 // If this user is only demanding bits that we know, return the known 964 // constant. 965 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 966 return Constant::getIntegerValue(ITy, Known.One); 967 968 break; 969 } 970 971 return nullptr; 972 } 973 974 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 975 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 976 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 977 /// of "C2-C1". 978 /// 979 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 980 /// ..., bn}, without considering the specific value X is holding. 981 /// This transformation is legal iff one of following conditions is hold: 982 /// 1) All the bit in S are 0, in this case E1 == E2. 983 /// 2) We don't care those bits in S, per the input DemandedMask. 984 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 985 /// rest bits. 986 /// 987 /// Currently we only test condition 2). 988 /// 989 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 990 /// not successful. 991 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 992 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 993 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 994 if (!ShlOp1 || !ShrOp1) 995 return nullptr; // No-op. 996 997 Value *VarX = Shr->getOperand(0); 998 Type *Ty = VarX->getType(); 999 unsigned BitWidth = Ty->getScalarSizeInBits(); 1000 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1001 return nullptr; // Undef. 1002 1003 unsigned ShlAmt = ShlOp1.getZExtValue(); 1004 unsigned ShrAmt = ShrOp1.getZExtValue(); 1005 1006 Known.One.clearAllBits(); 1007 Known.Zero.setLowBits(ShlAmt - 1); 1008 Known.Zero &= DemandedMask; 1009 1010 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 1011 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 1012 1013 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1014 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1015 (BitMask1.ashr(ShrAmt) << ShlAmt); 1016 1017 if (ShrAmt <= ShlAmt) { 1018 BitMask2 <<= (ShlAmt - ShrAmt); 1019 } else { 1020 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1021 BitMask2.ashr(ShrAmt - ShlAmt); 1022 } 1023 1024 // Check if condition-2 (see the comment to this function) is satified. 1025 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1026 if (ShrAmt == ShlAmt) 1027 return VarX; 1028 1029 if (!Shr->hasOneUse()) 1030 return nullptr; 1031 1032 BinaryOperator *New; 1033 if (ShrAmt < ShlAmt) { 1034 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1035 New = BinaryOperator::CreateShl(VarX, Amt); 1036 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1037 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1038 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1039 } else { 1040 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1041 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1042 BinaryOperator::CreateAShr(VarX, Amt); 1043 if (cast<BinaryOperator>(Shr)->isExact()) 1044 New->setIsExact(true); 1045 } 1046 1047 return InsertNewInstWith(New, *Shl); 1048 } 1049 1050 return nullptr; 1051 } 1052 1053 /// The specified value produces a vector with any number of elements. 1054 /// This method analyzes which elements of the operand are undef or poison and 1055 /// returns that information in UndefElts. 1056 /// 1057 /// DemandedElts contains the set of elements that are actually used by the 1058 /// caller, and by default (AllowMultipleUsers equals false) the value is 1059 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1060 /// to true, DemandedElts refers to the union of sets of elements that are 1061 /// used by all callers. 1062 /// 1063 /// If the information about demanded elements can be used to simplify the 1064 /// operation, the operation is simplified, then the resultant value is 1065 /// returned. This returns null if no change was made. 1066 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1067 APInt DemandedElts, 1068 APInt &UndefElts, 1069 unsigned Depth, 1070 bool AllowMultipleUsers) { 1071 // Cannot analyze scalable type. The number of vector elements is not a 1072 // compile-time constant. 1073 if (isa<ScalableVectorType>(V->getType())) 1074 return nullptr; 1075 1076 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1077 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1078 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1079 1080 if (match(V, m_Undef())) { 1081 // If the entire vector is undef or poison, just return this info. 1082 UndefElts = EltMask; 1083 return nullptr; 1084 } 1085 1086 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide poison. 1087 UndefElts = EltMask; 1088 return PoisonValue::get(V->getType()); 1089 } 1090 1091 UndefElts = 0; 1092 1093 if (auto *C = dyn_cast<Constant>(V)) { 1094 // Check if this is identity. If so, return 0 since we are not simplifying 1095 // anything. 1096 if (DemandedElts.isAllOnesValue()) 1097 return nullptr; 1098 1099 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1100 Constant *Poison = PoisonValue::get(EltTy); 1101 SmallVector<Constant*, 16> Elts; 1102 for (unsigned i = 0; i != VWidth; ++i) { 1103 if (!DemandedElts[i]) { // If not demanded, set to poison. 1104 Elts.push_back(Poison); 1105 UndefElts.setBit(i); 1106 continue; 1107 } 1108 1109 Constant *Elt = C->getAggregateElement(i); 1110 if (!Elt) return nullptr; 1111 1112 Elts.push_back(Elt); 1113 if (isa<UndefValue>(Elt)) // Already undef or poison. 1114 UndefElts.setBit(i); 1115 } 1116 1117 // If we changed the constant, return it. 1118 Constant *NewCV = ConstantVector::get(Elts); 1119 return NewCV != C ? NewCV : nullptr; 1120 } 1121 1122 // Limit search depth. 1123 if (Depth == 10) 1124 return nullptr; 1125 1126 if (!AllowMultipleUsers) { 1127 // If multiple users are using the root value, proceed with 1128 // simplification conservatively assuming that all elements 1129 // are needed. 1130 if (!V->hasOneUse()) { 1131 // Quit if we find multiple users of a non-root value though. 1132 // They'll be handled when it's their turn to be visited by 1133 // the main instcombine process. 1134 if (Depth != 0) 1135 // TODO: Just compute the UndefElts information recursively. 1136 return nullptr; 1137 1138 // Conservatively assume that all elements are needed. 1139 DemandedElts = EltMask; 1140 } 1141 } 1142 1143 Instruction *I = dyn_cast<Instruction>(V); 1144 if (!I) return nullptr; // Only analyze instructions. 1145 1146 bool MadeChange = false; 1147 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1148 APInt Demanded, APInt &Undef) { 1149 auto *II = dyn_cast<IntrinsicInst>(Inst); 1150 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1151 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1152 replaceOperand(*Inst, OpNum, V); 1153 MadeChange = true; 1154 } 1155 }; 1156 1157 APInt UndefElts2(VWidth, 0); 1158 APInt UndefElts3(VWidth, 0); 1159 switch (I->getOpcode()) { 1160 default: break; 1161 1162 case Instruction::GetElementPtr: { 1163 // The LangRef requires that struct geps have all constant indices. As 1164 // such, we can't convert any operand to partial undef. 1165 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1166 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1167 I != E; I++) 1168 if (I.isStruct()) 1169 return true;; 1170 return false; 1171 }; 1172 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1173 break; 1174 1175 // Conservatively track the demanded elements back through any vector 1176 // operands we may have. We know there must be at least one, or we 1177 // wouldn't have a vector result to get here. Note that we intentionally 1178 // merge the undef bits here since gepping with either an undef base or 1179 // index results in undef. 1180 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1181 if (match(I->getOperand(i), m_Undef())) { 1182 // If the entire vector is undefined, just return this info. 1183 UndefElts = EltMask; 1184 return nullptr; 1185 } 1186 if (I->getOperand(i)->getType()->isVectorTy()) { 1187 APInt UndefEltsOp(VWidth, 0); 1188 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1189 UndefElts |= UndefEltsOp; 1190 } 1191 } 1192 1193 break; 1194 } 1195 case Instruction::InsertElement: { 1196 // If this is a variable index, we don't know which element it overwrites. 1197 // demand exactly the same input as we produce. 1198 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1199 if (!Idx) { 1200 // Note that we can't propagate undef elt info, because we don't know 1201 // which elt is getting updated. 1202 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1203 break; 1204 } 1205 1206 // The element inserted overwrites whatever was there, so the input demanded 1207 // set is simpler than the output set. 1208 unsigned IdxNo = Idx->getZExtValue(); 1209 APInt PreInsertDemandedElts = DemandedElts; 1210 if (IdxNo < VWidth) 1211 PreInsertDemandedElts.clearBit(IdxNo); 1212 1213 // If we only demand the element that is being inserted and that element 1214 // was extracted from the same index in another vector with the same type, 1215 // replace this insert with that other vector. 1216 // Note: This is attempted before the call to simplifyAndSetOp because that 1217 // may change UndefElts to a value that does not match with Vec. 1218 Value *Vec; 1219 if (PreInsertDemandedElts == 0 && 1220 match(I->getOperand(1), 1221 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1222 Vec->getType() == I->getType()) { 1223 return Vec; 1224 } 1225 1226 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1227 1228 // If this is inserting an element that isn't demanded, remove this 1229 // insertelement. 1230 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1231 Worklist.push(I); 1232 return I->getOperand(0); 1233 } 1234 1235 // The inserted element is defined. 1236 UndefElts.clearBit(IdxNo); 1237 break; 1238 } 1239 case Instruction::ShuffleVector: { 1240 auto *Shuffle = cast<ShuffleVectorInst>(I); 1241 assert(Shuffle->getOperand(0)->getType() == 1242 Shuffle->getOperand(1)->getType() && 1243 "Expected shuffle operands to have same type"); 1244 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1245 ->getNumElements(); 1246 // Handle trivial case of a splat. Only check the first element of LHS 1247 // operand. 1248 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1249 DemandedElts.isAllOnesValue()) { 1250 if (!match(I->getOperand(1), m_Undef())) { 1251 I->setOperand(1, UndefValue::get(I->getOperand(1)->getType())); 1252 MadeChange = true; 1253 } 1254 APInt LeftDemanded(OpWidth, 1); 1255 APInt LHSUndefElts(OpWidth, 0); 1256 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1257 if (LHSUndefElts[0]) 1258 UndefElts = EltMask; 1259 else 1260 UndefElts.clearAllBits(); 1261 break; 1262 } 1263 1264 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1265 for (unsigned i = 0; i < VWidth; i++) { 1266 if (DemandedElts[i]) { 1267 unsigned MaskVal = Shuffle->getMaskValue(i); 1268 if (MaskVal != -1u) { 1269 assert(MaskVal < OpWidth * 2 && 1270 "shufflevector mask index out of range!"); 1271 if (MaskVal < OpWidth) 1272 LeftDemanded.setBit(MaskVal); 1273 else 1274 RightDemanded.setBit(MaskVal - OpWidth); 1275 } 1276 } 1277 } 1278 1279 APInt LHSUndefElts(OpWidth, 0); 1280 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1281 1282 APInt RHSUndefElts(OpWidth, 0); 1283 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1284 1285 // If this shuffle does not change the vector length and the elements 1286 // demanded by this shuffle are an identity mask, then this shuffle is 1287 // unnecessary. 1288 // 1289 // We are assuming canonical form for the mask, so the source vector is 1290 // operand 0 and operand 1 is not used. 1291 // 1292 // Note that if an element is demanded and this shuffle mask is undefined 1293 // for that element, then the shuffle is not considered an identity 1294 // operation. The shuffle prevents poison from the operand vector from 1295 // leaking to the result by replacing poison with an undefined value. 1296 if (VWidth == OpWidth) { 1297 bool IsIdentityShuffle = true; 1298 for (unsigned i = 0; i < VWidth; i++) { 1299 unsigned MaskVal = Shuffle->getMaskValue(i); 1300 if (DemandedElts[i] && i != MaskVal) { 1301 IsIdentityShuffle = false; 1302 break; 1303 } 1304 } 1305 if (IsIdentityShuffle) 1306 return Shuffle->getOperand(0); 1307 } 1308 1309 bool NewUndefElts = false; 1310 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1311 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1312 bool LHSUniform = true; 1313 bool RHSUniform = true; 1314 for (unsigned i = 0; i < VWidth; i++) { 1315 unsigned MaskVal = Shuffle->getMaskValue(i); 1316 if (MaskVal == -1u) { 1317 UndefElts.setBit(i); 1318 } else if (!DemandedElts[i]) { 1319 NewUndefElts = true; 1320 UndefElts.setBit(i); 1321 } else if (MaskVal < OpWidth) { 1322 if (LHSUndefElts[MaskVal]) { 1323 NewUndefElts = true; 1324 UndefElts.setBit(i); 1325 } else { 1326 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1327 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1328 LHSUniform = LHSUniform && (MaskVal == i); 1329 } 1330 } else { 1331 if (RHSUndefElts[MaskVal - OpWidth]) { 1332 NewUndefElts = true; 1333 UndefElts.setBit(i); 1334 } else { 1335 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1336 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1337 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1338 } 1339 } 1340 } 1341 1342 // Try to transform shuffle with constant vector and single element from 1343 // this constant vector to single insertelement instruction. 1344 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1345 // insertelement V, C[ci], ci-n 1346 if (OpWidth == 1347 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1348 Value *Op = nullptr; 1349 Constant *Value = nullptr; 1350 unsigned Idx = -1u; 1351 1352 // Find constant vector with the single element in shuffle (LHS or RHS). 1353 if (LHSIdx < OpWidth && RHSUniform) { 1354 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1355 Op = Shuffle->getOperand(1); 1356 Value = CV->getOperand(LHSValIdx); 1357 Idx = LHSIdx; 1358 } 1359 } 1360 if (RHSIdx < OpWidth && LHSUniform) { 1361 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1362 Op = Shuffle->getOperand(0); 1363 Value = CV->getOperand(RHSValIdx); 1364 Idx = RHSIdx; 1365 } 1366 } 1367 // Found constant vector with single element - convert to insertelement. 1368 if (Op && Value) { 1369 Instruction *New = InsertElementInst::Create( 1370 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1371 Shuffle->getName()); 1372 InsertNewInstWith(New, *Shuffle); 1373 return New; 1374 } 1375 } 1376 if (NewUndefElts) { 1377 // Add additional discovered undefs. 1378 SmallVector<int, 16> Elts; 1379 for (unsigned i = 0; i < VWidth; ++i) { 1380 if (UndefElts[i]) 1381 Elts.push_back(UndefMaskElem); 1382 else 1383 Elts.push_back(Shuffle->getMaskValue(i)); 1384 } 1385 Shuffle->setShuffleMask(Elts); 1386 MadeChange = true; 1387 } 1388 break; 1389 } 1390 case Instruction::Select: { 1391 // If this is a vector select, try to transform the select condition based 1392 // on the current demanded elements. 1393 SelectInst *Sel = cast<SelectInst>(I); 1394 if (Sel->getCondition()->getType()->isVectorTy()) { 1395 // TODO: We are not doing anything with UndefElts based on this call. 1396 // It is overwritten below based on the other select operands. If an 1397 // element of the select condition is known undef, then we are free to 1398 // choose the output value from either arm of the select. If we know that 1399 // one of those values is undef, then the output can be undef. 1400 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1401 } 1402 1403 // Next, see if we can transform the arms of the select. 1404 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1405 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1406 for (unsigned i = 0; i < VWidth; i++) { 1407 // isNullValue() always returns false when called on a ConstantExpr. 1408 // Skip constant expressions to avoid propagating incorrect information. 1409 Constant *CElt = CV->getAggregateElement(i); 1410 if (isa<ConstantExpr>(CElt)) 1411 continue; 1412 // TODO: If a select condition element is undef, we can demand from 1413 // either side. If one side is known undef, choosing that side would 1414 // propagate undef. 1415 if (CElt->isNullValue()) 1416 DemandedLHS.clearBit(i); 1417 else 1418 DemandedRHS.clearBit(i); 1419 } 1420 } 1421 1422 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1423 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1424 1425 // Output elements are undefined if the element from each arm is undefined. 1426 // TODO: This can be improved. See comment in select condition handling. 1427 UndefElts = UndefElts2 & UndefElts3; 1428 break; 1429 } 1430 case Instruction::BitCast: { 1431 // Vector->vector casts only. 1432 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1433 if (!VTy) break; 1434 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1435 APInt InputDemandedElts(InVWidth, 0); 1436 UndefElts2 = APInt(InVWidth, 0); 1437 unsigned Ratio; 1438 1439 if (VWidth == InVWidth) { 1440 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1441 // elements as are demanded of us. 1442 Ratio = 1; 1443 InputDemandedElts = DemandedElts; 1444 } else if ((VWidth % InVWidth) == 0) { 1445 // If the number of elements in the output is a multiple of the number of 1446 // elements in the input then an input element is live if any of the 1447 // corresponding output elements are live. 1448 Ratio = VWidth / InVWidth; 1449 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1450 if (DemandedElts[OutIdx]) 1451 InputDemandedElts.setBit(OutIdx / Ratio); 1452 } else if ((InVWidth % VWidth) == 0) { 1453 // If the number of elements in the input is a multiple of the number of 1454 // elements in the output then an input element is live if the 1455 // corresponding output element is live. 1456 Ratio = InVWidth / VWidth; 1457 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1458 if (DemandedElts[InIdx / Ratio]) 1459 InputDemandedElts.setBit(InIdx); 1460 } else { 1461 // Unsupported so far. 1462 break; 1463 } 1464 1465 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1466 1467 if (VWidth == InVWidth) { 1468 UndefElts = UndefElts2; 1469 } else if ((VWidth % InVWidth) == 0) { 1470 // If the number of elements in the output is a multiple of the number of 1471 // elements in the input then an output element is undef if the 1472 // corresponding input element is undef. 1473 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1474 if (UndefElts2[OutIdx / Ratio]) 1475 UndefElts.setBit(OutIdx); 1476 } else if ((InVWidth % VWidth) == 0) { 1477 // If the number of elements in the input is a multiple of the number of 1478 // elements in the output then an output element is undef if all of the 1479 // corresponding input elements are undef. 1480 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1481 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1482 if (SubUndef.countPopulation() == Ratio) 1483 UndefElts.setBit(OutIdx); 1484 } 1485 } else { 1486 llvm_unreachable("Unimp"); 1487 } 1488 break; 1489 } 1490 case Instruction::FPTrunc: 1491 case Instruction::FPExt: 1492 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1493 break; 1494 1495 case Instruction::Call: { 1496 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1497 if (!II) break; 1498 switch (II->getIntrinsicID()) { 1499 case Intrinsic::masked_gather: // fallthrough 1500 case Intrinsic::masked_load: { 1501 // Subtlety: If we load from a pointer, the pointer must be valid 1502 // regardless of whether the element is demanded. Doing otherwise risks 1503 // segfaults which didn't exist in the original program. 1504 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1505 DemandedPassThrough(DemandedElts); 1506 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1507 for (unsigned i = 0; i < VWidth; i++) { 1508 Constant *CElt = CV->getAggregateElement(i); 1509 if (CElt->isNullValue()) 1510 DemandedPtrs.clearBit(i); 1511 else if (CElt->isAllOnesValue()) 1512 DemandedPassThrough.clearBit(i); 1513 } 1514 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1515 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1516 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1517 1518 // Output elements are undefined if the element from both sources are. 1519 // TODO: can strengthen via mask as well. 1520 UndefElts = UndefElts2 & UndefElts3; 1521 break; 1522 } 1523 default: { 1524 // Handle target specific intrinsics 1525 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1526 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1527 simplifyAndSetOp); 1528 if (V.hasValue()) 1529 return V.getValue(); 1530 break; 1531 } 1532 } // switch on IntrinsicID 1533 break; 1534 } // case Call 1535 } // switch on Opcode 1536 1537 // TODO: We bail completely on integer div/rem and shifts because they have 1538 // UB/poison potential, but that should be refined. 1539 BinaryOperator *BO; 1540 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1541 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1542 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1543 1544 // Any change to an instruction with potential poison must clear those flags 1545 // because we can not guarantee those constraints now. Other analysis may 1546 // determine that it is safe to re-apply the flags. 1547 if (MadeChange) 1548 BO->dropPoisonGeneratingFlags(); 1549 1550 // Output elements are undefined if both are undefined. Consider things 1551 // like undef & 0. The result is known zero, not undef. 1552 UndefElts &= UndefElts2; 1553 } 1554 1555 // If we've proven all of the lanes undef, return an undef value. 1556 // TODO: Intersect w/demanded lanes 1557 if (UndefElts.isAllOnesValue()) 1558 return UndefValue::get(I->getType());; 1559 1560 return MadeChange ? I : nullptr; 1561 } 1562