1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21 
22 using namespace llvm;
23 using namespace llvm::PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Check to see if the specified operand of the specified instruction is a
28 /// constant integer. If so, check to see if there are any bits set in the
29 /// constant that are not demanded. If so, shrink the constant and return true.
30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
31                                    const APInt &Demanded) {
32   assert(I && "No instruction?");
33   assert(OpNo < I->getNumOperands() && "Operand index too large");
34 
35   // The operand must be a constant integer or splat integer.
36   Value *Op = I->getOperand(OpNo);
37   const APInt *C;
38   if (!match(Op, m_APInt(C)))
39     return false;
40 
41   // If there are no bits set that aren't demanded, nothing to do.
42   if (C->isSubsetOf(Demanded))
43     return false;
44 
45   // This instruction is producing bits that are not demanded. Shrink the RHS.
46   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
47 
48   return true;
49 }
50 
51 
52 
53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54 /// the instruction has any properties that allow us to simplify its operands.
55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
56   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57   KnownBits Known(BitWidth);
58   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
59 
60   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
61                                      0, &Inst);
62   if (!V) return false;
63   if (V == &Inst) return true;
64   replaceInstUsesWith(Inst, V);
65   return true;
66 }
67 
68 /// This form of SimplifyDemandedBits simplifies the specified instruction
69 /// operand if possible, updating it in place. It returns true if it made any
70 /// change and false otherwise.
71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
72                                             const APInt &DemandedMask,
73                                             KnownBits &Known, unsigned Depth) {
74   Use &U = I->getOperandUse(OpNo);
75   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
76                                           Depth, I);
77   if (!NewVal) return false;
78   if (Instruction* OpInst = dyn_cast<Instruction>(U))
79     salvageDebugInfo(*OpInst);
80 
81   replaceUse(U, NewVal);
82   return true;
83 }
84 
85 /// This function attempts to replace V with a simpler value based on the
86 /// demanded bits. When this function is called, it is known that only the bits
87 /// set in DemandedMask of the result of V are ever used downstream.
88 /// Consequently, depending on the mask and V, it may be possible to replace V
89 /// with a constant or one of its operands. In such cases, this function does
90 /// the replacement and returns true. In all other cases, it returns false after
91 /// analyzing the expression and setting KnownOne and known to be one in the
92 /// expression. Known.Zero contains all the bits that are known to be zero in
93 /// the expression. These are provided to potentially allow the caller (which
94 /// might recursively be SimplifyDemandedBits itself) to simplify the
95 /// expression.
96 /// Known.One and Known.Zero always follow the invariant that:
97 ///   Known.One & Known.Zero == 0.
98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
101 /// be the same.
102 ///
103 /// This returns null if it did not change anything and it permits no
104 /// simplification.  This returns V itself if it did some simplification of V's
105 /// operands based on the information about what bits are demanded. This returns
106 /// some other non-null value if it found out that V is equal to another value
107 /// in the context where the specified bits are demanded, but not for all users.
108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
109                                                  KnownBits &Known,
110                                                  unsigned Depth,
111                                                  Instruction *CxtI) {
112   assert(V != nullptr && "Null pointer of Value???");
113   assert(Depth <= 6 && "Limit Search Depth");
114   uint32_t BitWidth = DemandedMask.getBitWidth();
115   Type *VTy = V->getType();
116   assert(
117       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
118       Known.getBitWidth() == BitWidth &&
119       "Value *V, DemandedMask and Known must have same BitWidth");
120 
121   if (isa<Constant>(V)) {
122     computeKnownBits(V, Known, Depth, CxtI);
123     return nullptr;
124   }
125 
126   Known.resetAll();
127   if (DemandedMask.isNullValue())     // Not demanding any bits from V.
128     return UndefValue::get(VTy);
129 
130   if (Depth == 6)        // Limit search depth.
131     return nullptr;
132 
133   Instruction *I = dyn_cast<Instruction>(V);
134   if (!I) {
135     computeKnownBits(V, Known, Depth, CxtI);
136     return nullptr;        // Only analyze instructions.
137   }
138 
139   // If there are multiple uses of this value and we aren't at the root, then
140   // we can't do any simplifications of the operands, because DemandedMask
141   // only reflects the bits demanded by *one* of the users.
142   if (Depth != 0 && !I->hasOneUse())
143     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
144 
145   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
146 
147   // If this is the root being simplified, allow it to have multiple uses,
148   // just set the DemandedMask to all bits so that we can try to simplify the
149   // operands.  This allows visitTruncInst (for example) to simplify the
150   // operand of a trunc without duplicating all the logic below.
151   if (Depth == 0 && !V->hasOneUse())
152     DemandedMask.setAllBits();
153 
154   switch (I->getOpcode()) {
155   default:
156     computeKnownBits(I, Known, Depth, CxtI);
157     break;
158   case Instruction::And: {
159     // If either the LHS or the RHS are Zero, the result is zero.
160     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
161         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
162                              Depth + 1))
163       return I;
164     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
165     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
166 
167     Known = LHSKnown & RHSKnown;
168 
169     // If the client is only demanding bits that we know, return the known
170     // constant.
171     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
172       return Constant::getIntegerValue(VTy, Known.One);
173 
174     // If all of the demanded bits are known 1 on one side, return the other.
175     // These bits cannot contribute to the result of the 'and'.
176     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
177       return I->getOperand(0);
178     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
179       return I->getOperand(1);
180 
181     // If the RHS is a constant, see if we can simplify it.
182     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
183       return I;
184 
185     break;
186   }
187   case Instruction::Or: {
188     // If either the LHS or the RHS are One, the result is One.
189     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
190         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
191                              Depth + 1))
192       return I;
193     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
194     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
195 
196     Known = LHSKnown | RHSKnown;
197 
198     // If the client is only demanding bits that we know, return the known
199     // constant.
200     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
201       return Constant::getIntegerValue(VTy, Known.One);
202 
203     // If all of the demanded bits are known zero on one side, return the other.
204     // These bits cannot contribute to the result of the 'or'.
205     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
206       return I->getOperand(0);
207     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
208       return I->getOperand(1);
209 
210     // If the RHS is a constant, see if we can simplify it.
211     if (ShrinkDemandedConstant(I, 1, DemandedMask))
212       return I;
213 
214     break;
215   }
216   case Instruction::Xor: {
217     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
218         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
219       return I;
220     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
221     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
222 
223     Known = LHSKnown ^ RHSKnown;
224 
225     // If the client is only demanding bits that we know, return the known
226     // constant.
227     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
228       return Constant::getIntegerValue(VTy, Known.One);
229 
230     // If all of the demanded bits are known zero on one side, return the other.
231     // These bits cannot contribute to the result of the 'xor'.
232     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
233       return I->getOperand(0);
234     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
235       return I->getOperand(1);
236 
237     // If all of the demanded bits are known to be zero on one side or the
238     // other, turn this into an *inclusive* or.
239     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
240     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
241       Instruction *Or =
242         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
243                                  I->getName());
244       return InsertNewInstWith(Or, *I);
245     }
246 
247     // If all of the demanded bits on one side are known, and all of the set
248     // bits on that side are also known to be set on the other side, turn this
249     // into an AND, as we know the bits will be cleared.
250     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
251     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
252         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
253       Constant *AndC = Constant::getIntegerValue(VTy,
254                                                  ~RHSKnown.One & DemandedMask);
255       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
256       return InsertNewInstWith(And, *I);
257     }
258 
259     // If the RHS is a constant, see if we can simplify it.
260     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
261     if (ShrinkDemandedConstant(I, 1, DemandedMask))
262       return I;
263 
264     // If our LHS is an 'and' and if it has one use, and if any of the bits we
265     // are flipping are known to be set, then the xor is just resetting those
266     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
267     // simplifying both of them.
268     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
269       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
270           isa<ConstantInt>(I->getOperand(1)) &&
271           isa<ConstantInt>(LHSInst->getOperand(1)) &&
272           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
273         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
274         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
275         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
276 
277         Constant *AndC =
278           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
279         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
280         InsertNewInstWith(NewAnd, *I);
281 
282         Constant *XorC =
283           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
284         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
285         return InsertNewInstWith(NewXor, *I);
286       }
287 
288     break;
289   }
290   case Instruction::Select: {
291     Value *LHS, *RHS;
292     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
293     if (SPF == SPF_UMAX) {
294       // UMax(A, C) == A if ...
295       // The lowest non-zero bit of DemandMask is higher than the highest
296       // non-zero bit of C.
297       const APInt *C;
298       unsigned CTZ = DemandedMask.countTrailingZeros();
299       if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
300         return LHS;
301     } else if (SPF == SPF_UMIN) {
302       // UMin(A, C) == A if ...
303       // The lowest non-zero bit of DemandMask is higher than the highest
304       // non-one bit of C.
305       // This comes from using DeMorgans on the above umax example.
306       const APInt *C;
307       unsigned CTZ = DemandedMask.countTrailingZeros();
308       if (match(RHS, m_APInt(C)) &&
309           CTZ >= C->getBitWidth() - C->countLeadingOnes())
310         return LHS;
311     }
312 
313     // If this is a select as part of any other min/max pattern, don't simplify
314     // any further in case we break the structure.
315     if (SPF != SPF_UNKNOWN)
316       return nullptr;
317 
318     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
319         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
320       return I;
321     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
322     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
323 
324     // If the operands are constants, see if we can simplify them.
325     // This is similar to ShrinkDemandedConstant, but for a select we want to
326     // try to keep the selected constants the same as icmp value constants, if
327     // we can. This helps not break apart (or helps put back together)
328     // canonical patterns like min and max.
329     auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
330                                          APInt DemandedMask) {
331       const APInt *SelC;
332       if (!match(I->getOperand(OpNo), m_APInt(SelC)))
333         return false;
334 
335       // Get the constant out of the ICmp, if there is one.
336       const APInt *CmpC;
337       ICmpInst::Predicate Pred;
338       if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) ||
339           CmpC->getBitWidth() != SelC->getBitWidth())
340         return ShrinkDemandedConstant(I, OpNo, DemandedMask);
341 
342       // If the constant is already the same as the ICmp, leave it as-is.
343       if (*CmpC == *SelC)
344         return false;
345       // If the constants are not already the same, but can be with the demand
346       // mask, use the constant value from the ICmp.
347       if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
348         I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
349         return true;
350       }
351       return ShrinkDemandedConstant(I, OpNo, DemandedMask);
352     };
353     if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
354         CanonicalizeSelectConstant(I, 2, DemandedMask))
355       return I;
356 
357     // Only known if known in both the LHS and RHS.
358     Known.One = RHSKnown.One & LHSKnown.One;
359     Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
360     break;
361   }
362   case Instruction::ZExt:
363   case Instruction::Trunc: {
364     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
365 
366     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
367     KnownBits InputKnown(SrcBitWidth);
368     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
369       return I;
370     assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
371     Known = InputKnown.zextOrTrunc(BitWidth);
372     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
373     break;
374   }
375   case Instruction::BitCast:
376     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
377       return nullptr;  // vector->int or fp->int?
378 
379     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
380       if (VectorType *SrcVTy =
381             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
382         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
383           // Don't touch a bitcast between vectors of different element counts.
384           return nullptr;
385       } else
386         // Don't touch a scalar-to-vector bitcast.
387         return nullptr;
388     } else if (I->getOperand(0)->getType()->isVectorTy())
389       // Don't touch a vector-to-scalar bitcast.
390       return nullptr;
391 
392     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
393       return I;
394     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
395     break;
396   case Instruction::SExt: {
397     // Compute the bits in the result that are not present in the input.
398     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
399 
400     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
401 
402     // If any of the sign extended bits are demanded, we know that the sign
403     // bit is demanded.
404     if (DemandedMask.getActiveBits() > SrcBitWidth)
405       InputDemandedBits.setBit(SrcBitWidth-1);
406 
407     KnownBits InputKnown(SrcBitWidth);
408     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
409       return I;
410 
411     // If the input sign bit is known zero, or if the NewBits are not demanded
412     // convert this into a zero extension.
413     if (InputKnown.isNonNegative() ||
414         DemandedMask.getActiveBits() <= SrcBitWidth) {
415       // Convert to ZExt cast.
416       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
417       return InsertNewInstWith(NewCast, *I);
418      }
419 
420     // If the sign bit of the input is known set or clear, then we know the
421     // top bits of the result.
422     Known = InputKnown.sext(BitWidth);
423     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
424     break;
425   }
426   case Instruction::Add:
427     if ((DemandedMask & 1) == 0) {
428       // If we do not need the low bit, try to convert bool math to logic:
429       // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
430       Value *X, *Y;
431       if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
432                            m_OneUse(m_SExt(m_Value(Y))))) &&
433           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
434         // Truth table for inputs and output signbits:
435         //       X:0 | X:1
436         //      ----------
437         // Y:0  |  0 | 0 |
438         // Y:1  | -1 | 0 |
439         //      ----------
440         IRBuilderBase::InsertPointGuard Guard(Builder);
441         Builder.SetInsertPoint(I);
442         Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
443         return Builder.CreateSExt(AndNot, VTy);
444       }
445 
446       // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
447       // TODO: Relax the one-use checks because we are removing an instruction?
448       if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))),
449                          m_OneUse(m_SExt(m_Value(Y))))) &&
450           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
451         // Truth table for inputs and output signbits:
452         //       X:0 | X:1
453         //      -----------
454         // Y:0  | -1 | -1 |
455         // Y:1  | -1 |  0 |
456         //      -----------
457         IRBuilderBase::InsertPointGuard Guard(Builder);
458         Builder.SetInsertPoint(I);
459         Value *Or = Builder.CreateOr(X, Y);
460         return Builder.CreateSExt(Or, VTy);
461       }
462     }
463     LLVM_FALLTHROUGH;
464   case Instruction::Sub: {
465     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
466     /// about the high bits of the operands.
467     unsigned NLZ = DemandedMask.countLeadingZeros();
468     // Right fill the mask of bits for this ADD/SUB to demand the most
469     // significant bit and all those below it.
470     APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
471     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
472         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
473         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
474         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
475       if (NLZ > 0) {
476         // Disable the nsw and nuw flags here: We can no longer guarantee that
477         // we won't wrap after simplification. Removing the nsw/nuw flags is
478         // legal here because the top bit is not demanded.
479         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
480         BinOP.setHasNoSignedWrap(false);
481         BinOP.setHasNoUnsignedWrap(false);
482       }
483       return I;
484     }
485 
486     // If we are known to be adding/subtracting zeros to every bit below
487     // the highest demanded bit, we just return the other side.
488     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
489       return I->getOperand(0);
490     // We can't do this with the LHS for subtraction, unless we are only
491     // demanding the LSB.
492     if ((I->getOpcode() == Instruction::Add ||
493          DemandedFromOps.isOneValue()) &&
494         DemandedFromOps.isSubsetOf(LHSKnown.Zero))
495       return I->getOperand(1);
496 
497     // Otherwise just compute the known bits of the result.
498     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
499     Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
500                                         NSW, LHSKnown, RHSKnown);
501     break;
502   }
503   case Instruction::Shl: {
504     const APInt *SA;
505     if (match(I->getOperand(1), m_APInt(SA))) {
506       const APInt *ShrAmt;
507       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
508         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
509           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
510                                                     DemandedMask, Known))
511             return R;
512 
513       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
514       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
515 
516       // If the shift is NUW/NSW, then it does demand the high bits.
517       ShlOperator *IOp = cast<ShlOperator>(I);
518       if (IOp->hasNoSignedWrap())
519         DemandedMaskIn.setHighBits(ShiftAmt+1);
520       else if (IOp->hasNoUnsignedWrap())
521         DemandedMaskIn.setHighBits(ShiftAmt);
522 
523       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
524         return I;
525       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
526 
527       bool SignBitZero = Known.Zero.isSignBitSet();
528       bool SignBitOne = Known.One.isSignBitSet();
529       Known.Zero <<= ShiftAmt;
530       Known.One  <<= ShiftAmt;
531       // low bits known zero.
532       if (ShiftAmt)
533         Known.Zero.setLowBits(ShiftAmt);
534 
535       // If this shift has "nsw" keyword, then the result is either a poison
536       // value or has the same sign bit as the first operand.
537       if (IOp->hasNoSignedWrap()) {
538         if (SignBitZero)
539           Known.Zero.setSignBit();
540         else if (SignBitOne)
541           Known.One.setSignBit();
542         if (Known.hasConflict())
543           return UndefValue::get(I->getType());
544       }
545     } else {
546       computeKnownBits(I, Known, Depth, CxtI);
547     }
548     break;
549   }
550   case Instruction::LShr: {
551     const APInt *SA;
552     if (match(I->getOperand(1), m_APInt(SA))) {
553       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
554 
555       // Unsigned shift right.
556       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
557 
558       // If the shift is exact, then it does demand the low bits (and knows that
559       // they are zero).
560       if (cast<LShrOperator>(I)->isExact())
561         DemandedMaskIn.setLowBits(ShiftAmt);
562 
563       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
564         return I;
565       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
566       Known.Zero.lshrInPlace(ShiftAmt);
567       Known.One.lshrInPlace(ShiftAmt);
568       if (ShiftAmt)
569         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
570     } else {
571       computeKnownBits(I, Known, Depth, CxtI);
572     }
573     break;
574   }
575   case Instruction::AShr: {
576     // If this is an arithmetic shift right and only the low-bit is set, we can
577     // always convert this into a logical shr, even if the shift amount is
578     // variable.  The low bit of the shift cannot be an input sign bit unless
579     // the shift amount is >= the size of the datatype, which is undefined.
580     if (DemandedMask.isOneValue()) {
581       // Perform the logical shift right.
582       Instruction *NewVal = BinaryOperator::CreateLShr(
583                         I->getOperand(0), I->getOperand(1), I->getName());
584       return InsertNewInstWith(NewVal, *I);
585     }
586 
587     // If the sign bit is the only bit demanded by this ashr, then there is no
588     // need to do it, the shift doesn't change the high bit.
589     if (DemandedMask.isSignMask())
590       return I->getOperand(0);
591 
592     const APInt *SA;
593     if (match(I->getOperand(1), m_APInt(SA))) {
594       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
595 
596       // Signed shift right.
597       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
598       // If any of the high bits are demanded, we should set the sign bit as
599       // demanded.
600       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
601         DemandedMaskIn.setSignBit();
602 
603       // If the shift is exact, then it does demand the low bits (and knows that
604       // they are zero).
605       if (cast<AShrOperator>(I)->isExact())
606         DemandedMaskIn.setLowBits(ShiftAmt);
607 
608       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
609         return I;
610 
611       unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
612 
613       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
614       // Compute the new bits that are at the top now plus sign bits.
615       APInt HighBits(APInt::getHighBitsSet(
616           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
617       Known.Zero.lshrInPlace(ShiftAmt);
618       Known.One.lshrInPlace(ShiftAmt);
619 
620       // If the input sign bit is known to be zero, or if none of the top bits
621       // are demanded, turn this into an unsigned shift right.
622       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
623       if (Known.Zero[BitWidth-ShiftAmt-1] ||
624           !DemandedMask.intersects(HighBits)) {
625         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
626                                                           I->getOperand(1));
627         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
628         return InsertNewInstWith(LShr, *I);
629       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
630         Known.One |= HighBits;
631       }
632     } else {
633       computeKnownBits(I, Known, Depth, CxtI);
634     }
635     break;
636   }
637   case Instruction::UDiv: {
638     // UDiv doesn't demand low bits that are zero in the divisor.
639     const APInt *SA;
640     if (match(I->getOperand(1), m_APInt(SA))) {
641       // If the shift is exact, then it does demand the low bits.
642       if (cast<UDivOperator>(I)->isExact())
643         break;
644 
645       // FIXME: Take the demanded mask of the result into account.
646       unsigned RHSTrailingZeros = SA->countTrailingZeros();
647       APInt DemandedMaskIn =
648           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
649       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
650         return I;
651 
652       // Propagate zero bits from the input.
653       Known.Zero.setHighBits(std::min(
654           BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
655     } else {
656       computeKnownBits(I, Known, Depth, CxtI);
657     }
658     break;
659   }
660   case Instruction::SRem:
661     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
662       // X % -1 demands all the bits because we don't want to introduce
663       // INT_MIN % -1 (== undef) by accident.
664       if (Rem->isMinusOne())
665         break;
666       APInt RA = Rem->getValue().abs();
667       if (RA.isPowerOf2()) {
668         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
669           return I->getOperand(0);
670 
671         APInt LowBits = RA - 1;
672         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
673         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
674           return I;
675 
676         // The low bits of LHS are unchanged by the srem.
677         Known.Zero = LHSKnown.Zero & LowBits;
678         Known.One = LHSKnown.One & LowBits;
679 
680         // If LHS is non-negative or has all low bits zero, then the upper bits
681         // are all zero.
682         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
683           Known.Zero |= ~LowBits;
684 
685         // If LHS is negative and not all low bits are zero, then the upper bits
686         // are all one.
687         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
688           Known.One |= ~LowBits;
689 
690         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
691         break;
692       }
693     }
694 
695     // The sign bit is the LHS's sign bit, except when the result of the
696     // remainder is zero.
697     if (DemandedMask.isSignBitSet()) {
698       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
699       // If it's known zero, our sign bit is also zero.
700       if (LHSKnown.isNonNegative())
701         Known.makeNonNegative();
702     }
703     break;
704   case Instruction::URem: {
705     KnownBits Known2(BitWidth);
706     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
707     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
708         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
709       return I;
710 
711     unsigned Leaders = Known2.countMinLeadingZeros();
712     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
713     break;
714   }
715   case Instruction::Call: {
716     bool KnownBitsComputed = false;
717     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
718       switch (II->getIntrinsicID()) {
719       case Intrinsic::bswap: {
720         // If the only bits demanded come from one byte of the bswap result,
721         // just shift the input byte into position to eliminate the bswap.
722         unsigned NLZ = DemandedMask.countLeadingZeros();
723         unsigned NTZ = DemandedMask.countTrailingZeros();
724 
725         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
726         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
727         // have 14 leading zeros, round to 8.
728         NLZ &= ~7;
729         NTZ &= ~7;
730         // If we need exactly one byte, we can do this transformation.
731         if (BitWidth-NLZ-NTZ == 8) {
732           unsigned ResultBit = NTZ;
733           unsigned InputBit = BitWidth-NTZ-8;
734 
735           // Replace this with either a left or right shift to get the byte into
736           // the right place.
737           Instruction *NewVal;
738           if (InputBit > ResultBit)
739             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
740                     ConstantInt::get(I->getType(), InputBit-ResultBit));
741           else
742             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
743                     ConstantInt::get(I->getType(), ResultBit-InputBit));
744           NewVal->takeName(I);
745           return InsertNewInstWith(NewVal, *I);
746         }
747         break;
748       }
749       case Intrinsic::fshr:
750       case Intrinsic::fshl: {
751         const APInt *SA;
752         if (!match(I->getOperand(2), m_APInt(SA)))
753           break;
754 
755         // Normalize to funnel shift left. APInt shifts of BitWidth are well-
756         // defined, so no need to special-case zero shifts here.
757         uint64_t ShiftAmt = SA->urem(BitWidth);
758         if (II->getIntrinsicID() == Intrinsic::fshr)
759           ShiftAmt = BitWidth - ShiftAmt;
760 
761         APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
762         APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
763         if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
764             SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
765           return I;
766 
767         Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
768                      RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
769         Known.One = LHSKnown.One.shl(ShiftAmt) |
770                     RHSKnown.One.lshr(BitWidth - ShiftAmt);
771         KnownBitsComputed = true;
772         break;
773       }
774       default: {
775         // Handle target specific intrinsics
776         Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
777             *II, DemandedMask, Known, KnownBitsComputed);
778         if (V.hasValue())
779           return V.getValue();
780         break;
781       }
782       }
783     }
784 
785     if (!KnownBitsComputed)
786       computeKnownBits(V, Known, Depth, CxtI);
787     break;
788   }
789   }
790 
791   // If the client is only demanding bits that we know, return the known
792   // constant.
793   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
794     return Constant::getIntegerValue(VTy, Known.One);
795   return nullptr;
796 }
797 
798 /// Helper routine of SimplifyDemandedUseBits. It computes Known
799 /// bits. It also tries to handle simplifications that can be done based on
800 /// DemandedMask, but without modifying the Instruction.
801 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
802     Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
803     Instruction *CxtI) {
804   unsigned BitWidth = DemandedMask.getBitWidth();
805   Type *ITy = I->getType();
806 
807   KnownBits LHSKnown(BitWidth);
808   KnownBits RHSKnown(BitWidth);
809 
810   // Despite the fact that we can't simplify this instruction in all User's
811   // context, we can at least compute the known bits, and we can
812   // do simplifications that apply to *just* the one user if we know that
813   // this instruction has a simpler value in that context.
814   switch (I->getOpcode()) {
815   case Instruction::And: {
816     // If either the LHS or the RHS are Zero, the result is zero.
817     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
818     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
819                      CxtI);
820 
821     Known = LHSKnown & RHSKnown;
822 
823     // If the client is only demanding bits that we know, return the known
824     // constant.
825     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
826       return Constant::getIntegerValue(ITy, Known.One);
827 
828     // If all of the demanded bits are known 1 on one side, return the other.
829     // These bits cannot contribute to the result of the 'and' in this
830     // context.
831     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
832       return I->getOperand(0);
833     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
834       return I->getOperand(1);
835 
836     break;
837   }
838   case Instruction::Or: {
839     // We can simplify (X|Y) -> X or Y in the user's context if we know that
840     // only bits from X or Y are demanded.
841 
842     // If either the LHS or the RHS are One, the result is One.
843     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
844     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
845                      CxtI);
846 
847     Known = LHSKnown | RHSKnown;
848 
849     // If the client is only demanding bits that we know, return the known
850     // constant.
851     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
852       return Constant::getIntegerValue(ITy, Known.One);
853 
854     // If all of the demanded bits are known zero on one side, return the
855     // other.  These bits cannot contribute to the result of the 'or' in this
856     // context.
857     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
858       return I->getOperand(0);
859     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
860       return I->getOperand(1);
861 
862     break;
863   }
864   case Instruction::Xor: {
865     // We can simplify (X^Y) -> X or Y in the user's context if we know that
866     // only bits from X or Y are demanded.
867 
868     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
869     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
870                      CxtI);
871 
872     Known = LHSKnown ^ RHSKnown;
873 
874     // If the client is only demanding bits that we know, return the known
875     // constant.
876     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
877       return Constant::getIntegerValue(ITy, Known.One);
878 
879     // If all of the demanded bits are known zero on one side, return the
880     // other.
881     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
882       return I->getOperand(0);
883     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
884       return I->getOperand(1);
885 
886     break;
887   }
888   default:
889     // Compute the Known bits to simplify things downstream.
890     computeKnownBits(I, Known, Depth, CxtI);
891 
892     // If this user is only demanding bits that we know, return the known
893     // constant.
894     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
895       return Constant::getIntegerValue(ITy, Known.One);
896 
897     break;
898   }
899 
900   return nullptr;
901 }
902 
903 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
904 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
905 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
906 /// of "C2-C1".
907 ///
908 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
909 /// ..., bn}, without considering the specific value X is holding.
910 /// This transformation is legal iff one of following conditions is hold:
911 ///  1) All the bit in S are 0, in this case E1 == E2.
912 ///  2) We don't care those bits in S, per the input DemandedMask.
913 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
914 ///     rest bits.
915 ///
916 /// Currently we only test condition 2).
917 ///
918 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
919 /// not successful.
920 Value *InstCombinerImpl::simplifyShrShlDemandedBits(
921     Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
922     const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
923   if (!ShlOp1 || !ShrOp1)
924     return nullptr; // No-op.
925 
926   Value *VarX = Shr->getOperand(0);
927   Type *Ty = VarX->getType();
928   unsigned BitWidth = Ty->getScalarSizeInBits();
929   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
930     return nullptr; // Undef.
931 
932   unsigned ShlAmt = ShlOp1.getZExtValue();
933   unsigned ShrAmt = ShrOp1.getZExtValue();
934 
935   Known.One.clearAllBits();
936   Known.Zero.setLowBits(ShlAmt - 1);
937   Known.Zero &= DemandedMask;
938 
939   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
940   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
941 
942   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
943   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
944                       (BitMask1.ashr(ShrAmt) << ShlAmt);
945 
946   if (ShrAmt <= ShlAmt) {
947     BitMask2 <<= (ShlAmt - ShrAmt);
948   } else {
949     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
950                         BitMask2.ashr(ShrAmt - ShlAmt);
951   }
952 
953   // Check if condition-2 (see the comment to this function) is satified.
954   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
955     if (ShrAmt == ShlAmt)
956       return VarX;
957 
958     if (!Shr->hasOneUse())
959       return nullptr;
960 
961     BinaryOperator *New;
962     if (ShrAmt < ShlAmt) {
963       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
964       New = BinaryOperator::CreateShl(VarX, Amt);
965       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
966       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
967       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
968     } else {
969       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
970       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
971                      BinaryOperator::CreateAShr(VarX, Amt);
972       if (cast<BinaryOperator>(Shr)->isExact())
973         New->setIsExact(true);
974     }
975 
976     return InsertNewInstWith(New, *Shl);
977   }
978 
979   return nullptr;
980 }
981 
982 /// The specified value produces a vector with any number of elements.
983 /// This method analyzes which elements of the operand are undef and returns
984 /// that information in UndefElts.
985 ///
986 /// DemandedElts contains the set of elements that are actually used by the
987 /// caller, and by default (AllowMultipleUsers equals false) the value is
988 /// simplified only if it has a single caller. If AllowMultipleUsers is set
989 /// to true, DemandedElts refers to the union of sets of elements that are
990 /// used by all callers.
991 ///
992 /// If the information about demanded elements can be used to simplify the
993 /// operation, the operation is simplified, then the resultant value is
994 /// returned.  This returns null if no change was made.
995 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
996                                                     APInt DemandedElts,
997                                                     APInt &UndefElts,
998                                                     unsigned Depth,
999                                                     bool AllowMultipleUsers) {
1000   // Cannot analyze scalable type. The number of vector elements is not a
1001   // compile-time constant.
1002   if (isa<ScalableVectorType>(V->getType()))
1003     return nullptr;
1004 
1005   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
1006   APInt EltMask(APInt::getAllOnesValue(VWidth));
1007   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1008 
1009   if (isa<UndefValue>(V)) {
1010     // If the entire vector is undefined, just return this info.
1011     UndefElts = EltMask;
1012     return nullptr;
1013   }
1014 
1015   if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
1016     UndefElts = EltMask;
1017     return UndefValue::get(V->getType());
1018   }
1019 
1020   UndefElts = 0;
1021 
1022   if (auto *C = dyn_cast<Constant>(V)) {
1023     // Check if this is identity. If so, return 0 since we are not simplifying
1024     // anything.
1025     if (DemandedElts.isAllOnesValue())
1026       return nullptr;
1027 
1028     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1029     Constant *Undef = UndefValue::get(EltTy);
1030     SmallVector<Constant*, 16> Elts;
1031     for (unsigned i = 0; i != VWidth; ++i) {
1032       if (!DemandedElts[i]) {   // If not demanded, set to undef.
1033         Elts.push_back(Undef);
1034         UndefElts.setBit(i);
1035         continue;
1036       }
1037 
1038       Constant *Elt = C->getAggregateElement(i);
1039       if (!Elt) return nullptr;
1040 
1041       if (isa<UndefValue>(Elt)) {   // Already undef.
1042         Elts.push_back(Undef);
1043         UndefElts.setBit(i);
1044       } else {                               // Otherwise, defined.
1045         Elts.push_back(Elt);
1046       }
1047     }
1048 
1049     // If we changed the constant, return it.
1050     Constant *NewCV = ConstantVector::get(Elts);
1051     return NewCV != C ? NewCV : nullptr;
1052   }
1053 
1054   // Limit search depth.
1055   if (Depth == 10)
1056     return nullptr;
1057 
1058   if (!AllowMultipleUsers) {
1059     // If multiple users are using the root value, proceed with
1060     // simplification conservatively assuming that all elements
1061     // are needed.
1062     if (!V->hasOneUse()) {
1063       // Quit if we find multiple users of a non-root value though.
1064       // They'll be handled when it's their turn to be visited by
1065       // the main instcombine process.
1066       if (Depth != 0)
1067         // TODO: Just compute the UndefElts information recursively.
1068         return nullptr;
1069 
1070       // Conservatively assume that all elements are needed.
1071       DemandedElts = EltMask;
1072     }
1073   }
1074 
1075   Instruction *I = dyn_cast<Instruction>(V);
1076   if (!I) return nullptr;        // Only analyze instructions.
1077 
1078   bool MadeChange = false;
1079   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1080                               APInt Demanded, APInt &Undef) {
1081     auto *II = dyn_cast<IntrinsicInst>(Inst);
1082     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1083     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1084       replaceOperand(*Inst, OpNum, V);
1085       MadeChange = true;
1086     }
1087   };
1088 
1089   APInt UndefElts2(VWidth, 0);
1090   APInt UndefElts3(VWidth, 0);
1091   switch (I->getOpcode()) {
1092   default: break;
1093 
1094   case Instruction::GetElementPtr: {
1095     // The LangRef requires that struct geps have all constant indices.  As
1096     // such, we can't convert any operand to partial undef.
1097     auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1098       for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1099            I != E; I++)
1100         if (I.isStruct())
1101           return true;;
1102       return false;
1103     };
1104     if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1105       break;
1106 
1107     // Conservatively track the demanded elements back through any vector
1108     // operands we may have.  We know there must be at least one, or we
1109     // wouldn't have a vector result to get here. Note that we intentionally
1110     // merge the undef bits here since gepping with either an undef base or
1111     // index results in undef.
1112     for (unsigned i = 0; i < I->getNumOperands(); i++) {
1113       if (isa<UndefValue>(I->getOperand(i))) {
1114         // If the entire vector is undefined, just return this info.
1115         UndefElts = EltMask;
1116         return nullptr;
1117       }
1118       if (I->getOperand(i)->getType()->isVectorTy()) {
1119         APInt UndefEltsOp(VWidth, 0);
1120         simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1121         UndefElts |= UndefEltsOp;
1122       }
1123     }
1124 
1125     break;
1126   }
1127   case Instruction::InsertElement: {
1128     // If this is a variable index, we don't know which element it overwrites.
1129     // demand exactly the same input as we produce.
1130     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1131     if (!Idx) {
1132       // Note that we can't propagate undef elt info, because we don't know
1133       // which elt is getting updated.
1134       simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1135       break;
1136     }
1137 
1138     // The element inserted overwrites whatever was there, so the input demanded
1139     // set is simpler than the output set.
1140     unsigned IdxNo = Idx->getZExtValue();
1141     APInt PreInsertDemandedElts = DemandedElts;
1142     if (IdxNo < VWidth)
1143       PreInsertDemandedElts.clearBit(IdxNo);
1144 
1145     simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1146 
1147     // If this is inserting an element that isn't demanded, remove this
1148     // insertelement.
1149     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1150       Worklist.push(I);
1151       return I->getOperand(0);
1152     }
1153 
1154     // The inserted element is defined.
1155     UndefElts.clearBit(IdxNo);
1156     break;
1157   }
1158   case Instruction::ShuffleVector: {
1159     auto *Shuffle = cast<ShuffleVectorInst>(I);
1160     assert(Shuffle->getOperand(0)->getType() ==
1161            Shuffle->getOperand(1)->getType() &&
1162            "Expected shuffle operands to have same type");
1163     unsigned OpWidth =
1164         cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
1165     // Handle trivial case of a splat. Only check the first element of LHS
1166     // operand.
1167     if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
1168         DemandedElts.isAllOnesValue()) {
1169       if (!isa<UndefValue>(I->getOperand(1))) {
1170         I->setOperand(1, UndefValue::get(I->getOperand(1)->getType()));
1171         MadeChange = true;
1172       }
1173       APInt LeftDemanded(OpWidth, 1);
1174       APInt LHSUndefElts(OpWidth, 0);
1175       simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1176       if (LHSUndefElts[0])
1177         UndefElts = EltMask;
1178       else
1179         UndefElts.clearAllBits();
1180       break;
1181     }
1182 
1183     APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1184     for (unsigned i = 0; i < VWidth; i++) {
1185       if (DemandedElts[i]) {
1186         unsigned MaskVal = Shuffle->getMaskValue(i);
1187         if (MaskVal != -1u) {
1188           assert(MaskVal < OpWidth * 2 &&
1189                  "shufflevector mask index out of range!");
1190           if (MaskVal < OpWidth)
1191             LeftDemanded.setBit(MaskVal);
1192           else
1193             RightDemanded.setBit(MaskVal - OpWidth);
1194         }
1195       }
1196     }
1197 
1198     APInt LHSUndefElts(OpWidth, 0);
1199     simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1200 
1201     APInt RHSUndefElts(OpWidth, 0);
1202     simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1203 
1204     // If this shuffle does not change the vector length and the elements
1205     // demanded by this shuffle are an identity mask, then this shuffle is
1206     // unnecessary.
1207     //
1208     // We are assuming canonical form for the mask, so the source vector is
1209     // operand 0 and operand 1 is not used.
1210     //
1211     // Note that if an element is demanded and this shuffle mask is undefined
1212     // for that element, then the shuffle is not considered an identity
1213     // operation. The shuffle prevents poison from the operand vector from
1214     // leaking to the result by replacing poison with an undefined value.
1215     if (VWidth == OpWidth) {
1216       bool IsIdentityShuffle = true;
1217       for (unsigned i = 0; i < VWidth; i++) {
1218         unsigned MaskVal = Shuffle->getMaskValue(i);
1219         if (DemandedElts[i] && i != MaskVal) {
1220           IsIdentityShuffle = false;
1221           break;
1222         }
1223       }
1224       if (IsIdentityShuffle)
1225         return Shuffle->getOperand(0);
1226     }
1227 
1228     bool NewUndefElts = false;
1229     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1230     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1231     bool LHSUniform = true;
1232     bool RHSUniform = true;
1233     for (unsigned i = 0; i < VWidth; i++) {
1234       unsigned MaskVal = Shuffle->getMaskValue(i);
1235       if (MaskVal == -1u) {
1236         UndefElts.setBit(i);
1237       } else if (!DemandedElts[i]) {
1238         NewUndefElts = true;
1239         UndefElts.setBit(i);
1240       } else if (MaskVal < OpWidth) {
1241         if (LHSUndefElts[MaskVal]) {
1242           NewUndefElts = true;
1243           UndefElts.setBit(i);
1244         } else {
1245           LHSIdx = LHSIdx == -1u ? i : OpWidth;
1246           LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1247           LHSUniform = LHSUniform && (MaskVal == i);
1248         }
1249       } else {
1250         if (RHSUndefElts[MaskVal - OpWidth]) {
1251           NewUndefElts = true;
1252           UndefElts.setBit(i);
1253         } else {
1254           RHSIdx = RHSIdx == -1u ? i : OpWidth;
1255           RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1256           RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1257         }
1258       }
1259     }
1260 
1261     // Try to transform shuffle with constant vector and single element from
1262     // this constant vector to single insertelement instruction.
1263     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1264     // insertelement V, C[ci], ci-n
1265     if (OpWidth == Shuffle->getType()->getNumElements()) {
1266       Value *Op = nullptr;
1267       Constant *Value = nullptr;
1268       unsigned Idx = -1u;
1269 
1270       // Find constant vector with the single element in shuffle (LHS or RHS).
1271       if (LHSIdx < OpWidth && RHSUniform) {
1272         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1273           Op = Shuffle->getOperand(1);
1274           Value = CV->getOperand(LHSValIdx);
1275           Idx = LHSIdx;
1276         }
1277       }
1278       if (RHSIdx < OpWidth && LHSUniform) {
1279         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1280           Op = Shuffle->getOperand(0);
1281           Value = CV->getOperand(RHSValIdx);
1282           Idx = RHSIdx;
1283         }
1284       }
1285       // Found constant vector with single element - convert to insertelement.
1286       if (Op && Value) {
1287         Instruction *New = InsertElementInst::Create(
1288             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1289             Shuffle->getName());
1290         InsertNewInstWith(New, *Shuffle);
1291         return New;
1292       }
1293     }
1294     if (NewUndefElts) {
1295       // Add additional discovered undefs.
1296       SmallVector<int, 16> Elts;
1297       for (unsigned i = 0; i < VWidth; ++i) {
1298         if (UndefElts[i])
1299           Elts.push_back(UndefMaskElem);
1300         else
1301           Elts.push_back(Shuffle->getMaskValue(i));
1302       }
1303       Shuffle->setShuffleMask(Elts);
1304       MadeChange = true;
1305     }
1306     break;
1307   }
1308   case Instruction::Select: {
1309     // If this is a vector select, try to transform the select condition based
1310     // on the current demanded elements.
1311     SelectInst *Sel = cast<SelectInst>(I);
1312     if (Sel->getCondition()->getType()->isVectorTy()) {
1313       // TODO: We are not doing anything with UndefElts based on this call.
1314       // It is overwritten below based on the other select operands. If an
1315       // element of the select condition is known undef, then we are free to
1316       // choose the output value from either arm of the select. If we know that
1317       // one of those values is undef, then the output can be undef.
1318       simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1319     }
1320 
1321     // Next, see if we can transform the arms of the select.
1322     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1323     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1324       for (unsigned i = 0; i < VWidth; i++) {
1325         // isNullValue() always returns false when called on a ConstantExpr.
1326         // Skip constant expressions to avoid propagating incorrect information.
1327         Constant *CElt = CV->getAggregateElement(i);
1328         if (isa<ConstantExpr>(CElt))
1329           continue;
1330         // TODO: If a select condition element is undef, we can demand from
1331         // either side. If one side is known undef, choosing that side would
1332         // propagate undef.
1333         if (CElt->isNullValue())
1334           DemandedLHS.clearBit(i);
1335         else
1336           DemandedRHS.clearBit(i);
1337       }
1338     }
1339 
1340     simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1341     simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1342 
1343     // Output elements are undefined if the element from each arm is undefined.
1344     // TODO: This can be improved. See comment in select condition handling.
1345     UndefElts = UndefElts2 & UndefElts3;
1346     break;
1347   }
1348   case Instruction::BitCast: {
1349     // Vector->vector casts only.
1350     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1351     if (!VTy) break;
1352     unsigned InVWidth = VTy->getNumElements();
1353     APInt InputDemandedElts(InVWidth, 0);
1354     UndefElts2 = APInt(InVWidth, 0);
1355     unsigned Ratio;
1356 
1357     if (VWidth == InVWidth) {
1358       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1359       // elements as are demanded of us.
1360       Ratio = 1;
1361       InputDemandedElts = DemandedElts;
1362     } else if ((VWidth % InVWidth) == 0) {
1363       // If the number of elements in the output is a multiple of the number of
1364       // elements in the input then an input element is live if any of the
1365       // corresponding output elements are live.
1366       Ratio = VWidth / InVWidth;
1367       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1368         if (DemandedElts[OutIdx])
1369           InputDemandedElts.setBit(OutIdx / Ratio);
1370     } else if ((InVWidth % VWidth) == 0) {
1371       // If the number of elements in the input is a multiple of the number of
1372       // elements in the output then an input element is live if the
1373       // corresponding output element is live.
1374       Ratio = InVWidth / VWidth;
1375       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1376         if (DemandedElts[InIdx / Ratio])
1377           InputDemandedElts.setBit(InIdx);
1378     } else {
1379       // Unsupported so far.
1380       break;
1381     }
1382 
1383     simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1384 
1385     if (VWidth == InVWidth) {
1386       UndefElts = UndefElts2;
1387     } else if ((VWidth % InVWidth) == 0) {
1388       // If the number of elements in the output is a multiple of the number of
1389       // elements in the input then an output element is undef if the
1390       // corresponding input element is undef.
1391       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1392         if (UndefElts2[OutIdx / Ratio])
1393           UndefElts.setBit(OutIdx);
1394     } else if ((InVWidth % VWidth) == 0) {
1395       // If the number of elements in the input is a multiple of the number of
1396       // elements in the output then an output element is undef if all of the
1397       // corresponding input elements are undef.
1398       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1399         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1400         if (SubUndef.countPopulation() == Ratio)
1401           UndefElts.setBit(OutIdx);
1402       }
1403     } else {
1404       llvm_unreachable("Unimp");
1405     }
1406     break;
1407   }
1408   case Instruction::FPTrunc:
1409   case Instruction::FPExt:
1410     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1411     break;
1412 
1413   case Instruction::Call: {
1414     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1415     if (!II) break;
1416     switch (II->getIntrinsicID()) {
1417     case Intrinsic::masked_gather: // fallthrough
1418     case Intrinsic::masked_load: {
1419       // Subtlety: If we load from a pointer, the pointer must be valid
1420       // regardless of whether the element is demanded.  Doing otherwise risks
1421       // segfaults which didn't exist in the original program.
1422       APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)),
1423         DemandedPassThrough(DemandedElts);
1424       if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1425         for (unsigned i = 0; i < VWidth; i++) {
1426           Constant *CElt = CV->getAggregateElement(i);
1427           if (CElt->isNullValue())
1428             DemandedPtrs.clearBit(i);
1429           else if (CElt->isAllOnesValue())
1430             DemandedPassThrough.clearBit(i);
1431         }
1432       if (II->getIntrinsicID() == Intrinsic::masked_gather)
1433         simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1434       simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1435 
1436       // Output elements are undefined if the element from both sources are.
1437       // TODO: can strengthen via mask as well.
1438       UndefElts = UndefElts2 & UndefElts3;
1439       break;
1440     }
1441     default: {
1442       // Handle target specific intrinsics
1443       Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
1444           *II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
1445           simplifyAndSetOp);
1446       if (V.hasValue())
1447         return V.getValue();
1448       break;
1449     }
1450     } // switch on IntrinsicID
1451     break;
1452   } // case Call
1453   } // switch on Opcode
1454 
1455   // TODO: We bail completely on integer div/rem and shifts because they have
1456   // UB/poison potential, but that should be refined.
1457   BinaryOperator *BO;
1458   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1459     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1460     simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1461 
1462     // Any change to an instruction with potential poison must clear those flags
1463     // because we can not guarantee those constraints now. Other analysis may
1464     // determine that it is safe to re-apply the flags.
1465     if (MadeChange)
1466       BO->dropPoisonGeneratingFlags();
1467 
1468     // Output elements are undefined if both are undefined. Consider things
1469     // like undef & 0. The result is known zero, not undef.
1470     UndefElts &= UndefElts2;
1471   }
1472 
1473   // If we've proven all of the lanes undef, return an undef value.
1474   // TODO: Intersect w/demanded lanes
1475   if (UndefElts.isAllOnesValue())
1476     return UndefValue::get(I->getType());;
1477 
1478   return MadeChange ? I : nullptr;
1479 }
1480