1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/GetElementPtrTypeIterator.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnes(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isZero()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == MaxAnalysisRecursionDepth) 131 return nullptr; 132 133 if (isa<ScalableVectorType>(VTy)) 134 return nullptr; 135 136 Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) { 138 computeKnownBits(V, Known, Depth, CxtI); 139 return nullptr; // Only analyze instructions. 140 } 141 142 // If there are multiple uses of this value and we aren't at the root, then 143 // we can't do any simplifications of the operands, because DemandedMask 144 // only reflects the bits demanded by *one* of the users. 145 if (Depth != 0 && !I->hasOneUse()) 146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 147 148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 149 150 // If this is the root being simplified, allow it to have multiple uses, 151 // just set the DemandedMask to all bits so that we can try to simplify the 152 // operands. This allows visitTruncInst (for example) to simplify the 153 // operand of a trunc without duplicating all the logic below. 154 if (Depth == 0 && !V->hasOneUse()) 155 DemandedMask.setAllBits(); 156 157 // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care 158 // about the high bits of the operands. 159 auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) { 160 unsigned NLZ = DemandedMask.countLeadingZeros(); 161 // Right fill the mask of bits for the operands to demand the most 162 // significant bit and all those below it. 163 DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 164 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 165 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 166 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 167 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 168 if (NLZ > 0) { 169 // Disable the nsw and nuw flags here: We can no longer guarantee that 170 // we won't wrap after simplification. Removing the nsw/nuw flags is 171 // legal here because the top bit is not demanded. 172 I->setHasNoSignedWrap(false); 173 I->setHasNoUnsignedWrap(false); 174 } 175 return true; 176 } 177 return false; 178 }; 179 180 switch (I->getOpcode()) { 181 default: 182 computeKnownBits(I, Known, Depth, CxtI); 183 break; 184 case Instruction::And: { 185 // If either the LHS or the RHS are Zero, the result is zero. 186 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 187 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 188 Depth + 1)) 189 return I; 190 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 191 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 192 193 Known = LHSKnown & RHSKnown; 194 195 // If the client is only demanding bits that we know, return the known 196 // constant. 197 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 198 return Constant::getIntegerValue(VTy, Known.One); 199 200 // If all of the demanded bits are known 1 on one side, return the other. 201 // These bits cannot contribute to the result of the 'and'. 202 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 203 return I->getOperand(0); 204 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 205 return I->getOperand(1); 206 207 // If the RHS is a constant, see if we can simplify it. 208 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 209 return I; 210 211 break; 212 } 213 case Instruction::Or: { 214 // If either the LHS or the RHS are One, the result is One. 215 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 216 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 217 Depth + 1)) 218 return I; 219 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 220 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 221 222 Known = LHSKnown | RHSKnown; 223 224 // If the client is only demanding bits that we know, return the known 225 // constant. 226 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 227 return Constant::getIntegerValue(VTy, Known.One); 228 229 // If all of the demanded bits are known zero on one side, return the other. 230 // These bits cannot contribute to the result of the 'or'. 231 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 232 return I->getOperand(0); 233 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 234 return I->getOperand(1); 235 236 // If the RHS is a constant, see if we can simplify it. 237 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 238 return I; 239 240 break; 241 } 242 case Instruction::Xor: { 243 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 244 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 245 return I; 246 Value *LHS, *RHS; 247 if (DemandedMask == 1 && 248 match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) && 249 match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) { 250 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1 251 IRBuilderBase::InsertPointGuard Guard(Builder); 252 Builder.SetInsertPoint(I); 253 auto *Xor = Builder.CreateXor(LHS, RHS); 254 return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor); 255 } 256 257 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 258 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 259 260 Known = LHSKnown ^ RHSKnown; 261 262 // If the client is only demanding bits that we know, return the known 263 // constant. 264 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 265 return Constant::getIntegerValue(VTy, Known.One); 266 267 // If all of the demanded bits are known zero on one side, return the other. 268 // These bits cannot contribute to the result of the 'xor'. 269 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 270 return I->getOperand(0); 271 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 272 return I->getOperand(1); 273 274 // If all of the demanded bits are known to be zero on one side or the 275 // other, turn this into an *inclusive* or. 276 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 277 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 278 Instruction *Or = 279 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 280 I->getName()); 281 return InsertNewInstWith(Or, *I); 282 } 283 284 // If all of the demanded bits on one side are known, and all of the set 285 // bits on that side are also known to be set on the other side, turn this 286 // into an AND, as we know the bits will be cleared. 287 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 288 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 289 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 290 Constant *AndC = Constant::getIntegerValue(VTy, 291 ~RHSKnown.One & DemandedMask); 292 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 293 return InsertNewInstWith(And, *I); 294 } 295 296 // If the RHS is a constant, see if we can change it. Don't alter a -1 297 // constant because that's a canonical 'not' op, and that is better for 298 // combining, SCEV, and codegen. 299 const APInt *C; 300 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) { 301 if ((*C | ~DemandedMask).isAllOnes()) { 302 // Force bits to 1 to create a 'not' op. 303 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 304 return I; 305 } 306 // If we can't turn this into a 'not', try to shrink the constant. 307 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 308 return I; 309 } 310 311 // If our LHS is an 'and' and if it has one use, and if any of the bits we 312 // are flipping are known to be set, then the xor is just resetting those 313 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 314 // simplifying both of them. 315 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 316 ConstantInt *AndRHS, *XorRHS; 317 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 318 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 319 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 320 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 321 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 322 323 Constant *AndC = 324 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 325 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 326 InsertNewInstWith(NewAnd, *I); 327 328 Constant *XorC = 329 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 330 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 331 return InsertNewInstWith(NewXor, *I); 332 } 333 } 334 break; 335 } 336 case Instruction::Select: { 337 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 338 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 339 return I; 340 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 341 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 342 343 // If the operands are constants, see if we can simplify them. 344 // This is similar to ShrinkDemandedConstant, but for a select we want to 345 // try to keep the selected constants the same as icmp value constants, if 346 // we can. This helps not break apart (or helps put back together) 347 // canonical patterns like min and max. 348 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 349 const APInt &DemandedMask) { 350 const APInt *SelC; 351 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 352 return false; 353 354 // Get the constant out of the ICmp, if there is one. 355 // Only try this when exactly 1 operand is a constant (if both operands 356 // are constant, the icmp should eventually simplify). Otherwise, we may 357 // invert the transform that reduces set bits and infinite-loop. 358 Value *X; 359 const APInt *CmpC; 360 ICmpInst::Predicate Pred; 361 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 362 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 363 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 364 365 // If the constant is already the same as the ICmp, leave it as-is. 366 if (*CmpC == *SelC) 367 return false; 368 // If the constants are not already the same, but can be with the demand 369 // mask, use the constant value from the ICmp. 370 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 371 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 372 return true; 373 } 374 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 375 }; 376 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 377 CanonicalizeSelectConstant(I, 2, DemandedMask)) 378 return I; 379 380 // Only known if known in both the LHS and RHS. 381 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 382 break; 383 } 384 case Instruction::Trunc: { 385 // If we do not demand the high bits of a right-shifted and truncated value, 386 // then we may be able to truncate it before the shift. 387 Value *X; 388 const APInt *C; 389 if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 390 // The shift amount must be valid (not poison) in the narrow type, and 391 // it must not be greater than the high bits demanded of the result. 392 if (C->ult(I->getType()->getScalarSizeInBits()) && 393 C->ule(DemandedMask.countLeadingZeros())) { 394 // trunc (lshr X, C) --> lshr (trunc X), C 395 IRBuilderBase::InsertPointGuard Guard(Builder); 396 Builder.SetInsertPoint(I); 397 Value *Trunc = Builder.CreateTrunc(X, I->getType()); 398 return Builder.CreateLShr(Trunc, C->getZExtValue()); 399 } 400 } 401 } 402 LLVM_FALLTHROUGH; 403 case Instruction::ZExt: { 404 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 405 406 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 407 KnownBits InputKnown(SrcBitWidth); 408 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 409 return I; 410 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 411 Known = InputKnown.zextOrTrunc(BitWidth); 412 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 413 break; 414 } 415 case Instruction::BitCast: 416 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 417 return nullptr; // vector->int or fp->int? 418 419 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 420 if (VectorType *SrcVTy = 421 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 422 if (cast<FixedVectorType>(DstVTy)->getNumElements() != 423 cast<FixedVectorType>(SrcVTy)->getNumElements()) 424 // Don't touch a bitcast between vectors of different element counts. 425 return nullptr; 426 } else 427 // Don't touch a scalar-to-vector bitcast. 428 return nullptr; 429 } else if (I->getOperand(0)->getType()->isVectorTy()) 430 // Don't touch a vector-to-scalar bitcast. 431 return nullptr; 432 433 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 434 return I; 435 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 436 break; 437 case Instruction::SExt: { 438 // Compute the bits in the result that are not present in the input. 439 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 440 441 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 442 443 // If any of the sign extended bits are demanded, we know that the sign 444 // bit is demanded. 445 if (DemandedMask.getActiveBits() > SrcBitWidth) 446 InputDemandedBits.setBit(SrcBitWidth-1); 447 448 KnownBits InputKnown(SrcBitWidth); 449 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 450 return I; 451 452 // If the input sign bit is known zero, or if the NewBits are not demanded 453 // convert this into a zero extension. 454 if (InputKnown.isNonNegative() || 455 DemandedMask.getActiveBits() <= SrcBitWidth) { 456 // Convert to ZExt cast. 457 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 458 return InsertNewInstWith(NewCast, *I); 459 } 460 461 // If the sign bit of the input is known set or clear, then we know the 462 // top bits of the result. 463 Known = InputKnown.sext(BitWidth); 464 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 465 break; 466 } 467 case Instruction::Add: 468 if ((DemandedMask & 1) == 0) { 469 // If we do not need the low bit, try to convert bool math to logic: 470 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 471 Value *X, *Y; 472 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 473 m_OneUse(m_SExt(m_Value(Y))))) && 474 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 475 // Truth table for inputs and output signbits: 476 // X:0 | X:1 477 // ---------- 478 // Y:0 | 0 | 0 | 479 // Y:1 | -1 | 0 | 480 // ---------- 481 IRBuilderBase::InsertPointGuard Guard(Builder); 482 Builder.SetInsertPoint(I); 483 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 484 return Builder.CreateSExt(AndNot, VTy); 485 } 486 487 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 488 // TODO: Relax the one-use checks because we are removing an instruction? 489 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 490 m_OneUse(m_SExt(m_Value(Y))))) && 491 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 492 // Truth table for inputs and output signbits: 493 // X:0 | X:1 494 // ----------- 495 // Y:0 | -1 | -1 | 496 // Y:1 | -1 | 0 | 497 // ----------- 498 IRBuilderBase::InsertPointGuard Guard(Builder); 499 Builder.SetInsertPoint(I); 500 Value *Or = Builder.CreateOr(X, Y); 501 return Builder.CreateSExt(Or, VTy); 502 } 503 } 504 LLVM_FALLTHROUGH; 505 case Instruction::Sub: { 506 APInt DemandedFromOps; 507 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps)) 508 return I; 509 510 // If we are known to be adding/subtracting zeros to every bit below 511 // the highest demanded bit, we just return the other side. 512 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 513 return I->getOperand(0); 514 // We can't do this with the LHS for subtraction, unless we are only 515 // demanding the LSB. 516 if ((I->getOpcode() == Instruction::Add || DemandedFromOps.isOne()) && 517 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 518 return I->getOperand(1); 519 520 // Otherwise just compute the known bits of the result. 521 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 522 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 523 NSW, LHSKnown, RHSKnown); 524 break; 525 } 526 case Instruction::Mul: { 527 APInt DemandedFromOps; 528 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps)) 529 return I; 530 531 if (DemandedMask.isPowerOf2()) { 532 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 533 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 534 // odd (has LSB set), then the left-shifted low bit of X is the answer. 535 unsigned CTZ = DemandedMask.countTrailingZeros(); 536 const APInt *C; 537 if (match(I->getOperand(1), m_APInt(C)) && 538 C->countTrailingZeros() == CTZ) { 539 Constant *ShiftC = ConstantInt::get(I->getType(), CTZ); 540 Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC); 541 return InsertNewInstWith(Shl, *I); 542 } 543 } 544 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 545 // X * X is odd iff X is odd. 546 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 547 if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) { 548 Constant *One = ConstantInt::get(VTy, 1); 549 Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One); 550 return InsertNewInstWith(And1, *I); 551 } 552 553 computeKnownBits(I, Known, Depth, CxtI); 554 break; 555 } 556 case Instruction::Shl: { 557 const APInt *SA; 558 if (match(I->getOperand(1), m_APInt(SA))) { 559 const APInt *ShrAmt; 560 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 561 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 562 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 563 DemandedMask, Known)) 564 return R; 565 566 // TODO: If we only want bits that already match the signbit then we don't 567 // need to shift. 568 569 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 570 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 571 572 // If the shift is NUW/NSW, then it does demand the high bits. 573 ShlOperator *IOp = cast<ShlOperator>(I); 574 if (IOp->hasNoSignedWrap()) 575 DemandedMaskIn.setHighBits(ShiftAmt+1); 576 else if (IOp->hasNoUnsignedWrap()) 577 DemandedMaskIn.setHighBits(ShiftAmt); 578 579 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 580 return I; 581 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 582 583 bool SignBitZero = Known.Zero.isSignBitSet(); 584 bool SignBitOne = Known.One.isSignBitSet(); 585 Known.Zero <<= ShiftAmt; 586 Known.One <<= ShiftAmt; 587 // low bits known zero. 588 if (ShiftAmt) 589 Known.Zero.setLowBits(ShiftAmt); 590 591 // If this shift has "nsw" keyword, then the result is either a poison 592 // value or has the same sign bit as the first operand. 593 if (IOp->hasNoSignedWrap()) { 594 if (SignBitZero) 595 Known.Zero.setSignBit(); 596 else if (SignBitOne) 597 Known.One.setSignBit(); 598 if (Known.hasConflict()) 599 return UndefValue::get(I->getType()); 600 } 601 } else { 602 // This is a variable shift, so we can't shift the demand mask by a known 603 // amount. But if we are not demanding high bits, then we are not 604 // demanding those bits from the pre-shifted operand either. 605 if (unsigned CTLZ = DemandedMask.countLeadingZeros()) { 606 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 607 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) { 608 // We can't guarantee that nsw/nuw hold after simplifying the operand. 609 I->dropPoisonGeneratingFlags(); 610 return I; 611 } 612 } 613 computeKnownBits(I, Known, Depth, CxtI); 614 } 615 break; 616 } 617 case Instruction::LShr: { 618 const APInt *SA; 619 if (match(I->getOperand(1), m_APInt(SA))) { 620 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 621 622 // If we are just demanding the shifted sign bit and below, then this can 623 // be treated as an ASHR in disguise. 624 if (DemandedMask.countLeadingZeros() >= ShiftAmt) { 625 // If we only want bits that already match the signbit then we don't 626 // need to shift. 627 unsigned NumHiDemandedBits = 628 BitWidth - DemandedMask.countTrailingZeros(); 629 unsigned SignBits = 630 ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 631 if (SignBits >= NumHiDemandedBits) 632 return I->getOperand(0); 633 634 // If we can pre-shift a left-shifted constant to the right without 635 // losing any low bits (we already know we don't demand the high bits), 636 // then eliminate the right-shift: 637 // (C << X) >> RightShiftAmtC --> (C >> RightShiftAmtC) << X 638 Value *X; 639 Constant *C; 640 if (match(I->getOperand(0), m_Shl(m_ImmConstant(C), m_Value(X)))) { 641 Constant *RightShiftAmtC = ConstantInt::get(VTy, ShiftAmt); 642 Constant *NewC = ConstantExpr::getLShr(C, RightShiftAmtC); 643 if (ConstantExpr::getShl(NewC, RightShiftAmtC) == C) { 644 Instruction *Shl = BinaryOperator::CreateShl(NewC, X); 645 return InsertNewInstWith(Shl, *I); 646 } 647 } 648 } 649 650 // Unsigned shift right. 651 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 652 653 // If the shift is exact, then it does demand the low bits (and knows that 654 // they are zero). 655 if (cast<LShrOperator>(I)->isExact()) 656 DemandedMaskIn.setLowBits(ShiftAmt); 657 658 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 659 return I; 660 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 661 Known.Zero.lshrInPlace(ShiftAmt); 662 Known.One.lshrInPlace(ShiftAmt); 663 if (ShiftAmt) 664 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 665 } else { 666 computeKnownBits(I, Known, Depth, CxtI); 667 } 668 break; 669 } 670 case Instruction::AShr: { 671 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 672 673 // If we only want bits that already match the signbit then we don't need 674 // to shift. 675 unsigned NumHiDemandedBits = BitWidth - DemandedMask.countTrailingZeros(); 676 if (SignBits >= NumHiDemandedBits) 677 return I->getOperand(0); 678 679 // If this is an arithmetic shift right and only the low-bit is set, we can 680 // always convert this into a logical shr, even if the shift amount is 681 // variable. The low bit of the shift cannot be an input sign bit unless 682 // the shift amount is >= the size of the datatype, which is undefined. 683 if (DemandedMask.isOne()) { 684 // Perform the logical shift right. 685 Instruction *NewVal = BinaryOperator::CreateLShr( 686 I->getOperand(0), I->getOperand(1), I->getName()); 687 return InsertNewInstWith(NewVal, *I); 688 } 689 690 const APInt *SA; 691 if (match(I->getOperand(1), m_APInt(SA))) { 692 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 693 694 // Signed shift right. 695 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 696 // If any of the high bits are demanded, we should set the sign bit as 697 // demanded. 698 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 699 DemandedMaskIn.setSignBit(); 700 701 // If the shift is exact, then it does demand the low bits (and knows that 702 // they are zero). 703 if (cast<AShrOperator>(I)->isExact()) 704 DemandedMaskIn.setLowBits(ShiftAmt); 705 706 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 707 return I; 708 709 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 710 // Compute the new bits that are at the top now plus sign bits. 711 APInt HighBits(APInt::getHighBitsSet( 712 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 713 Known.Zero.lshrInPlace(ShiftAmt); 714 Known.One.lshrInPlace(ShiftAmt); 715 716 // If the input sign bit is known to be zero, or if none of the top bits 717 // are demanded, turn this into an unsigned shift right. 718 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 719 if (Known.Zero[BitWidth-ShiftAmt-1] || 720 !DemandedMask.intersects(HighBits)) { 721 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 722 I->getOperand(1)); 723 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 724 return InsertNewInstWith(LShr, *I); 725 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 726 Known.One |= HighBits; 727 } 728 } else { 729 computeKnownBits(I, Known, Depth, CxtI); 730 } 731 break; 732 } 733 case Instruction::UDiv: { 734 // UDiv doesn't demand low bits that are zero in the divisor. 735 const APInt *SA; 736 if (match(I->getOperand(1), m_APInt(SA))) { 737 // If the shift is exact, then it does demand the low bits. 738 if (cast<UDivOperator>(I)->isExact()) 739 break; 740 741 // FIXME: Take the demanded mask of the result into account. 742 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 743 APInt DemandedMaskIn = 744 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 745 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 746 return I; 747 748 // Propagate zero bits from the input. 749 Known.Zero.setHighBits(std::min( 750 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 751 } else { 752 computeKnownBits(I, Known, Depth, CxtI); 753 } 754 break; 755 } 756 case Instruction::SRem: { 757 const APInt *Rem; 758 if (match(I->getOperand(1), m_APInt(Rem))) { 759 // X % -1 demands all the bits because we don't want to introduce 760 // INT_MIN % -1 (== undef) by accident. 761 if (Rem->isAllOnes()) 762 break; 763 APInt RA = Rem->abs(); 764 if (RA.isPowerOf2()) { 765 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 766 return I->getOperand(0); 767 768 APInt LowBits = RA - 1; 769 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 770 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 771 return I; 772 773 // The low bits of LHS are unchanged by the srem. 774 Known.Zero = LHSKnown.Zero & LowBits; 775 Known.One = LHSKnown.One & LowBits; 776 777 // If LHS is non-negative or has all low bits zero, then the upper bits 778 // are all zero. 779 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 780 Known.Zero |= ~LowBits; 781 782 // If LHS is negative and not all low bits are zero, then the upper bits 783 // are all one. 784 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 785 Known.One |= ~LowBits; 786 787 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 788 break; 789 } 790 } 791 792 // The sign bit is the LHS's sign bit, except when the result of the 793 // remainder is zero. 794 if (DemandedMask.isSignBitSet()) { 795 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 796 // If it's known zero, our sign bit is also zero. 797 if (LHSKnown.isNonNegative()) 798 Known.makeNonNegative(); 799 } 800 break; 801 } 802 case Instruction::URem: { 803 KnownBits Known2(BitWidth); 804 APInt AllOnes = APInt::getAllOnes(BitWidth); 805 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 806 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 807 return I; 808 809 unsigned Leaders = Known2.countMinLeadingZeros(); 810 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 811 break; 812 } 813 case Instruction::Call: { 814 bool KnownBitsComputed = false; 815 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 816 switch (II->getIntrinsicID()) { 817 case Intrinsic::abs: { 818 if (DemandedMask == 1) 819 return II->getArgOperand(0); 820 break; 821 } 822 case Intrinsic::ctpop: { 823 // Checking if the number of clear bits is odd (parity)? If the type has 824 // an even number of bits, that's the same as checking if the number of 825 // set bits is odd, so we can eliminate the 'not' op. 826 Value *X; 827 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && 828 match(II->getArgOperand(0), m_Not(m_Value(X)))) { 829 Function *Ctpop = Intrinsic::getDeclaration( 830 II->getModule(), Intrinsic::ctpop, II->getType()); 831 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I); 832 } 833 break; 834 } 835 case Intrinsic::bswap: { 836 // If the only bits demanded come from one byte of the bswap result, 837 // just shift the input byte into position to eliminate the bswap. 838 unsigned NLZ = DemandedMask.countLeadingZeros(); 839 unsigned NTZ = DemandedMask.countTrailingZeros(); 840 841 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 842 // we need all the bits down to bit 8. Likewise, round NLZ. If we 843 // have 14 leading zeros, round to 8. 844 NLZ = alignDown(NLZ, 8); 845 NTZ = alignDown(NTZ, 8); 846 // If we need exactly one byte, we can do this transformation. 847 if (BitWidth - NLZ - NTZ == 8) { 848 // Replace this with either a left or right shift to get the byte into 849 // the right place. 850 Instruction *NewVal; 851 if (NLZ > NTZ) 852 NewVal = BinaryOperator::CreateLShr( 853 II->getArgOperand(0), 854 ConstantInt::get(I->getType(), NLZ - NTZ)); 855 else 856 NewVal = BinaryOperator::CreateShl( 857 II->getArgOperand(0), 858 ConstantInt::get(I->getType(), NTZ - NLZ)); 859 NewVal->takeName(I); 860 return InsertNewInstWith(NewVal, *I); 861 } 862 break; 863 } 864 case Intrinsic::fshr: 865 case Intrinsic::fshl: { 866 const APInt *SA; 867 if (!match(I->getOperand(2), m_APInt(SA))) 868 break; 869 870 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 871 // defined, so no need to special-case zero shifts here. 872 uint64_t ShiftAmt = SA->urem(BitWidth); 873 if (II->getIntrinsicID() == Intrinsic::fshr) 874 ShiftAmt = BitWidth - ShiftAmt; 875 876 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 877 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 878 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 879 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 880 return I; 881 882 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 883 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 884 Known.One = LHSKnown.One.shl(ShiftAmt) | 885 RHSKnown.One.lshr(BitWidth - ShiftAmt); 886 KnownBitsComputed = true; 887 break; 888 } 889 case Intrinsic::umax: { 890 // UMax(A, C) == A if ... 891 // The lowest non-zero bit of DemandMask is higher than the highest 892 // non-zero bit of C. 893 const APInt *C; 894 unsigned CTZ = DemandedMask.countTrailingZeros(); 895 if (match(II->getArgOperand(1), m_APInt(C)) && 896 CTZ >= C->getActiveBits()) 897 return II->getArgOperand(0); 898 break; 899 } 900 case Intrinsic::umin: { 901 // UMin(A, C) == A if ... 902 // The lowest non-zero bit of DemandMask is higher than the highest 903 // non-one bit of C. 904 // This comes from using DeMorgans on the above umax example. 905 const APInt *C; 906 unsigned CTZ = DemandedMask.countTrailingZeros(); 907 if (match(II->getArgOperand(1), m_APInt(C)) && 908 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 909 return II->getArgOperand(0); 910 break; 911 } 912 default: { 913 // Handle target specific intrinsics 914 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 915 *II, DemandedMask, Known, KnownBitsComputed); 916 if (V.hasValue()) 917 return V.getValue(); 918 break; 919 } 920 } 921 } 922 923 if (!KnownBitsComputed) 924 computeKnownBits(V, Known, Depth, CxtI); 925 break; 926 } 927 } 928 929 // If the client is only demanding bits that we know, return the known 930 // constant. 931 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 932 return Constant::getIntegerValue(VTy, Known.One); 933 return nullptr; 934 } 935 936 /// Helper routine of SimplifyDemandedUseBits. It computes Known 937 /// bits. It also tries to handle simplifications that can be done based on 938 /// DemandedMask, but without modifying the Instruction. 939 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 940 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 941 Instruction *CxtI) { 942 unsigned BitWidth = DemandedMask.getBitWidth(); 943 Type *ITy = I->getType(); 944 945 KnownBits LHSKnown(BitWidth); 946 KnownBits RHSKnown(BitWidth); 947 948 // Despite the fact that we can't simplify this instruction in all User's 949 // context, we can at least compute the known bits, and we can 950 // do simplifications that apply to *just* the one user if we know that 951 // this instruction has a simpler value in that context. 952 switch (I->getOpcode()) { 953 case Instruction::And: { 954 // If either the LHS or the RHS are Zero, the result is zero. 955 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 956 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 957 CxtI); 958 959 Known = LHSKnown & RHSKnown; 960 961 // If the client is only demanding bits that we know, return the known 962 // constant. 963 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 964 return Constant::getIntegerValue(ITy, Known.One); 965 966 // If all of the demanded bits are known 1 on one side, return the other. 967 // These bits cannot contribute to the result of the 'and' in this 968 // context. 969 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 970 return I->getOperand(0); 971 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 972 return I->getOperand(1); 973 974 break; 975 } 976 case Instruction::Or: { 977 // We can simplify (X|Y) -> X or Y in the user's context if we know that 978 // only bits from X or Y are demanded. 979 980 // If either the LHS or the RHS are One, the result is One. 981 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 982 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 983 CxtI); 984 985 Known = LHSKnown | RHSKnown; 986 987 // If the client is only demanding bits that we know, return the known 988 // constant. 989 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 990 return Constant::getIntegerValue(ITy, Known.One); 991 992 // If all of the demanded bits are known zero on one side, return the 993 // other. These bits cannot contribute to the result of the 'or' in this 994 // context. 995 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 996 return I->getOperand(0); 997 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 998 return I->getOperand(1); 999 1000 break; 1001 } 1002 case Instruction::Xor: { 1003 // We can simplify (X^Y) -> X or Y in the user's context if we know that 1004 // only bits from X or Y are demanded. 1005 1006 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1007 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 1008 CxtI); 1009 1010 Known = LHSKnown ^ RHSKnown; 1011 1012 // If the client is only demanding bits that we know, return the known 1013 // constant. 1014 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1015 return Constant::getIntegerValue(ITy, Known.One); 1016 1017 // If all of the demanded bits are known zero on one side, return the 1018 // other. 1019 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 1020 return I->getOperand(0); 1021 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 1022 return I->getOperand(1); 1023 1024 break; 1025 } 1026 case Instruction::AShr: { 1027 // Compute the Known bits to simplify things downstream. 1028 computeKnownBits(I, Known, Depth, CxtI); 1029 1030 // If this user is only demanding bits that we know, return the known 1031 // constant. 1032 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1033 return Constant::getIntegerValue(ITy, Known.One); 1034 1035 // If the right shift operand 0 is a result of a left shift by the same 1036 // amount, this is probably a zero/sign extension, which may be unnecessary, 1037 // if we do not demand any of the new sign bits. So, return the original 1038 // operand instead. 1039 const APInt *ShiftRC; 1040 const APInt *ShiftLC; 1041 Value *X; 1042 unsigned BitWidth = DemandedMask.getBitWidth(); 1043 if (match(I, 1044 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 1045 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && 1046 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 1047 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 1048 return X; 1049 } 1050 1051 break; 1052 } 1053 default: 1054 // Compute the Known bits to simplify things downstream. 1055 computeKnownBits(I, Known, Depth, CxtI); 1056 1057 // If this user is only demanding bits that we know, return the known 1058 // constant. 1059 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 1060 return Constant::getIntegerValue(ITy, Known.One); 1061 1062 break; 1063 } 1064 1065 return nullptr; 1066 } 1067 1068 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 1069 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 1070 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 1071 /// of "C2-C1". 1072 /// 1073 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 1074 /// ..., bn}, without considering the specific value X is holding. 1075 /// This transformation is legal iff one of following conditions is hold: 1076 /// 1) All the bit in S are 0, in this case E1 == E2. 1077 /// 2) We don't care those bits in S, per the input DemandedMask. 1078 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 1079 /// rest bits. 1080 /// 1081 /// Currently we only test condition 2). 1082 /// 1083 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 1084 /// not successful. 1085 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 1086 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 1087 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 1088 if (!ShlOp1 || !ShrOp1) 1089 return nullptr; // No-op. 1090 1091 Value *VarX = Shr->getOperand(0); 1092 Type *Ty = VarX->getType(); 1093 unsigned BitWidth = Ty->getScalarSizeInBits(); 1094 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1095 return nullptr; // Undef. 1096 1097 unsigned ShlAmt = ShlOp1.getZExtValue(); 1098 unsigned ShrAmt = ShrOp1.getZExtValue(); 1099 1100 Known.One.clearAllBits(); 1101 Known.Zero.setLowBits(ShlAmt - 1); 1102 Known.Zero &= DemandedMask; 1103 1104 APInt BitMask1(APInt::getAllOnes(BitWidth)); 1105 APInt BitMask2(APInt::getAllOnes(BitWidth)); 1106 1107 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1108 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1109 (BitMask1.ashr(ShrAmt) << ShlAmt); 1110 1111 if (ShrAmt <= ShlAmt) { 1112 BitMask2 <<= (ShlAmt - ShrAmt); 1113 } else { 1114 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1115 BitMask2.ashr(ShrAmt - ShlAmt); 1116 } 1117 1118 // Check if condition-2 (see the comment to this function) is satified. 1119 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1120 if (ShrAmt == ShlAmt) 1121 return VarX; 1122 1123 if (!Shr->hasOneUse()) 1124 return nullptr; 1125 1126 BinaryOperator *New; 1127 if (ShrAmt < ShlAmt) { 1128 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1129 New = BinaryOperator::CreateShl(VarX, Amt); 1130 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1131 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1132 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1133 } else { 1134 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1135 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1136 BinaryOperator::CreateAShr(VarX, Amt); 1137 if (cast<BinaryOperator>(Shr)->isExact()) 1138 New->setIsExact(true); 1139 } 1140 1141 return InsertNewInstWith(New, *Shl); 1142 } 1143 1144 return nullptr; 1145 } 1146 1147 /// The specified value produces a vector with any number of elements. 1148 /// This method analyzes which elements of the operand are undef or poison and 1149 /// returns that information in UndefElts. 1150 /// 1151 /// DemandedElts contains the set of elements that are actually used by the 1152 /// caller, and by default (AllowMultipleUsers equals false) the value is 1153 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1154 /// to true, DemandedElts refers to the union of sets of elements that are 1155 /// used by all callers. 1156 /// 1157 /// If the information about demanded elements can be used to simplify the 1158 /// operation, the operation is simplified, then the resultant value is 1159 /// returned. This returns null if no change was made. 1160 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1161 APInt DemandedElts, 1162 APInt &UndefElts, 1163 unsigned Depth, 1164 bool AllowMultipleUsers) { 1165 // Cannot analyze scalable type. The number of vector elements is not a 1166 // compile-time constant. 1167 if (isa<ScalableVectorType>(V->getType())) 1168 return nullptr; 1169 1170 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1171 APInt EltMask(APInt::getAllOnes(VWidth)); 1172 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1173 1174 if (match(V, m_Undef())) { 1175 // If the entire vector is undef or poison, just return this info. 1176 UndefElts = EltMask; 1177 return nullptr; 1178 } 1179 1180 if (DemandedElts.isZero()) { // If nothing is demanded, provide poison. 1181 UndefElts = EltMask; 1182 return PoisonValue::get(V->getType()); 1183 } 1184 1185 UndefElts = 0; 1186 1187 if (auto *C = dyn_cast<Constant>(V)) { 1188 // Check if this is identity. If so, return 0 since we are not simplifying 1189 // anything. 1190 if (DemandedElts.isAllOnes()) 1191 return nullptr; 1192 1193 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1194 Constant *Poison = PoisonValue::get(EltTy); 1195 SmallVector<Constant*, 16> Elts; 1196 for (unsigned i = 0; i != VWidth; ++i) { 1197 if (!DemandedElts[i]) { // If not demanded, set to poison. 1198 Elts.push_back(Poison); 1199 UndefElts.setBit(i); 1200 continue; 1201 } 1202 1203 Constant *Elt = C->getAggregateElement(i); 1204 if (!Elt) return nullptr; 1205 1206 Elts.push_back(Elt); 1207 if (isa<UndefValue>(Elt)) // Already undef or poison. 1208 UndefElts.setBit(i); 1209 } 1210 1211 // If we changed the constant, return it. 1212 Constant *NewCV = ConstantVector::get(Elts); 1213 return NewCV != C ? NewCV : nullptr; 1214 } 1215 1216 // Limit search depth. 1217 if (Depth == 10) 1218 return nullptr; 1219 1220 if (!AllowMultipleUsers) { 1221 // If multiple users are using the root value, proceed with 1222 // simplification conservatively assuming that all elements 1223 // are needed. 1224 if (!V->hasOneUse()) { 1225 // Quit if we find multiple users of a non-root value though. 1226 // They'll be handled when it's their turn to be visited by 1227 // the main instcombine process. 1228 if (Depth != 0) 1229 // TODO: Just compute the UndefElts information recursively. 1230 return nullptr; 1231 1232 // Conservatively assume that all elements are needed. 1233 DemandedElts = EltMask; 1234 } 1235 } 1236 1237 Instruction *I = dyn_cast<Instruction>(V); 1238 if (!I) return nullptr; // Only analyze instructions. 1239 1240 bool MadeChange = false; 1241 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1242 APInt Demanded, APInt &Undef) { 1243 auto *II = dyn_cast<IntrinsicInst>(Inst); 1244 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1245 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1246 replaceOperand(*Inst, OpNum, V); 1247 MadeChange = true; 1248 } 1249 }; 1250 1251 APInt UndefElts2(VWidth, 0); 1252 APInt UndefElts3(VWidth, 0); 1253 switch (I->getOpcode()) { 1254 default: break; 1255 1256 case Instruction::GetElementPtr: { 1257 // The LangRef requires that struct geps have all constant indices. As 1258 // such, we can't convert any operand to partial undef. 1259 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1260 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1261 I != E; I++) 1262 if (I.isStruct()) 1263 return true; 1264 return false; 1265 }; 1266 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1267 break; 1268 1269 // Conservatively track the demanded elements back through any vector 1270 // operands we may have. We know there must be at least one, or we 1271 // wouldn't have a vector result to get here. Note that we intentionally 1272 // merge the undef bits here since gepping with either an poison base or 1273 // index results in poison. 1274 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1275 if (i == 0 ? match(I->getOperand(i), m_Undef()) 1276 : match(I->getOperand(i), m_Poison())) { 1277 // If the entire vector is undefined, just return this info. 1278 UndefElts = EltMask; 1279 return nullptr; 1280 } 1281 if (I->getOperand(i)->getType()->isVectorTy()) { 1282 APInt UndefEltsOp(VWidth, 0); 1283 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1284 // gep(x, undef) is not undef, so skip considering idx ops here 1285 // Note that we could propagate poison, but we can't distinguish between 1286 // undef & poison bits ATM 1287 if (i == 0) 1288 UndefElts |= UndefEltsOp; 1289 } 1290 } 1291 1292 break; 1293 } 1294 case Instruction::InsertElement: { 1295 // If this is a variable index, we don't know which element it overwrites. 1296 // demand exactly the same input as we produce. 1297 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1298 if (!Idx) { 1299 // Note that we can't propagate undef elt info, because we don't know 1300 // which elt is getting updated. 1301 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1302 break; 1303 } 1304 1305 // The element inserted overwrites whatever was there, so the input demanded 1306 // set is simpler than the output set. 1307 unsigned IdxNo = Idx->getZExtValue(); 1308 APInt PreInsertDemandedElts = DemandedElts; 1309 if (IdxNo < VWidth) 1310 PreInsertDemandedElts.clearBit(IdxNo); 1311 1312 // If we only demand the element that is being inserted and that element 1313 // was extracted from the same index in another vector with the same type, 1314 // replace this insert with that other vector. 1315 // Note: This is attempted before the call to simplifyAndSetOp because that 1316 // may change UndefElts to a value that does not match with Vec. 1317 Value *Vec; 1318 if (PreInsertDemandedElts == 0 && 1319 match(I->getOperand(1), 1320 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1321 Vec->getType() == I->getType()) { 1322 return Vec; 1323 } 1324 1325 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1326 1327 // If this is inserting an element that isn't demanded, remove this 1328 // insertelement. 1329 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1330 Worklist.push(I); 1331 return I->getOperand(0); 1332 } 1333 1334 // The inserted element is defined. 1335 UndefElts.clearBit(IdxNo); 1336 break; 1337 } 1338 case Instruction::ShuffleVector: { 1339 auto *Shuffle = cast<ShuffleVectorInst>(I); 1340 assert(Shuffle->getOperand(0)->getType() == 1341 Shuffle->getOperand(1)->getType() && 1342 "Expected shuffle operands to have same type"); 1343 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1344 ->getNumElements(); 1345 // Handle trivial case of a splat. Only check the first element of LHS 1346 // operand. 1347 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1348 DemandedElts.isAllOnes()) { 1349 if (!match(I->getOperand(1), m_Undef())) { 1350 I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType())); 1351 MadeChange = true; 1352 } 1353 APInt LeftDemanded(OpWidth, 1); 1354 APInt LHSUndefElts(OpWidth, 0); 1355 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1356 if (LHSUndefElts[0]) 1357 UndefElts = EltMask; 1358 else 1359 UndefElts.clearAllBits(); 1360 break; 1361 } 1362 1363 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1364 for (unsigned i = 0; i < VWidth; i++) { 1365 if (DemandedElts[i]) { 1366 unsigned MaskVal = Shuffle->getMaskValue(i); 1367 if (MaskVal != -1u) { 1368 assert(MaskVal < OpWidth * 2 && 1369 "shufflevector mask index out of range!"); 1370 if (MaskVal < OpWidth) 1371 LeftDemanded.setBit(MaskVal); 1372 else 1373 RightDemanded.setBit(MaskVal - OpWidth); 1374 } 1375 } 1376 } 1377 1378 APInt LHSUndefElts(OpWidth, 0); 1379 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1380 1381 APInt RHSUndefElts(OpWidth, 0); 1382 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1383 1384 // If this shuffle does not change the vector length and the elements 1385 // demanded by this shuffle are an identity mask, then this shuffle is 1386 // unnecessary. 1387 // 1388 // We are assuming canonical form for the mask, so the source vector is 1389 // operand 0 and operand 1 is not used. 1390 // 1391 // Note that if an element is demanded and this shuffle mask is undefined 1392 // for that element, then the shuffle is not considered an identity 1393 // operation. The shuffle prevents poison from the operand vector from 1394 // leaking to the result by replacing poison with an undefined value. 1395 if (VWidth == OpWidth) { 1396 bool IsIdentityShuffle = true; 1397 for (unsigned i = 0; i < VWidth; i++) { 1398 unsigned MaskVal = Shuffle->getMaskValue(i); 1399 if (DemandedElts[i] && i != MaskVal) { 1400 IsIdentityShuffle = false; 1401 break; 1402 } 1403 } 1404 if (IsIdentityShuffle) 1405 return Shuffle->getOperand(0); 1406 } 1407 1408 bool NewUndefElts = false; 1409 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1410 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1411 bool LHSUniform = true; 1412 bool RHSUniform = true; 1413 for (unsigned i = 0; i < VWidth; i++) { 1414 unsigned MaskVal = Shuffle->getMaskValue(i); 1415 if (MaskVal == -1u) { 1416 UndefElts.setBit(i); 1417 } else if (!DemandedElts[i]) { 1418 NewUndefElts = true; 1419 UndefElts.setBit(i); 1420 } else if (MaskVal < OpWidth) { 1421 if (LHSUndefElts[MaskVal]) { 1422 NewUndefElts = true; 1423 UndefElts.setBit(i); 1424 } else { 1425 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1426 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1427 LHSUniform = LHSUniform && (MaskVal == i); 1428 } 1429 } else { 1430 if (RHSUndefElts[MaskVal - OpWidth]) { 1431 NewUndefElts = true; 1432 UndefElts.setBit(i); 1433 } else { 1434 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1435 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1436 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1437 } 1438 } 1439 } 1440 1441 // Try to transform shuffle with constant vector and single element from 1442 // this constant vector to single insertelement instruction. 1443 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1444 // insertelement V, C[ci], ci-n 1445 if (OpWidth == 1446 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1447 Value *Op = nullptr; 1448 Constant *Value = nullptr; 1449 unsigned Idx = -1u; 1450 1451 // Find constant vector with the single element in shuffle (LHS or RHS). 1452 if (LHSIdx < OpWidth && RHSUniform) { 1453 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1454 Op = Shuffle->getOperand(1); 1455 Value = CV->getOperand(LHSValIdx); 1456 Idx = LHSIdx; 1457 } 1458 } 1459 if (RHSIdx < OpWidth && LHSUniform) { 1460 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1461 Op = Shuffle->getOperand(0); 1462 Value = CV->getOperand(RHSValIdx); 1463 Idx = RHSIdx; 1464 } 1465 } 1466 // Found constant vector with single element - convert to insertelement. 1467 if (Op && Value) { 1468 Instruction *New = InsertElementInst::Create( 1469 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1470 Shuffle->getName()); 1471 InsertNewInstWith(New, *Shuffle); 1472 return New; 1473 } 1474 } 1475 if (NewUndefElts) { 1476 // Add additional discovered undefs. 1477 SmallVector<int, 16> Elts; 1478 for (unsigned i = 0; i < VWidth; ++i) { 1479 if (UndefElts[i]) 1480 Elts.push_back(UndefMaskElem); 1481 else 1482 Elts.push_back(Shuffle->getMaskValue(i)); 1483 } 1484 Shuffle->setShuffleMask(Elts); 1485 MadeChange = true; 1486 } 1487 break; 1488 } 1489 case Instruction::Select: { 1490 // If this is a vector select, try to transform the select condition based 1491 // on the current demanded elements. 1492 SelectInst *Sel = cast<SelectInst>(I); 1493 if (Sel->getCondition()->getType()->isVectorTy()) { 1494 // TODO: We are not doing anything with UndefElts based on this call. 1495 // It is overwritten below based on the other select operands. If an 1496 // element of the select condition is known undef, then we are free to 1497 // choose the output value from either arm of the select. If we know that 1498 // one of those values is undef, then the output can be undef. 1499 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1500 } 1501 1502 // Next, see if we can transform the arms of the select. 1503 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1504 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1505 for (unsigned i = 0; i < VWidth; i++) { 1506 // isNullValue() always returns false when called on a ConstantExpr. 1507 // Skip constant expressions to avoid propagating incorrect information. 1508 Constant *CElt = CV->getAggregateElement(i); 1509 if (isa<ConstantExpr>(CElt)) 1510 continue; 1511 // TODO: If a select condition element is undef, we can demand from 1512 // either side. If one side is known undef, choosing that side would 1513 // propagate undef. 1514 if (CElt->isNullValue()) 1515 DemandedLHS.clearBit(i); 1516 else 1517 DemandedRHS.clearBit(i); 1518 } 1519 } 1520 1521 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1522 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1523 1524 // Output elements are undefined if the element from each arm is undefined. 1525 // TODO: This can be improved. See comment in select condition handling. 1526 UndefElts = UndefElts2 & UndefElts3; 1527 break; 1528 } 1529 case Instruction::BitCast: { 1530 // Vector->vector casts only. 1531 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1532 if (!VTy) break; 1533 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1534 APInt InputDemandedElts(InVWidth, 0); 1535 UndefElts2 = APInt(InVWidth, 0); 1536 unsigned Ratio; 1537 1538 if (VWidth == InVWidth) { 1539 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1540 // elements as are demanded of us. 1541 Ratio = 1; 1542 InputDemandedElts = DemandedElts; 1543 } else if ((VWidth % InVWidth) == 0) { 1544 // If the number of elements in the output is a multiple of the number of 1545 // elements in the input then an input element is live if any of the 1546 // corresponding output elements are live. 1547 Ratio = VWidth / InVWidth; 1548 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1549 if (DemandedElts[OutIdx]) 1550 InputDemandedElts.setBit(OutIdx / Ratio); 1551 } else if ((InVWidth % VWidth) == 0) { 1552 // If the number of elements in the input is a multiple of the number of 1553 // elements in the output then an input element is live if the 1554 // corresponding output element is live. 1555 Ratio = InVWidth / VWidth; 1556 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1557 if (DemandedElts[InIdx / Ratio]) 1558 InputDemandedElts.setBit(InIdx); 1559 } else { 1560 // Unsupported so far. 1561 break; 1562 } 1563 1564 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1565 1566 if (VWidth == InVWidth) { 1567 UndefElts = UndefElts2; 1568 } else if ((VWidth % InVWidth) == 0) { 1569 // If the number of elements in the output is a multiple of the number of 1570 // elements in the input then an output element is undef if the 1571 // corresponding input element is undef. 1572 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1573 if (UndefElts2[OutIdx / Ratio]) 1574 UndefElts.setBit(OutIdx); 1575 } else if ((InVWidth % VWidth) == 0) { 1576 // If the number of elements in the input is a multiple of the number of 1577 // elements in the output then an output element is undef if all of the 1578 // corresponding input elements are undef. 1579 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1580 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1581 if (SubUndef.countPopulation() == Ratio) 1582 UndefElts.setBit(OutIdx); 1583 } 1584 } else { 1585 llvm_unreachable("Unimp"); 1586 } 1587 break; 1588 } 1589 case Instruction::FPTrunc: 1590 case Instruction::FPExt: 1591 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1592 break; 1593 1594 case Instruction::Call: { 1595 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1596 if (!II) break; 1597 switch (II->getIntrinsicID()) { 1598 case Intrinsic::masked_gather: // fallthrough 1599 case Intrinsic::masked_load: { 1600 // Subtlety: If we load from a pointer, the pointer must be valid 1601 // regardless of whether the element is demanded. Doing otherwise risks 1602 // segfaults which didn't exist in the original program. 1603 APInt DemandedPtrs(APInt::getAllOnes(VWidth)), 1604 DemandedPassThrough(DemandedElts); 1605 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1606 for (unsigned i = 0; i < VWidth; i++) { 1607 Constant *CElt = CV->getAggregateElement(i); 1608 if (CElt->isNullValue()) 1609 DemandedPtrs.clearBit(i); 1610 else if (CElt->isAllOnesValue()) 1611 DemandedPassThrough.clearBit(i); 1612 } 1613 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1614 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1615 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1616 1617 // Output elements are undefined if the element from both sources are. 1618 // TODO: can strengthen via mask as well. 1619 UndefElts = UndefElts2 & UndefElts3; 1620 break; 1621 } 1622 default: { 1623 // Handle target specific intrinsics 1624 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1625 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1626 simplifyAndSetOp); 1627 if (V.hasValue()) 1628 return V.getValue(); 1629 break; 1630 } 1631 } // switch on IntrinsicID 1632 break; 1633 } // case Call 1634 } // switch on Opcode 1635 1636 // TODO: We bail completely on integer div/rem and shifts because they have 1637 // UB/poison potential, but that should be refined. 1638 BinaryOperator *BO; 1639 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1640 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1641 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1642 1643 // Output elements are undefined if both are undefined. Consider things 1644 // like undef & 0. The result is known zero, not undef. 1645 UndefElts &= UndefElts2; 1646 } 1647 1648 // If we've proven all of the lanes undef, return an undef value. 1649 // TODO: Intersect w/demanded lanes 1650 if (UndefElts.isAllOnes()) 1651 return UndefValue::get(I->getType());; 1652 1653 return MadeChange ? I : nullptr; 1654 } 1655