1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/IntrinsicsAMDGPU.h" 18 #include "llvm/IR/IntrinsicsX86.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 namespace { 28 29 struct AMDGPUImageDMaskIntrinsic { 30 unsigned Intr; 31 }; 32 33 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 34 #include "InstCombineTables.inc" 35 36 } // end anonymous namespace 37 38 /// Check to see if the specified operand of the specified instruction is a 39 /// constant integer. If so, check to see if there are any bits set in the 40 /// constant that are not demanded. If so, shrink the constant and return true. 41 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 42 const APInt &Demanded) { 43 assert(I && "No instruction?"); 44 assert(OpNo < I->getNumOperands() && "Operand index too large"); 45 46 // The operand must be a constant integer or splat integer. 47 Value *Op = I->getOperand(OpNo); 48 const APInt *C; 49 if (!match(Op, m_APInt(C))) 50 return false; 51 52 // If there are no bits set that aren't demanded, nothing to do. 53 if (C->isSubsetOf(Demanded)) 54 return false; 55 56 // This instruction is producing bits that are not demanded. Shrink the RHS. 57 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 58 59 return true; 60 } 61 62 63 64 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 65 /// the instruction has any properties that allow us to simplify its operands. 66 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 67 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 68 KnownBits Known(BitWidth); 69 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 70 71 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 72 0, &Inst); 73 if (!V) return false; 74 if (V == &Inst) return true; 75 replaceInstUsesWith(Inst, V); 76 return true; 77 } 78 79 /// This form of SimplifyDemandedBits simplifies the specified instruction 80 /// operand if possible, updating it in place. It returns true if it made any 81 /// change and false otherwise. 82 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 83 const APInt &DemandedMask, 84 KnownBits &Known, 85 unsigned Depth) { 86 Use &U = I->getOperandUse(OpNo); 87 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 88 Depth, I); 89 if (!NewVal) return false; 90 U = NewVal; 91 return true; 92 } 93 94 95 /// This function attempts to replace V with a simpler value based on the 96 /// demanded bits. When this function is called, it is known that only the bits 97 /// set in DemandedMask of the result of V are ever used downstream. 98 /// Consequently, depending on the mask and V, it may be possible to replace V 99 /// with a constant or one of its operands. In such cases, this function does 100 /// the replacement and returns true. In all other cases, it returns false after 101 /// analyzing the expression and setting KnownOne and known to be one in the 102 /// expression. Known.Zero contains all the bits that are known to be zero in 103 /// the expression. These are provided to potentially allow the caller (which 104 /// might recursively be SimplifyDemandedBits itself) to simplify the 105 /// expression. 106 /// Known.One and Known.Zero always follow the invariant that: 107 /// Known.One & Known.Zero == 0. 108 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 109 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 110 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 111 /// be the same. 112 /// 113 /// This returns null if it did not change anything and it permits no 114 /// simplification. This returns V itself if it did some simplification of V's 115 /// operands based on the information about what bits are demanded. This returns 116 /// some other non-null value if it found out that V is equal to another value 117 /// in the context where the specified bits are demanded, but not for all users. 118 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 119 KnownBits &Known, unsigned Depth, 120 Instruction *CxtI) { 121 assert(V != nullptr && "Null pointer of Value???"); 122 assert(Depth <= 6 && "Limit Search Depth"); 123 uint32_t BitWidth = DemandedMask.getBitWidth(); 124 Type *VTy = V->getType(); 125 assert( 126 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 127 Known.getBitWidth() == BitWidth && 128 "Value *V, DemandedMask and Known must have same BitWidth"); 129 130 if (isa<Constant>(V)) { 131 computeKnownBits(V, Known, Depth, CxtI); 132 return nullptr; 133 } 134 135 Known.resetAll(); 136 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 137 return UndefValue::get(VTy); 138 139 if (Depth == 6) // Limit search depth. 140 return nullptr; 141 142 Instruction *I = dyn_cast<Instruction>(V); 143 if (!I) { 144 computeKnownBits(V, Known, Depth, CxtI); 145 return nullptr; // Only analyze instructions. 146 } 147 148 // If there are multiple uses of this value and we aren't at the root, then 149 // we can't do any simplifications of the operands, because DemandedMask 150 // only reflects the bits demanded by *one* of the users. 151 if (Depth != 0 && !I->hasOneUse()) 152 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 153 154 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 155 156 // If this is the root being simplified, allow it to have multiple uses, 157 // just set the DemandedMask to all bits so that we can try to simplify the 158 // operands. This allows visitTruncInst (for example) to simplify the 159 // operand of a trunc without duplicating all the logic below. 160 if (Depth == 0 && !V->hasOneUse()) 161 DemandedMask.setAllBits(); 162 163 switch (I->getOpcode()) { 164 default: 165 computeKnownBits(I, Known, Depth, CxtI); 166 break; 167 case Instruction::And: { 168 // If either the LHS or the RHS are Zero, the result is zero. 169 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 170 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 171 Depth + 1)) 172 return I; 173 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 174 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 175 176 // Output known-0 are known to be clear if zero in either the LHS | RHS. 177 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 178 // Output known-1 bits are only known if set in both the LHS & RHS. 179 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 180 181 // If the client is only demanding bits that we know, return the known 182 // constant. 183 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 184 return Constant::getIntegerValue(VTy, IKnownOne); 185 186 // If all of the demanded bits are known 1 on one side, return the other. 187 // These bits cannot contribute to the result of the 'and'. 188 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 189 return I->getOperand(0); 190 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 191 return I->getOperand(1); 192 193 // If the RHS is a constant, see if we can simplify it. 194 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 195 return I; 196 197 Known.Zero = std::move(IKnownZero); 198 Known.One = std::move(IKnownOne); 199 break; 200 } 201 case Instruction::Or: { 202 // If either the LHS or the RHS are One, the result is One. 203 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 204 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 205 Depth + 1)) 206 return I; 207 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 208 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 209 210 // Output known-0 bits are only known if clear in both the LHS & RHS. 211 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 212 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 213 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 214 215 // If the client is only demanding bits that we know, return the known 216 // constant. 217 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 218 return Constant::getIntegerValue(VTy, IKnownOne); 219 220 // If all of the demanded bits are known zero on one side, return the other. 221 // These bits cannot contribute to the result of the 'or'. 222 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 223 return I->getOperand(0); 224 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 225 return I->getOperand(1); 226 227 // If the RHS is a constant, see if we can simplify it. 228 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 229 return I; 230 231 Known.Zero = std::move(IKnownZero); 232 Known.One = std::move(IKnownOne); 233 break; 234 } 235 case Instruction::Xor: { 236 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 237 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 238 return I; 239 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 240 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 241 242 // Output known-0 bits are known if clear or set in both the LHS & RHS. 243 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 244 (RHSKnown.One & LHSKnown.One); 245 // Output known-1 are known to be set if set in only one of the LHS, RHS. 246 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 247 (RHSKnown.One & LHSKnown.Zero); 248 249 // If the client is only demanding bits that we know, return the known 250 // constant. 251 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 252 return Constant::getIntegerValue(VTy, IKnownOne); 253 254 // If all of the demanded bits are known zero on one side, return the other. 255 // These bits cannot contribute to the result of the 'xor'. 256 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 257 return I->getOperand(0); 258 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 259 return I->getOperand(1); 260 261 // If all of the demanded bits are known to be zero on one side or the 262 // other, turn this into an *inclusive* or. 263 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 264 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 265 Instruction *Or = 266 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 267 I->getName()); 268 return InsertNewInstWith(Or, *I); 269 } 270 271 // If all of the demanded bits on one side are known, and all of the set 272 // bits on that side are also known to be set on the other side, turn this 273 // into an AND, as we know the bits will be cleared. 274 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 275 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 276 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 277 Constant *AndC = Constant::getIntegerValue(VTy, 278 ~RHSKnown.One & DemandedMask); 279 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 280 return InsertNewInstWith(And, *I); 281 } 282 283 // If the RHS is a constant, see if we can simplify it. 284 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 285 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 286 return I; 287 288 // If our LHS is an 'and' and if it has one use, and if any of the bits we 289 // are flipping are known to be set, then the xor is just resetting those 290 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 291 // simplifying both of them. 292 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 293 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 294 isa<ConstantInt>(I->getOperand(1)) && 295 isa<ConstantInt>(LHSInst->getOperand(1)) && 296 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 297 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 298 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 299 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 300 301 Constant *AndC = 302 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 303 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 304 InsertNewInstWith(NewAnd, *I); 305 306 Constant *XorC = 307 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 308 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 309 return InsertNewInstWith(NewXor, *I); 310 } 311 312 // Output known-0 bits are known if clear or set in both the LHS & RHS. 313 Known.Zero = std::move(IKnownZero); 314 // Output known-1 are known to be set if set in only one of the LHS, RHS. 315 Known.One = std::move(IKnownOne); 316 break; 317 } 318 case Instruction::Select: { 319 Value *LHS, *RHS; 320 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 321 if (SPF == SPF_UMAX) { 322 // UMax(A, C) == A if ... 323 // The lowest non-zero bit of DemandMask is higher than the highest 324 // non-zero bit of C. 325 const APInt *C; 326 unsigned CTZ = DemandedMask.countTrailingZeros(); 327 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 328 return LHS; 329 } else if (SPF == SPF_UMIN) { 330 // UMin(A, C) == A if ... 331 // The lowest non-zero bit of DemandMask is higher than the highest 332 // non-one bit of C. 333 // This comes from using DeMorgans on the above umax example. 334 const APInt *C; 335 unsigned CTZ = DemandedMask.countTrailingZeros(); 336 if (match(RHS, m_APInt(C)) && 337 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 338 return LHS; 339 } 340 341 // If this is a select as part of any other min/max pattern, don't simplify 342 // any further in case we break the structure. 343 if (SPF != SPF_UNKNOWN) 344 return nullptr; 345 346 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 347 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 348 return I; 349 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 350 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 351 352 // If the operands are constants, see if we can simplify them. 353 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 354 ShrinkDemandedConstant(I, 2, DemandedMask)) 355 return I; 356 357 // Only known if known in both the LHS and RHS. 358 Known.One = RHSKnown.One & LHSKnown.One; 359 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 360 break; 361 } 362 case Instruction::ZExt: 363 case Instruction::Trunc: { 364 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 365 366 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 367 KnownBits InputKnown(SrcBitWidth); 368 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 369 return I; 370 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 371 Known = InputKnown.zextOrTrunc(BitWidth, 372 true /* ExtendedBitsAreKnownZero */); 373 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 374 break; 375 } 376 case Instruction::BitCast: 377 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 378 return nullptr; // vector->int or fp->int? 379 380 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 381 if (VectorType *SrcVTy = 382 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 383 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 384 // Don't touch a bitcast between vectors of different element counts. 385 return nullptr; 386 } else 387 // Don't touch a scalar-to-vector bitcast. 388 return nullptr; 389 } else if (I->getOperand(0)->getType()->isVectorTy()) 390 // Don't touch a vector-to-scalar bitcast. 391 return nullptr; 392 393 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 394 return I; 395 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 396 break; 397 case Instruction::SExt: { 398 // Compute the bits in the result that are not present in the input. 399 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 400 401 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 402 403 // If any of the sign extended bits are demanded, we know that the sign 404 // bit is demanded. 405 if (DemandedMask.getActiveBits() > SrcBitWidth) 406 InputDemandedBits.setBit(SrcBitWidth-1); 407 408 KnownBits InputKnown(SrcBitWidth); 409 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 410 return I; 411 412 // If the input sign bit is known zero, or if the NewBits are not demanded 413 // convert this into a zero extension. 414 if (InputKnown.isNonNegative() || 415 DemandedMask.getActiveBits() <= SrcBitWidth) { 416 // Convert to ZExt cast. 417 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 418 return InsertNewInstWith(NewCast, *I); 419 } 420 421 // If the sign bit of the input is known set or clear, then we know the 422 // top bits of the result. 423 Known = InputKnown.sext(BitWidth); 424 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 425 break; 426 } 427 case Instruction::Add: 428 case Instruction::Sub: { 429 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 430 /// about the high bits of the operands. 431 unsigned NLZ = DemandedMask.countLeadingZeros(); 432 // Right fill the mask of bits for this ADD/SUB to demand the most 433 // significant bit and all those below it. 434 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 435 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 436 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 437 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 438 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 439 if (NLZ > 0) { 440 // Disable the nsw and nuw flags here: We can no longer guarantee that 441 // we won't wrap after simplification. Removing the nsw/nuw flags is 442 // legal here because the top bit is not demanded. 443 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 444 BinOP.setHasNoSignedWrap(false); 445 BinOP.setHasNoUnsignedWrap(false); 446 } 447 return I; 448 } 449 450 // If we are known to be adding/subtracting zeros to every bit below 451 // the highest demanded bit, we just return the other side. 452 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 453 return I->getOperand(0); 454 // We can't do this with the LHS for subtraction, unless we are only 455 // demanding the LSB. 456 if ((I->getOpcode() == Instruction::Add || 457 DemandedFromOps.isOneValue()) && 458 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 459 return I->getOperand(1); 460 461 // Otherwise just compute the known bits of the result. 462 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 463 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 464 NSW, LHSKnown, RHSKnown); 465 break; 466 } 467 case Instruction::Shl: { 468 const APInt *SA; 469 if (match(I->getOperand(1), m_APInt(SA))) { 470 const APInt *ShrAmt; 471 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 472 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 473 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 474 DemandedMask, Known)) 475 return R; 476 477 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 478 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 479 480 // If the shift is NUW/NSW, then it does demand the high bits. 481 ShlOperator *IOp = cast<ShlOperator>(I); 482 if (IOp->hasNoSignedWrap()) 483 DemandedMaskIn.setHighBits(ShiftAmt+1); 484 else if (IOp->hasNoUnsignedWrap()) 485 DemandedMaskIn.setHighBits(ShiftAmt); 486 487 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 488 return I; 489 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 490 Known.Zero <<= ShiftAmt; 491 Known.One <<= ShiftAmt; 492 // low bits known zero. 493 if (ShiftAmt) 494 Known.Zero.setLowBits(ShiftAmt); 495 } 496 break; 497 } 498 case Instruction::LShr: { 499 const APInt *SA; 500 if (match(I->getOperand(1), m_APInt(SA))) { 501 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 502 503 // Unsigned shift right. 504 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 505 506 // If the shift is exact, then it does demand the low bits (and knows that 507 // they are zero). 508 if (cast<LShrOperator>(I)->isExact()) 509 DemandedMaskIn.setLowBits(ShiftAmt); 510 511 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 512 return I; 513 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 514 Known.Zero.lshrInPlace(ShiftAmt); 515 Known.One.lshrInPlace(ShiftAmt); 516 if (ShiftAmt) 517 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 518 } 519 break; 520 } 521 case Instruction::AShr: { 522 // If this is an arithmetic shift right and only the low-bit is set, we can 523 // always convert this into a logical shr, even if the shift amount is 524 // variable. The low bit of the shift cannot be an input sign bit unless 525 // the shift amount is >= the size of the datatype, which is undefined. 526 if (DemandedMask.isOneValue()) { 527 // Perform the logical shift right. 528 Instruction *NewVal = BinaryOperator::CreateLShr( 529 I->getOperand(0), I->getOperand(1), I->getName()); 530 return InsertNewInstWith(NewVal, *I); 531 } 532 533 // If the sign bit is the only bit demanded by this ashr, then there is no 534 // need to do it, the shift doesn't change the high bit. 535 if (DemandedMask.isSignMask()) 536 return I->getOperand(0); 537 538 const APInt *SA; 539 if (match(I->getOperand(1), m_APInt(SA))) { 540 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 541 542 // Signed shift right. 543 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 544 // If any of the high bits are demanded, we should set the sign bit as 545 // demanded. 546 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 547 DemandedMaskIn.setSignBit(); 548 549 // If the shift is exact, then it does demand the low bits (and knows that 550 // they are zero). 551 if (cast<AShrOperator>(I)->isExact()) 552 DemandedMaskIn.setLowBits(ShiftAmt); 553 554 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 555 return I; 556 557 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 558 559 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 560 // Compute the new bits that are at the top now plus sign bits. 561 APInt HighBits(APInt::getHighBitsSet( 562 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 563 Known.Zero.lshrInPlace(ShiftAmt); 564 Known.One.lshrInPlace(ShiftAmt); 565 566 // If the input sign bit is known to be zero, or if none of the top bits 567 // are demanded, turn this into an unsigned shift right. 568 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 569 if (Known.Zero[BitWidth-ShiftAmt-1] || 570 !DemandedMask.intersects(HighBits)) { 571 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 572 I->getOperand(1)); 573 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 574 return InsertNewInstWith(LShr, *I); 575 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 576 Known.One |= HighBits; 577 } 578 } 579 break; 580 } 581 case Instruction::UDiv: { 582 // UDiv doesn't demand low bits that are zero in the divisor. 583 const APInt *SA; 584 if (match(I->getOperand(1), m_APInt(SA))) { 585 // If the shift is exact, then it does demand the low bits. 586 if (cast<UDivOperator>(I)->isExact()) 587 break; 588 589 // FIXME: Take the demanded mask of the result into account. 590 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 591 APInt DemandedMaskIn = 592 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 593 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 594 return I; 595 596 // Propagate zero bits from the input. 597 Known.Zero.setHighBits(std::min( 598 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 599 } 600 break; 601 } 602 case Instruction::SRem: 603 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 604 // X % -1 demands all the bits because we don't want to introduce 605 // INT_MIN % -1 (== undef) by accident. 606 if (Rem->isMinusOne()) 607 break; 608 APInt RA = Rem->getValue().abs(); 609 if (RA.isPowerOf2()) { 610 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 611 return I->getOperand(0); 612 613 APInt LowBits = RA - 1; 614 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 615 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 616 return I; 617 618 // The low bits of LHS are unchanged by the srem. 619 Known.Zero = LHSKnown.Zero & LowBits; 620 Known.One = LHSKnown.One & LowBits; 621 622 // If LHS is non-negative or has all low bits zero, then the upper bits 623 // are all zero. 624 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 625 Known.Zero |= ~LowBits; 626 627 // If LHS is negative and not all low bits are zero, then the upper bits 628 // are all one. 629 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 630 Known.One |= ~LowBits; 631 632 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 633 break; 634 } 635 } 636 637 // The sign bit is the LHS's sign bit, except when the result of the 638 // remainder is zero. 639 if (DemandedMask.isSignBitSet()) { 640 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 641 // If it's known zero, our sign bit is also zero. 642 if (LHSKnown.isNonNegative()) 643 Known.makeNonNegative(); 644 } 645 break; 646 case Instruction::URem: { 647 KnownBits Known2(BitWidth); 648 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 649 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 650 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 651 return I; 652 653 unsigned Leaders = Known2.countMinLeadingZeros(); 654 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 655 break; 656 } 657 case Instruction::Call: 658 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 659 switch (II->getIntrinsicID()) { 660 default: break; 661 case Intrinsic::bswap: { 662 // If the only bits demanded come from one byte of the bswap result, 663 // just shift the input byte into position to eliminate the bswap. 664 unsigned NLZ = DemandedMask.countLeadingZeros(); 665 unsigned NTZ = DemandedMask.countTrailingZeros(); 666 667 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 668 // we need all the bits down to bit 8. Likewise, round NLZ. If we 669 // have 14 leading zeros, round to 8. 670 NLZ &= ~7; 671 NTZ &= ~7; 672 // If we need exactly one byte, we can do this transformation. 673 if (BitWidth-NLZ-NTZ == 8) { 674 unsigned ResultBit = NTZ; 675 unsigned InputBit = BitWidth-NTZ-8; 676 677 // Replace this with either a left or right shift to get the byte into 678 // the right place. 679 Instruction *NewVal; 680 if (InputBit > ResultBit) 681 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 682 ConstantInt::get(I->getType(), InputBit-ResultBit)); 683 else 684 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 685 ConstantInt::get(I->getType(), ResultBit-InputBit)); 686 NewVal->takeName(I); 687 return InsertNewInstWith(NewVal, *I); 688 } 689 690 // TODO: Could compute known zero/one bits based on the input. 691 break; 692 } 693 case Intrinsic::fshr: 694 case Intrinsic::fshl: { 695 const APInt *SA; 696 if (!match(I->getOperand(2), m_APInt(SA))) 697 break; 698 699 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 700 // defined, so no need to special-case zero shifts here. 701 uint64_t ShiftAmt = SA->urem(BitWidth); 702 if (II->getIntrinsicID() == Intrinsic::fshr) 703 ShiftAmt = BitWidth - ShiftAmt; 704 705 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 706 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 707 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 708 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 709 return I; 710 711 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 712 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 713 Known.One = LHSKnown.One.shl(ShiftAmt) | 714 RHSKnown.One.lshr(BitWidth - ShiftAmt); 715 break; 716 } 717 case Intrinsic::x86_mmx_pmovmskb: 718 case Intrinsic::x86_sse_movmsk_ps: 719 case Intrinsic::x86_sse2_movmsk_pd: 720 case Intrinsic::x86_sse2_pmovmskb_128: 721 case Intrinsic::x86_avx_movmsk_ps_256: 722 case Intrinsic::x86_avx_movmsk_pd_256: 723 case Intrinsic::x86_avx2_pmovmskb: { 724 // MOVMSK copies the vector elements' sign bits to the low bits 725 // and zeros the high bits. 726 unsigned ArgWidth; 727 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 728 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 729 } else { 730 auto Arg = II->getArgOperand(0); 731 auto ArgType = cast<VectorType>(Arg->getType()); 732 ArgWidth = ArgType->getNumElements(); 733 } 734 735 // If we don't need any of low bits then return zero, 736 // we know that DemandedMask is non-zero already. 737 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 738 if (DemandedElts.isNullValue()) 739 return ConstantInt::getNullValue(VTy); 740 741 // We know that the upper bits are set to zero. 742 Known.Zero.setBitsFrom(ArgWidth); 743 return nullptr; 744 } 745 case Intrinsic::x86_sse42_crc32_64_64: 746 Known.Zero.setBitsFrom(32); 747 return nullptr; 748 } 749 } 750 computeKnownBits(V, Known, Depth, CxtI); 751 break; 752 } 753 754 // If the client is only demanding bits that we know, return the known 755 // constant. 756 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 757 return Constant::getIntegerValue(VTy, Known.One); 758 return nullptr; 759 } 760 761 /// Helper routine of SimplifyDemandedUseBits. It computes Known 762 /// bits. It also tries to handle simplifications that can be done based on 763 /// DemandedMask, but without modifying the Instruction. 764 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 765 const APInt &DemandedMask, 766 KnownBits &Known, 767 unsigned Depth, 768 Instruction *CxtI) { 769 unsigned BitWidth = DemandedMask.getBitWidth(); 770 Type *ITy = I->getType(); 771 772 KnownBits LHSKnown(BitWidth); 773 KnownBits RHSKnown(BitWidth); 774 775 // Despite the fact that we can't simplify this instruction in all User's 776 // context, we can at least compute the known bits, and we can 777 // do simplifications that apply to *just* the one user if we know that 778 // this instruction has a simpler value in that context. 779 switch (I->getOpcode()) { 780 case Instruction::And: { 781 // If either the LHS or the RHS are Zero, the result is zero. 782 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 783 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 784 CxtI); 785 786 // Output known-0 are known to be clear if zero in either the LHS | RHS. 787 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 788 // Output known-1 bits are only known if set in both the LHS & RHS. 789 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 790 791 // If the client is only demanding bits that we know, return the known 792 // constant. 793 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 794 return Constant::getIntegerValue(ITy, IKnownOne); 795 796 // If all of the demanded bits are known 1 on one side, return the other. 797 // These bits cannot contribute to the result of the 'and' in this 798 // context. 799 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 800 return I->getOperand(0); 801 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 802 return I->getOperand(1); 803 804 Known.Zero = std::move(IKnownZero); 805 Known.One = std::move(IKnownOne); 806 break; 807 } 808 case Instruction::Or: { 809 // We can simplify (X|Y) -> X or Y in the user's context if we know that 810 // only bits from X or Y are demanded. 811 812 // If either the LHS or the RHS are One, the result is One. 813 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 814 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 815 CxtI); 816 817 // Output known-0 bits are only known if clear in both the LHS & RHS. 818 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 819 // Output known-1 are known to be set if set in either the LHS | RHS. 820 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 821 822 // If the client is only demanding bits that we know, return the known 823 // constant. 824 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 825 return Constant::getIntegerValue(ITy, IKnownOne); 826 827 // If all of the demanded bits are known zero on one side, return the 828 // other. These bits cannot contribute to the result of the 'or' in this 829 // context. 830 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 831 return I->getOperand(0); 832 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 833 return I->getOperand(1); 834 835 Known.Zero = std::move(IKnownZero); 836 Known.One = std::move(IKnownOne); 837 break; 838 } 839 case Instruction::Xor: { 840 // We can simplify (X^Y) -> X or Y in the user's context if we know that 841 // only bits from X or Y are demanded. 842 843 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 844 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 845 CxtI); 846 847 // Output known-0 bits are known if clear or set in both the LHS & RHS. 848 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 849 (RHSKnown.One & LHSKnown.One); 850 // Output known-1 are known to be set if set in only one of the LHS, RHS. 851 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 852 (RHSKnown.One & LHSKnown.Zero); 853 854 // If the client is only demanding bits that we know, return the known 855 // constant. 856 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 857 return Constant::getIntegerValue(ITy, IKnownOne); 858 859 // If all of the demanded bits are known zero on one side, return the 860 // other. 861 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 862 return I->getOperand(0); 863 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 864 return I->getOperand(1); 865 866 // Output known-0 bits are known if clear or set in both the LHS & RHS. 867 Known.Zero = std::move(IKnownZero); 868 // Output known-1 are known to be set if set in only one of the LHS, RHS. 869 Known.One = std::move(IKnownOne); 870 break; 871 } 872 default: 873 // Compute the Known bits to simplify things downstream. 874 computeKnownBits(I, Known, Depth, CxtI); 875 876 // If this user is only demanding bits that we know, return the known 877 // constant. 878 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 879 return Constant::getIntegerValue(ITy, Known.One); 880 881 break; 882 } 883 884 return nullptr; 885 } 886 887 888 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 889 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 890 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 891 /// of "C2-C1". 892 /// 893 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 894 /// ..., bn}, without considering the specific value X is holding. 895 /// This transformation is legal iff one of following conditions is hold: 896 /// 1) All the bit in S are 0, in this case E1 == E2. 897 /// 2) We don't care those bits in S, per the input DemandedMask. 898 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 899 /// rest bits. 900 /// 901 /// Currently we only test condition 2). 902 /// 903 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 904 /// not successful. 905 Value * 906 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 907 Instruction *Shl, const APInt &ShlOp1, 908 const APInt &DemandedMask, 909 KnownBits &Known) { 910 if (!ShlOp1 || !ShrOp1) 911 return nullptr; // No-op. 912 913 Value *VarX = Shr->getOperand(0); 914 Type *Ty = VarX->getType(); 915 unsigned BitWidth = Ty->getScalarSizeInBits(); 916 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 917 return nullptr; // Undef. 918 919 unsigned ShlAmt = ShlOp1.getZExtValue(); 920 unsigned ShrAmt = ShrOp1.getZExtValue(); 921 922 Known.One.clearAllBits(); 923 Known.Zero.setLowBits(ShlAmt - 1); 924 Known.Zero &= DemandedMask; 925 926 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 927 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 928 929 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 930 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 931 (BitMask1.ashr(ShrAmt) << ShlAmt); 932 933 if (ShrAmt <= ShlAmt) { 934 BitMask2 <<= (ShlAmt - ShrAmt); 935 } else { 936 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 937 BitMask2.ashr(ShrAmt - ShlAmt); 938 } 939 940 // Check if condition-2 (see the comment to this function) is satified. 941 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 942 if (ShrAmt == ShlAmt) 943 return VarX; 944 945 if (!Shr->hasOneUse()) 946 return nullptr; 947 948 BinaryOperator *New; 949 if (ShrAmt < ShlAmt) { 950 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 951 New = BinaryOperator::CreateShl(VarX, Amt); 952 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 953 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 954 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 955 } else { 956 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 957 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 958 BinaryOperator::CreateAShr(VarX, Amt); 959 if (cast<BinaryOperator>(Shr)->isExact()) 960 New->setIsExact(true); 961 } 962 963 return InsertNewInstWith(New, *Shl); 964 } 965 966 return nullptr; 967 } 968 969 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 970 /// 971 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 972 /// struct returns. 973 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, 974 APInt DemandedElts, 975 int DMaskIdx) { 976 977 // FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported. 978 if (DMaskIdx < 0 && 979 II->getType()->getScalarSizeInBits() != 32 && 980 DemandedElts.getActiveBits() == 3) 981 return nullptr; 982 983 unsigned VWidth = II->getType()->getVectorNumElements(); 984 if (VWidth == 1) 985 return nullptr; 986 987 ConstantInt *NewDMask = nullptr; 988 989 if (DMaskIdx < 0) { 990 // Pretend that a prefix of elements is demanded to simplify the code 991 // below. 992 DemandedElts = (1 << DemandedElts.getActiveBits()) - 1; 993 } else { 994 ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx)); 995 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 996 997 // Mask off values that are undefined because the dmask doesn't cover them 998 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; 999 1000 unsigned NewDMaskVal = 0; 1001 unsigned OrigLoadIdx = 0; 1002 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1003 const unsigned Bit = 1 << SrcIdx; 1004 if (!!(DMaskVal & Bit)) { 1005 if (!!DemandedElts[OrigLoadIdx]) 1006 NewDMaskVal |= Bit; 1007 OrigLoadIdx++; 1008 } 1009 } 1010 1011 if (DMaskVal != NewDMaskVal) 1012 NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal); 1013 } 1014 1015 unsigned NewNumElts = DemandedElts.countPopulation(); 1016 if (!NewNumElts) 1017 return UndefValue::get(II->getType()); 1018 1019 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1020 if (NewDMask) 1021 II->setArgOperand(DMaskIdx, NewDMask); 1022 return nullptr; 1023 } 1024 1025 // Determine the overload types of the original intrinsic. 1026 auto IID = II->getIntrinsicID(); 1027 SmallVector<Intrinsic::IITDescriptor, 16> Table; 1028 getIntrinsicInfoTableEntries(IID, Table); 1029 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1030 1031 // Validate function argument and return types, extracting overloaded types 1032 // along the way. 1033 FunctionType *FTy = II->getCalledFunction()->getFunctionType(); 1034 SmallVector<Type *, 6> OverloadTys; 1035 Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys); 1036 1037 Module *M = II->getParent()->getParent()->getParent(); 1038 Type *EltTy = II->getType()->getVectorElementType(); 1039 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts); 1040 1041 OverloadTys[0] = NewTy; 1042 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys); 1043 1044 SmallVector<Value *, 16> Args; 1045 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I) 1046 Args.push_back(II->getArgOperand(I)); 1047 1048 if (NewDMask) 1049 Args[DMaskIdx] = NewDMask; 1050 1051 IRBuilderBase::InsertPointGuard Guard(Builder); 1052 Builder.SetInsertPoint(II); 1053 1054 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); 1055 NewCall->takeName(II); 1056 NewCall->copyMetadata(*II); 1057 1058 if (NewNumElts == 1) { 1059 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall, 1060 DemandedElts.countTrailingZeros()); 1061 } 1062 1063 SmallVector<uint32_t, 8> EltMask; 1064 unsigned NewLoadIdx = 0; 1065 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1066 if (!!DemandedElts[OrigLoadIdx]) 1067 EltMask.push_back(NewLoadIdx++); 1068 else 1069 EltMask.push_back(NewNumElts); 1070 } 1071 1072 Value *Shuffle = 1073 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask); 1074 1075 return Shuffle; 1076 } 1077 1078 /// The specified value produces a vector with any number of elements. 1079 /// This method analyzes which elements of the operand are undef and returns 1080 /// that information in UndefElts. 1081 /// 1082 /// DemandedElts contains the set of elements that are actually used by the 1083 /// caller, and by default (AllowMultipleUsers equals false) the value is 1084 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1085 /// to true, DemandedElts refers to the union of sets of elements that are 1086 /// used by all callers. 1087 /// 1088 /// If the information about demanded elements can be used to simplify the 1089 /// operation, the operation is simplified, then the resultant value is 1090 /// returned. This returns null if no change was made. 1091 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 1092 APInt &UndefElts, 1093 unsigned Depth, 1094 bool AllowMultipleUsers) { 1095 unsigned VWidth = V->getType()->getVectorNumElements(); 1096 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1097 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1098 1099 if (isa<UndefValue>(V)) { 1100 // If the entire vector is undefined, just return this info. 1101 UndefElts = EltMask; 1102 return nullptr; 1103 } 1104 1105 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 1106 UndefElts = EltMask; 1107 return UndefValue::get(V->getType()); 1108 } 1109 1110 UndefElts = 0; 1111 1112 if (auto *C = dyn_cast<Constant>(V)) { 1113 // Check if this is identity. If so, return 0 since we are not simplifying 1114 // anything. 1115 if (DemandedElts.isAllOnesValue()) 1116 return nullptr; 1117 1118 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1119 Constant *Undef = UndefValue::get(EltTy); 1120 SmallVector<Constant*, 16> Elts; 1121 for (unsigned i = 0; i != VWidth; ++i) { 1122 if (!DemandedElts[i]) { // If not demanded, set to undef. 1123 Elts.push_back(Undef); 1124 UndefElts.setBit(i); 1125 continue; 1126 } 1127 1128 Constant *Elt = C->getAggregateElement(i); 1129 if (!Elt) return nullptr; 1130 1131 if (isa<UndefValue>(Elt)) { // Already undef. 1132 Elts.push_back(Undef); 1133 UndefElts.setBit(i); 1134 } else { // Otherwise, defined. 1135 Elts.push_back(Elt); 1136 } 1137 } 1138 1139 // If we changed the constant, return it. 1140 Constant *NewCV = ConstantVector::get(Elts); 1141 return NewCV != C ? NewCV : nullptr; 1142 } 1143 1144 // Limit search depth. 1145 if (Depth == 10) 1146 return nullptr; 1147 1148 if (!AllowMultipleUsers) { 1149 // If multiple users are using the root value, proceed with 1150 // simplification conservatively assuming that all elements 1151 // are needed. 1152 if (!V->hasOneUse()) { 1153 // Quit if we find multiple users of a non-root value though. 1154 // They'll be handled when it's their turn to be visited by 1155 // the main instcombine process. 1156 if (Depth != 0) 1157 // TODO: Just compute the UndefElts information recursively. 1158 return nullptr; 1159 1160 // Conservatively assume that all elements are needed. 1161 DemandedElts = EltMask; 1162 } 1163 } 1164 1165 Instruction *I = dyn_cast<Instruction>(V); 1166 if (!I) return nullptr; // Only analyze instructions. 1167 1168 bool MadeChange = false; 1169 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1170 APInt Demanded, APInt &Undef) { 1171 auto *II = dyn_cast<IntrinsicInst>(Inst); 1172 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1173 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1174 if (II) 1175 II->setArgOperand(OpNum, V); 1176 else 1177 Inst->setOperand(OpNum, V); 1178 MadeChange = true; 1179 } 1180 }; 1181 1182 APInt UndefElts2(VWidth, 0); 1183 APInt UndefElts3(VWidth, 0); 1184 switch (I->getOpcode()) { 1185 default: break; 1186 1187 case Instruction::GetElementPtr: { 1188 // The LangRef requires that struct geps have all constant indices. As 1189 // such, we can't convert any operand to partial undef. 1190 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1191 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1192 I != E; I++) 1193 if (I.isStruct()) 1194 return true;; 1195 return false; 1196 }; 1197 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1198 break; 1199 1200 // Conservatively track the demanded elements back through any vector 1201 // operands we may have. We know there must be at least one, or we 1202 // wouldn't have a vector result to get here. Note that we intentionally 1203 // merge the undef bits here since gepping with either an undef base or 1204 // index results in undef. 1205 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1206 if (isa<UndefValue>(I->getOperand(i))) { 1207 // If the entire vector is undefined, just return this info. 1208 UndefElts = EltMask; 1209 return nullptr; 1210 } 1211 if (I->getOperand(i)->getType()->isVectorTy()) { 1212 APInt UndefEltsOp(VWidth, 0); 1213 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1214 UndefElts |= UndefEltsOp; 1215 } 1216 } 1217 1218 break; 1219 } 1220 case Instruction::InsertElement: { 1221 // If this is a variable index, we don't know which element it overwrites. 1222 // demand exactly the same input as we produce. 1223 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1224 if (!Idx) { 1225 // Note that we can't propagate undef elt info, because we don't know 1226 // which elt is getting updated. 1227 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1228 break; 1229 } 1230 1231 // The element inserted overwrites whatever was there, so the input demanded 1232 // set is simpler than the output set. 1233 unsigned IdxNo = Idx->getZExtValue(); 1234 APInt PreInsertDemandedElts = DemandedElts; 1235 if (IdxNo < VWidth) 1236 PreInsertDemandedElts.clearBit(IdxNo); 1237 1238 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1239 1240 // If this is inserting an element that isn't demanded, remove this 1241 // insertelement. 1242 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1243 Worklist.Add(I); 1244 return I->getOperand(0); 1245 } 1246 1247 // The inserted element is defined. 1248 UndefElts.clearBit(IdxNo); 1249 break; 1250 } 1251 case Instruction::ShuffleVector: { 1252 auto *Shuffle = cast<ShuffleVectorInst>(I); 1253 assert(Shuffle->getOperand(0)->getType() == 1254 Shuffle->getOperand(1)->getType() && 1255 "Expected shuffle operands to have same type"); 1256 unsigned OpWidth = 1257 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1258 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1259 for (unsigned i = 0; i < VWidth; i++) { 1260 if (DemandedElts[i]) { 1261 unsigned MaskVal = Shuffle->getMaskValue(i); 1262 if (MaskVal != -1u) { 1263 assert(MaskVal < OpWidth * 2 && 1264 "shufflevector mask index out of range!"); 1265 if (MaskVal < OpWidth) 1266 LeftDemanded.setBit(MaskVal); 1267 else 1268 RightDemanded.setBit(MaskVal - OpWidth); 1269 } 1270 } 1271 } 1272 1273 APInt LHSUndefElts(OpWidth, 0); 1274 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1275 1276 APInt RHSUndefElts(OpWidth, 0); 1277 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1278 1279 // If this shuffle does not change the vector length and the elements 1280 // demanded by this shuffle are an identity mask, then this shuffle is 1281 // unnecessary. 1282 // 1283 // We are assuming canonical form for the mask, so the source vector is 1284 // operand 0 and operand 1 is not used. 1285 // 1286 // Note that if an element is demanded and this shuffle mask is undefined 1287 // for that element, then the shuffle is not considered an identity 1288 // operation. The shuffle prevents poison from the operand vector from 1289 // leaking to the result by replacing poison with an undefined value. 1290 if (VWidth == OpWidth) { 1291 bool IsIdentityShuffle = true; 1292 for (unsigned i = 0; i < VWidth; i++) { 1293 unsigned MaskVal = Shuffle->getMaskValue(i); 1294 if (DemandedElts[i] && i != MaskVal) { 1295 IsIdentityShuffle = false; 1296 break; 1297 } 1298 } 1299 if (IsIdentityShuffle) 1300 return Shuffle->getOperand(0); 1301 } 1302 1303 bool NewUndefElts = false; 1304 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1305 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1306 bool LHSUniform = true; 1307 bool RHSUniform = true; 1308 for (unsigned i = 0; i < VWidth; i++) { 1309 unsigned MaskVal = Shuffle->getMaskValue(i); 1310 if (MaskVal == -1u) { 1311 UndefElts.setBit(i); 1312 } else if (!DemandedElts[i]) { 1313 NewUndefElts = true; 1314 UndefElts.setBit(i); 1315 } else if (MaskVal < OpWidth) { 1316 if (LHSUndefElts[MaskVal]) { 1317 NewUndefElts = true; 1318 UndefElts.setBit(i); 1319 } else { 1320 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1321 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1322 LHSUniform = LHSUniform && (MaskVal == i); 1323 } 1324 } else { 1325 if (RHSUndefElts[MaskVal - OpWidth]) { 1326 NewUndefElts = true; 1327 UndefElts.setBit(i); 1328 } else { 1329 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1330 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1331 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1332 } 1333 } 1334 } 1335 1336 // Try to transform shuffle with constant vector and single element from 1337 // this constant vector to single insertelement instruction. 1338 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1339 // insertelement V, C[ci], ci-n 1340 if (OpWidth == Shuffle->getType()->getNumElements()) { 1341 Value *Op = nullptr; 1342 Constant *Value = nullptr; 1343 unsigned Idx = -1u; 1344 1345 // Find constant vector with the single element in shuffle (LHS or RHS). 1346 if (LHSIdx < OpWidth && RHSUniform) { 1347 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1348 Op = Shuffle->getOperand(1); 1349 Value = CV->getOperand(LHSValIdx); 1350 Idx = LHSIdx; 1351 } 1352 } 1353 if (RHSIdx < OpWidth && LHSUniform) { 1354 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1355 Op = Shuffle->getOperand(0); 1356 Value = CV->getOperand(RHSValIdx); 1357 Idx = RHSIdx; 1358 } 1359 } 1360 // Found constant vector with single element - convert to insertelement. 1361 if (Op && Value) { 1362 Instruction *New = InsertElementInst::Create( 1363 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1364 Shuffle->getName()); 1365 InsertNewInstWith(New, *Shuffle); 1366 return New; 1367 } 1368 } 1369 if (NewUndefElts) { 1370 // Add additional discovered undefs. 1371 SmallVector<Constant*, 16> Elts; 1372 for (unsigned i = 0; i < VWidth; ++i) { 1373 if (UndefElts[i]) 1374 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1375 else 1376 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1377 Shuffle->getMaskValue(i))); 1378 } 1379 I->setOperand(2, ConstantVector::get(Elts)); 1380 MadeChange = true; 1381 } 1382 break; 1383 } 1384 case Instruction::Select: { 1385 // If this is a vector select, try to transform the select condition based 1386 // on the current demanded elements. 1387 SelectInst *Sel = cast<SelectInst>(I); 1388 if (Sel->getCondition()->getType()->isVectorTy()) { 1389 // TODO: We are not doing anything with UndefElts based on this call. 1390 // It is overwritten below based on the other select operands. If an 1391 // element of the select condition is known undef, then we are free to 1392 // choose the output value from either arm of the select. If we know that 1393 // one of those values is undef, then the output can be undef. 1394 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1395 } 1396 1397 // Next, see if we can transform the arms of the select. 1398 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1399 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1400 for (unsigned i = 0; i < VWidth; i++) { 1401 // isNullValue() always returns false when called on a ConstantExpr. 1402 // Skip constant expressions to avoid propagating incorrect information. 1403 Constant *CElt = CV->getAggregateElement(i); 1404 if (isa<ConstantExpr>(CElt)) 1405 continue; 1406 // TODO: If a select condition element is undef, we can demand from 1407 // either side. If one side is known undef, choosing that side would 1408 // propagate undef. 1409 if (CElt->isNullValue()) 1410 DemandedLHS.clearBit(i); 1411 else 1412 DemandedRHS.clearBit(i); 1413 } 1414 } 1415 1416 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1417 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1418 1419 // Output elements are undefined if the element from each arm is undefined. 1420 // TODO: This can be improved. See comment in select condition handling. 1421 UndefElts = UndefElts2 & UndefElts3; 1422 break; 1423 } 1424 case Instruction::BitCast: { 1425 // Vector->vector casts only. 1426 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1427 if (!VTy) break; 1428 unsigned InVWidth = VTy->getNumElements(); 1429 APInt InputDemandedElts(InVWidth, 0); 1430 UndefElts2 = APInt(InVWidth, 0); 1431 unsigned Ratio; 1432 1433 if (VWidth == InVWidth) { 1434 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1435 // elements as are demanded of us. 1436 Ratio = 1; 1437 InputDemandedElts = DemandedElts; 1438 } else if ((VWidth % InVWidth) == 0) { 1439 // If the number of elements in the output is a multiple of the number of 1440 // elements in the input then an input element is live if any of the 1441 // corresponding output elements are live. 1442 Ratio = VWidth / InVWidth; 1443 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1444 if (DemandedElts[OutIdx]) 1445 InputDemandedElts.setBit(OutIdx / Ratio); 1446 } else if ((InVWidth % VWidth) == 0) { 1447 // If the number of elements in the input is a multiple of the number of 1448 // elements in the output then an input element is live if the 1449 // corresponding output element is live. 1450 Ratio = InVWidth / VWidth; 1451 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1452 if (DemandedElts[InIdx / Ratio]) 1453 InputDemandedElts.setBit(InIdx); 1454 } else { 1455 // Unsupported so far. 1456 break; 1457 } 1458 1459 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1460 1461 if (VWidth == InVWidth) { 1462 UndefElts = UndefElts2; 1463 } else if ((VWidth % InVWidth) == 0) { 1464 // If the number of elements in the output is a multiple of the number of 1465 // elements in the input then an output element is undef if the 1466 // corresponding input element is undef. 1467 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1468 if (UndefElts2[OutIdx / Ratio]) 1469 UndefElts.setBit(OutIdx); 1470 } else if ((InVWidth % VWidth) == 0) { 1471 // If the number of elements in the input is a multiple of the number of 1472 // elements in the output then an output element is undef if all of the 1473 // corresponding input elements are undef. 1474 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1475 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1476 if (SubUndef.countPopulation() == Ratio) 1477 UndefElts.setBit(OutIdx); 1478 } 1479 } else { 1480 llvm_unreachable("Unimp"); 1481 } 1482 break; 1483 } 1484 case Instruction::FPTrunc: 1485 case Instruction::FPExt: 1486 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1487 break; 1488 1489 case Instruction::Call: { 1490 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1491 if (!II) break; 1492 switch (II->getIntrinsicID()) { 1493 case Intrinsic::masked_gather: // fallthrough 1494 case Intrinsic::masked_load: { 1495 // Subtlety: If we load from a pointer, the pointer must be valid 1496 // regardless of whether the element is demanded. Doing otherwise risks 1497 // segfaults which didn't exist in the original program. 1498 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1499 DemandedPassThrough(DemandedElts); 1500 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1501 for (unsigned i = 0; i < VWidth; i++) { 1502 Constant *CElt = CV->getAggregateElement(i); 1503 if (CElt->isNullValue()) 1504 DemandedPtrs.clearBit(i); 1505 else if (CElt->isAllOnesValue()) 1506 DemandedPassThrough.clearBit(i); 1507 } 1508 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1509 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1510 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1511 1512 // Output elements are undefined if the element from both sources are. 1513 // TODO: can strengthen via mask as well. 1514 UndefElts = UndefElts2 & UndefElts3; 1515 break; 1516 } 1517 case Intrinsic::x86_xop_vfrcz_ss: 1518 case Intrinsic::x86_xop_vfrcz_sd: 1519 // The instructions for these intrinsics are speced to zero upper bits not 1520 // pass them through like other scalar intrinsics. So we shouldn't just 1521 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1522 // Instead we should return a zero vector. 1523 if (!DemandedElts[0]) { 1524 Worklist.Add(II); 1525 return ConstantAggregateZero::get(II->getType()); 1526 } 1527 1528 // Only the lower element is used. 1529 DemandedElts = 1; 1530 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1531 1532 // Only the lower element is undefined. The high elements are zero. 1533 UndefElts = UndefElts[0]; 1534 break; 1535 1536 // Unary scalar-as-vector operations that work column-wise. 1537 case Intrinsic::x86_sse_rcp_ss: 1538 case Intrinsic::x86_sse_rsqrt_ss: 1539 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1540 1541 // If lowest element of a scalar op isn't used then use Arg0. 1542 if (!DemandedElts[0]) { 1543 Worklist.Add(II); 1544 return II->getArgOperand(0); 1545 } 1546 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1547 // checks). 1548 break; 1549 1550 // Binary scalar-as-vector operations that work column-wise. The high 1551 // elements come from operand 0. The low element is a function of both 1552 // operands. 1553 case Intrinsic::x86_sse_min_ss: 1554 case Intrinsic::x86_sse_max_ss: 1555 case Intrinsic::x86_sse_cmp_ss: 1556 case Intrinsic::x86_sse2_min_sd: 1557 case Intrinsic::x86_sse2_max_sd: 1558 case Intrinsic::x86_sse2_cmp_sd: { 1559 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1560 1561 // If lowest element of a scalar op isn't used then use Arg0. 1562 if (!DemandedElts[0]) { 1563 Worklist.Add(II); 1564 return II->getArgOperand(0); 1565 } 1566 1567 // Only lower element is used for operand 1. 1568 DemandedElts = 1; 1569 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1570 1571 // Lower element is undefined if both lower elements are undefined. 1572 // Consider things like undef&0. The result is known zero, not undef. 1573 if (!UndefElts2[0]) 1574 UndefElts.clearBit(0); 1575 1576 break; 1577 } 1578 1579 // Binary scalar-as-vector operations that work column-wise. The high 1580 // elements come from operand 0 and the low element comes from operand 1. 1581 case Intrinsic::x86_sse41_round_ss: 1582 case Intrinsic::x86_sse41_round_sd: { 1583 // Don't use the low element of operand 0. 1584 APInt DemandedElts2 = DemandedElts; 1585 DemandedElts2.clearBit(0); 1586 simplifyAndSetOp(II, 0, DemandedElts2, UndefElts); 1587 1588 // If lowest element of a scalar op isn't used then use Arg0. 1589 if (!DemandedElts[0]) { 1590 Worklist.Add(II); 1591 return II->getArgOperand(0); 1592 } 1593 1594 // Only lower element is used for operand 1. 1595 DemandedElts = 1; 1596 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1597 1598 // Take the high undef elements from operand 0 and take the lower element 1599 // from operand 1. 1600 UndefElts.clearBit(0); 1601 UndefElts |= UndefElts2[0]; 1602 break; 1603 } 1604 1605 // Three input scalar-as-vector operations that work column-wise. The high 1606 // elements come from operand 0 and the low element is a function of all 1607 // three inputs. 1608 case Intrinsic::x86_avx512_mask_add_ss_round: 1609 case Intrinsic::x86_avx512_mask_div_ss_round: 1610 case Intrinsic::x86_avx512_mask_mul_ss_round: 1611 case Intrinsic::x86_avx512_mask_sub_ss_round: 1612 case Intrinsic::x86_avx512_mask_max_ss_round: 1613 case Intrinsic::x86_avx512_mask_min_ss_round: 1614 case Intrinsic::x86_avx512_mask_add_sd_round: 1615 case Intrinsic::x86_avx512_mask_div_sd_round: 1616 case Intrinsic::x86_avx512_mask_mul_sd_round: 1617 case Intrinsic::x86_avx512_mask_sub_sd_round: 1618 case Intrinsic::x86_avx512_mask_max_sd_round: 1619 case Intrinsic::x86_avx512_mask_min_sd_round: 1620 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1621 1622 // If lowest element of a scalar op isn't used then use Arg0. 1623 if (!DemandedElts[0]) { 1624 Worklist.Add(II); 1625 return II->getArgOperand(0); 1626 } 1627 1628 // Only lower element is used for operand 1 and 2. 1629 DemandedElts = 1; 1630 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1631 simplifyAndSetOp(II, 2, DemandedElts, UndefElts3); 1632 1633 // Lower element is undefined if all three lower elements are undefined. 1634 // Consider things like undef&0. The result is known zero, not undef. 1635 if (!UndefElts2[0] || !UndefElts3[0]) 1636 UndefElts.clearBit(0); 1637 1638 break; 1639 1640 case Intrinsic::x86_sse2_packssdw_128: 1641 case Intrinsic::x86_sse2_packsswb_128: 1642 case Intrinsic::x86_sse2_packuswb_128: 1643 case Intrinsic::x86_sse41_packusdw: 1644 case Intrinsic::x86_avx2_packssdw: 1645 case Intrinsic::x86_avx2_packsswb: 1646 case Intrinsic::x86_avx2_packusdw: 1647 case Intrinsic::x86_avx2_packuswb: 1648 case Intrinsic::x86_avx512_packssdw_512: 1649 case Intrinsic::x86_avx512_packsswb_512: 1650 case Intrinsic::x86_avx512_packusdw_512: 1651 case Intrinsic::x86_avx512_packuswb_512: { 1652 auto *Ty0 = II->getArgOperand(0)->getType(); 1653 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1654 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1655 1656 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1657 unsigned VWidthPerLane = VWidth / NumLanes; 1658 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1659 1660 // Per lane, pack the elements of the first input and then the second. 1661 // e.g. 1662 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1663 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1664 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1665 APInt OpDemandedElts(InnerVWidth, 0); 1666 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1667 unsigned LaneIdx = Lane * VWidthPerLane; 1668 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1669 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1670 if (DemandedElts[Idx]) 1671 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1672 } 1673 } 1674 1675 // Demand elements from the operand. 1676 APInt OpUndefElts(InnerVWidth, 0); 1677 simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts); 1678 1679 // Pack the operand's UNDEF elements, one lane at a time. 1680 OpUndefElts = OpUndefElts.zext(VWidth); 1681 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1682 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1683 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1684 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1685 UndefElts |= LaneElts; 1686 } 1687 } 1688 break; 1689 } 1690 1691 // PSHUFB 1692 case Intrinsic::x86_ssse3_pshuf_b_128: 1693 case Intrinsic::x86_avx2_pshuf_b: 1694 case Intrinsic::x86_avx512_pshuf_b_512: 1695 // PERMILVAR 1696 case Intrinsic::x86_avx_vpermilvar_ps: 1697 case Intrinsic::x86_avx_vpermilvar_ps_256: 1698 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1699 case Intrinsic::x86_avx_vpermilvar_pd: 1700 case Intrinsic::x86_avx_vpermilvar_pd_256: 1701 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1702 // PERMV 1703 case Intrinsic::x86_avx2_permd: 1704 case Intrinsic::x86_avx2_permps: { 1705 simplifyAndSetOp(II, 1, DemandedElts, UndefElts); 1706 break; 1707 } 1708 1709 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1710 // in an undefined state. 1711 case Intrinsic::x86_sse4a_extrq: 1712 case Intrinsic::x86_sse4a_extrqi: 1713 case Intrinsic::x86_sse4a_insertq: 1714 case Intrinsic::x86_sse4a_insertqi: 1715 UndefElts.setHighBits(VWidth / 2); 1716 break; 1717 case Intrinsic::amdgcn_buffer_load: 1718 case Intrinsic::amdgcn_buffer_load_format: 1719 case Intrinsic::amdgcn_raw_buffer_load: 1720 case Intrinsic::amdgcn_raw_buffer_load_format: 1721 case Intrinsic::amdgcn_raw_tbuffer_load: 1722 case Intrinsic::amdgcn_struct_buffer_load: 1723 case Intrinsic::amdgcn_struct_buffer_load_format: 1724 case Intrinsic::amdgcn_struct_tbuffer_load: 1725 case Intrinsic::amdgcn_tbuffer_load: 1726 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts); 1727 default: { 1728 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) 1729 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0); 1730 1731 break; 1732 } 1733 } // switch on IntrinsicID 1734 break; 1735 } // case Call 1736 } // switch on Opcode 1737 1738 // TODO: We bail completely on integer div/rem and shifts because they have 1739 // UB/poison potential, but that should be refined. 1740 BinaryOperator *BO; 1741 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1742 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1743 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1744 1745 // Any change to an instruction with potential poison must clear those flags 1746 // because we can not guarantee those constraints now. Other analysis may 1747 // determine that it is safe to re-apply the flags. 1748 if (MadeChange) 1749 BO->dropPoisonGeneratingFlags(); 1750 1751 // Output elements are undefined if both are undefined. Consider things 1752 // like undef & 0. The result is known zero, not undef. 1753 UndefElts &= UndefElts2; 1754 } 1755 1756 // If we've proven all of the lanes undef, return an undef value. 1757 // TODO: Intersect w/demanded lanes 1758 if (UndefElts.isAllOnesValue()) 1759 return UndefValue::get(I->getType());; 1760 1761 return MadeChange ? I : nullptr; 1762 } 1763