1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains logic for simplifying instructions based on information 11 // about how they are used. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombineInternal.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 20 using namespace llvm; 21 using namespace llvm::PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// ShrinkDemandedConstant - Check to see if the specified operand of the 26 /// specified instruction is a constant integer. If so, check to see if there 27 /// are any bits set in the constant that are not demanded. If so, shrink the 28 /// constant and return true. 29 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 30 APInt Demanded) { 31 assert(I && "No instruction?"); 32 assert(OpNo < I->getNumOperands() && "Operand index too large"); 33 34 // If the operand is not a constant integer, nothing to do. 35 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); 36 if (!OpC) return false; 37 38 // If there are no bits set that aren't demanded, nothing to do. 39 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); 40 if ((~Demanded & OpC->getValue()) == 0) 41 return false; 42 43 // This instruction is producing bits that are not demanded. Shrink the RHS. 44 Demanded &= OpC->getValue(); 45 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded)); 46 47 return true; 48 } 49 50 51 52 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that 53 /// SimplifyDemandedBits knows about. See if the instruction has any 54 /// properties that allow us to simplify its operands. 55 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 58 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the 69 /// specified instruction operand if possible, updating it in place. It returns 70 /// true if it made any change and false otherwise. 71 bool InstCombiner::SimplifyDemandedBits(Use &U, const APInt &DemandedMask, 72 APInt &KnownZero, APInt &KnownOne, 73 unsigned Depth) { 74 auto *UserI = dyn_cast<Instruction>(U.getUser()); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero, 76 KnownOne, Depth, UserI); 77 if (!NewVal) return false; 78 U = NewVal; 79 return true; 80 } 81 82 83 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler 84 /// value based on the demanded bits. When this function is called, it is known 85 /// that only the bits set in DemandedMask of the result of V are ever used 86 /// downstream. Consequently, depending on the mask and V, it may be possible 87 /// to replace V with a constant or one of its operands. In such cases, this 88 /// function does the replacement and returns true. In all other cases, it 89 /// returns false after analyzing the expression and setting KnownOne and known 90 /// to be one in the expression. KnownZero contains all the bits that are known 91 /// to be zero in the expression. These are provided to potentially allow the 92 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify 93 /// the expression. KnownOne and KnownZero always follow the invariant that 94 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that 95 /// the bits in KnownOne and KnownZero may only be accurate for those bits set 96 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero 97 /// and KnownOne must all be the same. 98 /// 99 /// This returns null if it did not change anything and it permits no 100 /// simplification. This returns V itself if it did some simplification of V's 101 /// operands based on the information about what bits are demanded. This returns 102 /// some other non-null value if it found out that V is equal to another value 103 /// in the context where the specified bits are demanded, but not for all users. 104 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 105 APInt &KnownZero, APInt &KnownOne, 106 unsigned Depth, 107 Instruction *CxtI) { 108 assert(V != nullptr && "Null pointer of Value???"); 109 assert(Depth <= 6 && "Limit Search Depth"); 110 uint32_t BitWidth = DemandedMask.getBitWidth(); 111 Type *VTy = V->getType(); 112 assert( 113 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 114 KnownZero.getBitWidth() == BitWidth && 115 KnownOne.getBitWidth() == BitWidth && 116 "Value *V, DemandedMask, KnownZero and KnownOne " 117 "must have same BitWidth"); 118 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 119 // We know all of the bits for a constant! 120 KnownOne = CI->getValue() & DemandedMask; 121 KnownZero = ~KnownOne & DemandedMask; 122 return nullptr; 123 } 124 if (isa<ConstantPointerNull>(V)) { 125 // We know all of the bits for a constant! 126 KnownOne.clearAllBits(); 127 KnownZero = DemandedMask; 128 return nullptr; 129 } 130 131 KnownZero.clearAllBits(); 132 KnownOne.clearAllBits(); 133 if (DemandedMask == 0) { // Not demanding any bits from V. 134 if (isa<UndefValue>(V)) 135 return nullptr; 136 return UndefValue::get(VTy); 137 } 138 139 if (Depth == 6) // Limit search depth. 140 return nullptr; 141 142 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 143 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 144 145 Instruction *I = dyn_cast<Instruction>(V); 146 if (!I) { 147 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 148 return nullptr; // Only analyze instructions. 149 } 150 151 // If there are multiple uses of this value and we aren't at the root, then 152 // we can't do any simplifications of the operands, because DemandedMask 153 // only reflects the bits demanded by *one* of the users. 154 if (Depth != 0 && !I->hasOneUse()) { 155 // Despite the fact that we can't simplify this instruction in all User's 156 // context, we can at least compute the knownzero/knownone bits, and we can 157 // do simplifications that apply to *just* the one user if we know that 158 // this instruction has a simpler value in that context. 159 if (I->getOpcode() == Instruction::And) { 160 // If either the LHS or the RHS are Zero, the result is zero. 161 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1, 162 CxtI); 163 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 164 CxtI); 165 166 // If all of the demanded bits are known 1 on one side, return the other. 167 // These bits cannot contribute to the result of the 'and' in this 168 // context. 169 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 170 (DemandedMask & ~LHSKnownZero)) 171 return I->getOperand(0); 172 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 173 (DemandedMask & ~RHSKnownZero)) 174 return I->getOperand(1); 175 176 // If all of the demanded bits in the inputs are known zeros, return zero. 177 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 178 return Constant::getNullValue(VTy); 179 180 } else if (I->getOpcode() == Instruction::Or) { 181 // We can simplify (X|Y) -> X or Y in the user's context if we know that 182 // only bits from X or Y are demanded. 183 184 // If either the LHS or the RHS are One, the result is One. 185 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1, 186 CxtI); 187 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 188 CxtI); 189 190 // If all of the demanded bits are known zero on one side, return the 191 // other. These bits cannot contribute to the result of the 'or' in this 192 // context. 193 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 194 (DemandedMask & ~LHSKnownOne)) 195 return I->getOperand(0); 196 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 197 (DemandedMask & ~RHSKnownOne)) 198 return I->getOperand(1); 199 200 // If all of the potentially set bits on one side are known to be set on 201 // the other side, just use the 'other' side. 202 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 203 (DemandedMask & (~RHSKnownZero))) 204 return I->getOperand(0); 205 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 206 (DemandedMask & (~LHSKnownZero))) 207 return I->getOperand(1); 208 } else if (I->getOpcode() == Instruction::Xor) { 209 // We can simplify (X^Y) -> X or Y in the user's context if we know that 210 // only bits from X or Y are demanded. 211 212 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1, 213 CxtI); 214 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 215 CxtI); 216 217 // If all of the demanded bits are known zero on one side, return the 218 // other. 219 if ((DemandedMask & RHSKnownZero) == DemandedMask) 220 return I->getOperand(0); 221 if ((DemandedMask & LHSKnownZero) == DemandedMask) 222 return I->getOperand(1); 223 } 224 225 // Compute the KnownZero/KnownOne bits to simplify things downstream. 226 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI); 227 return nullptr; 228 } 229 230 // If this is the root being simplified, allow it to have multiple uses, 231 // just set the DemandedMask to all bits so that we can try to simplify the 232 // operands. This allows visitTruncInst (for example) to simplify the 233 // operand of a trunc without duplicating all the logic below. 234 if (Depth == 0 && !V->hasOneUse()) 235 DemandedMask = APInt::getAllOnesValue(BitWidth); 236 237 switch (I->getOpcode()) { 238 default: 239 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI); 240 break; 241 case Instruction::And: 242 // If either the LHS or the RHS are Zero, the result is zero. 243 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero, 244 RHSKnownOne, Depth + 1) || 245 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, 246 LHSKnownZero, LHSKnownOne, Depth + 1)) 247 return I; 248 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 249 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 250 251 // If the client is only demanding bits that we know, return the known 252 // constant. 253 if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)| 254 (RHSKnownOne & LHSKnownOne))) == DemandedMask) 255 return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne); 256 257 // If all of the demanded bits are known 1 on one side, return the other. 258 // These bits cannot contribute to the result of the 'and'. 259 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 260 (DemandedMask & ~LHSKnownZero)) 261 return I->getOperand(0); 262 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 263 (DemandedMask & ~RHSKnownZero)) 264 return I->getOperand(1); 265 266 // If all of the demanded bits in the inputs are known zeros, return zero. 267 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 268 return Constant::getNullValue(VTy); 269 270 // If the RHS is a constant, see if we can simplify it. 271 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) 272 return I; 273 274 // Output known-1 bits are only known if set in both the LHS & RHS. 275 KnownOne = RHSKnownOne & LHSKnownOne; 276 // Output known-0 are known to be clear if zero in either the LHS | RHS. 277 KnownZero = RHSKnownZero | LHSKnownZero; 278 break; 279 case Instruction::Or: 280 // If either the LHS or the RHS are One, the result is One. 281 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero, 282 RHSKnownOne, Depth + 1) || 283 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, 284 LHSKnownZero, LHSKnownOne, Depth + 1)) 285 return I; 286 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 287 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 288 289 // If the client is only demanding bits that we know, return the known 290 // constant. 291 if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)| 292 (RHSKnownOne | LHSKnownOne))) == DemandedMask) 293 return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne); 294 295 // If all of the demanded bits are known zero on one side, return the other. 296 // These bits cannot contribute to the result of the 'or'. 297 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 298 (DemandedMask & ~LHSKnownOne)) 299 return I->getOperand(0); 300 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 301 (DemandedMask & ~RHSKnownOne)) 302 return I->getOperand(1); 303 304 // If all of the potentially set bits on one side are known to be set on 305 // the other side, just use the 'other' side. 306 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 307 (DemandedMask & (~RHSKnownZero))) 308 return I->getOperand(0); 309 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 310 (DemandedMask & (~LHSKnownZero))) 311 return I->getOperand(1); 312 313 // If the RHS is a constant, see if we can simplify it. 314 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 315 return I; 316 317 // Output known-0 bits are only known if clear in both the LHS & RHS. 318 KnownZero = RHSKnownZero & LHSKnownZero; 319 // Output known-1 are known to be set if set in either the LHS | RHS. 320 KnownOne = RHSKnownOne | LHSKnownOne; 321 break; 322 case Instruction::Xor: { 323 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero, 324 RHSKnownOne, Depth + 1) || 325 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero, 326 LHSKnownOne, Depth + 1)) 327 return I; 328 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 329 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 330 331 // Output known-0 bits are known if clear or set in both the LHS & RHS. 332 APInt IKnownZero = (RHSKnownZero & LHSKnownZero) | 333 (RHSKnownOne & LHSKnownOne); 334 // Output known-1 are known to be set if set in only one of the LHS, RHS. 335 APInt IKnownOne = (RHSKnownZero & LHSKnownOne) | 336 (RHSKnownOne & LHSKnownZero); 337 338 // If the client is only demanding bits that we know, return the known 339 // constant. 340 if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask) 341 return Constant::getIntegerValue(VTy, IKnownOne); 342 343 // If all of the demanded bits are known zero on one side, return the other. 344 // These bits cannot contribute to the result of the 'xor'. 345 if ((DemandedMask & RHSKnownZero) == DemandedMask) 346 return I->getOperand(0); 347 if ((DemandedMask & LHSKnownZero) == DemandedMask) 348 return I->getOperand(1); 349 350 // If all of the demanded bits are known to be zero on one side or the 351 // other, turn this into an *inclusive* or. 352 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 353 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { 354 Instruction *Or = 355 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 356 I->getName()); 357 return InsertNewInstWith(Or, *I); 358 } 359 360 // If all of the demanded bits on one side are known, and all of the set 361 // bits on that side are also known to be set on the other side, turn this 362 // into an AND, as we know the bits will be cleared. 363 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 364 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { 365 // all known 366 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { 367 Constant *AndC = Constant::getIntegerValue(VTy, 368 ~RHSKnownOne & DemandedMask); 369 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 370 return InsertNewInstWith(And, *I); 371 } 372 } 373 374 // If the RHS is a constant, see if we can simplify it. 375 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 376 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 377 return I; 378 379 // If our LHS is an 'and' and if it has one use, and if any of the bits we 380 // are flipping are known to be set, then the xor is just resetting those 381 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 382 // simplifying both of them. 383 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 384 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 385 isa<ConstantInt>(I->getOperand(1)) && 386 isa<ConstantInt>(LHSInst->getOperand(1)) && 387 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) { 388 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 389 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 390 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask); 391 392 Constant *AndC = 393 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 394 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 395 InsertNewInstWith(NewAnd, *I); 396 397 Constant *XorC = 398 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 399 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 400 return InsertNewInstWith(NewXor, *I); 401 } 402 403 // Output known-0 bits are known if clear or set in both the LHS & RHS. 404 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne); 405 // Output known-1 are known to be set if set in only one of the LHS, RHS. 406 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero); 407 break; 408 } 409 case Instruction::Select: 410 // If this is a select as part of a min/max pattern, don't simplify any 411 // further in case we break the structure. 412 Value *LHS, *RHS; 413 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN) 414 return nullptr; 415 416 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero, 417 RHSKnownOne, Depth + 1) || 418 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero, 419 LHSKnownOne, Depth + 1)) 420 return I; 421 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 422 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 423 424 // If the operands are constants, see if we can simplify them. 425 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 426 ShrinkDemandedConstant(I, 2, DemandedMask)) 427 return I; 428 429 // Only known if known in both the LHS and RHS. 430 KnownOne = RHSKnownOne & LHSKnownOne; 431 KnownZero = RHSKnownZero & LHSKnownZero; 432 break; 433 case Instruction::Trunc: { 434 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); 435 DemandedMask = DemandedMask.zext(truncBf); 436 KnownZero = KnownZero.zext(truncBf); 437 KnownOne = KnownOne.zext(truncBf); 438 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero, 439 KnownOne, Depth + 1)) 440 return I; 441 DemandedMask = DemandedMask.trunc(BitWidth); 442 KnownZero = KnownZero.trunc(BitWidth); 443 KnownOne = KnownOne.trunc(BitWidth); 444 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 445 break; 446 } 447 case Instruction::BitCast: 448 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 449 return nullptr; // vector->int or fp->int? 450 451 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 452 if (VectorType *SrcVTy = 453 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 454 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 455 // Don't touch a bitcast between vectors of different element counts. 456 return nullptr; 457 } else 458 // Don't touch a scalar-to-vector bitcast. 459 return nullptr; 460 } else if (I->getOperand(0)->getType()->isVectorTy()) 461 // Don't touch a vector-to-scalar bitcast. 462 return nullptr; 463 464 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero, 465 KnownOne, Depth + 1)) 466 return I; 467 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 468 break; 469 case Instruction::ZExt: { 470 // Compute the bits in the result that are not present in the input. 471 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 472 473 DemandedMask = DemandedMask.trunc(SrcBitWidth); 474 KnownZero = KnownZero.trunc(SrcBitWidth); 475 KnownOne = KnownOne.trunc(SrcBitWidth); 476 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero, 477 KnownOne, Depth + 1)) 478 return I; 479 DemandedMask = DemandedMask.zext(BitWidth); 480 KnownZero = KnownZero.zext(BitWidth); 481 KnownOne = KnownOne.zext(BitWidth); 482 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 483 // The top bits are known to be zero. 484 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 485 break; 486 } 487 case Instruction::SExt: { 488 // Compute the bits in the result that are not present in the input. 489 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 490 491 APInt InputDemandedBits = DemandedMask & 492 APInt::getLowBitsSet(BitWidth, SrcBitWidth); 493 494 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); 495 // If any of the sign extended bits are demanded, we know that the sign 496 // bit is demanded. 497 if ((NewBits & DemandedMask) != 0) 498 InputDemandedBits.setBit(SrcBitWidth-1); 499 500 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth); 501 KnownZero = KnownZero.trunc(SrcBitWidth); 502 KnownOne = KnownOne.trunc(SrcBitWidth); 503 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, KnownZero, 504 KnownOne, Depth + 1)) 505 return I; 506 InputDemandedBits = InputDemandedBits.zext(BitWidth); 507 KnownZero = KnownZero.zext(BitWidth); 508 KnownOne = KnownOne.zext(BitWidth); 509 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 510 511 // If the sign bit of the input is known set or clear, then we know the 512 // top bits of the result. 513 514 // If the input sign bit is known zero, or if the NewBits are not demanded 515 // convert this into a zero extension. 516 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { 517 // Convert to ZExt cast 518 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 519 return InsertNewInstWith(NewCast, *I); 520 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set 521 KnownOne |= NewBits; 522 } 523 break; 524 } 525 case Instruction::Add: 526 case Instruction::Sub: { 527 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 528 /// about the high bits of the operands. 529 unsigned NLZ = DemandedMask.countLeadingZeros(); 530 if (NLZ > 0) { 531 // Right fill the mask of bits for this ADD/SUB to demand the most 532 // significant bit and all those below it. 533 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 534 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 535 LHSKnownZero, LHSKnownOne, Depth + 1) || 536 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 537 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 538 LHSKnownZero, LHSKnownOne, Depth + 1)) { 539 // Disable the nsw and nuw flags here: We can no longer guarantee that 540 // we won't wrap after simplification. Removing the nsw/nuw flags is 541 // legal here because the top bit is not demanded. 542 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 543 BinOP.setHasNoSignedWrap(false); 544 BinOP.setHasNoUnsignedWrap(false); 545 return I; 546 } 547 } 548 549 // Otherwise just hand the add/sub off to computeKnownBits to fill in 550 // the known zeros and ones. 551 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 552 break; 553 } 554 case Instruction::Shl: 555 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 556 { 557 Value *VarX; ConstantInt *C1; 558 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) { 559 Instruction *Shr = cast<Instruction>(I->getOperand(0)); 560 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask, 561 KnownZero, KnownOne); 562 if (R) 563 return R; 564 } 565 } 566 567 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 568 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 569 570 // If the shift is NUW/NSW, then it does demand the high bits. 571 ShlOperator *IOp = cast<ShlOperator>(I); 572 if (IOp->hasNoSignedWrap()) 573 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 574 else if (IOp->hasNoUnsignedWrap()) 575 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 576 577 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero, 578 KnownOne, Depth + 1)) 579 return I; 580 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 581 KnownZero <<= ShiftAmt; 582 KnownOne <<= ShiftAmt; 583 // low bits known zero. 584 if (ShiftAmt) 585 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 586 } 587 break; 588 case Instruction::LShr: 589 // For a logical shift right 590 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 591 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 592 593 // Unsigned shift right. 594 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 595 596 // If the shift is exact, then it does demand the low bits (and knows that 597 // they are zero). 598 if (cast<LShrOperator>(I)->isExact()) 599 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 600 601 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero, 602 KnownOne, Depth + 1)) 603 return I; 604 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 605 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 606 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 607 if (ShiftAmt) { 608 // Compute the new bits that are at the top now. 609 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 610 KnownZero |= HighBits; // high bits known zero. 611 } 612 } 613 break; 614 case Instruction::AShr: 615 // If this is an arithmetic shift right and only the low-bit is set, we can 616 // always convert this into a logical shr, even if the shift amount is 617 // variable. The low bit of the shift cannot be an input sign bit unless 618 // the shift amount is >= the size of the datatype, which is undefined. 619 if (DemandedMask == 1) { 620 // Perform the logical shift right. 621 Instruction *NewVal = BinaryOperator::CreateLShr( 622 I->getOperand(0), I->getOperand(1), I->getName()); 623 return InsertNewInstWith(NewVal, *I); 624 } 625 626 // If the sign bit is the only bit demanded by this ashr, then there is no 627 // need to do it, the shift doesn't change the high bit. 628 if (DemandedMask.isSignBit()) 629 return I->getOperand(0); 630 631 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 632 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 633 634 // Signed shift right. 635 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 636 // If any of the "high bits" are demanded, we should set the sign bit as 637 // demanded. 638 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 639 DemandedMaskIn.setBit(BitWidth-1); 640 641 // If the shift is exact, then it does demand the low bits (and knows that 642 // they are zero). 643 if (cast<AShrOperator>(I)->isExact()) 644 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 645 646 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero, 647 KnownOne, Depth + 1)) 648 return I; 649 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 650 // Compute the new bits that are at the top now. 651 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 652 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 653 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 654 655 // Handle the sign bits. 656 APInt SignBit(APInt::getSignBit(BitWidth)); 657 // Adjust to where it is now in the mask. 658 SignBit = APIntOps::lshr(SignBit, ShiftAmt); 659 660 // If the input sign bit is known to be zero, or if none of the top bits 661 // are demanded, turn this into an unsigned shift right. 662 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] || 663 (HighBits & ~DemandedMask) == HighBits) { 664 // Perform the logical shift right. 665 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0), 666 SA, I->getName()); 667 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact()); 668 return InsertNewInstWith(NewVal, *I); 669 } else if ((KnownOne & SignBit) != 0) { // New bits are known one. 670 KnownOne |= HighBits; 671 } 672 } 673 break; 674 case Instruction::SRem: 675 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 676 // X % -1 demands all the bits because we don't want to introduce 677 // INT_MIN % -1 (== undef) by accident. 678 if (Rem->isAllOnesValue()) 679 break; 680 APInt RA = Rem->getValue().abs(); 681 if (RA.isPowerOf2()) { 682 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 683 return I->getOperand(0); 684 685 APInt LowBits = RA - 1; 686 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 687 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero, 688 LHSKnownOne, Depth + 1)) 689 return I; 690 691 // The low bits of LHS are unchanged by the srem. 692 KnownZero = LHSKnownZero & LowBits; 693 KnownOne = LHSKnownOne & LowBits; 694 695 // If LHS is non-negative or has all low bits zero, then the upper bits 696 // are all zero. 697 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) 698 KnownZero |= ~LowBits; 699 700 // If LHS is negative and not all low bits are zero, then the upper bits 701 // are all one. 702 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0)) 703 KnownOne |= ~LowBits; 704 705 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 706 } 707 } 708 709 // The sign bit is the LHS's sign bit, except when the result of the 710 // remainder is zero. 711 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) { 712 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 713 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 714 CxtI); 715 // If it's known zero, our sign bit is also zero. 716 if (LHSKnownZero.isNegative()) 717 KnownZero.setBit(KnownZero.getBitWidth() - 1); 718 } 719 break; 720 case Instruction::URem: { 721 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 722 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 723 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2, 724 KnownOne2, Depth + 1) || 725 SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2, 726 KnownOne2, Depth + 1)) 727 return I; 728 729 unsigned Leaders = KnownZero2.countLeadingOnes(); 730 Leaders = std::max(Leaders, 731 KnownZero2.countLeadingOnes()); 732 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 733 break; 734 } 735 case Instruction::Call: 736 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 737 switch (II->getIntrinsicID()) { 738 default: break; 739 case Intrinsic::bswap: { 740 // If the only bits demanded come from one byte of the bswap result, 741 // just shift the input byte into position to eliminate the bswap. 742 unsigned NLZ = DemandedMask.countLeadingZeros(); 743 unsigned NTZ = DemandedMask.countTrailingZeros(); 744 745 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 746 // we need all the bits down to bit 8. Likewise, round NLZ. If we 747 // have 14 leading zeros, round to 8. 748 NLZ &= ~7; 749 NTZ &= ~7; 750 // If we need exactly one byte, we can do this transformation. 751 if (BitWidth-NLZ-NTZ == 8) { 752 unsigned ResultBit = NTZ; 753 unsigned InputBit = BitWidth-NTZ-8; 754 755 // Replace this with either a left or right shift to get the byte into 756 // the right place. 757 Instruction *NewVal; 758 if (InputBit > ResultBit) 759 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 760 ConstantInt::get(I->getType(), InputBit-ResultBit)); 761 else 762 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 763 ConstantInt::get(I->getType(), ResultBit-InputBit)); 764 NewVal->takeName(I); 765 return InsertNewInstWith(NewVal, *I); 766 } 767 768 // TODO: Could compute known zero/one bits based on the input. 769 break; 770 } 771 case Intrinsic::x86_mmx_pmovmskb: 772 case Intrinsic::x86_sse_movmsk_ps: 773 case Intrinsic::x86_sse2_movmsk_pd: 774 case Intrinsic::x86_sse2_pmovmskb_128: 775 case Intrinsic::x86_avx_movmsk_ps_256: 776 case Intrinsic::x86_avx_movmsk_pd_256: 777 case Intrinsic::x86_avx2_pmovmskb: { 778 // MOVMSK copies the vector elements' sign bits to the low bits 779 // and zeros the high bits. 780 unsigned ArgWidth; 781 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 782 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 783 } else { 784 auto Arg = II->getArgOperand(0); 785 auto ArgType = cast<VectorType>(Arg->getType()); 786 ArgWidth = ArgType->getNumElements(); 787 } 788 789 // If we don't need any of low bits then return zero, 790 // we know that DemandedMask is non-zero already. 791 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 792 if (DemandedElts == 0) 793 return ConstantInt::getNullValue(VTy); 794 795 // We know that the upper bits are set to zero. 796 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - ArgWidth); 797 return nullptr; 798 } 799 case Intrinsic::x86_sse42_crc32_64_64: 800 KnownZero = APInt::getHighBitsSet(64, 32); 801 return nullptr; 802 } 803 } 804 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI); 805 break; 806 } 807 808 // If the client is only demanding bits that we know, return the known 809 // constant. 810 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) 811 return Constant::getIntegerValue(VTy, KnownOne); 812 return nullptr; 813 } 814 815 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 816 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 817 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 818 /// of "C2-C1". 819 /// 820 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 821 /// ..., bn}, without considering the specific value X is holding. 822 /// This transformation is legal iff one of following conditions is hold: 823 /// 1) All the bit in S are 0, in this case E1 == E2. 824 /// 2) We don't care those bits in S, per the input DemandedMask. 825 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 826 /// rest bits. 827 /// 828 /// Currently we only test condition 2). 829 /// 830 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 831 /// not successful. 832 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr, 833 Instruction *Shl, 834 const APInt &DemandedMask, 835 APInt &KnownZero, 836 APInt &KnownOne) { 837 838 const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue(); 839 const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue(); 840 if (!ShlOp1 || !ShrOp1) 841 return nullptr; // Noop. 842 843 Value *VarX = Shr->getOperand(0); 844 Type *Ty = VarX->getType(); 845 unsigned BitWidth = Ty->getIntegerBitWidth(); 846 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 847 return nullptr; // Undef. 848 849 unsigned ShlAmt = ShlOp1.getZExtValue(); 850 unsigned ShrAmt = ShrOp1.getZExtValue(); 851 852 KnownOne.clearAllBits(); 853 KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1); 854 KnownZero &= DemandedMask; 855 856 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 857 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 858 859 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 860 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 861 (BitMask1.ashr(ShrAmt) << ShlAmt); 862 863 if (ShrAmt <= ShlAmt) { 864 BitMask2 <<= (ShlAmt - ShrAmt); 865 } else { 866 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 867 BitMask2.ashr(ShrAmt - ShlAmt); 868 } 869 870 // Check if condition-2 (see the comment to this function) is satified. 871 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 872 if (ShrAmt == ShlAmt) 873 return VarX; 874 875 if (!Shr->hasOneUse()) 876 return nullptr; 877 878 BinaryOperator *New; 879 if (ShrAmt < ShlAmt) { 880 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 881 New = BinaryOperator::CreateShl(VarX, Amt); 882 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 883 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 884 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 885 } else { 886 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 887 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 888 BinaryOperator::CreateAShr(VarX, Amt); 889 if (cast<BinaryOperator>(Shr)->isExact()) 890 New->setIsExact(true); 891 } 892 893 return InsertNewInstWith(New, *Shl); 894 } 895 896 return nullptr; 897 } 898 899 /// SimplifyDemandedVectorElts - The specified value produces a vector with 900 /// any number of elements. DemandedElts contains the set of elements that are 901 /// actually used by the caller. This method analyzes which elements of the 902 /// operand are undef and returns that information in UndefElts. 903 /// 904 /// If the information about demanded elements can be used to simplify the 905 /// operation, the operation is simplified, then the resultant value is 906 /// returned. This returns null if no change was made. 907 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 908 APInt &UndefElts, 909 unsigned Depth) { 910 unsigned VWidth = V->getType()->getVectorNumElements(); 911 APInt EltMask(APInt::getAllOnesValue(VWidth)); 912 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 913 914 if (isa<UndefValue>(V)) { 915 // If the entire vector is undefined, just return this info. 916 UndefElts = EltMask; 917 return nullptr; 918 } 919 920 if (DemandedElts == 0) { // If nothing is demanded, provide undef. 921 UndefElts = EltMask; 922 return UndefValue::get(V->getType()); 923 } 924 925 UndefElts = 0; 926 927 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. 928 if (Constant *C = dyn_cast<Constant>(V)) { 929 // Check if this is identity. If so, return 0 since we are not simplifying 930 // anything. 931 if (DemandedElts.isAllOnesValue()) 932 return nullptr; 933 934 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 935 Constant *Undef = UndefValue::get(EltTy); 936 937 SmallVector<Constant*, 16> Elts; 938 for (unsigned i = 0; i != VWidth; ++i) { 939 if (!DemandedElts[i]) { // If not demanded, set to undef. 940 Elts.push_back(Undef); 941 UndefElts.setBit(i); 942 continue; 943 } 944 945 Constant *Elt = C->getAggregateElement(i); 946 if (!Elt) return nullptr; 947 948 if (isa<UndefValue>(Elt)) { // Already undef. 949 Elts.push_back(Undef); 950 UndefElts.setBit(i); 951 } else { // Otherwise, defined. 952 Elts.push_back(Elt); 953 } 954 } 955 956 // If we changed the constant, return it. 957 Constant *NewCV = ConstantVector::get(Elts); 958 return NewCV != C ? NewCV : nullptr; 959 } 960 961 // Limit search depth. 962 if (Depth == 10) 963 return nullptr; 964 965 // If multiple users are using the root value, proceed with 966 // simplification conservatively assuming that all elements 967 // are needed. 968 if (!V->hasOneUse()) { 969 // Quit if we find multiple users of a non-root value though. 970 // They'll be handled when it's their turn to be visited by 971 // the main instcombine process. 972 if (Depth != 0) 973 // TODO: Just compute the UndefElts information recursively. 974 return nullptr; 975 976 // Conservatively assume that all elements are needed. 977 DemandedElts = EltMask; 978 } 979 980 Instruction *I = dyn_cast<Instruction>(V); 981 if (!I) return nullptr; // Only analyze instructions. 982 983 bool MadeChange = false; 984 APInt UndefElts2(VWidth, 0); 985 Value *TmpV; 986 switch (I->getOpcode()) { 987 default: break; 988 989 case Instruction::InsertElement: { 990 // If this is a variable index, we don't know which element it overwrites. 991 // demand exactly the same input as we produce. 992 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 993 if (!Idx) { 994 // Note that we can't propagate undef elt info, because we don't know 995 // which elt is getting updated. 996 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 997 UndefElts2, Depth + 1); 998 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 999 break; 1000 } 1001 1002 // If this is inserting an element that isn't demanded, remove this 1003 // insertelement. 1004 unsigned IdxNo = Idx->getZExtValue(); 1005 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1006 Worklist.Add(I); 1007 return I->getOperand(0); 1008 } 1009 1010 // Otherwise, the element inserted overwrites whatever was there, so the 1011 // input demanded set is simpler than the output set. 1012 APInt DemandedElts2 = DemandedElts; 1013 DemandedElts2.clearBit(IdxNo); 1014 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, 1015 UndefElts, Depth + 1); 1016 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1017 1018 // The inserted element is defined. 1019 UndefElts.clearBit(IdxNo); 1020 break; 1021 } 1022 case Instruction::ShuffleVector: { 1023 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1024 uint64_t LHSVWidth = 1025 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements(); 1026 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1027 for (unsigned i = 0; i < VWidth; i++) { 1028 if (DemandedElts[i]) { 1029 unsigned MaskVal = Shuffle->getMaskValue(i); 1030 if (MaskVal != -1u) { 1031 assert(MaskVal < LHSVWidth * 2 && 1032 "shufflevector mask index out of range!"); 1033 if (MaskVal < LHSVWidth) 1034 LeftDemanded.setBit(MaskVal); 1035 else 1036 RightDemanded.setBit(MaskVal - LHSVWidth); 1037 } 1038 } 1039 } 1040 1041 APInt UndefElts4(LHSVWidth, 0); 1042 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, 1043 UndefElts4, Depth + 1); 1044 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1045 1046 APInt UndefElts3(LHSVWidth, 0); 1047 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, 1048 UndefElts3, Depth + 1); 1049 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1050 1051 bool NewUndefElts = false; 1052 for (unsigned i = 0; i < VWidth; i++) { 1053 unsigned MaskVal = Shuffle->getMaskValue(i); 1054 if (MaskVal == -1u) { 1055 UndefElts.setBit(i); 1056 } else if (!DemandedElts[i]) { 1057 NewUndefElts = true; 1058 UndefElts.setBit(i); 1059 } else if (MaskVal < LHSVWidth) { 1060 if (UndefElts4[MaskVal]) { 1061 NewUndefElts = true; 1062 UndefElts.setBit(i); 1063 } 1064 } else { 1065 if (UndefElts3[MaskVal - LHSVWidth]) { 1066 NewUndefElts = true; 1067 UndefElts.setBit(i); 1068 } 1069 } 1070 } 1071 1072 if (NewUndefElts) { 1073 // Add additional discovered undefs. 1074 SmallVector<Constant*, 16> Elts; 1075 for (unsigned i = 0; i < VWidth; ++i) { 1076 if (UndefElts[i]) 1077 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1078 else 1079 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1080 Shuffle->getMaskValue(i))); 1081 } 1082 I->setOperand(2, ConstantVector::get(Elts)); 1083 MadeChange = true; 1084 } 1085 break; 1086 } 1087 case Instruction::Select: { 1088 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); 1089 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) { 1090 for (unsigned i = 0; i < VWidth; i++) { 1091 Constant *CElt = CV->getAggregateElement(i); 1092 // Method isNullValue always returns false when called on a 1093 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to 1094 // to avoid propagating incorrect information. 1095 if (isa<ConstantExpr>(CElt)) 1096 continue; 1097 if (CElt->isNullValue()) 1098 LeftDemanded.clearBit(i); 1099 else 1100 RightDemanded.clearBit(i); 1101 } 1102 } 1103 1104 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts, 1105 Depth + 1); 1106 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1107 1108 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, 1109 UndefElts2, Depth + 1); 1110 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } 1111 1112 // Output elements are undefined if both are undefined. 1113 UndefElts &= UndefElts2; 1114 break; 1115 } 1116 case Instruction::BitCast: { 1117 // Vector->vector casts only. 1118 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1119 if (!VTy) break; 1120 unsigned InVWidth = VTy->getNumElements(); 1121 APInt InputDemandedElts(InVWidth, 0); 1122 UndefElts2 = APInt(InVWidth, 0); 1123 unsigned Ratio; 1124 1125 if (VWidth == InVWidth) { 1126 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1127 // elements as are demanded of us. 1128 Ratio = 1; 1129 InputDemandedElts = DemandedElts; 1130 } else if ((VWidth % InVWidth) == 0) { 1131 // If the number of elements in the output is a multiple of the number of 1132 // elements in the input then an input element is live if any of the 1133 // corresponding output elements are live. 1134 Ratio = VWidth / InVWidth; 1135 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1136 if (DemandedElts[OutIdx]) 1137 InputDemandedElts.setBit(OutIdx / Ratio); 1138 } else if ((InVWidth % VWidth) == 0) { 1139 // If the number of elements in the input is a multiple of the number of 1140 // elements in the output then an input element is live if the 1141 // corresponding output element is live. 1142 Ratio = InVWidth / VWidth; 1143 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1144 if (DemandedElts[InIdx / Ratio]) 1145 InputDemandedElts.setBit(InIdx); 1146 } else { 1147 // Unsupported so far. 1148 break; 1149 } 1150 1151 // div/rem demand all inputs, because they don't want divide by zero. 1152 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, 1153 UndefElts2, Depth + 1); 1154 if (TmpV) { 1155 I->setOperand(0, TmpV); 1156 MadeChange = true; 1157 } 1158 1159 if (VWidth == InVWidth) { 1160 UndefElts = UndefElts2; 1161 } else if ((VWidth % InVWidth) == 0) { 1162 // If the number of elements in the output is a multiple of the number of 1163 // elements in the input then an output element is undef if the 1164 // corresponding input element is undef. 1165 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1166 if (UndefElts2[OutIdx / Ratio]) 1167 UndefElts.setBit(OutIdx); 1168 } else if ((InVWidth % VWidth) == 0) { 1169 // If the number of elements in the input is a multiple of the number of 1170 // elements in the output then an output element is undef if all of the 1171 // corresponding input elements are undef. 1172 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1173 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1174 if (SubUndef.countPopulation() == Ratio) 1175 UndefElts.setBit(OutIdx); 1176 } 1177 } else { 1178 llvm_unreachable("Unimp"); 1179 } 1180 break; 1181 } 1182 case Instruction::And: 1183 case Instruction::Or: 1184 case Instruction::Xor: 1185 case Instruction::Add: 1186 case Instruction::Sub: 1187 case Instruction::Mul: 1188 // div/rem demand all inputs, because they don't want divide by zero. 1189 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1190 Depth + 1); 1191 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1192 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, 1193 UndefElts2, Depth + 1); 1194 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1195 1196 // Output elements are undefined if both are undefined. Consider things 1197 // like undef&0. The result is known zero, not undef. 1198 UndefElts &= UndefElts2; 1199 break; 1200 case Instruction::FPTrunc: 1201 case Instruction::FPExt: 1202 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1203 Depth + 1); 1204 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1205 break; 1206 1207 case Instruction::Call: { 1208 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1209 if (!II) break; 1210 switch (II->getIntrinsicID()) { 1211 default: break; 1212 1213 // Unary scalar-as-vector operations that work column-wise. 1214 case Intrinsic::x86_sse_rcp_ss: 1215 case Intrinsic::x86_sse_rsqrt_ss: 1216 case Intrinsic::x86_sse_sqrt_ss: 1217 case Intrinsic::x86_sse2_sqrt_sd: 1218 case Intrinsic::x86_xop_vfrcz_ss: 1219 case Intrinsic::x86_xop_vfrcz_sd: 1220 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1221 UndefElts, Depth + 1); 1222 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1223 1224 // If lowest element of a scalar op isn't used then use Arg0. 1225 if (DemandedElts.getLoBits(1) != 1) 1226 return II->getArgOperand(0); 1227 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1228 // checks). 1229 break; 1230 1231 // Binary scalar-as-vector operations that work column-wise. A dest element 1232 // is a function of the corresponding input elements from the two inputs. 1233 case Intrinsic::x86_sse_add_ss: 1234 case Intrinsic::x86_sse_sub_ss: 1235 case Intrinsic::x86_sse_mul_ss: 1236 case Intrinsic::x86_sse_div_ss: 1237 case Intrinsic::x86_sse_min_ss: 1238 case Intrinsic::x86_sse_max_ss: 1239 case Intrinsic::x86_sse_cmp_ss: 1240 case Intrinsic::x86_sse2_add_sd: 1241 case Intrinsic::x86_sse2_sub_sd: 1242 case Intrinsic::x86_sse2_mul_sd: 1243 case Intrinsic::x86_sse2_div_sd: 1244 case Intrinsic::x86_sse2_min_sd: 1245 case Intrinsic::x86_sse2_max_sd: 1246 case Intrinsic::x86_sse2_cmp_sd: 1247 case Intrinsic::x86_sse41_round_ss: 1248 case Intrinsic::x86_sse41_round_sd: 1249 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1250 UndefElts, Depth + 1); 1251 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1252 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1253 UndefElts2, Depth + 1); 1254 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1255 1256 // If only the low elt is demanded and this is a scalarizable intrinsic, 1257 // scalarize it now. 1258 if (DemandedElts == 1) { 1259 switch (II->getIntrinsicID()) { 1260 default: break; 1261 case Intrinsic::x86_sse_add_ss: 1262 case Intrinsic::x86_sse_sub_ss: 1263 case Intrinsic::x86_sse_mul_ss: 1264 case Intrinsic::x86_sse_div_ss: 1265 case Intrinsic::x86_sse2_add_sd: 1266 case Intrinsic::x86_sse2_sub_sd: 1267 case Intrinsic::x86_sse2_mul_sd: 1268 case Intrinsic::x86_sse2_div_sd: 1269 // TODO: Lower MIN/MAX/etc. 1270 Value *LHS = II->getArgOperand(0); 1271 Value *RHS = II->getArgOperand(1); 1272 // Extract the element as scalars. 1273 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS, 1274 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 1275 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS, 1276 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 1277 1278 switch (II->getIntrinsicID()) { 1279 default: llvm_unreachable("Case stmts out of sync!"); 1280 case Intrinsic::x86_sse_add_ss: 1281 case Intrinsic::x86_sse2_add_sd: 1282 TmpV = InsertNewInstWith(BinaryOperator::CreateFAdd(LHS, RHS, 1283 II->getName()), *II); 1284 break; 1285 case Intrinsic::x86_sse_sub_ss: 1286 case Intrinsic::x86_sse2_sub_sd: 1287 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS, 1288 II->getName()), *II); 1289 break; 1290 case Intrinsic::x86_sse_mul_ss: 1291 case Intrinsic::x86_sse2_mul_sd: 1292 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS, 1293 II->getName()), *II); 1294 break; 1295 case Intrinsic::x86_sse_div_ss: 1296 case Intrinsic::x86_sse2_div_sd: 1297 TmpV = InsertNewInstWith(BinaryOperator::CreateFDiv(LHS, RHS, 1298 II->getName()), *II); 1299 break; 1300 } 1301 1302 Instruction *New = 1303 InsertElementInst::Create( 1304 UndefValue::get(II->getType()), TmpV, 1305 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false), 1306 II->getName()); 1307 InsertNewInstWith(New, *II); 1308 return New; 1309 } 1310 } 1311 1312 // If lowest element of a scalar op isn't used then use Arg0. 1313 if (DemandedElts.getLoBits(1) != 1) 1314 return II->getArgOperand(0); 1315 1316 // Output elements are undefined if both are undefined. Consider things 1317 // like undef&0. The result is known zero, not undef. 1318 UndefElts &= UndefElts2; 1319 break; 1320 1321 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1322 // in an undefined state. 1323 case Intrinsic::x86_sse4a_extrq: 1324 case Intrinsic::x86_sse4a_extrqi: 1325 case Intrinsic::x86_sse4a_insertq: 1326 case Intrinsic::x86_sse4a_insertqi: 1327 UndefElts |= APInt::getHighBitsSet(VWidth, VWidth / 2); 1328 break; 1329 } 1330 break; 1331 } 1332 } 1333 return MadeChange ? I : nullptr; 1334 } 1335