1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/TargetTransformInfo.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnes(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isZero()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == MaxAnalysisRecursionDepth) 131 return nullptr; 132 133 if (isa<ScalableVectorType>(VTy)) 134 return nullptr; 135 136 Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) { 138 computeKnownBits(V, Known, Depth, CxtI); 139 return nullptr; // Only analyze instructions. 140 } 141 142 // If there are multiple uses of this value and we aren't at the root, then 143 // we can't do any simplifications of the operands, because DemandedMask 144 // only reflects the bits demanded by *one* of the users. 145 if (Depth != 0 && !I->hasOneUse()) 146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 147 148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 149 150 // If this is the root being simplified, allow it to have multiple uses, 151 // just set the DemandedMask to all bits so that we can try to simplify the 152 // operands. This allows visitTruncInst (for example) to simplify the 153 // operand of a trunc without duplicating all the logic below. 154 if (Depth == 0 && !V->hasOneUse()) 155 DemandedMask.setAllBits(); 156 157 // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care 158 // about the high bits of the operands. 159 auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) { 160 unsigned NLZ = DemandedMask.countLeadingZeros(); 161 // Right fill the mask of bits for the operands to demand the most 162 // significant bit and all those below it. 163 DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); 164 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 165 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 166 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 167 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 168 if (NLZ > 0) { 169 // Disable the nsw and nuw flags here: We can no longer guarantee that 170 // we won't wrap after simplification. Removing the nsw/nuw flags is 171 // legal here because the top bit is not demanded. 172 I->setHasNoSignedWrap(false); 173 I->setHasNoUnsignedWrap(false); 174 } 175 return true; 176 } 177 return false; 178 }; 179 180 switch (I->getOpcode()) { 181 default: 182 computeKnownBits(I, Known, Depth, CxtI); 183 break; 184 case Instruction::And: { 185 // If either the LHS or the RHS are Zero, the result is zero. 186 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 187 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 188 Depth + 1)) 189 return I; 190 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 191 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 192 193 Known = LHSKnown & RHSKnown; 194 195 // If the client is only demanding bits that we know, return the known 196 // constant. 197 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 198 return Constant::getIntegerValue(VTy, Known.One); 199 200 // If all of the demanded bits are known 1 on one side, return the other. 201 // These bits cannot contribute to the result of the 'and'. 202 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 203 return I->getOperand(0); 204 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 205 return I->getOperand(1); 206 207 // If the RHS is a constant, see if we can simplify it. 208 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 209 return I; 210 211 break; 212 } 213 case Instruction::Or: { 214 // If either the LHS or the RHS are One, the result is One. 215 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 216 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 217 Depth + 1)) 218 return I; 219 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 220 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 221 222 Known = LHSKnown | RHSKnown; 223 224 // If the client is only demanding bits that we know, return the known 225 // constant. 226 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 227 return Constant::getIntegerValue(VTy, Known.One); 228 229 // If all of the demanded bits are known zero on one side, return the other. 230 // These bits cannot contribute to the result of the 'or'. 231 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 232 return I->getOperand(0); 233 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 234 return I->getOperand(1); 235 236 // If the RHS is a constant, see if we can simplify it. 237 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 238 return I; 239 240 break; 241 } 242 case Instruction::Xor: { 243 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 244 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 245 return I; 246 Value *LHS, *RHS; 247 if (DemandedMask == 1 && 248 match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) && 249 match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) { 250 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1 251 IRBuilderBase::InsertPointGuard Guard(Builder); 252 Builder.SetInsertPoint(I); 253 auto *Xor = Builder.CreateXor(LHS, RHS); 254 return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor); 255 } 256 257 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 258 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 259 260 Known = LHSKnown ^ RHSKnown; 261 262 // If the client is only demanding bits that we know, return the known 263 // constant. 264 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 265 return Constant::getIntegerValue(VTy, Known.One); 266 267 // If all of the demanded bits are known zero on one side, return the other. 268 // These bits cannot contribute to the result of the 'xor'. 269 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 270 return I->getOperand(0); 271 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 272 return I->getOperand(1); 273 274 // If all of the demanded bits are known to be zero on one side or the 275 // other, turn this into an *inclusive* or. 276 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 277 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 278 Instruction *Or = 279 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 280 I->getName()); 281 return InsertNewInstWith(Or, *I); 282 } 283 284 // If all of the demanded bits on one side are known, and all of the set 285 // bits on that side are also known to be set on the other side, turn this 286 // into an AND, as we know the bits will be cleared. 287 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 288 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 289 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 290 Constant *AndC = Constant::getIntegerValue(VTy, 291 ~RHSKnown.One & DemandedMask); 292 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 293 return InsertNewInstWith(And, *I); 294 } 295 296 // If the RHS is a constant, see if we can change it. Don't alter a -1 297 // constant because that's a canonical 'not' op, and that is better for 298 // combining, SCEV, and codegen. 299 const APInt *C; 300 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) { 301 if ((*C | ~DemandedMask).isAllOnes()) { 302 // Force bits to 1 to create a 'not' op. 303 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 304 return I; 305 } 306 // If we can't turn this into a 'not', try to shrink the constant. 307 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 308 return I; 309 } 310 311 // If our LHS is an 'and' and if it has one use, and if any of the bits we 312 // are flipping are known to be set, then the xor is just resetting those 313 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 314 // simplifying both of them. 315 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 316 ConstantInt *AndRHS, *XorRHS; 317 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 318 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 319 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 320 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 321 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 322 323 Constant *AndC = 324 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 325 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 326 InsertNewInstWith(NewAnd, *I); 327 328 Constant *XorC = 329 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 330 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 331 return InsertNewInstWith(NewXor, *I); 332 } 333 } 334 break; 335 } 336 case Instruction::Select: { 337 Value *LHS, *RHS; 338 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 339 if (SPF == SPF_UMAX) { 340 // UMax(A, C) == A if ... 341 // The lowest non-zero bit of DemandMask is higher than the highest 342 // non-zero bit of C. 343 const APInt *C; 344 unsigned CTZ = DemandedMask.countTrailingZeros(); 345 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 346 return LHS; 347 } else if (SPF == SPF_UMIN) { 348 // UMin(A, C) == A if ... 349 // The lowest non-zero bit of DemandMask is higher than the highest 350 // non-one bit of C. 351 // This comes from using DeMorgans on the above umax example. 352 const APInt *C; 353 unsigned CTZ = DemandedMask.countTrailingZeros(); 354 if (match(RHS, m_APInt(C)) && 355 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 356 return LHS; 357 } 358 359 // If this is a select as part of any other min/max pattern, don't simplify 360 // any further in case we break the structure. 361 if (SPF != SPF_UNKNOWN) 362 return nullptr; 363 364 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 365 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 366 return I; 367 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 368 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 369 370 // If the operands are constants, see if we can simplify them. 371 // This is similar to ShrinkDemandedConstant, but for a select we want to 372 // try to keep the selected constants the same as icmp value constants, if 373 // we can. This helps not break apart (or helps put back together) 374 // canonical patterns like min and max. 375 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 376 const APInt &DemandedMask) { 377 const APInt *SelC; 378 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 379 return false; 380 381 // Get the constant out of the ICmp, if there is one. 382 // Only try this when exactly 1 operand is a constant (if both operands 383 // are constant, the icmp should eventually simplify). Otherwise, we may 384 // invert the transform that reduces set bits and infinite-loop. 385 Value *X; 386 const APInt *CmpC; 387 ICmpInst::Predicate Pred; 388 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 389 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 390 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 391 392 // If the constant is already the same as the ICmp, leave it as-is. 393 if (*CmpC == *SelC) 394 return false; 395 // If the constants are not already the same, but can be with the demand 396 // mask, use the constant value from the ICmp. 397 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 398 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 399 return true; 400 } 401 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 402 }; 403 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 404 CanonicalizeSelectConstant(I, 2, DemandedMask)) 405 return I; 406 407 // Only known if known in both the LHS and RHS. 408 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 409 break; 410 } 411 case Instruction::Trunc: { 412 // If we do not demand the high bits of a right-shifted and truncated value, 413 // then we may be able to truncate it before the shift. 414 Value *X; 415 const APInt *C; 416 if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 417 // The shift amount must be valid (not poison) in the narrow type, and 418 // it must not be greater than the high bits demanded of the result. 419 if (C->ult(I->getType()->getScalarSizeInBits()) && 420 C->ule(DemandedMask.countLeadingZeros())) { 421 // trunc (lshr X, C) --> lshr (trunc X), C 422 IRBuilderBase::InsertPointGuard Guard(Builder); 423 Builder.SetInsertPoint(I); 424 Value *Trunc = Builder.CreateTrunc(X, I->getType()); 425 return Builder.CreateLShr(Trunc, C->getZExtValue()); 426 } 427 } 428 } 429 LLVM_FALLTHROUGH; 430 case Instruction::ZExt: { 431 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 432 433 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 434 KnownBits InputKnown(SrcBitWidth); 435 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 436 return I; 437 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 438 Known = InputKnown.zextOrTrunc(BitWidth); 439 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 440 break; 441 } 442 case Instruction::BitCast: 443 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 444 return nullptr; // vector->int or fp->int? 445 446 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 447 if (VectorType *SrcVTy = 448 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 449 if (cast<FixedVectorType>(DstVTy)->getNumElements() != 450 cast<FixedVectorType>(SrcVTy)->getNumElements()) 451 // Don't touch a bitcast between vectors of different element counts. 452 return nullptr; 453 } else 454 // Don't touch a scalar-to-vector bitcast. 455 return nullptr; 456 } else if (I->getOperand(0)->getType()->isVectorTy()) 457 // Don't touch a vector-to-scalar bitcast. 458 return nullptr; 459 460 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 461 return I; 462 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 463 break; 464 case Instruction::SExt: { 465 // Compute the bits in the result that are not present in the input. 466 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 467 468 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 469 470 // If any of the sign extended bits are demanded, we know that the sign 471 // bit is demanded. 472 if (DemandedMask.getActiveBits() > SrcBitWidth) 473 InputDemandedBits.setBit(SrcBitWidth-1); 474 475 KnownBits InputKnown(SrcBitWidth); 476 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 477 return I; 478 479 // If the input sign bit is known zero, or if the NewBits are not demanded 480 // convert this into a zero extension. 481 if (InputKnown.isNonNegative() || 482 DemandedMask.getActiveBits() <= SrcBitWidth) { 483 // Convert to ZExt cast. 484 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 485 return InsertNewInstWith(NewCast, *I); 486 } 487 488 // If the sign bit of the input is known set or clear, then we know the 489 // top bits of the result. 490 Known = InputKnown.sext(BitWidth); 491 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 492 break; 493 } 494 case Instruction::Add: 495 if ((DemandedMask & 1) == 0) { 496 // If we do not need the low bit, try to convert bool math to logic: 497 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 498 Value *X, *Y; 499 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 500 m_OneUse(m_SExt(m_Value(Y))))) && 501 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 502 // Truth table for inputs and output signbits: 503 // X:0 | X:1 504 // ---------- 505 // Y:0 | 0 | 0 | 506 // Y:1 | -1 | 0 | 507 // ---------- 508 IRBuilderBase::InsertPointGuard Guard(Builder); 509 Builder.SetInsertPoint(I); 510 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 511 return Builder.CreateSExt(AndNot, VTy); 512 } 513 514 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 515 // TODO: Relax the one-use checks because we are removing an instruction? 516 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 517 m_OneUse(m_SExt(m_Value(Y))))) && 518 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 519 // Truth table for inputs and output signbits: 520 // X:0 | X:1 521 // ----------- 522 // Y:0 | -1 | -1 | 523 // Y:1 | -1 | 0 | 524 // ----------- 525 IRBuilderBase::InsertPointGuard Guard(Builder); 526 Builder.SetInsertPoint(I); 527 Value *Or = Builder.CreateOr(X, Y); 528 return Builder.CreateSExt(Or, VTy); 529 } 530 } 531 LLVM_FALLTHROUGH; 532 case Instruction::Sub: { 533 APInt DemandedFromOps; 534 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps)) 535 return I; 536 537 // If we are known to be adding/subtracting zeros to every bit below 538 // the highest demanded bit, we just return the other side. 539 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 540 return I->getOperand(0); 541 // We can't do this with the LHS for subtraction, unless we are only 542 // demanding the LSB. 543 if ((I->getOpcode() == Instruction::Add || DemandedFromOps.isOne()) && 544 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 545 return I->getOperand(1); 546 547 // Otherwise just compute the known bits of the result. 548 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 549 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 550 NSW, LHSKnown, RHSKnown); 551 break; 552 } 553 case Instruction::Mul: { 554 APInt DemandedFromOps; 555 if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps)) 556 return I; 557 558 if (DemandedMask.isPowerOf2()) { 559 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 560 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 561 // odd (has LSB set), then the left-shifted low bit of X is the answer. 562 unsigned CTZ = DemandedMask.countTrailingZeros(); 563 const APInt *C; 564 if (match(I->getOperand(1), m_APInt(C)) && 565 C->countTrailingZeros() == CTZ) { 566 Constant *ShiftC = ConstantInt::get(I->getType(), CTZ); 567 Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC); 568 return InsertNewInstWith(Shl, *I); 569 } 570 } 571 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 572 // X * X is odd iff X is odd. 573 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 574 if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) { 575 Constant *One = ConstantInt::get(VTy, 1); 576 Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One); 577 return InsertNewInstWith(And1, *I); 578 } 579 580 computeKnownBits(I, Known, Depth, CxtI); 581 break; 582 } 583 case Instruction::Shl: { 584 const APInt *SA; 585 if (match(I->getOperand(1), m_APInt(SA))) { 586 const APInt *ShrAmt; 587 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 588 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 589 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 590 DemandedMask, Known)) 591 return R; 592 593 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 594 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 595 596 // If the shift is NUW/NSW, then it does demand the high bits. 597 ShlOperator *IOp = cast<ShlOperator>(I); 598 if (IOp->hasNoSignedWrap()) 599 DemandedMaskIn.setHighBits(ShiftAmt+1); 600 else if (IOp->hasNoUnsignedWrap()) 601 DemandedMaskIn.setHighBits(ShiftAmt); 602 603 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 604 return I; 605 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 606 607 bool SignBitZero = Known.Zero.isSignBitSet(); 608 bool SignBitOne = Known.One.isSignBitSet(); 609 Known.Zero <<= ShiftAmt; 610 Known.One <<= ShiftAmt; 611 // low bits known zero. 612 if (ShiftAmt) 613 Known.Zero.setLowBits(ShiftAmt); 614 615 // If this shift has "nsw" keyword, then the result is either a poison 616 // value or has the same sign bit as the first operand. 617 if (IOp->hasNoSignedWrap()) { 618 if (SignBitZero) 619 Known.Zero.setSignBit(); 620 else if (SignBitOne) 621 Known.One.setSignBit(); 622 if (Known.hasConflict()) 623 return UndefValue::get(I->getType()); 624 } 625 } else { 626 // This is a variable shift, so we can't shift the demand mask by a known 627 // amount. But if we are not demanding high bits, then we are not 628 // demanding those bits from the pre-shifted operand either. 629 if (unsigned CTLZ = DemandedMask.countLeadingZeros()) { 630 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 631 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) { 632 // We can't guarantee that nsw/nuw hold after simplifying the operand. 633 I->dropPoisonGeneratingFlags(); 634 return I; 635 } 636 } 637 computeKnownBits(I, Known, Depth, CxtI); 638 } 639 break; 640 } 641 case Instruction::LShr: { 642 const APInt *SA; 643 if (match(I->getOperand(1), m_APInt(SA))) { 644 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 645 646 // Unsigned shift right. 647 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 648 649 // If the shift is exact, then it does demand the low bits (and knows that 650 // they are zero). 651 if (cast<LShrOperator>(I)->isExact()) 652 DemandedMaskIn.setLowBits(ShiftAmt); 653 654 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 655 return I; 656 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 657 Known.Zero.lshrInPlace(ShiftAmt); 658 Known.One.lshrInPlace(ShiftAmt); 659 if (ShiftAmt) 660 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 661 } else { 662 computeKnownBits(I, Known, Depth, CxtI); 663 } 664 break; 665 } 666 case Instruction::AShr: { 667 // If this is an arithmetic shift right and only the low-bit is set, we can 668 // always convert this into a logical shr, even if the shift amount is 669 // variable. The low bit of the shift cannot be an input sign bit unless 670 // the shift amount is >= the size of the datatype, which is undefined. 671 if (DemandedMask.isOne()) { 672 // Perform the logical shift right. 673 Instruction *NewVal = BinaryOperator::CreateLShr( 674 I->getOperand(0), I->getOperand(1), I->getName()); 675 return InsertNewInstWith(NewVal, *I); 676 } 677 678 // If the sign bit is the only bit demanded by this ashr, then there is no 679 // need to do it, the shift doesn't change the high bit. 680 if (DemandedMask.isSignMask()) 681 return I->getOperand(0); 682 683 const APInt *SA; 684 if (match(I->getOperand(1), m_APInt(SA))) { 685 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 686 687 // Signed shift right. 688 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 689 // If any of the high bits are demanded, we should set the sign bit as 690 // demanded. 691 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 692 DemandedMaskIn.setSignBit(); 693 694 // If the shift is exact, then it does demand the low bits (and knows that 695 // they are zero). 696 if (cast<AShrOperator>(I)->isExact()) 697 DemandedMaskIn.setLowBits(ShiftAmt); 698 699 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 700 return I; 701 702 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 703 704 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 705 // Compute the new bits that are at the top now plus sign bits. 706 APInt HighBits(APInt::getHighBitsSet( 707 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 708 Known.Zero.lshrInPlace(ShiftAmt); 709 Known.One.lshrInPlace(ShiftAmt); 710 711 // If the input sign bit is known to be zero, or if none of the top bits 712 // are demanded, turn this into an unsigned shift right. 713 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 714 if (Known.Zero[BitWidth-ShiftAmt-1] || 715 !DemandedMask.intersects(HighBits)) { 716 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 717 I->getOperand(1)); 718 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 719 return InsertNewInstWith(LShr, *I); 720 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 721 Known.One |= HighBits; 722 } 723 } else { 724 computeKnownBits(I, Known, Depth, CxtI); 725 } 726 break; 727 } 728 case Instruction::UDiv: { 729 // UDiv doesn't demand low bits that are zero in the divisor. 730 const APInt *SA; 731 if (match(I->getOperand(1), m_APInt(SA))) { 732 // If the shift is exact, then it does demand the low bits. 733 if (cast<UDivOperator>(I)->isExact()) 734 break; 735 736 // FIXME: Take the demanded mask of the result into account. 737 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 738 APInt DemandedMaskIn = 739 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 740 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 741 return I; 742 743 // Propagate zero bits from the input. 744 Known.Zero.setHighBits(std::min( 745 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 746 } else { 747 computeKnownBits(I, Known, Depth, CxtI); 748 } 749 break; 750 } 751 case Instruction::SRem: { 752 ConstantInt *Rem; 753 if (match(I->getOperand(1), m_ConstantInt(Rem))) { 754 // X % -1 demands all the bits because we don't want to introduce 755 // INT_MIN % -1 (== undef) by accident. 756 if (Rem->isMinusOne()) 757 break; 758 APInt RA = Rem->getValue().abs(); 759 if (RA.isPowerOf2()) { 760 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 761 return I->getOperand(0); 762 763 APInt LowBits = RA - 1; 764 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 765 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 766 return I; 767 768 // The low bits of LHS are unchanged by the srem. 769 Known.Zero = LHSKnown.Zero & LowBits; 770 Known.One = LHSKnown.One & LowBits; 771 772 // If LHS is non-negative or has all low bits zero, then the upper bits 773 // are all zero. 774 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 775 Known.Zero |= ~LowBits; 776 777 // If LHS is negative and not all low bits are zero, then the upper bits 778 // are all one. 779 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 780 Known.One |= ~LowBits; 781 782 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 783 break; 784 } 785 } 786 787 // The sign bit is the LHS's sign bit, except when the result of the 788 // remainder is zero. 789 if (DemandedMask.isSignBitSet()) { 790 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 791 // If it's known zero, our sign bit is also zero. 792 if (LHSKnown.isNonNegative()) 793 Known.makeNonNegative(); 794 } 795 break; 796 } 797 case Instruction::URem: { 798 KnownBits Known2(BitWidth); 799 APInt AllOnes = APInt::getAllOnes(BitWidth); 800 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 801 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 802 return I; 803 804 unsigned Leaders = Known2.countMinLeadingZeros(); 805 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 806 break; 807 } 808 case Instruction::Call: { 809 bool KnownBitsComputed = false; 810 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 811 switch (II->getIntrinsicID()) { 812 case Intrinsic::abs: { 813 if (DemandedMask == 1) 814 return II->getArgOperand(0); 815 break; 816 } 817 case Intrinsic::ctpop: { 818 // Checking if the number of clear bits is odd (parity)? If the type has 819 // an even number of bits, that's the same as checking if the number of 820 // set bits is odd, so we can eliminate the 'not' op. 821 Value *X; 822 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && 823 match(II->getArgOperand(0), m_Not(m_Value(X)))) { 824 Function *Ctpop = Intrinsic::getDeclaration( 825 II->getModule(), Intrinsic::ctpop, II->getType()); 826 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I); 827 } 828 break; 829 } 830 case Intrinsic::bswap: { 831 // If the only bits demanded come from one byte of the bswap result, 832 // just shift the input byte into position to eliminate the bswap. 833 unsigned NLZ = DemandedMask.countLeadingZeros(); 834 unsigned NTZ = DemandedMask.countTrailingZeros(); 835 836 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 837 // we need all the bits down to bit 8. Likewise, round NLZ. If we 838 // have 14 leading zeros, round to 8. 839 NLZ = alignDown(NLZ, 8); 840 NTZ = alignDown(NTZ, 8); 841 // If we need exactly one byte, we can do this transformation. 842 if (BitWidth - NLZ - NTZ == 8) { 843 // Replace this with either a left or right shift to get the byte into 844 // the right place. 845 Instruction *NewVal; 846 if (NLZ > NTZ) 847 NewVal = BinaryOperator::CreateLShr( 848 II->getArgOperand(0), 849 ConstantInt::get(I->getType(), NLZ - NTZ)); 850 else 851 NewVal = BinaryOperator::CreateShl( 852 II->getArgOperand(0), 853 ConstantInt::get(I->getType(), NTZ - NLZ)); 854 NewVal->takeName(I); 855 return InsertNewInstWith(NewVal, *I); 856 } 857 break; 858 } 859 case Intrinsic::fshr: 860 case Intrinsic::fshl: { 861 const APInt *SA; 862 if (!match(I->getOperand(2), m_APInt(SA))) 863 break; 864 865 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 866 // defined, so no need to special-case zero shifts here. 867 uint64_t ShiftAmt = SA->urem(BitWidth); 868 if (II->getIntrinsicID() == Intrinsic::fshr) 869 ShiftAmt = BitWidth - ShiftAmt; 870 871 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 872 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 873 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 874 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 875 return I; 876 877 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 878 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 879 Known.One = LHSKnown.One.shl(ShiftAmt) | 880 RHSKnown.One.lshr(BitWidth - ShiftAmt); 881 KnownBitsComputed = true; 882 break; 883 } 884 case Intrinsic::umax: { 885 // UMax(A, C) == A if ... 886 // The lowest non-zero bit of DemandMask is higher than the highest 887 // non-zero bit of C. 888 const APInt *C; 889 unsigned CTZ = DemandedMask.countTrailingZeros(); 890 if (match(II->getArgOperand(1), m_APInt(C)) && 891 CTZ >= C->getActiveBits()) 892 return II->getArgOperand(0); 893 break; 894 } 895 case Intrinsic::umin: { 896 // UMin(A, C) == A if ... 897 // The lowest non-zero bit of DemandMask is higher than the highest 898 // non-one bit of C. 899 // This comes from using DeMorgans on the above umax example. 900 const APInt *C; 901 unsigned CTZ = DemandedMask.countTrailingZeros(); 902 if (match(II->getArgOperand(1), m_APInt(C)) && 903 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 904 return II->getArgOperand(0); 905 break; 906 } 907 default: { 908 // Handle target specific intrinsics 909 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 910 *II, DemandedMask, Known, KnownBitsComputed); 911 if (V.hasValue()) 912 return V.getValue(); 913 break; 914 } 915 } 916 } 917 918 if (!KnownBitsComputed) 919 computeKnownBits(V, Known, Depth, CxtI); 920 break; 921 } 922 } 923 924 // If the client is only demanding bits that we know, return the known 925 // constant. 926 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 927 return Constant::getIntegerValue(VTy, Known.One); 928 return nullptr; 929 } 930 931 /// Helper routine of SimplifyDemandedUseBits. It computes Known 932 /// bits. It also tries to handle simplifications that can be done based on 933 /// DemandedMask, but without modifying the Instruction. 934 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 935 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 936 Instruction *CxtI) { 937 unsigned BitWidth = DemandedMask.getBitWidth(); 938 Type *ITy = I->getType(); 939 940 KnownBits LHSKnown(BitWidth); 941 KnownBits RHSKnown(BitWidth); 942 943 // Despite the fact that we can't simplify this instruction in all User's 944 // context, we can at least compute the known bits, and we can 945 // do simplifications that apply to *just* the one user if we know that 946 // this instruction has a simpler value in that context. 947 switch (I->getOpcode()) { 948 case Instruction::And: { 949 // If either the LHS or the RHS are Zero, the result is zero. 950 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 951 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 952 CxtI); 953 954 Known = LHSKnown & RHSKnown; 955 956 // If the client is only demanding bits that we know, return the known 957 // constant. 958 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 959 return Constant::getIntegerValue(ITy, Known.One); 960 961 // If all of the demanded bits are known 1 on one side, return the other. 962 // These bits cannot contribute to the result of the 'and' in this 963 // context. 964 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 965 return I->getOperand(0); 966 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 967 return I->getOperand(1); 968 969 break; 970 } 971 case Instruction::Or: { 972 // We can simplify (X|Y) -> X or Y in the user's context if we know that 973 // only bits from X or Y are demanded. 974 975 // If either the LHS or the RHS are One, the result is One. 976 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 977 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 978 CxtI); 979 980 Known = LHSKnown | RHSKnown; 981 982 // If the client is only demanding bits that we know, return the known 983 // constant. 984 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 985 return Constant::getIntegerValue(ITy, Known.One); 986 987 // If all of the demanded bits are known zero on one side, return the 988 // other. These bits cannot contribute to the result of the 'or' in this 989 // context. 990 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 991 return I->getOperand(0); 992 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 993 return I->getOperand(1); 994 995 break; 996 } 997 case Instruction::Xor: { 998 // We can simplify (X^Y) -> X or Y in the user's context if we know that 999 // only bits from X or Y are demanded. 1000 1001 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 1002 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 1003 CxtI); 1004 1005 Known = LHSKnown ^ RHSKnown; 1006 1007 // If the client is only demanding bits that we know, return the known 1008 // constant. 1009 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1010 return Constant::getIntegerValue(ITy, Known.One); 1011 1012 // If all of the demanded bits are known zero on one side, return the 1013 // other. 1014 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 1015 return I->getOperand(0); 1016 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 1017 return I->getOperand(1); 1018 1019 break; 1020 } 1021 case Instruction::AShr: { 1022 // Compute the Known bits to simplify things downstream. 1023 computeKnownBits(I, Known, Depth, CxtI); 1024 1025 // If this user is only demanding bits that we know, return the known 1026 // constant. 1027 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1028 return Constant::getIntegerValue(ITy, Known.One); 1029 1030 // If the right shift operand 0 is a result of a left shift by the same 1031 // amount, this is probably a zero/sign extension, which may be unnecessary, 1032 // if we do not demand any of the new sign bits. So, return the original 1033 // operand instead. 1034 const APInt *ShiftRC; 1035 const APInt *ShiftLC; 1036 Value *X; 1037 unsigned BitWidth = DemandedMask.getBitWidth(); 1038 if (match(I, 1039 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 1040 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && 1041 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 1042 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 1043 return X; 1044 } 1045 1046 break; 1047 } 1048 default: 1049 // Compute the Known bits to simplify things downstream. 1050 computeKnownBits(I, Known, Depth, CxtI); 1051 1052 // If this user is only demanding bits that we know, return the known 1053 // constant. 1054 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 1055 return Constant::getIntegerValue(ITy, Known.One); 1056 1057 break; 1058 } 1059 1060 return nullptr; 1061 } 1062 1063 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 1064 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 1065 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 1066 /// of "C2-C1". 1067 /// 1068 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 1069 /// ..., bn}, without considering the specific value X is holding. 1070 /// This transformation is legal iff one of following conditions is hold: 1071 /// 1) All the bit in S are 0, in this case E1 == E2. 1072 /// 2) We don't care those bits in S, per the input DemandedMask. 1073 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 1074 /// rest bits. 1075 /// 1076 /// Currently we only test condition 2). 1077 /// 1078 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 1079 /// not successful. 1080 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 1081 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 1082 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 1083 if (!ShlOp1 || !ShrOp1) 1084 return nullptr; // No-op. 1085 1086 Value *VarX = Shr->getOperand(0); 1087 Type *Ty = VarX->getType(); 1088 unsigned BitWidth = Ty->getScalarSizeInBits(); 1089 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1090 return nullptr; // Undef. 1091 1092 unsigned ShlAmt = ShlOp1.getZExtValue(); 1093 unsigned ShrAmt = ShrOp1.getZExtValue(); 1094 1095 Known.One.clearAllBits(); 1096 Known.Zero.setLowBits(ShlAmt - 1); 1097 Known.Zero &= DemandedMask; 1098 1099 APInt BitMask1(APInt::getAllOnes(BitWidth)); 1100 APInt BitMask2(APInt::getAllOnes(BitWidth)); 1101 1102 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1103 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1104 (BitMask1.ashr(ShrAmt) << ShlAmt); 1105 1106 if (ShrAmt <= ShlAmt) { 1107 BitMask2 <<= (ShlAmt - ShrAmt); 1108 } else { 1109 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1110 BitMask2.ashr(ShrAmt - ShlAmt); 1111 } 1112 1113 // Check if condition-2 (see the comment to this function) is satified. 1114 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1115 if (ShrAmt == ShlAmt) 1116 return VarX; 1117 1118 if (!Shr->hasOneUse()) 1119 return nullptr; 1120 1121 BinaryOperator *New; 1122 if (ShrAmt < ShlAmt) { 1123 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1124 New = BinaryOperator::CreateShl(VarX, Amt); 1125 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1126 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1127 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1128 } else { 1129 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1130 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1131 BinaryOperator::CreateAShr(VarX, Amt); 1132 if (cast<BinaryOperator>(Shr)->isExact()) 1133 New->setIsExact(true); 1134 } 1135 1136 return InsertNewInstWith(New, *Shl); 1137 } 1138 1139 return nullptr; 1140 } 1141 1142 /// The specified value produces a vector with any number of elements. 1143 /// This method analyzes which elements of the operand are undef or poison and 1144 /// returns that information in UndefElts. 1145 /// 1146 /// DemandedElts contains the set of elements that are actually used by the 1147 /// caller, and by default (AllowMultipleUsers equals false) the value is 1148 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1149 /// to true, DemandedElts refers to the union of sets of elements that are 1150 /// used by all callers. 1151 /// 1152 /// If the information about demanded elements can be used to simplify the 1153 /// operation, the operation is simplified, then the resultant value is 1154 /// returned. This returns null if no change was made. 1155 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1156 APInt DemandedElts, 1157 APInt &UndefElts, 1158 unsigned Depth, 1159 bool AllowMultipleUsers) { 1160 // Cannot analyze scalable type. The number of vector elements is not a 1161 // compile-time constant. 1162 if (isa<ScalableVectorType>(V->getType())) 1163 return nullptr; 1164 1165 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1166 APInt EltMask(APInt::getAllOnes(VWidth)); 1167 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1168 1169 if (match(V, m_Undef())) { 1170 // If the entire vector is undef or poison, just return this info. 1171 UndefElts = EltMask; 1172 return nullptr; 1173 } 1174 1175 if (DemandedElts.isZero()) { // If nothing is demanded, provide poison. 1176 UndefElts = EltMask; 1177 return PoisonValue::get(V->getType()); 1178 } 1179 1180 UndefElts = 0; 1181 1182 if (auto *C = dyn_cast<Constant>(V)) { 1183 // Check if this is identity. If so, return 0 since we are not simplifying 1184 // anything. 1185 if (DemandedElts.isAllOnes()) 1186 return nullptr; 1187 1188 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1189 Constant *Poison = PoisonValue::get(EltTy); 1190 SmallVector<Constant*, 16> Elts; 1191 for (unsigned i = 0; i != VWidth; ++i) { 1192 if (!DemandedElts[i]) { // If not demanded, set to poison. 1193 Elts.push_back(Poison); 1194 UndefElts.setBit(i); 1195 continue; 1196 } 1197 1198 Constant *Elt = C->getAggregateElement(i); 1199 if (!Elt) return nullptr; 1200 1201 Elts.push_back(Elt); 1202 if (isa<UndefValue>(Elt)) // Already undef or poison. 1203 UndefElts.setBit(i); 1204 } 1205 1206 // If we changed the constant, return it. 1207 Constant *NewCV = ConstantVector::get(Elts); 1208 return NewCV != C ? NewCV : nullptr; 1209 } 1210 1211 // Limit search depth. 1212 if (Depth == 10) 1213 return nullptr; 1214 1215 if (!AllowMultipleUsers) { 1216 // If multiple users are using the root value, proceed with 1217 // simplification conservatively assuming that all elements 1218 // are needed. 1219 if (!V->hasOneUse()) { 1220 // Quit if we find multiple users of a non-root value though. 1221 // They'll be handled when it's their turn to be visited by 1222 // the main instcombine process. 1223 if (Depth != 0) 1224 // TODO: Just compute the UndefElts information recursively. 1225 return nullptr; 1226 1227 // Conservatively assume that all elements are needed. 1228 DemandedElts = EltMask; 1229 } 1230 } 1231 1232 Instruction *I = dyn_cast<Instruction>(V); 1233 if (!I) return nullptr; // Only analyze instructions. 1234 1235 bool MadeChange = false; 1236 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1237 APInt Demanded, APInt &Undef) { 1238 auto *II = dyn_cast<IntrinsicInst>(Inst); 1239 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1240 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1241 replaceOperand(*Inst, OpNum, V); 1242 MadeChange = true; 1243 } 1244 }; 1245 1246 APInt UndefElts2(VWidth, 0); 1247 APInt UndefElts3(VWidth, 0); 1248 switch (I->getOpcode()) { 1249 default: break; 1250 1251 case Instruction::GetElementPtr: { 1252 // The LangRef requires that struct geps have all constant indices. As 1253 // such, we can't convert any operand to partial undef. 1254 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1255 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1256 I != E; I++) 1257 if (I.isStruct()) 1258 return true; 1259 return false; 1260 }; 1261 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1262 break; 1263 1264 // Conservatively track the demanded elements back through any vector 1265 // operands we may have. We know there must be at least one, or we 1266 // wouldn't have a vector result to get here. Note that we intentionally 1267 // merge the undef bits here since gepping with either an poison base or 1268 // index results in poison. 1269 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1270 if (i == 0 ? match(I->getOperand(i), m_Undef()) 1271 : match(I->getOperand(i), m_Poison())) { 1272 // If the entire vector is undefined, just return this info. 1273 UndefElts = EltMask; 1274 return nullptr; 1275 } 1276 if (I->getOperand(i)->getType()->isVectorTy()) { 1277 APInt UndefEltsOp(VWidth, 0); 1278 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1279 // gep(x, undef) is not undef, so skip considering idx ops here 1280 // Note that we could propagate poison, but we can't distinguish between 1281 // undef & poison bits ATM 1282 if (i == 0) 1283 UndefElts |= UndefEltsOp; 1284 } 1285 } 1286 1287 break; 1288 } 1289 case Instruction::InsertElement: { 1290 // If this is a variable index, we don't know which element it overwrites. 1291 // demand exactly the same input as we produce. 1292 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1293 if (!Idx) { 1294 // Note that we can't propagate undef elt info, because we don't know 1295 // which elt is getting updated. 1296 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1297 break; 1298 } 1299 1300 // The element inserted overwrites whatever was there, so the input demanded 1301 // set is simpler than the output set. 1302 unsigned IdxNo = Idx->getZExtValue(); 1303 APInt PreInsertDemandedElts = DemandedElts; 1304 if (IdxNo < VWidth) 1305 PreInsertDemandedElts.clearBit(IdxNo); 1306 1307 // If we only demand the element that is being inserted and that element 1308 // was extracted from the same index in another vector with the same type, 1309 // replace this insert with that other vector. 1310 // Note: This is attempted before the call to simplifyAndSetOp because that 1311 // may change UndefElts to a value that does not match with Vec. 1312 Value *Vec; 1313 if (PreInsertDemandedElts == 0 && 1314 match(I->getOperand(1), 1315 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1316 Vec->getType() == I->getType()) { 1317 return Vec; 1318 } 1319 1320 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1321 1322 // If this is inserting an element that isn't demanded, remove this 1323 // insertelement. 1324 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1325 Worklist.push(I); 1326 return I->getOperand(0); 1327 } 1328 1329 // The inserted element is defined. 1330 UndefElts.clearBit(IdxNo); 1331 break; 1332 } 1333 case Instruction::ShuffleVector: { 1334 auto *Shuffle = cast<ShuffleVectorInst>(I); 1335 assert(Shuffle->getOperand(0)->getType() == 1336 Shuffle->getOperand(1)->getType() && 1337 "Expected shuffle operands to have same type"); 1338 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1339 ->getNumElements(); 1340 // Handle trivial case of a splat. Only check the first element of LHS 1341 // operand. 1342 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1343 DemandedElts.isAllOnes()) { 1344 if (!match(I->getOperand(1), m_Undef())) { 1345 I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType())); 1346 MadeChange = true; 1347 } 1348 APInt LeftDemanded(OpWidth, 1); 1349 APInt LHSUndefElts(OpWidth, 0); 1350 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1351 if (LHSUndefElts[0]) 1352 UndefElts = EltMask; 1353 else 1354 UndefElts.clearAllBits(); 1355 break; 1356 } 1357 1358 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1359 for (unsigned i = 0; i < VWidth; i++) { 1360 if (DemandedElts[i]) { 1361 unsigned MaskVal = Shuffle->getMaskValue(i); 1362 if (MaskVal != -1u) { 1363 assert(MaskVal < OpWidth * 2 && 1364 "shufflevector mask index out of range!"); 1365 if (MaskVal < OpWidth) 1366 LeftDemanded.setBit(MaskVal); 1367 else 1368 RightDemanded.setBit(MaskVal - OpWidth); 1369 } 1370 } 1371 } 1372 1373 APInt LHSUndefElts(OpWidth, 0); 1374 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1375 1376 APInt RHSUndefElts(OpWidth, 0); 1377 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1378 1379 // If this shuffle does not change the vector length and the elements 1380 // demanded by this shuffle are an identity mask, then this shuffle is 1381 // unnecessary. 1382 // 1383 // We are assuming canonical form for the mask, so the source vector is 1384 // operand 0 and operand 1 is not used. 1385 // 1386 // Note that if an element is demanded and this shuffle mask is undefined 1387 // for that element, then the shuffle is not considered an identity 1388 // operation. The shuffle prevents poison from the operand vector from 1389 // leaking to the result by replacing poison with an undefined value. 1390 if (VWidth == OpWidth) { 1391 bool IsIdentityShuffle = true; 1392 for (unsigned i = 0; i < VWidth; i++) { 1393 unsigned MaskVal = Shuffle->getMaskValue(i); 1394 if (DemandedElts[i] && i != MaskVal) { 1395 IsIdentityShuffle = false; 1396 break; 1397 } 1398 } 1399 if (IsIdentityShuffle) 1400 return Shuffle->getOperand(0); 1401 } 1402 1403 bool NewUndefElts = false; 1404 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1405 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1406 bool LHSUniform = true; 1407 bool RHSUniform = true; 1408 for (unsigned i = 0; i < VWidth; i++) { 1409 unsigned MaskVal = Shuffle->getMaskValue(i); 1410 if (MaskVal == -1u) { 1411 UndefElts.setBit(i); 1412 } else if (!DemandedElts[i]) { 1413 NewUndefElts = true; 1414 UndefElts.setBit(i); 1415 } else if (MaskVal < OpWidth) { 1416 if (LHSUndefElts[MaskVal]) { 1417 NewUndefElts = true; 1418 UndefElts.setBit(i); 1419 } else { 1420 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1421 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1422 LHSUniform = LHSUniform && (MaskVal == i); 1423 } 1424 } else { 1425 if (RHSUndefElts[MaskVal - OpWidth]) { 1426 NewUndefElts = true; 1427 UndefElts.setBit(i); 1428 } else { 1429 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1430 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1431 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1432 } 1433 } 1434 } 1435 1436 // Try to transform shuffle with constant vector and single element from 1437 // this constant vector to single insertelement instruction. 1438 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1439 // insertelement V, C[ci], ci-n 1440 if (OpWidth == 1441 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1442 Value *Op = nullptr; 1443 Constant *Value = nullptr; 1444 unsigned Idx = -1u; 1445 1446 // Find constant vector with the single element in shuffle (LHS or RHS). 1447 if (LHSIdx < OpWidth && RHSUniform) { 1448 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1449 Op = Shuffle->getOperand(1); 1450 Value = CV->getOperand(LHSValIdx); 1451 Idx = LHSIdx; 1452 } 1453 } 1454 if (RHSIdx < OpWidth && LHSUniform) { 1455 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1456 Op = Shuffle->getOperand(0); 1457 Value = CV->getOperand(RHSValIdx); 1458 Idx = RHSIdx; 1459 } 1460 } 1461 // Found constant vector with single element - convert to insertelement. 1462 if (Op && Value) { 1463 Instruction *New = InsertElementInst::Create( 1464 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1465 Shuffle->getName()); 1466 InsertNewInstWith(New, *Shuffle); 1467 return New; 1468 } 1469 } 1470 if (NewUndefElts) { 1471 // Add additional discovered undefs. 1472 SmallVector<int, 16> Elts; 1473 for (unsigned i = 0; i < VWidth; ++i) { 1474 if (UndefElts[i]) 1475 Elts.push_back(UndefMaskElem); 1476 else 1477 Elts.push_back(Shuffle->getMaskValue(i)); 1478 } 1479 Shuffle->setShuffleMask(Elts); 1480 MadeChange = true; 1481 } 1482 break; 1483 } 1484 case Instruction::Select: { 1485 // If this is a vector select, try to transform the select condition based 1486 // on the current demanded elements. 1487 SelectInst *Sel = cast<SelectInst>(I); 1488 if (Sel->getCondition()->getType()->isVectorTy()) { 1489 // TODO: We are not doing anything with UndefElts based on this call. 1490 // It is overwritten below based on the other select operands. If an 1491 // element of the select condition is known undef, then we are free to 1492 // choose the output value from either arm of the select. If we know that 1493 // one of those values is undef, then the output can be undef. 1494 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1495 } 1496 1497 // Next, see if we can transform the arms of the select. 1498 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1499 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1500 for (unsigned i = 0; i < VWidth; i++) { 1501 // isNullValue() always returns false when called on a ConstantExpr. 1502 // Skip constant expressions to avoid propagating incorrect information. 1503 Constant *CElt = CV->getAggregateElement(i); 1504 if (isa<ConstantExpr>(CElt)) 1505 continue; 1506 // TODO: If a select condition element is undef, we can demand from 1507 // either side. If one side is known undef, choosing that side would 1508 // propagate undef. 1509 if (CElt->isNullValue()) 1510 DemandedLHS.clearBit(i); 1511 else 1512 DemandedRHS.clearBit(i); 1513 } 1514 } 1515 1516 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1517 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1518 1519 // Output elements are undefined if the element from each arm is undefined. 1520 // TODO: This can be improved. See comment in select condition handling. 1521 UndefElts = UndefElts2 & UndefElts3; 1522 break; 1523 } 1524 case Instruction::BitCast: { 1525 // Vector->vector casts only. 1526 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1527 if (!VTy) break; 1528 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1529 APInt InputDemandedElts(InVWidth, 0); 1530 UndefElts2 = APInt(InVWidth, 0); 1531 unsigned Ratio; 1532 1533 if (VWidth == InVWidth) { 1534 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1535 // elements as are demanded of us. 1536 Ratio = 1; 1537 InputDemandedElts = DemandedElts; 1538 } else if ((VWidth % InVWidth) == 0) { 1539 // If the number of elements in the output is a multiple of the number of 1540 // elements in the input then an input element is live if any of the 1541 // corresponding output elements are live. 1542 Ratio = VWidth / InVWidth; 1543 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1544 if (DemandedElts[OutIdx]) 1545 InputDemandedElts.setBit(OutIdx / Ratio); 1546 } else if ((InVWidth % VWidth) == 0) { 1547 // If the number of elements in the input is a multiple of the number of 1548 // elements in the output then an input element is live if the 1549 // corresponding output element is live. 1550 Ratio = InVWidth / VWidth; 1551 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1552 if (DemandedElts[InIdx / Ratio]) 1553 InputDemandedElts.setBit(InIdx); 1554 } else { 1555 // Unsupported so far. 1556 break; 1557 } 1558 1559 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1560 1561 if (VWidth == InVWidth) { 1562 UndefElts = UndefElts2; 1563 } else if ((VWidth % InVWidth) == 0) { 1564 // If the number of elements in the output is a multiple of the number of 1565 // elements in the input then an output element is undef if the 1566 // corresponding input element is undef. 1567 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1568 if (UndefElts2[OutIdx / Ratio]) 1569 UndefElts.setBit(OutIdx); 1570 } else if ((InVWidth % VWidth) == 0) { 1571 // If the number of elements in the input is a multiple of the number of 1572 // elements in the output then an output element is undef if all of the 1573 // corresponding input elements are undef. 1574 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1575 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1576 if (SubUndef.countPopulation() == Ratio) 1577 UndefElts.setBit(OutIdx); 1578 } 1579 } else { 1580 llvm_unreachable("Unimp"); 1581 } 1582 break; 1583 } 1584 case Instruction::FPTrunc: 1585 case Instruction::FPExt: 1586 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1587 break; 1588 1589 case Instruction::Call: { 1590 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1591 if (!II) break; 1592 switch (II->getIntrinsicID()) { 1593 case Intrinsic::masked_gather: // fallthrough 1594 case Intrinsic::masked_load: { 1595 // Subtlety: If we load from a pointer, the pointer must be valid 1596 // regardless of whether the element is demanded. Doing otherwise risks 1597 // segfaults which didn't exist in the original program. 1598 APInt DemandedPtrs(APInt::getAllOnes(VWidth)), 1599 DemandedPassThrough(DemandedElts); 1600 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1601 for (unsigned i = 0; i < VWidth; i++) { 1602 Constant *CElt = CV->getAggregateElement(i); 1603 if (CElt->isNullValue()) 1604 DemandedPtrs.clearBit(i); 1605 else if (CElt->isAllOnesValue()) 1606 DemandedPassThrough.clearBit(i); 1607 } 1608 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1609 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1610 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1611 1612 // Output elements are undefined if the element from both sources are. 1613 // TODO: can strengthen via mask as well. 1614 UndefElts = UndefElts2 & UndefElts3; 1615 break; 1616 } 1617 default: { 1618 // Handle target specific intrinsics 1619 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1620 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1621 simplifyAndSetOp); 1622 if (V.hasValue()) 1623 return V.getValue(); 1624 break; 1625 } 1626 } // switch on IntrinsicID 1627 break; 1628 } // case Call 1629 } // switch on Opcode 1630 1631 // TODO: We bail completely on integer div/rem and shifts because they have 1632 // UB/poison potential, but that should be refined. 1633 BinaryOperator *BO; 1634 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1635 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1636 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1637 1638 // Output elements are undefined if both are undefined. Consider things 1639 // like undef & 0. The result is known zero, not undef. 1640 UndefElts &= UndefElts2; 1641 } 1642 1643 // If we've proven all of the lanes undef, return an undef value. 1644 // TODO: Intersect w/demanded lanes 1645 if (UndefElts.isAllOnes()) 1646 return UndefValue::get(I->getType());; 1647 1648 return MadeChange ? I : nullptr; 1649 } 1650