1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains logic for simplifying instructions based on information 11 // about how they are used. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombineInternal.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 21 using namespace llvm; 22 using namespace llvm::PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 /// Check to see if the specified operand of the specified instruction is a 27 /// constant integer. If so, check to see if there are any bits set in the 28 /// constant that are not demanded. If so, shrink the constant and return true. 29 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 30 const APInt &Demanded) { 31 assert(I && "No instruction?"); 32 assert(OpNo < I->getNumOperands() && "Operand index too large"); 33 34 // The operand must be a constant integer or splat integer. 35 Value *Op = I->getOperand(OpNo); 36 const APInt *C; 37 if (!match(Op, m_APInt(C))) 38 return false; 39 40 // If there are no bits set that aren't demanded, nothing to do. 41 if (C->isSubsetOf(Demanded)) 42 return false; 43 44 // This instruction is producing bits that are not demanded. Shrink the RHS. 45 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 46 47 return true; 48 } 49 50 51 52 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 53 /// the instruction has any properties that allow us to simplify its operands. 54 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 55 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 56 KnownBits Known(BitWidth); 57 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 58 59 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 60 0, &Inst); 61 if (!V) return false; 62 if (V == &Inst) return true; 63 replaceInstUsesWith(Inst, V); 64 return true; 65 } 66 67 /// This form of SimplifyDemandedBits simplifies the specified instruction 68 /// operand if possible, updating it in place. It returns true if it made any 69 /// change and false otherwise. 70 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 71 const APInt &DemandedMask, 72 KnownBits &Known, 73 unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 U = NewVal; 79 return true; 80 } 81 82 83 /// This function attempts to replace V with a simpler value based on the 84 /// demanded bits. When this function is called, it is known that only the bits 85 /// set in DemandedMask of the result of V are ever used downstream. 86 /// Consequently, depending on the mask and V, it may be possible to replace V 87 /// with a constant or one of its operands. In such cases, this function does 88 /// the replacement and returns true. In all other cases, it returns false after 89 /// analyzing the expression and setting KnownOne and known to be one in the 90 /// expression. Known.Zero contains all the bits that are known to be zero in 91 /// the expression. These are provided to potentially allow the caller (which 92 /// might recursively be SimplifyDemandedBits itself) to simplify the 93 /// expression. 94 /// Known.One and Known.Zero always follow the invariant that: 95 /// Known.One & Known.Zero == 0. 96 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 97 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 98 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 99 /// be the same. 100 /// 101 /// This returns null if it did not change anything and it permits no 102 /// simplification. This returns V itself if it did some simplification of V's 103 /// operands based on the information about what bits are demanded. This returns 104 /// some other non-null value if it found out that V is equal to another value 105 /// in the context where the specified bits are demanded, but not for all users. 106 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 107 KnownBits &Known, unsigned Depth, 108 Instruction *CxtI) { 109 assert(V != nullptr && "Null pointer of Value???"); 110 assert(Depth <= 6 && "Limit Search Depth"); 111 uint32_t BitWidth = DemandedMask.getBitWidth(); 112 Type *VTy = V->getType(); 113 assert( 114 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 115 Known.getBitWidth() == BitWidth && 116 "Value *V, DemandedMask and Known must have same BitWidth"); 117 118 if (isa<Constant>(V)) { 119 computeKnownBits(V, Known, Depth, CxtI); 120 return nullptr; 121 } 122 123 Known.resetAll(); 124 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 125 return UndefValue::get(VTy); 126 127 if (Depth == 6) // Limit search depth. 128 return nullptr; 129 130 Instruction *I = dyn_cast<Instruction>(V); 131 if (!I) { 132 computeKnownBits(V, Known, Depth, CxtI); 133 return nullptr; // Only analyze instructions. 134 } 135 136 // If there are multiple uses of this value and we aren't at the root, then 137 // we can't do any simplifications of the operands, because DemandedMask 138 // only reflects the bits demanded by *one* of the users. 139 if (Depth != 0 && !I->hasOneUse()) 140 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 141 142 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 143 144 // If this is the root being simplified, allow it to have multiple uses, 145 // just set the DemandedMask to all bits so that we can try to simplify the 146 // operands. This allows visitTruncInst (for example) to simplify the 147 // operand of a trunc without duplicating all the logic below. 148 if (Depth == 0 && !V->hasOneUse()) 149 DemandedMask.setAllBits(); 150 151 switch (I->getOpcode()) { 152 default: 153 computeKnownBits(I, Known, Depth, CxtI); 154 break; 155 case Instruction::And: { 156 // If either the LHS or the RHS are Zero, the result is zero. 157 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 158 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 159 Depth + 1)) 160 return I; 161 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 162 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 163 164 // Output known-0 are known to be clear if zero in either the LHS | RHS. 165 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 166 // Output known-1 bits are only known if set in both the LHS & RHS. 167 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 168 169 // If the client is only demanding bits that we know, return the known 170 // constant. 171 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 172 return Constant::getIntegerValue(VTy, IKnownOne); 173 174 // If all of the demanded bits are known 1 on one side, return the other. 175 // These bits cannot contribute to the result of the 'and'. 176 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 177 return I->getOperand(0); 178 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 179 return I->getOperand(1); 180 181 // If the RHS is a constant, see if we can simplify it. 182 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 183 return I; 184 185 Known.Zero = std::move(IKnownZero); 186 Known.One = std::move(IKnownOne); 187 break; 188 } 189 case Instruction::Or: { 190 // If either the LHS or the RHS are One, the result is One. 191 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 192 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 193 Depth + 1)) 194 return I; 195 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 196 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 197 198 // Output known-0 bits are only known if clear in both the LHS & RHS. 199 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 200 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 201 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 202 203 // If the client is only demanding bits that we know, return the known 204 // constant. 205 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 206 return Constant::getIntegerValue(VTy, IKnownOne); 207 208 // If all of the demanded bits are known zero on one side, return the other. 209 // These bits cannot contribute to the result of the 'or'. 210 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 211 return I->getOperand(0); 212 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 213 return I->getOperand(1); 214 215 // If the RHS is a constant, see if we can simplify it. 216 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 217 return I; 218 219 Known.Zero = std::move(IKnownZero); 220 Known.One = std::move(IKnownOne); 221 break; 222 } 223 case Instruction::Xor: { 224 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 225 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 226 return I; 227 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 228 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 229 230 // Output known-0 bits are known if clear or set in both the LHS & RHS. 231 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 232 (RHSKnown.One & LHSKnown.One); 233 // Output known-1 are known to be set if set in only one of the LHS, RHS. 234 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 235 (RHSKnown.One & LHSKnown.Zero); 236 237 // If the client is only demanding bits that we know, return the known 238 // constant. 239 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 240 return Constant::getIntegerValue(VTy, IKnownOne); 241 242 // If all of the demanded bits are known zero on one side, return the other. 243 // These bits cannot contribute to the result of the 'xor'. 244 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 245 return I->getOperand(0); 246 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 247 return I->getOperand(1); 248 249 // If all of the demanded bits are known to be zero on one side or the 250 // other, turn this into an *inclusive* or. 251 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 252 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 253 Instruction *Or = 254 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 255 I->getName()); 256 return InsertNewInstWith(Or, *I); 257 } 258 259 // If all of the demanded bits on one side are known, and all of the set 260 // bits on that side are also known to be set on the other side, turn this 261 // into an AND, as we know the bits will be cleared. 262 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 263 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 264 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 265 Constant *AndC = Constant::getIntegerValue(VTy, 266 ~RHSKnown.One & DemandedMask); 267 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 268 return InsertNewInstWith(And, *I); 269 } 270 271 // If the RHS is a constant, see if we can simplify it. 272 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 273 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 274 return I; 275 276 // If our LHS is an 'and' and if it has one use, and if any of the bits we 277 // are flipping are known to be set, then the xor is just resetting those 278 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 279 // simplifying both of them. 280 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 281 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 282 isa<ConstantInt>(I->getOperand(1)) && 283 isa<ConstantInt>(LHSInst->getOperand(1)) && 284 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 285 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 286 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 287 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 288 289 Constant *AndC = 290 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 291 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 292 InsertNewInstWith(NewAnd, *I); 293 294 Constant *XorC = 295 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 296 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 297 return InsertNewInstWith(NewXor, *I); 298 } 299 300 // Output known-0 bits are known if clear or set in both the LHS & RHS. 301 Known.Zero = std::move(IKnownZero); 302 // Output known-1 are known to be set if set in only one of the LHS, RHS. 303 Known.One = std::move(IKnownOne); 304 break; 305 } 306 case Instruction::Select: 307 // If this is a select as part of a min/max pattern, don't simplify any 308 // further in case we break the structure. 309 Value *LHS, *RHS; 310 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN) 311 return nullptr; 312 313 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 314 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 315 return I; 316 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 317 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 318 319 // If the operands are constants, see if we can simplify them. 320 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 321 ShrinkDemandedConstant(I, 2, DemandedMask)) 322 return I; 323 324 // Only known if known in both the LHS and RHS. 325 Known.One = RHSKnown.One & LHSKnown.One; 326 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 327 break; 328 case Instruction::ZExt: 329 case Instruction::Trunc: { 330 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 331 332 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 333 KnownBits InputKnown(SrcBitWidth); 334 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 335 return I; 336 Known = InputKnown.zextOrTrunc(BitWidth); 337 // Any top bits are known to be zero. 338 if (BitWidth > SrcBitWidth) 339 Known.Zero.setBitsFrom(SrcBitWidth); 340 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 341 break; 342 } 343 case Instruction::BitCast: 344 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 345 return nullptr; // vector->int or fp->int? 346 347 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 348 if (VectorType *SrcVTy = 349 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 350 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 351 // Don't touch a bitcast between vectors of different element counts. 352 return nullptr; 353 } else 354 // Don't touch a scalar-to-vector bitcast. 355 return nullptr; 356 } else if (I->getOperand(0)->getType()->isVectorTy()) 357 // Don't touch a vector-to-scalar bitcast. 358 return nullptr; 359 360 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 361 return I; 362 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 363 break; 364 case Instruction::SExt: { 365 // Compute the bits in the result that are not present in the input. 366 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 367 368 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 369 370 // If any of the sign extended bits are demanded, we know that the sign 371 // bit is demanded. 372 if (DemandedMask.getActiveBits() > SrcBitWidth) 373 InputDemandedBits.setBit(SrcBitWidth-1); 374 375 KnownBits InputKnown(SrcBitWidth); 376 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 377 return I; 378 379 // If the input sign bit is known zero, or if the NewBits are not demanded 380 // convert this into a zero extension. 381 if (InputKnown.isNonNegative() || 382 DemandedMask.getActiveBits() <= SrcBitWidth) { 383 // Convert to ZExt cast. 384 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 385 return InsertNewInstWith(NewCast, *I); 386 } 387 388 // If the sign bit of the input is known set or clear, then we know the 389 // top bits of the result. 390 Known = InputKnown.sext(BitWidth); 391 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 392 break; 393 } 394 case Instruction::Add: 395 case Instruction::Sub: { 396 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 397 /// about the high bits of the operands. 398 unsigned NLZ = DemandedMask.countLeadingZeros(); 399 // Right fill the mask of bits for this ADD/SUB to demand the most 400 // significant bit and all those below it. 401 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 402 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 403 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 404 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 405 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 406 if (NLZ > 0) { 407 // Disable the nsw and nuw flags here: We can no longer guarantee that 408 // we won't wrap after simplification. Removing the nsw/nuw flags is 409 // legal here because the top bit is not demanded. 410 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 411 BinOP.setHasNoSignedWrap(false); 412 BinOP.setHasNoUnsignedWrap(false); 413 } 414 return I; 415 } 416 417 // If we are known to be adding/subtracting zeros to every bit below 418 // the highest demanded bit, we just return the other side. 419 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 420 return I->getOperand(0); 421 // We can't do this with the LHS for subtraction, unless we are only 422 // demanding the LSB. 423 if ((I->getOpcode() == Instruction::Add || 424 DemandedFromOps.isOneValue()) && 425 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 426 return I->getOperand(1); 427 428 // Otherwise just compute the known bits of the result. 429 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 430 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 431 NSW, LHSKnown, RHSKnown); 432 break; 433 } 434 case Instruction::Shl: { 435 const APInt *SA; 436 if (match(I->getOperand(1), m_APInt(SA))) { 437 const APInt *ShrAmt; 438 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 439 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 440 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 441 DemandedMask, Known)) 442 return R; 443 444 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 445 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 446 447 // If the shift is NUW/NSW, then it does demand the high bits. 448 ShlOperator *IOp = cast<ShlOperator>(I); 449 if (IOp->hasNoSignedWrap()) 450 DemandedMaskIn.setHighBits(ShiftAmt+1); 451 else if (IOp->hasNoUnsignedWrap()) 452 DemandedMaskIn.setHighBits(ShiftAmt); 453 454 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 455 return I; 456 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 457 Known.Zero <<= ShiftAmt; 458 Known.One <<= ShiftAmt; 459 // low bits known zero. 460 if (ShiftAmt) 461 Known.Zero.setLowBits(ShiftAmt); 462 } 463 break; 464 } 465 case Instruction::LShr: { 466 const APInt *SA; 467 if (match(I->getOperand(1), m_APInt(SA))) { 468 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 469 470 // Unsigned shift right. 471 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 472 473 // If the shift is exact, then it does demand the low bits (and knows that 474 // they are zero). 475 if (cast<LShrOperator>(I)->isExact()) 476 DemandedMaskIn.setLowBits(ShiftAmt); 477 478 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 479 return I; 480 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 481 Known.Zero.lshrInPlace(ShiftAmt); 482 Known.One.lshrInPlace(ShiftAmt); 483 if (ShiftAmt) 484 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 485 } 486 break; 487 } 488 case Instruction::AShr: { 489 // If this is an arithmetic shift right and only the low-bit is set, we can 490 // always convert this into a logical shr, even if the shift amount is 491 // variable. The low bit of the shift cannot be an input sign bit unless 492 // the shift amount is >= the size of the datatype, which is undefined. 493 if (DemandedMask.isOneValue()) { 494 // Perform the logical shift right. 495 Instruction *NewVal = BinaryOperator::CreateLShr( 496 I->getOperand(0), I->getOperand(1), I->getName()); 497 return InsertNewInstWith(NewVal, *I); 498 } 499 500 // If the sign bit is the only bit demanded by this ashr, then there is no 501 // need to do it, the shift doesn't change the high bit. 502 if (DemandedMask.isSignMask()) 503 return I->getOperand(0); 504 505 const APInt *SA; 506 if (match(I->getOperand(1), m_APInt(SA))) { 507 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 508 509 // Signed shift right. 510 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 511 // If any of the high bits are demanded, we should set the sign bit as 512 // demanded. 513 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 514 DemandedMaskIn.setSignBit(); 515 516 // If the shift is exact, then it does demand the low bits (and knows that 517 // they are zero). 518 if (cast<AShrOperator>(I)->isExact()) 519 DemandedMaskIn.setLowBits(ShiftAmt); 520 521 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 522 return I; 523 524 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 525 526 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 527 // Compute the new bits that are at the top now plus sign bits. 528 APInt HighBits(APInt::getHighBitsSet( 529 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 530 Known.Zero.lshrInPlace(ShiftAmt); 531 Known.One.lshrInPlace(ShiftAmt); 532 533 // If the input sign bit is known to be zero, or if none of the top bits 534 // are demanded, turn this into an unsigned shift right. 535 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 536 if (Known.Zero[BitWidth-ShiftAmt-1] || 537 !DemandedMask.intersects(HighBits)) { 538 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 539 I->getOperand(1)); 540 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 541 return InsertNewInstWith(LShr, *I); 542 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 543 Known.One |= HighBits; 544 } 545 } 546 break; 547 } 548 case Instruction::UDiv: { 549 // UDiv doesn't demand low bits that are zero in the divisor. 550 const APInt *SA; 551 if (match(I->getOperand(1), m_APInt(SA))) { 552 // If the shift is exact, then it does demand the low bits. 553 if (cast<UDivOperator>(I)->isExact()) 554 break; 555 556 // FIXME: Take the demanded mask of the result into account. 557 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 558 APInt DemandedMaskIn = 559 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 560 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 561 return I; 562 563 // Propagate zero bits from the input. 564 Known.Zero.setHighBits(std::min( 565 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 566 } 567 break; 568 } 569 case Instruction::SRem: 570 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 571 // X % -1 demands all the bits because we don't want to introduce 572 // INT_MIN % -1 (== undef) by accident. 573 if (Rem->isMinusOne()) 574 break; 575 APInt RA = Rem->getValue().abs(); 576 if (RA.isPowerOf2()) { 577 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 578 return I->getOperand(0); 579 580 APInt LowBits = RA - 1; 581 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 582 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 583 return I; 584 585 // The low bits of LHS are unchanged by the srem. 586 Known.Zero = LHSKnown.Zero & LowBits; 587 Known.One = LHSKnown.One & LowBits; 588 589 // If LHS is non-negative or has all low bits zero, then the upper bits 590 // are all zero. 591 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 592 Known.Zero |= ~LowBits; 593 594 // If LHS is negative and not all low bits are zero, then the upper bits 595 // are all one. 596 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 597 Known.One |= ~LowBits; 598 599 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 600 break; 601 } 602 } 603 604 // The sign bit is the LHS's sign bit, except when the result of the 605 // remainder is zero. 606 if (DemandedMask.isSignBitSet()) { 607 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 608 // If it's known zero, our sign bit is also zero. 609 if (LHSKnown.isNonNegative()) 610 Known.makeNonNegative(); 611 } 612 break; 613 case Instruction::URem: { 614 KnownBits Known2(BitWidth); 615 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 616 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 617 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 618 return I; 619 620 unsigned Leaders = Known2.countMinLeadingZeros(); 621 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 622 break; 623 } 624 case Instruction::Call: 625 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 626 switch (II->getIntrinsicID()) { 627 default: break; 628 case Intrinsic::bswap: { 629 // If the only bits demanded come from one byte of the bswap result, 630 // just shift the input byte into position to eliminate the bswap. 631 unsigned NLZ = DemandedMask.countLeadingZeros(); 632 unsigned NTZ = DemandedMask.countTrailingZeros(); 633 634 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 635 // we need all the bits down to bit 8. Likewise, round NLZ. If we 636 // have 14 leading zeros, round to 8. 637 NLZ &= ~7; 638 NTZ &= ~7; 639 // If we need exactly one byte, we can do this transformation. 640 if (BitWidth-NLZ-NTZ == 8) { 641 unsigned ResultBit = NTZ; 642 unsigned InputBit = BitWidth-NTZ-8; 643 644 // Replace this with either a left or right shift to get the byte into 645 // the right place. 646 Instruction *NewVal; 647 if (InputBit > ResultBit) 648 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 649 ConstantInt::get(I->getType(), InputBit-ResultBit)); 650 else 651 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 652 ConstantInt::get(I->getType(), ResultBit-InputBit)); 653 NewVal->takeName(I); 654 return InsertNewInstWith(NewVal, *I); 655 } 656 657 // TODO: Could compute known zero/one bits based on the input. 658 break; 659 } 660 case Intrinsic::x86_mmx_pmovmskb: 661 case Intrinsic::x86_sse_movmsk_ps: 662 case Intrinsic::x86_sse2_movmsk_pd: 663 case Intrinsic::x86_sse2_pmovmskb_128: 664 case Intrinsic::x86_avx_movmsk_ps_256: 665 case Intrinsic::x86_avx_movmsk_pd_256: 666 case Intrinsic::x86_avx2_pmovmskb: { 667 // MOVMSK copies the vector elements' sign bits to the low bits 668 // and zeros the high bits. 669 unsigned ArgWidth; 670 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 671 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 672 } else { 673 auto Arg = II->getArgOperand(0); 674 auto ArgType = cast<VectorType>(Arg->getType()); 675 ArgWidth = ArgType->getNumElements(); 676 } 677 678 // If we don't need any of low bits then return zero, 679 // we know that DemandedMask is non-zero already. 680 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 681 if (DemandedElts.isNullValue()) 682 return ConstantInt::getNullValue(VTy); 683 684 // We know that the upper bits are set to zero. 685 Known.Zero.setBitsFrom(ArgWidth); 686 return nullptr; 687 } 688 case Intrinsic::x86_sse42_crc32_64_64: 689 Known.Zero.setBitsFrom(32); 690 return nullptr; 691 } 692 } 693 computeKnownBits(V, Known, Depth, CxtI); 694 break; 695 } 696 697 // If the client is only demanding bits that we know, return the known 698 // constant. 699 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 700 return Constant::getIntegerValue(VTy, Known.One); 701 return nullptr; 702 } 703 704 /// Helper routine of SimplifyDemandedUseBits. It computes Known 705 /// bits. It also tries to handle simplifications that can be done based on 706 /// DemandedMask, but without modifying the Instruction. 707 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 708 const APInt &DemandedMask, 709 KnownBits &Known, 710 unsigned Depth, 711 Instruction *CxtI) { 712 unsigned BitWidth = DemandedMask.getBitWidth(); 713 Type *ITy = I->getType(); 714 715 KnownBits LHSKnown(BitWidth); 716 KnownBits RHSKnown(BitWidth); 717 718 // Despite the fact that we can't simplify this instruction in all User's 719 // context, we can at least compute the known bits, and we can 720 // do simplifications that apply to *just* the one user if we know that 721 // this instruction has a simpler value in that context. 722 switch (I->getOpcode()) { 723 case Instruction::And: { 724 // If either the LHS or the RHS are Zero, the result is zero. 725 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 726 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 727 CxtI); 728 729 // Output known-0 are known to be clear if zero in either the LHS | RHS. 730 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 731 // Output known-1 bits are only known if set in both the LHS & RHS. 732 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 733 734 // If the client is only demanding bits that we know, return the known 735 // constant. 736 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 737 return Constant::getIntegerValue(ITy, IKnownOne); 738 739 // If all of the demanded bits are known 1 on one side, return the other. 740 // These bits cannot contribute to the result of the 'and' in this 741 // context. 742 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 743 return I->getOperand(0); 744 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 745 return I->getOperand(1); 746 747 Known.Zero = std::move(IKnownZero); 748 Known.One = std::move(IKnownOne); 749 break; 750 } 751 case Instruction::Or: { 752 // We can simplify (X|Y) -> X or Y in the user's context if we know that 753 // only bits from X or Y are demanded. 754 755 // If either the LHS or the RHS are One, the result is One. 756 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 757 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 758 CxtI); 759 760 // Output known-0 bits are only known if clear in both the LHS & RHS. 761 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 762 // Output known-1 are known to be set if set in either the LHS | RHS. 763 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 764 765 // If the client is only demanding bits that we know, return the known 766 // constant. 767 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 768 return Constant::getIntegerValue(ITy, IKnownOne); 769 770 // If all of the demanded bits are known zero on one side, return the 771 // other. These bits cannot contribute to the result of the 'or' in this 772 // context. 773 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 774 return I->getOperand(0); 775 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 776 return I->getOperand(1); 777 778 Known.Zero = std::move(IKnownZero); 779 Known.One = std::move(IKnownOne); 780 break; 781 } 782 case Instruction::Xor: { 783 // We can simplify (X^Y) -> X or Y in the user's context if we know that 784 // only bits from X or Y are demanded. 785 786 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 787 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 788 CxtI); 789 790 // Output known-0 bits are known if clear or set in both the LHS & RHS. 791 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 792 (RHSKnown.One & LHSKnown.One); 793 // Output known-1 are known to be set if set in only one of the LHS, RHS. 794 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 795 (RHSKnown.One & LHSKnown.Zero); 796 797 // If the client is only demanding bits that we know, return the known 798 // constant. 799 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 800 return Constant::getIntegerValue(ITy, IKnownOne); 801 802 // If all of the demanded bits are known zero on one side, return the 803 // other. 804 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 805 return I->getOperand(0); 806 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 807 return I->getOperand(1); 808 809 // Output known-0 bits are known if clear or set in both the LHS & RHS. 810 Known.Zero = std::move(IKnownZero); 811 // Output known-1 are known to be set if set in only one of the LHS, RHS. 812 Known.One = std::move(IKnownOne); 813 break; 814 } 815 default: 816 // Compute the Known bits to simplify things downstream. 817 computeKnownBits(I, Known, Depth, CxtI); 818 819 // If this user is only demanding bits that we know, return the known 820 // constant. 821 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 822 return Constant::getIntegerValue(ITy, Known.One); 823 824 break; 825 } 826 827 return nullptr; 828 } 829 830 831 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 832 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 833 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 834 /// of "C2-C1". 835 /// 836 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 837 /// ..., bn}, without considering the specific value X is holding. 838 /// This transformation is legal iff one of following conditions is hold: 839 /// 1) All the bit in S are 0, in this case E1 == E2. 840 /// 2) We don't care those bits in S, per the input DemandedMask. 841 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 842 /// rest bits. 843 /// 844 /// Currently we only test condition 2). 845 /// 846 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 847 /// not successful. 848 Value * 849 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 850 Instruction *Shl, const APInt &ShlOp1, 851 const APInt &DemandedMask, 852 KnownBits &Known) { 853 if (!ShlOp1 || !ShrOp1) 854 return nullptr; // No-op. 855 856 Value *VarX = Shr->getOperand(0); 857 Type *Ty = VarX->getType(); 858 unsigned BitWidth = Ty->getScalarSizeInBits(); 859 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 860 return nullptr; // Undef. 861 862 unsigned ShlAmt = ShlOp1.getZExtValue(); 863 unsigned ShrAmt = ShrOp1.getZExtValue(); 864 865 Known.One.clearAllBits(); 866 Known.Zero.setLowBits(ShlAmt - 1); 867 Known.Zero &= DemandedMask; 868 869 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 870 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 871 872 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 873 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 874 (BitMask1.ashr(ShrAmt) << ShlAmt); 875 876 if (ShrAmt <= ShlAmt) { 877 BitMask2 <<= (ShlAmt - ShrAmt); 878 } else { 879 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 880 BitMask2.ashr(ShrAmt - ShlAmt); 881 } 882 883 // Check if condition-2 (see the comment to this function) is satified. 884 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 885 if (ShrAmt == ShlAmt) 886 return VarX; 887 888 if (!Shr->hasOneUse()) 889 return nullptr; 890 891 BinaryOperator *New; 892 if (ShrAmt < ShlAmt) { 893 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 894 New = BinaryOperator::CreateShl(VarX, Amt); 895 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 896 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 897 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 898 } else { 899 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 900 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 901 BinaryOperator::CreateAShr(VarX, Amt); 902 if (cast<BinaryOperator>(Shr)->isExact()) 903 New->setIsExact(true); 904 } 905 906 return InsertNewInstWith(New, *Shl); 907 } 908 909 return nullptr; 910 } 911 912 /// The specified value produces a vector with any number of elements. 913 /// DemandedElts contains the set of elements that are actually used by the 914 /// caller. This method analyzes which elements of the operand are undef and 915 /// returns that information in UndefElts. 916 /// 917 /// If the information about demanded elements can be used to simplify the 918 /// operation, the operation is simplified, then the resultant value is 919 /// returned. This returns null if no change was made. 920 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 921 APInt &UndefElts, 922 unsigned Depth) { 923 unsigned VWidth = V->getType()->getVectorNumElements(); 924 APInt EltMask(APInt::getAllOnesValue(VWidth)); 925 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 926 927 if (isa<UndefValue>(V)) { 928 // If the entire vector is undefined, just return this info. 929 UndefElts = EltMask; 930 return nullptr; 931 } 932 933 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 934 UndefElts = EltMask; 935 return UndefValue::get(V->getType()); 936 } 937 938 UndefElts = 0; 939 940 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. 941 if (Constant *C = dyn_cast<Constant>(V)) { 942 // Check if this is identity. If so, return 0 since we are not simplifying 943 // anything. 944 if (DemandedElts.isAllOnesValue()) 945 return nullptr; 946 947 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 948 Constant *Undef = UndefValue::get(EltTy); 949 950 SmallVector<Constant*, 16> Elts; 951 for (unsigned i = 0; i != VWidth; ++i) { 952 if (!DemandedElts[i]) { // If not demanded, set to undef. 953 Elts.push_back(Undef); 954 UndefElts.setBit(i); 955 continue; 956 } 957 958 Constant *Elt = C->getAggregateElement(i); 959 if (!Elt) return nullptr; 960 961 if (isa<UndefValue>(Elt)) { // Already undef. 962 Elts.push_back(Undef); 963 UndefElts.setBit(i); 964 } else { // Otherwise, defined. 965 Elts.push_back(Elt); 966 } 967 } 968 969 // If we changed the constant, return it. 970 Constant *NewCV = ConstantVector::get(Elts); 971 return NewCV != C ? NewCV : nullptr; 972 } 973 974 // Limit search depth. 975 if (Depth == 10) 976 return nullptr; 977 978 // If multiple users are using the root value, proceed with 979 // simplification conservatively assuming that all elements 980 // are needed. 981 if (!V->hasOneUse()) { 982 // Quit if we find multiple users of a non-root value though. 983 // They'll be handled when it's their turn to be visited by 984 // the main instcombine process. 985 if (Depth != 0) 986 // TODO: Just compute the UndefElts information recursively. 987 return nullptr; 988 989 // Conservatively assume that all elements are needed. 990 DemandedElts = EltMask; 991 } 992 993 Instruction *I = dyn_cast<Instruction>(V); 994 if (!I) return nullptr; // Only analyze instructions. 995 996 bool MadeChange = false; 997 APInt UndefElts2(VWidth, 0); 998 APInt UndefElts3(VWidth, 0); 999 Value *TmpV; 1000 switch (I->getOpcode()) { 1001 default: break; 1002 1003 case Instruction::InsertElement: { 1004 // If this is a variable index, we don't know which element it overwrites. 1005 // demand exactly the same input as we produce. 1006 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1007 if (!Idx) { 1008 // Note that we can't propagate undef elt info, because we don't know 1009 // which elt is getting updated. 1010 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1011 UndefElts2, Depth + 1); 1012 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1013 break; 1014 } 1015 1016 // The element inserted overwrites whatever was there, so the input demanded 1017 // set is simpler than the output set. 1018 unsigned IdxNo = Idx->getZExtValue(); 1019 APInt PreInsertDemandedElts = DemandedElts; 1020 if (IdxNo < VWidth) 1021 PreInsertDemandedElts.clearBit(IdxNo); 1022 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), PreInsertDemandedElts, 1023 UndefElts, Depth + 1); 1024 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1025 1026 // If this is inserting an element that isn't demanded, remove this 1027 // insertelement. 1028 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1029 Worklist.Add(I); 1030 return I->getOperand(0); 1031 } 1032 1033 // The inserted element is defined. 1034 UndefElts.clearBit(IdxNo); 1035 break; 1036 } 1037 case Instruction::ShuffleVector: { 1038 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1039 unsigned LHSVWidth = 1040 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1041 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1042 for (unsigned i = 0; i < VWidth; i++) { 1043 if (DemandedElts[i]) { 1044 unsigned MaskVal = Shuffle->getMaskValue(i); 1045 if (MaskVal != -1u) { 1046 assert(MaskVal < LHSVWidth * 2 && 1047 "shufflevector mask index out of range!"); 1048 if (MaskVal < LHSVWidth) 1049 LeftDemanded.setBit(MaskVal); 1050 else 1051 RightDemanded.setBit(MaskVal - LHSVWidth); 1052 } 1053 } 1054 } 1055 1056 APInt LHSUndefElts(LHSVWidth, 0); 1057 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, 1058 LHSUndefElts, Depth + 1); 1059 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1060 1061 APInt RHSUndefElts(LHSVWidth, 0); 1062 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, 1063 RHSUndefElts, Depth + 1); 1064 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1065 1066 bool NewUndefElts = false; 1067 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1068 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1069 bool LHSUniform = true; 1070 bool RHSUniform = true; 1071 for (unsigned i = 0; i < VWidth; i++) { 1072 unsigned MaskVal = Shuffle->getMaskValue(i); 1073 if (MaskVal == -1u) { 1074 UndefElts.setBit(i); 1075 } else if (!DemandedElts[i]) { 1076 NewUndefElts = true; 1077 UndefElts.setBit(i); 1078 } else if (MaskVal < LHSVWidth) { 1079 if (LHSUndefElts[MaskVal]) { 1080 NewUndefElts = true; 1081 UndefElts.setBit(i); 1082 } else { 1083 LHSIdx = LHSIdx == -1u ? i : LHSVWidth; 1084 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth; 1085 LHSUniform = LHSUniform && (MaskVal == i); 1086 } 1087 } else { 1088 if (RHSUndefElts[MaskVal - LHSVWidth]) { 1089 NewUndefElts = true; 1090 UndefElts.setBit(i); 1091 } else { 1092 RHSIdx = RHSIdx == -1u ? i : LHSVWidth; 1093 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth; 1094 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i); 1095 } 1096 } 1097 } 1098 1099 // Try to transform shuffle with constant vector and single element from 1100 // this constant vector to single insertelement instruction. 1101 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1102 // insertelement V, C[ci], ci-n 1103 if (LHSVWidth == Shuffle->getType()->getNumElements()) { 1104 Value *Op = nullptr; 1105 Constant *Value = nullptr; 1106 unsigned Idx = -1u; 1107 1108 // Find constant vector with the single element in shuffle (LHS or RHS). 1109 if (LHSIdx < LHSVWidth && RHSUniform) { 1110 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1111 Op = Shuffle->getOperand(1); 1112 Value = CV->getOperand(LHSValIdx); 1113 Idx = LHSIdx; 1114 } 1115 } 1116 if (RHSIdx < LHSVWidth && LHSUniform) { 1117 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1118 Op = Shuffle->getOperand(0); 1119 Value = CV->getOperand(RHSValIdx); 1120 Idx = RHSIdx; 1121 } 1122 } 1123 // Found constant vector with single element - convert to insertelement. 1124 if (Op && Value) { 1125 Instruction *New = InsertElementInst::Create( 1126 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1127 Shuffle->getName()); 1128 InsertNewInstWith(New, *Shuffle); 1129 return New; 1130 } 1131 } 1132 if (NewUndefElts) { 1133 // Add additional discovered undefs. 1134 SmallVector<Constant*, 16> Elts; 1135 for (unsigned i = 0; i < VWidth; ++i) { 1136 if (UndefElts[i]) 1137 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1138 else 1139 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1140 Shuffle->getMaskValue(i))); 1141 } 1142 I->setOperand(2, ConstantVector::get(Elts)); 1143 MadeChange = true; 1144 } 1145 break; 1146 } 1147 case Instruction::Select: { 1148 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); 1149 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) { 1150 for (unsigned i = 0; i < VWidth; i++) { 1151 Constant *CElt = CV->getAggregateElement(i); 1152 // Method isNullValue always returns false when called on a 1153 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to 1154 // to avoid propagating incorrect information. 1155 if (isa<ConstantExpr>(CElt)) 1156 continue; 1157 if (CElt->isNullValue()) 1158 LeftDemanded.clearBit(i); 1159 else 1160 RightDemanded.clearBit(i); 1161 } 1162 } 1163 1164 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts, 1165 Depth + 1); 1166 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1167 1168 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, 1169 UndefElts2, Depth + 1); 1170 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } 1171 1172 // Output elements are undefined if both are undefined. 1173 UndefElts &= UndefElts2; 1174 break; 1175 } 1176 case Instruction::BitCast: { 1177 // Vector->vector casts only. 1178 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1179 if (!VTy) break; 1180 unsigned InVWidth = VTy->getNumElements(); 1181 APInt InputDemandedElts(InVWidth, 0); 1182 UndefElts2 = APInt(InVWidth, 0); 1183 unsigned Ratio; 1184 1185 if (VWidth == InVWidth) { 1186 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1187 // elements as are demanded of us. 1188 Ratio = 1; 1189 InputDemandedElts = DemandedElts; 1190 } else if ((VWidth % InVWidth) == 0) { 1191 // If the number of elements in the output is a multiple of the number of 1192 // elements in the input then an input element is live if any of the 1193 // corresponding output elements are live. 1194 Ratio = VWidth / InVWidth; 1195 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1196 if (DemandedElts[OutIdx]) 1197 InputDemandedElts.setBit(OutIdx / Ratio); 1198 } else if ((InVWidth % VWidth) == 0) { 1199 // If the number of elements in the input is a multiple of the number of 1200 // elements in the output then an input element is live if the 1201 // corresponding output element is live. 1202 Ratio = InVWidth / VWidth; 1203 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1204 if (DemandedElts[InIdx / Ratio]) 1205 InputDemandedElts.setBit(InIdx); 1206 } else { 1207 // Unsupported so far. 1208 break; 1209 } 1210 1211 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, 1212 UndefElts2, Depth + 1); 1213 if (TmpV) { 1214 I->setOperand(0, TmpV); 1215 MadeChange = true; 1216 } 1217 1218 if (VWidth == InVWidth) { 1219 UndefElts = UndefElts2; 1220 } else if ((VWidth % InVWidth) == 0) { 1221 // If the number of elements in the output is a multiple of the number of 1222 // elements in the input then an output element is undef if the 1223 // corresponding input element is undef. 1224 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1225 if (UndefElts2[OutIdx / Ratio]) 1226 UndefElts.setBit(OutIdx); 1227 } else if ((InVWidth % VWidth) == 0) { 1228 // If the number of elements in the input is a multiple of the number of 1229 // elements in the output then an output element is undef if all of the 1230 // corresponding input elements are undef. 1231 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1232 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1233 if (SubUndef.countPopulation() == Ratio) 1234 UndefElts.setBit(OutIdx); 1235 } 1236 } else { 1237 llvm_unreachable("Unimp"); 1238 } 1239 break; 1240 } 1241 case Instruction::And: 1242 case Instruction::Or: 1243 case Instruction::Xor: 1244 case Instruction::Add: 1245 case Instruction::Sub: 1246 case Instruction::Mul: 1247 // div/rem demand all inputs, because they don't want divide by zero. 1248 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1249 Depth + 1); 1250 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1251 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, 1252 UndefElts2, Depth + 1); 1253 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1254 1255 // Output elements are undefined if both are undefined. Consider things 1256 // like undef&0. The result is known zero, not undef. 1257 UndefElts &= UndefElts2; 1258 break; 1259 case Instruction::FPTrunc: 1260 case Instruction::FPExt: 1261 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1262 Depth + 1); 1263 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1264 break; 1265 1266 case Instruction::Call: { 1267 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1268 if (!II) break; 1269 switch (II->getIntrinsicID()) { 1270 default: break; 1271 1272 case Intrinsic::x86_xop_vfrcz_ss: 1273 case Intrinsic::x86_xop_vfrcz_sd: 1274 // The instructions for these intrinsics are speced to zero upper bits not 1275 // pass them through like other scalar intrinsics. So we shouldn't just 1276 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1277 // Instead we should return a zero vector. 1278 if (!DemandedElts[0]) { 1279 Worklist.Add(II); 1280 return ConstantAggregateZero::get(II->getType()); 1281 } 1282 1283 // Only the lower element is used. 1284 DemandedElts = 1; 1285 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1286 UndefElts, Depth + 1); 1287 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1288 1289 // Only the lower element is undefined. The high elements are zero. 1290 UndefElts = UndefElts[0]; 1291 break; 1292 1293 // Unary scalar-as-vector operations that work column-wise. 1294 case Intrinsic::x86_sse_rcp_ss: 1295 case Intrinsic::x86_sse_rsqrt_ss: 1296 case Intrinsic::x86_sse_sqrt_ss: 1297 case Intrinsic::x86_sse2_sqrt_sd: 1298 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1299 UndefElts, Depth + 1); 1300 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1301 1302 // If lowest element of a scalar op isn't used then use Arg0. 1303 if (!DemandedElts[0]) { 1304 Worklist.Add(II); 1305 return II->getArgOperand(0); 1306 } 1307 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1308 // checks). 1309 break; 1310 1311 // Binary scalar-as-vector operations that work column-wise. The high 1312 // elements come from operand 0. The low element is a function of both 1313 // operands. 1314 case Intrinsic::x86_sse_min_ss: 1315 case Intrinsic::x86_sse_max_ss: 1316 case Intrinsic::x86_sse_cmp_ss: 1317 case Intrinsic::x86_sse2_min_sd: 1318 case Intrinsic::x86_sse2_max_sd: 1319 case Intrinsic::x86_sse2_cmp_sd: { 1320 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1321 UndefElts, Depth + 1); 1322 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1323 1324 // If lowest element of a scalar op isn't used then use Arg0. 1325 if (!DemandedElts[0]) { 1326 Worklist.Add(II); 1327 return II->getArgOperand(0); 1328 } 1329 1330 // Only lower element is used for operand 1. 1331 DemandedElts = 1; 1332 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1333 UndefElts2, Depth + 1); 1334 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1335 1336 // Lower element is undefined if both lower elements are undefined. 1337 // Consider things like undef&0. The result is known zero, not undef. 1338 if (!UndefElts2[0]) 1339 UndefElts.clearBit(0); 1340 1341 break; 1342 } 1343 1344 // Binary scalar-as-vector operations that work column-wise. The high 1345 // elements come from operand 0 and the low element comes from operand 1. 1346 case Intrinsic::x86_sse41_round_ss: 1347 case Intrinsic::x86_sse41_round_sd: { 1348 // Don't use the low element of operand 0. 1349 APInt DemandedElts2 = DemandedElts; 1350 DemandedElts2.clearBit(0); 1351 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2, 1352 UndefElts, Depth + 1); 1353 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1354 1355 // If lowest element of a scalar op isn't used then use Arg0. 1356 if (!DemandedElts[0]) { 1357 Worklist.Add(II); 1358 return II->getArgOperand(0); 1359 } 1360 1361 // Only lower element is used for operand 1. 1362 DemandedElts = 1; 1363 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1364 UndefElts2, Depth + 1); 1365 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1366 1367 // Take the high undef elements from operand 0 and take the lower element 1368 // from operand 1. 1369 UndefElts.clearBit(0); 1370 UndefElts |= UndefElts2[0]; 1371 break; 1372 } 1373 1374 // Three input scalar-as-vector operations that work column-wise. The high 1375 // elements come from operand 0 and the low element is a function of all 1376 // three inputs. 1377 case Intrinsic::x86_avx512_mask_add_ss_round: 1378 case Intrinsic::x86_avx512_mask_div_ss_round: 1379 case Intrinsic::x86_avx512_mask_mul_ss_round: 1380 case Intrinsic::x86_avx512_mask_sub_ss_round: 1381 case Intrinsic::x86_avx512_mask_max_ss_round: 1382 case Intrinsic::x86_avx512_mask_min_ss_round: 1383 case Intrinsic::x86_avx512_mask_add_sd_round: 1384 case Intrinsic::x86_avx512_mask_div_sd_round: 1385 case Intrinsic::x86_avx512_mask_mul_sd_round: 1386 case Intrinsic::x86_avx512_mask_sub_sd_round: 1387 case Intrinsic::x86_avx512_mask_max_sd_round: 1388 case Intrinsic::x86_avx512_mask_min_sd_round: 1389 case Intrinsic::x86_fma_vfmadd_ss: 1390 case Intrinsic::x86_fma_vfmadd_sd: 1391 case Intrinsic::x86_avx512_mask_vfmadd_ss: 1392 case Intrinsic::x86_avx512_mask_vfmadd_sd: 1393 case Intrinsic::x86_avx512_maskz_vfmadd_ss: 1394 case Intrinsic::x86_avx512_maskz_vfmadd_sd: 1395 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1396 UndefElts, Depth + 1); 1397 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1398 1399 // If lowest element of a scalar op isn't used then use Arg0. 1400 if (!DemandedElts[0]) { 1401 Worklist.Add(II); 1402 return II->getArgOperand(0); 1403 } 1404 1405 // Only lower element is used for operand 1 and 2. 1406 DemandedElts = 1; 1407 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1408 UndefElts2, Depth + 1); 1409 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1410 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, 1411 UndefElts3, Depth + 1); 1412 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } 1413 1414 // Lower element is undefined if all three lower elements are undefined. 1415 // Consider things like undef&0. The result is known zero, not undef. 1416 if (!UndefElts2[0] || !UndefElts3[0]) 1417 UndefElts.clearBit(0); 1418 1419 break; 1420 1421 case Intrinsic::x86_avx512_mask3_vfmadd_ss: 1422 case Intrinsic::x86_avx512_mask3_vfmadd_sd: 1423 case Intrinsic::x86_avx512_mask3_vfmsub_ss: 1424 case Intrinsic::x86_avx512_mask3_vfmsub_sd: 1425 case Intrinsic::x86_avx512_mask3_vfnmsub_ss: 1426 case Intrinsic::x86_avx512_mask3_vfnmsub_sd: 1427 // These intrinsics get the passthru bits from operand 2. 1428 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, 1429 UndefElts, Depth + 1); 1430 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } 1431 1432 // If lowest element of a scalar op isn't used then use Arg2. 1433 if (!DemandedElts[0]) { 1434 Worklist.Add(II); 1435 return II->getArgOperand(2); 1436 } 1437 1438 // Only lower element is used for operand 0 and 1. 1439 DemandedElts = 1; 1440 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1441 UndefElts2, Depth + 1); 1442 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1443 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1444 UndefElts3, Depth + 1); 1445 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1446 1447 // Lower element is undefined if all three lower elements are undefined. 1448 // Consider things like undef&0. The result is known zero, not undef. 1449 if (!UndefElts2[0] || !UndefElts3[0]) 1450 UndefElts.clearBit(0); 1451 1452 break; 1453 1454 case Intrinsic::x86_sse2_packssdw_128: 1455 case Intrinsic::x86_sse2_packsswb_128: 1456 case Intrinsic::x86_sse2_packuswb_128: 1457 case Intrinsic::x86_sse41_packusdw: 1458 case Intrinsic::x86_avx2_packssdw: 1459 case Intrinsic::x86_avx2_packsswb: 1460 case Intrinsic::x86_avx2_packusdw: 1461 case Intrinsic::x86_avx2_packuswb: 1462 case Intrinsic::x86_avx512_packssdw_512: 1463 case Intrinsic::x86_avx512_packsswb_512: 1464 case Intrinsic::x86_avx512_packusdw_512: 1465 case Intrinsic::x86_avx512_packuswb_512: { 1466 auto *Ty0 = II->getArgOperand(0)->getType(); 1467 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1468 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1469 1470 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1471 unsigned VWidthPerLane = VWidth / NumLanes; 1472 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1473 1474 // Per lane, pack the elements of the first input and then the second. 1475 // e.g. 1476 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1477 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1478 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1479 APInt OpDemandedElts(InnerVWidth, 0); 1480 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1481 unsigned LaneIdx = Lane * VWidthPerLane; 1482 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1483 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1484 if (DemandedElts[Idx]) 1485 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1486 } 1487 } 1488 1489 // Demand elements from the operand. 1490 auto *Op = II->getArgOperand(OpNum); 1491 APInt OpUndefElts(InnerVWidth, 0); 1492 TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts, 1493 Depth + 1); 1494 if (TmpV) { 1495 II->setArgOperand(OpNum, TmpV); 1496 MadeChange = true; 1497 } 1498 1499 // Pack the operand's UNDEF elements, one lane at a time. 1500 OpUndefElts = OpUndefElts.zext(VWidth); 1501 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1502 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1503 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1504 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1505 UndefElts |= LaneElts; 1506 } 1507 } 1508 break; 1509 } 1510 1511 // PSHUFB 1512 case Intrinsic::x86_ssse3_pshuf_b_128: 1513 case Intrinsic::x86_avx2_pshuf_b: 1514 case Intrinsic::x86_avx512_pshuf_b_512: 1515 // PERMILVAR 1516 case Intrinsic::x86_avx_vpermilvar_ps: 1517 case Intrinsic::x86_avx_vpermilvar_ps_256: 1518 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1519 case Intrinsic::x86_avx_vpermilvar_pd: 1520 case Intrinsic::x86_avx_vpermilvar_pd_256: 1521 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1522 // PERMV 1523 case Intrinsic::x86_avx2_permd: 1524 case Intrinsic::x86_avx2_permps: { 1525 Value *Op1 = II->getArgOperand(1); 1526 TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts, 1527 Depth + 1); 1528 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1529 break; 1530 } 1531 1532 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1533 // in an undefined state. 1534 case Intrinsic::x86_sse4a_extrq: 1535 case Intrinsic::x86_sse4a_extrqi: 1536 case Intrinsic::x86_sse4a_insertq: 1537 case Intrinsic::x86_sse4a_insertqi: 1538 UndefElts.setHighBits(VWidth / 2); 1539 break; 1540 case Intrinsic::amdgcn_buffer_load: 1541 case Intrinsic::amdgcn_buffer_load_format: 1542 case Intrinsic::amdgcn_image_sample: 1543 case Intrinsic::amdgcn_image_sample_cl: 1544 case Intrinsic::amdgcn_image_sample_d: 1545 case Intrinsic::amdgcn_image_sample_d_cl: 1546 case Intrinsic::amdgcn_image_sample_l: 1547 case Intrinsic::amdgcn_image_sample_b: 1548 case Intrinsic::amdgcn_image_sample_b_cl: 1549 case Intrinsic::amdgcn_image_sample_lz: 1550 case Intrinsic::amdgcn_image_sample_cd: 1551 case Intrinsic::amdgcn_image_sample_cd_cl: 1552 1553 case Intrinsic::amdgcn_image_sample_c: 1554 case Intrinsic::amdgcn_image_sample_c_cl: 1555 case Intrinsic::amdgcn_image_sample_c_d: 1556 case Intrinsic::amdgcn_image_sample_c_d_cl: 1557 case Intrinsic::amdgcn_image_sample_c_l: 1558 case Intrinsic::amdgcn_image_sample_c_b: 1559 case Intrinsic::amdgcn_image_sample_c_b_cl: 1560 case Intrinsic::amdgcn_image_sample_c_lz: 1561 case Intrinsic::amdgcn_image_sample_c_cd: 1562 case Intrinsic::amdgcn_image_sample_c_cd_cl: 1563 1564 case Intrinsic::amdgcn_image_sample_o: 1565 case Intrinsic::amdgcn_image_sample_cl_o: 1566 case Intrinsic::amdgcn_image_sample_d_o: 1567 case Intrinsic::amdgcn_image_sample_d_cl_o: 1568 case Intrinsic::amdgcn_image_sample_l_o: 1569 case Intrinsic::amdgcn_image_sample_b_o: 1570 case Intrinsic::amdgcn_image_sample_b_cl_o: 1571 case Intrinsic::amdgcn_image_sample_lz_o: 1572 case Intrinsic::amdgcn_image_sample_cd_o: 1573 case Intrinsic::amdgcn_image_sample_cd_cl_o: 1574 1575 case Intrinsic::amdgcn_image_sample_c_o: 1576 case Intrinsic::amdgcn_image_sample_c_cl_o: 1577 case Intrinsic::amdgcn_image_sample_c_d_o: 1578 case Intrinsic::amdgcn_image_sample_c_d_cl_o: 1579 case Intrinsic::amdgcn_image_sample_c_l_o: 1580 case Intrinsic::amdgcn_image_sample_c_b_o: 1581 case Intrinsic::amdgcn_image_sample_c_b_cl_o: 1582 case Intrinsic::amdgcn_image_sample_c_lz_o: 1583 case Intrinsic::amdgcn_image_sample_c_cd_o: 1584 case Intrinsic::amdgcn_image_sample_c_cd_cl_o: 1585 1586 case Intrinsic::amdgcn_image_getlod: { 1587 if (VWidth == 1 || !DemandedElts.isMask()) 1588 return nullptr; 1589 1590 // TODO: Handle 3 vectors when supported in code gen. 1591 unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes()); 1592 if (NewNumElts == VWidth) 1593 return nullptr; 1594 1595 Module *M = II->getParent()->getParent()->getParent(); 1596 Type *EltTy = V->getType()->getVectorElementType(); 1597 1598 Type *NewTy = (NewNumElts == 1) ? EltTy : 1599 VectorType::get(EltTy, NewNumElts); 1600 1601 auto IID = II->getIntrinsicID(); 1602 1603 bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load || 1604 IID == Intrinsic::amdgcn_buffer_load_format; 1605 1606 Function *NewIntrin = IsBuffer ? 1607 Intrinsic::getDeclaration(M, IID, NewTy) : 1608 // Samplers have 3 mangled types. 1609 Intrinsic::getDeclaration(M, IID, 1610 { NewTy, II->getArgOperand(0)->getType(), 1611 II->getArgOperand(1)->getType()}); 1612 1613 SmallVector<Value *, 5> Args; 1614 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I) 1615 Args.push_back(II->getArgOperand(I)); 1616 1617 IRBuilderBase::InsertPointGuard Guard(Builder); 1618 Builder.SetInsertPoint(II); 1619 1620 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); 1621 NewCall->takeName(II); 1622 NewCall->copyMetadata(*II); 1623 1624 if (!IsBuffer) { 1625 ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3)); 1626 if (DMask) { 1627 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1628 1629 unsigned PopCnt = 0; 1630 unsigned NewDMask = 0; 1631 for (unsigned I = 0; I < 4; ++I) { 1632 const unsigned Bit = 1 << I; 1633 if (!!(DMaskVal & Bit)) { 1634 if (++PopCnt > NewNumElts) 1635 break; 1636 1637 NewDMask |= Bit; 1638 } 1639 } 1640 1641 NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask)); 1642 } 1643 } 1644 1645 1646 if (NewNumElts == 1) { 1647 return Builder.CreateInsertElement(UndefValue::get(V->getType()), 1648 NewCall, static_cast<uint64_t>(0)); 1649 } 1650 1651 SmallVector<uint32_t, 8> EltMask; 1652 for (unsigned I = 0; I < VWidth; ++I) 1653 EltMask.push_back(I); 1654 1655 Value *Shuffle = Builder.CreateShuffleVector( 1656 NewCall, UndefValue::get(NewTy), EltMask); 1657 1658 MadeChange = true; 1659 return Shuffle; 1660 } 1661 } 1662 break; 1663 } 1664 } 1665 return MadeChange ? I : nullptr; 1666 } 1667