1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains logic for simplifying instructions based on information 11 // about how they are used. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombine.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 20 using namespace llvm; 21 using namespace llvm::PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// ShrinkDemandedConstant - Check to see if the specified operand of the 26 /// specified instruction is a constant integer. If so, check to see if there 27 /// are any bits set in the constant that are not demanded. If so, shrink the 28 /// constant and return true. 29 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 30 APInt Demanded) { 31 assert(I && "No instruction?"); 32 assert(OpNo < I->getNumOperands() && "Operand index too large"); 33 34 // If the operand is not a constant integer, nothing to do. 35 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); 36 if (!OpC) return false; 37 38 // If there are no bits set that aren't demanded, nothing to do. 39 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); 40 if ((~Demanded & OpC->getValue()) == 0) 41 return false; 42 43 // This instruction is producing bits that are not demanded. Shrink the RHS. 44 Demanded &= OpC->getValue(); 45 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded)); 46 47 // If either 'nsw' or 'nuw' is set and the constant is negative, 48 // removing *any* bits from the constant could make overflow occur. 49 // Remove 'nsw' and 'nuw' from the instruction in this case. 50 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) { 51 assert(OBO->getOpcode() == Instruction::Add); 52 if (OBO->hasNoSignedWrap() || OBO->hasNoUnsignedWrap()) { 53 if (OpC->getValue().isNegative()) { 54 cast<BinaryOperator>(OBO)->setHasNoSignedWrap(false); 55 cast<BinaryOperator>(OBO)->setHasNoUnsignedWrap(false); 56 } 57 } 58 } 59 60 return true; 61 } 62 63 64 65 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that 66 /// SimplifyDemandedBits knows about. See if the instruction has any 67 /// properties that allow us to simplify its operands. 68 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 69 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 70 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 71 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 72 73 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, 74 KnownZero, KnownOne, 0); 75 if (!V) return false; 76 if (V == &Inst) return true; 77 ReplaceInstUsesWith(Inst, V); 78 return true; 79 } 80 81 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the 82 /// specified instruction operand if possible, updating it in place. It returns 83 /// true if it made any change and false otherwise. 84 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, 85 APInt &KnownZero, APInt &KnownOne, 86 unsigned Depth) { 87 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, 88 KnownZero, KnownOne, Depth); 89 if (!NewVal) return false; 90 U = NewVal; 91 return true; 92 } 93 94 95 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler 96 /// value based on the demanded bits. When this function is called, it is known 97 /// that only the bits set in DemandedMask of the result of V are ever used 98 /// downstream. Consequently, depending on the mask and V, it may be possible 99 /// to replace V with a constant or one of its operands. In such cases, this 100 /// function does the replacement and returns true. In all other cases, it 101 /// returns false after analyzing the expression and setting KnownOne and known 102 /// to be one in the expression. KnownZero contains all the bits that are known 103 /// to be zero in the expression. These are provided to potentially allow the 104 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify 105 /// the expression. KnownOne and KnownZero always follow the invariant that 106 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that 107 /// the bits in KnownOne and KnownZero may only be accurate for those bits set 108 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero 109 /// and KnownOne must all be the same. 110 /// 111 /// This returns null if it did not change anything and it permits no 112 /// simplification. This returns V itself if it did some simplification of V's 113 /// operands based on the information about what bits are demanded. This returns 114 /// some other non-null value if it found out that V is equal to another value 115 /// in the context where the specified bits are demanded, but not for all users. 116 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 117 APInt &KnownZero, APInt &KnownOne, 118 unsigned Depth) { 119 assert(V != nullptr && "Null pointer of Value???"); 120 assert(Depth <= 6 && "Limit Search Depth"); 121 uint32_t BitWidth = DemandedMask.getBitWidth(); 122 Type *VTy = V->getType(); 123 assert((DL || !VTy->isPointerTy()) && 124 "SimplifyDemandedBits needs to know bit widths!"); 125 assert((!DL || DL->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) && 126 (!VTy->isIntOrIntVectorTy() || 127 VTy->getScalarSizeInBits() == BitWidth) && 128 KnownZero.getBitWidth() == BitWidth && 129 KnownOne.getBitWidth() == BitWidth && 130 "Value *V, DemandedMask, KnownZero and KnownOne " 131 "must have same BitWidth"); 132 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 133 // We know all of the bits for a constant! 134 KnownOne = CI->getValue() & DemandedMask; 135 KnownZero = ~KnownOne & DemandedMask; 136 return nullptr; 137 } 138 if (isa<ConstantPointerNull>(V)) { 139 // We know all of the bits for a constant! 140 KnownOne.clearAllBits(); 141 KnownZero = DemandedMask; 142 return nullptr; 143 } 144 145 KnownZero.clearAllBits(); 146 KnownOne.clearAllBits(); 147 if (DemandedMask == 0) { // Not demanding any bits from V. 148 if (isa<UndefValue>(V)) 149 return nullptr; 150 return UndefValue::get(VTy); 151 } 152 153 if (Depth == 6) // Limit search depth. 154 return nullptr; 155 156 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 157 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 158 159 Instruction *I = dyn_cast<Instruction>(V); 160 if (!I) { 161 computeKnownBits(V, KnownZero, KnownOne, Depth); 162 return nullptr; // Only analyze instructions. 163 } 164 165 // If there are multiple uses of this value and we aren't at the root, then 166 // we can't do any simplifications of the operands, because DemandedMask 167 // only reflects the bits demanded by *one* of the users. 168 if (Depth != 0 && !I->hasOneUse()) { 169 // Despite the fact that we can't simplify this instruction in all User's 170 // context, we can at least compute the knownzero/knownone bits, and we can 171 // do simplifications that apply to *just* the one user if we know that 172 // this instruction has a simpler value in that context. 173 if (I->getOpcode() == Instruction::And) { 174 // If either the LHS or the RHS are Zero, the result is zero. 175 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1); 176 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1); 177 178 // If all of the demanded bits are known 1 on one side, return the other. 179 // These bits cannot contribute to the result of the 'and' in this 180 // context. 181 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 182 (DemandedMask & ~LHSKnownZero)) 183 return I->getOperand(0); 184 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 185 (DemandedMask & ~RHSKnownZero)) 186 return I->getOperand(1); 187 188 // If all of the demanded bits in the inputs are known zeros, return zero. 189 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 190 return Constant::getNullValue(VTy); 191 192 } else if (I->getOpcode() == Instruction::Or) { 193 // We can simplify (X|Y) -> X or Y in the user's context if we know that 194 // only bits from X or Y are demanded. 195 196 // If either the LHS or the RHS are One, the result is One. 197 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1); 198 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1); 199 200 // If all of the demanded bits are known zero on one side, return the 201 // other. These bits cannot contribute to the result of the 'or' in this 202 // context. 203 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 204 (DemandedMask & ~LHSKnownOne)) 205 return I->getOperand(0); 206 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 207 (DemandedMask & ~RHSKnownOne)) 208 return I->getOperand(1); 209 210 // If all of the potentially set bits on one side are known to be set on 211 // the other side, just use the 'other' side. 212 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 213 (DemandedMask & (~RHSKnownZero))) 214 return I->getOperand(0); 215 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 216 (DemandedMask & (~LHSKnownZero))) 217 return I->getOperand(1); 218 } else if (I->getOpcode() == Instruction::Xor) { 219 // We can simplify (X^Y) -> X or Y in the user's context if we know that 220 // only bits from X or Y are demanded. 221 222 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1); 223 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1); 224 225 // If all of the demanded bits are known zero on one side, return the 226 // other. 227 if ((DemandedMask & RHSKnownZero) == DemandedMask) 228 return I->getOperand(0); 229 if ((DemandedMask & LHSKnownZero) == DemandedMask) 230 return I->getOperand(1); 231 } 232 233 // Compute the KnownZero/KnownOne bits to simplify things downstream. 234 computeKnownBits(I, KnownZero, KnownOne, Depth); 235 return nullptr; 236 } 237 238 // If this is the root being simplified, allow it to have multiple uses, 239 // just set the DemandedMask to all bits so that we can try to simplify the 240 // operands. This allows visitTruncInst (for example) to simplify the 241 // operand of a trunc without duplicating all the logic below. 242 if (Depth == 0 && !V->hasOneUse()) 243 DemandedMask = APInt::getAllOnesValue(BitWidth); 244 245 switch (I->getOpcode()) { 246 default: 247 computeKnownBits(I, KnownZero, KnownOne, Depth); 248 break; 249 case Instruction::And: 250 // If either the LHS or the RHS are Zero, the result is zero. 251 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 252 RHSKnownZero, RHSKnownOne, Depth+1) || 253 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, 254 LHSKnownZero, LHSKnownOne, Depth+1)) 255 return I; 256 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 257 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 258 259 // If all of the demanded bits are known 1 on one side, return the other. 260 // These bits cannot contribute to the result of the 'and'. 261 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 262 (DemandedMask & ~LHSKnownZero)) 263 return I->getOperand(0); 264 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 265 (DemandedMask & ~RHSKnownZero)) 266 return I->getOperand(1); 267 268 // If all of the demanded bits in the inputs are known zeros, return zero. 269 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 270 return Constant::getNullValue(VTy); 271 272 // If the RHS is a constant, see if we can simplify it. 273 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) 274 return I; 275 276 // Output known-1 bits are only known if set in both the LHS & RHS. 277 KnownOne = RHSKnownOne & LHSKnownOne; 278 // Output known-0 are known to be clear if zero in either the LHS | RHS. 279 KnownZero = RHSKnownZero | LHSKnownZero; 280 break; 281 case Instruction::Or: 282 // If either the LHS or the RHS are One, the result is One. 283 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 284 RHSKnownZero, RHSKnownOne, Depth+1) || 285 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, 286 LHSKnownZero, LHSKnownOne, Depth+1)) 287 return I; 288 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 289 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 290 291 // If all of the demanded bits are known zero on one side, return the other. 292 // These bits cannot contribute to the result of the 'or'. 293 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 294 (DemandedMask & ~LHSKnownOne)) 295 return I->getOperand(0); 296 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 297 (DemandedMask & ~RHSKnownOne)) 298 return I->getOperand(1); 299 300 // If all of the potentially set bits on one side are known to be set on 301 // the other side, just use the 'other' side. 302 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 303 (DemandedMask & (~RHSKnownZero))) 304 return I->getOperand(0); 305 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 306 (DemandedMask & (~LHSKnownZero))) 307 return I->getOperand(1); 308 309 // If the RHS is a constant, see if we can simplify it. 310 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 311 return I; 312 313 // Output known-0 bits are only known if clear in both the LHS & RHS. 314 KnownZero = RHSKnownZero & LHSKnownZero; 315 // Output known-1 are known to be set if set in either the LHS | RHS. 316 KnownOne = RHSKnownOne | LHSKnownOne; 317 break; 318 case Instruction::Xor: { 319 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 320 RHSKnownZero, RHSKnownOne, Depth+1) || 321 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 322 LHSKnownZero, LHSKnownOne, Depth+1)) 323 return I; 324 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 325 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 326 327 // If all of the demanded bits are known zero on one side, return the other. 328 // These bits cannot contribute to the result of the 'xor'. 329 if ((DemandedMask & RHSKnownZero) == DemandedMask) 330 return I->getOperand(0); 331 if ((DemandedMask & LHSKnownZero) == DemandedMask) 332 return I->getOperand(1); 333 334 // If all of the demanded bits are known to be zero on one side or the 335 // other, turn this into an *inclusive* or. 336 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 337 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { 338 Instruction *Or = 339 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 340 I->getName()); 341 return InsertNewInstWith(Or, *I); 342 } 343 344 // If all of the demanded bits on one side are known, and all of the set 345 // bits on that side are also known to be set on the other side, turn this 346 // into an AND, as we know the bits will be cleared. 347 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 348 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { 349 // all known 350 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { 351 Constant *AndC = Constant::getIntegerValue(VTy, 352 ~RHSKnownOne & DemandedMask); 353 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 354 return InsertNewInstWith(And, *I); 355 } 356 } 357 358 // If the RHS is a constant, see if we can simplify it. 359 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 360 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 361 return I; 362 363 // If our LHS is an 'and' and if it has one use, and if any of the bits we 364 // are flipping are known to be set, then the xor is just resetting those 365 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 366 // simplifying both of them. 367 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 368 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 369 isa<ConstantInt>(I->getOperand(1)) && 370 isa<ConstantInt>(LHSInst->getOperand(1)) && 371 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) { 372 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 373 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 374 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask); 375 376 Constant *AndC = 377 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 378 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 379 InsertNewInstWith(NewAnd, *I); 380 381 Constant *XorC = 382 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 383 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 384 return InsertNewInstWith(NewXor, *I); 385 } 386 387 // Output known-0 bits are known if clear or set in both the LHS & RHS. 388 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne); 389 // Output known-1 are known to be set if set in only one of the LHS, RHS. 390 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero); 391 break; 392 } 393 case Instruction::Select: 394 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, 395 RHSKnownZero, RHSKnownOne, Depth+1) || 396 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 397 LHSKnownZero, LHSKnownOne, Depth+1)) 398 return I; 399 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 400 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 401 402 // If the operands are constants, see if we can simplify them. 403 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 404 ShrinkDemandedConstant(I, 2, DemandedMask)) 405 return I; 406 407 // Only known if known in both the LHS and RHS. 408 KnownOne = RHSKnownOne & LHSKnownOne; 409 KnownZero = RHSKnownZero & LHSKnownZero; 410 break; 411 case Instruction::Trunc: { 412 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); 413 DemandedMask = DemandedMask.zext(truncBf); 414 KnownZero = KnownZero.zext(truncBf); 415 KnownOne = KnownOne.zext(truncBf); 416 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 417 KnownZero, KnownOne, Depth+1)) 418 return I; 419 DemandedMask = DemandedMask.trunc(BitWidth); 420 KnownZero = KnownZero.trunc(BitWidth); 421 KnownOne = KnownOne.trunc(BitWidth); 422 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 423 break; 424 } 425 case Instruction::BitCast: 426 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 427 return nullptr; // vector->int or fp->int? 428 429 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 430 if (VectorType *SrcVTy = 431 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 432 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 433 // Don't touch a bitcast between vectors of different element counts. 434 return nullptr; 435 } else 436 // Don't touch a scalar-to-vector bitcast. 437 return nullptr; 438 } else if (I->getOperand(0)->getType()->isVectorTy()) 439 // Don't touch a vector-to-scalar bitcast. 440 return nullptr; 441 442 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 443 KnownZero, KnownOne, Depth+1)) 444 return I; 445 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 446 break; 447 case Instruction::ZExt: { 448 // Compute the bits in the result that are not present in the input. 449 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 450 451 DemandedMask = DemandedMask.trunc(SrcBitWidth); 452 KnownZero = KnownZero.trunc(SrcBitWidth); 453 KnownOne = KnownOne.trunc(SrcBitWidth); 454 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 455 KnownZero, KnownOne, Depth+1)) 456 return I; 457 DemandedMask = DemandedMask.zext(BitWidth); 458 KnownZero = KnownZero.zext(BitWidth); 459 KnownOne = KnownOne.zext(BitWidth); 460 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 461 // The top bits are known to be zero. 462 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 463 break; 464 } 465 case Instruction::SExt: { 466 // Compute the bits in the result that are not present in the input. 467 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 468 469 APInt InputDemandedBits = DemandedMask & 470 APInt::getLowBitsSet(BitWidth, SrcBitWidth); 471 472 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); 473 // If any of the sign extended bits are demanded, we know that the sign 474 // bit is demanded. 475 if ((NewBits & DemandedMask) != 0) 476 InputDemandedBits.setBit(SrcBitWidth-1); 477 478 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth); 479 KnownZero = KnownZero.trunc(SrcBitWidth); 480 KnownOne = KnownOne.trunc(SrcBitWidth); 481 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, 482 KnownZero, KnownOne, Depth+1)) 483 return I; 484 InputDemandedBits = InputDemandedBits.zext(BitWidth); 485 KnownZero = KnownZero.zext(BitWidth); 486 KnownOne = KnownOne.zext(BitWidth); 487 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 488 489 // If the sign bit of the input is known set or clear, then we know the 490 // top bits of the result. 491 492 // If the input sign bit is known zero, or if the NewBits are not demanded 493 // convert this into a zero extension. 494 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { 495 // Convert to ZExt cast 496 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 497 return InsertNewInstWith(NewCast, *I); 498 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set 499 KnownOne |= NewBits; 500 } 501 break; 502 } 503 case Instruction::Add: { 504 // Figure out what the input bits are. If the top bits of the and result 505 // are not demanded, then the add doesn't demand them from its input 506 // either. 507 unsigned NLZ = DemandedMask.countLeadingZeros(); 508 509 // If there is a constant on the RHS, there are a variety of xformations 510 // we can do. 511 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 512 // If null, this should be simplified elsewhere. Some of the xforms here 513 // won't work if the RHS is zero. 514 if (RHS->isZero()) 515 break; 516 517 // If the top bit of the output is demanded, demand everything from the 518 // input. Otherwise, we demand all the input bits except NLZ top bits. 519 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ)); 520 521 // Find information about known zero/one bits in the input. 522 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, 523 LHSKnownZero, LHSKnownOne, Depth+1)) 524 return I; 525 526 // If the RHS of the add has bits set that can't affect the input, reduce 527 // the constant. 528 if (ShrinkDemandedConstant(I, 1, InDemandedBits)) 529 return I; 530 531 // Avoid excess work. 532 if (LHSKnownZero == 0 && LHSKnownOne == 0) 533 break; 534 535 // Turn it into OR if input bits are zero. 536 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) { 537 Instruction *Or = 538 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 539 I->getName()); 540 return InsertNewInstWith(Or, *I); 541 } 542 543 // We can say something about the output known-zero and known-one bits, 544 // depending on potential carries from the input constant and the 545 // unknowns. For example if the LHS is known to have at most the 0x0F0F0 546 // bits set and the RHS constant is 0x01001, then we know we have a known 547 // one mask of 0x00001 and a known zero mask of 0xE0F0E. 548 549 // To compute this, we first compute the potential carry bits. These are 550 // the bits which may be modified. I'm not aware of a better way to do 551 // this scan. 552 const APInt &RHSVal = RHS->getValue(); 553 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal)); 554 555 // Now that we know which bits have carries, compute the known-1/0 sets. 556 557 // Bits are known one if they are known zero in one operand and one in the 558 // other, and there is no input carry. 559 KnownOne = ((LHSKnownZero & RHSVal) | 560 (LHSKnownOne & ~RHSVal)) & ~CarryBits; 561 562 // Bits are known zero if they are known zero in both operands and there 563 // is no input carry. 564 KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits; 565 } else { 566 // If the high-bits of this ADD are not demanded, then it does not demand 567 // the high bits of its LHS or RHS. 568 if (DemandedMask[BitWidth-1] == 0) { 569 // Right fill the mask of bits for this ADD to demand the most 570 // significant bit and all those below it. 571 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 572 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 573 LHSKnownZero, LHSKnownOne, Depth+1) || 574 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 575 LHSKnownZero, LHSKnownOne, Depth+1)) 576 return I; 577 } 578 } 579 break; 580 } 581 case Instruction::Sub: 582 // If the high-bits of this SUB are not demanded, then it does not demand 583 // the high bits of its LHS or RHS. 584 if (DemandedMask[BitWidth-1] == 0) { 585 // Right fill the mask of bits for this SUB to demand the most 586 // significant bit and all those below it. 587 uint32_t NLZ = DemandedMask.countLeadingZeros(); 588 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 589 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 590 LHSKnownZero, LHSKnownOne, Depth+1) || 591 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 592 LHSKnownZero, LHSKnownOne, Depth+1)) 593 return I; 594 } 595 596 // Otherwise just hand the sub off to computeKnownBits to fill in 597 // the known zeros and ones. 598 computeKnownBits(V, KnownZero, KnownOne, Depth); 599 600 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 601 // zero. 602 if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) { 603 APInt I0 = C0->getValue(); 604 if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) { 605 Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0); 606 return InsertNewInstWith(Xor, *I); 607 } 608 } 609 break; 610 case Instruction::Shl: 611 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 612 { 613 Value *VarX; ConstantInt *C1; 614 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) { 615 Instruction *Shr = cast<Instruction>(I->getOperand(0)); 616 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask, 617 KnownZero, KnownOne); 618 if (R) 619 return R; 620 } 621 } 622 623 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 624 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 625 626 // If the shift is NUW/NSW, then it does demand the high bits. 627 ShlOperator *IOp = cast<ShlOperator>(I); 628 if (IOp->hasNoSignedWrap()) 629 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 630 else if (IOp->hasNoUnsignedWrap()) 631 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 632 633 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 634 KnownZero, KnownOne, Depth+1)) 635 return I; 636 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 637 KnownZero <<= ShiftAmt; 638 KnownOne <<= ShiftAmt; 639 // low bits known zero. 640 if (ShiftAmt) 641 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 642 } 643 break; 644 case Instruction::LShr: 645 // For a logical shift right 646 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 647 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 648 649 // Unsigned shift right. 650 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 651 652 // If the shift is exact, then it does demand the low bits (and knows that 653 // they are zero). 654 if (cast<LShrOperator>(I)->isExact()) 655 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 656 657 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 658 KnownZero, KnownOne, Depth+1)) 659 return I; 660 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 661 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 662 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 663 if (ShiftAmt) { 664 // Compute the new bits that are at the top now. 665 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 666 KnownZero |= HighBits; // high bits known zero. 667 } 668 } 669 break; 670 case Instruction::AShr: 671 // If this is an arithmetic shift right and only the low-bit is set, we can 672 // always convert this into a logical shr, even if the shift amount is 673 // variable. The low bit of the shift cannot be an input sign bit unless 674 // the shift amount is >= the size of the datatype, which is undefined. 675 if (DemandedMask == 1) { 676 // Perform the logical shift right. 677 Instruction *NewVal = BinaryOperator::CreateLShr( 678 I->getOperand(0), I->getOperand(1), I->getName()); 679 return InsertNewInstWith(NewVal, *I); 680 } 681 682 // If the sign bit is the only bit demanded by this ashr, then there is no 683 // need to do it, the shift doesn't change the high bit. 684 if (DemandedMask.isSignBit()) 685 return I->getOperand(0); 686 687 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 688 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 689 690 // Signed shift right. 691 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 692 // If any of the "high bits" are demanded, we should set the sign bit as 693 // demanded. 694 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 695 DemandedMaskIn.setBit(BitWidth-1); 696 697 // If the shift is exact, then it does demand the low bits (and knows that 698 // they are zero). 699 if (cast<AShrOperator>(I)->isExact()) 700 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 701 702 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 703 KnownZero, KnownOne, Depth+1)) 704 return I; 705 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 706 // Compute the new bits that are at the top now. 707 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 708 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 709 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 710 711 // Handle the sign bits. 712 APInt SignBit(APInt::getSignBit(BitWidth)); 713 // Adjust to where it is now in the mask. 714 SignBit = APIntOps::lshr(SignBit, ShiftAmt); 715 716 // If the input sign bit is known to be zero, or if none of the top bits 717 // are demanded, turn this into an unsigned shift right. 718 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] || 719 (HighBits & ~DemandedMask) == HighBits) { 720 // Perform the logical shift right. 721 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0), 722 SA, I->getName()); 723 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact()); 724 return InsertNewInstWith(NewVal, *I); 725 } else if ((KnownOne & SignBit) != 0) { // New bits are known one. 726 KnownOne |= HighBits; 727 } 728 } 729 break; 730 case Instruction::SRem: 731 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 732 // X % -1 demands all the bits because we don't want to introduce 733 // INT_MIN % -1 (== undef) by accident. 734 if (Rem->isAllOnesValue()) 735 break; 736 APInt RA = Rem->getValue().abs(); 737 if (RA.isPowerOf2()) { 738 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 739 return I->getOperand(0); 740 741 APInt LowBits = RA - 1; 742 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 743 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, 744 LHSKnownZero, LHSKnownOne, Depth+1)) 745 return I; 746 747 // The low bits of LHS are unchanged by the srem. 748 KnownZero = LHSKnownZero & LowBits; 749 KnownOne = LHSKnownOne & LowBits; 750 751 // If LHS is non-negative or has all low bits zero, then the upper bits 752 // are all zero. 753 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) 754 KnownZero |= ~LowBits; 755 756 // If LHS is negative and not all low bits are zero, then the upper bits 757 // are all one. 758 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0)) 759 KnownOne |= ~LowBits; 760 761 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 762 } 763 } 764 765 // The sign bit is the LHS's sign bit, except when the result of the 766 // remainder is zero. 767 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) { 768 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 769 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1); 770 // If it's known zero, our sign bit is also zero. 771 if (LHSKnownZero.isNegative()) 772 KnownZero.setBit(KnownZero.getBitWidth() - 1); 773 } 774 break; 775 case Instruction::URem: { 776 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 777 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 778 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, 779 KnownZero2, KnownOne2, Depth+1) || 780 SimplifyDemandedBits(I->getOperandUse(1), AllOnes, 781 KnownZero2, KnownOne2, Depth+1)) 782 return I; 783 784 unsigned Leaders = KnownZero2.countLeadingOnes(); 785 Leaders = std::max(Leaders, 786 KnownZero2.countLeadingOnes()); 787 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 788 break; 789 } 790 case Instruction::Call: 791 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 792 switch (II->getIntrinsicID()) { 793 default: break; 794 case Intrinsic::bswap: { 795 // If the only bits demanded come from one byte of the bswap result, 796 // just shift the input byte into position to eliminate the bswap. 797 unsigned NLZ = DemandedMask.countLeadingZeros(); 798 unsigned NTZ = DemandedMask.countTrailingZeros(); 799 800 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 801 // we need all the bits down to bit 8. Likewise, round NLZ. If we 802 // have 14 leading zeros, round to 8. 803 NLZ &= ~7; 804 NTZ &= ~7; 805 // If we need exactly one byte, we can do this transformation. 806 if (BitWidth-NLZ-NTZ == 8) { 807 unsigned ResultBit = NTZ; 808 unsigned InputBit = BitWidth-NTZ-8; 809 810 // Replace this with either a left or right shift to get the byte into 811 // the right place. 812 Instruction *NewVal; 813 if (InputBit > ResultBit) 814 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 815 ConstantInt::get(I->getType(), InputBit-ResultBit)); 816 else 817 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 818 ConstantInt::get(I->getType(), ResultBit-InputBit)); 819 NewVal->takeName(I); 820 return InsertNewInstWith(NewVal, *I); 821 } 822 823 // TODO: Could compute known zero/one bits based on the input. 824 break; 825 } 826 case Intrinsic::x86_sse42_crc32_64_64: 827 KnownZero = APInt::getHighBitsSet(64, 32); 828 return nullptr; 829 } 830 } 831 computeKnownBits(V, KnownZero, KnownOne, Depth); 832 break; 833 } 834 835 // If the client is only demanding bits that we know, return the known 836 // constant. 837 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) 838 return Constant::getIntegerValue(VTy, KnownOne); 839 return nullptr; 840 } 841 842 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 843 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 844 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 845 /// of "C2-C1". 846 /// 847 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 848 /// ..., bn}, without considering the specific value X is holding. 849 /// This transformation is legal iff one of following conditions is hold: 850 /// 1) All the bit in S are 0, in this case E1 == E2. 851 /// 2) We don't care those bits in S, per the input DemandedMask. 852 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 853 /// rest bits. 854 /// 855 /// Currently we only test condition 2). 856 /// 857 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 858 /// not successful. 859 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr, 860 Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) { 861 862 const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue(); 863 const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue(); 864 if (!ShlOp1 || !ShrOp1) 865 return nullptr; // Noop. 866 867 Value *VarX = Shr->getOperand(0); 868 Type *Ty = VarX->getType(); 869 unsigned BitWidth = Ty->getIntegerBitWidth(); 870 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 871 return nullptr; // Undef. 872 873 unsigned ShlAmt = ShlOp1.getZExtValue(); 874 unsigned ShrAmt = ShrOp1.getZExtValue(); 875 876 KnownOne.clearAllBits(); 877 KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1); 878 KnownZero &= DemandedMask; 879 880 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 881 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 882 883 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 884 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 885 (BitMask1.ashr(ShrAmt) << ShlAmt); 886 887 if (ShrAmt <= ShlAmt) { 888 BitMask2 <<= (ShlAmt - ShrAmt); 889 } else { 890 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 891 BitMask2.ashr(ShrAmt - ShlAmt); 892 } 893 894 // Check if condition-2 (see the comment to this function) is satified. 895 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 896 if (ShrAmt == ShlAmt) 897 return VarX; 898 899 if (!Shr->hasOneUse()) 900 return nullptr; 901 902 BinaryOperator *New; 903 if (ShrAmt < ShlAmt) { 904 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 905 New = BinaryOperator::CreateShl(VarX, Amt); 906 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 907 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 908 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 909 } else { 910 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 911 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 912 BinaryOperator::CreateAShr(VarX, Amt); 913 if (cast<BinaryOperator>(Shr)->isExact()) 914 New->setIsExact(true); 915 } 916 917 return InsertNewInstWith(New, *Shl); 918 } 919 920 return nullptr; 921 } 922 923 /// SimplifyDemandedVectorElts - The specified value produces a vector with 924 /// any number of elements. DemandedElts contains the set of elements that are 925 /// actually used by the caller. This method analyzes which elements of the 926 /// operand are undef and returns that information in UndefElts. 927 /// 928 /// If the information about demanded elements can be used to simplify the 929 /// operation, the operation is simplified, then the resultant value is 930 /// returned. This returns null if no change was made. 931 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 932 APInt &UndefElts, 933 unsigned Depth) { 934 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 935 APInt EltMask(APInt::getAllOnesValue(VWidth)); 936 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 937 938 if (isa<UndefValue>(V)) { 939 // If the entire vector is undefined, just return this info. 940 UndefElts = EltMask; 941 return nullptr; 942 } 943 944 if (DemandedElts == 0) { // If nothing is demanded, provide undef. 945 UndefElts = EltMask; 946 return UndefValue::get(V->getType()); 947 } 948 949 UndefElts = 0; 950 951 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. 952 if (Constant *C = dyn_cast<Constant>(V)) { 953 // Check if this is identity. If so, return 0 since we are not simplifying 954 // anything. 955 if (DemandedElts.isAllOnesValue()) 956 return nullptr; 957 958 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 959 Constant *Undef = UndefValue::get(EltTy); 960 961 SmallVector<Constant*, 16> Elts; 962 for (unsigned i = 0; i != VWidth; ++i) { 963 if (!DemandedElts[i]) { // If not demanded, set to undef. 964 Elts.push_back(Undef); 965 UndefElts.setBit(i); 966 continue; 967 } 968 969 Constant *Elt = C->getAggregateElement(i); 970 if (!Elt) return nullptr; 971 972 if (isa<UndefValue>(Elt)) { // Already undef. 973 Elts.push_back(Undef); 974 UndefElts.setBit(i); 975 } else { // Otherwise, defined. 976 Elts.push_back(Elt); 977 } 978 } 979 980 // If we changed the constant, return it. 981 Constant *NewCV = ConstantVector::get(Elts); 982 return NewCV != C ? NewCV : nullptr; 983 } 984 985 // Limit search depth. 986 if (Depth == 10) 987 return nullptr; 988 989 // If multiple users are using the root value, proceed with 990 // simplification conservatively assuming that all elements 991 // are needed. 992 if (!V->hasOneUse()) { 993 // Quit if we find multiple users of a non-root value though. 994 // They'll be handled when it's their turn to be visited by 995 // the main instcombine process. 996 if (Depth != 0) 997 // TODO: Just compute the UndefElts information recursively. 998 return nullptr; 999 1000 // Conservatively assume that all elements are needed. 1001 DemandedElts = EltMask; 1002 } 1003 1004 Instruction *I = dyn_cast<Instruction>(V); 1005 if (!I) return nullptr; // Only analyze instructions. 1006 1007 bool MadeChange = false; 1008 APInt UndefElts2(VWidth, 0); 1009 Value *TmpV; 1010 switch (I->getOpcode()) { 1011 default: break; 1012 1013 case Instruction::InsertElement: { 1014 // If this is a variable index, we don't know which element it overwrites. 1015 // demand exactly the same input as we produce. 1016 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1017 if (!Idx) { 1018 // Note that we can't propagate undef elt info, because we don't know 1019 // which elt is getting updated. 1020 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1021 UndefElts2, Depth+1); 1022 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1023 break; 1024 } 1025 1026 // If this is inserting an element that isn't demanded, remove this 1027 // insertelement. 1028 unsigned IdxNo = Idx->getZExtValue(); 1029 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1030 Worklist.Add(I); 1031 return I->getOperand(0); 1032 } 1033 1034 // Otherwise, the element inserted overwrites whatever was there, so the 1035 // input demanded set is simpler than the output set. 1036 APInt DemandedElts2 = DemandedElts; 1037 DemandedElts2.clearBit(IdxNo); 1038 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, 1039 UndefElts, Depth+1); 1040 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1041 1042 // The inserted element is defined. 1043 UndefElts.clearBit(IdxNo); 1044 break; 1045 } 1046 case Instruction::ShuffleVector: { 1047 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1048 uint64_t LHSVWidth = 1049 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements(); 1050 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1051 for (unsigned i = 0; i < VWidth; i++) { 1052 if (DemandedElts[i]) { 1053 unsigned MaskVal = Shuffle->getMaskValue(i); 1054 if (MaskVal != -1u) { 1055 assert(MaskVal < LHSVWidth * 2 && 1056 "shufflevector mask index out of range!"); 1057 if (MaskVal < LHSVWidth) 1058 LeftDemanded.setBit(MaskVal); 1059 else 1060 RightDemanded.setBit(MaskVal - LHSVWidth); 1061 } 1062 } 1063 } 1064 1065 APInt UndefElts4(LHSVWidth, 0); 1066 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, 1067 UndefElts4, Depth+1); 1068 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1069 1070 APInt UndefElts3(LHSVWidth, 0); 1071 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, 1072 UndefElts3, Depth+1); 1073 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1074 1075 bool NewUndefElts = false; 1076 for (unsigned i = 0; i < VWidth; i++) { 1077 unsigned MaskVal = Shuffle->getMaskValue(i); 1078 if (MaskVal == -1u) { 1079 UndefElts.setBit(i); 1080 } else if (!DemandedElts[i]) { 1081 NewUndefElts = true; 1082 UndefElts.setBit(i); 1083 } else if (MaskVal < LHSVWidth) { 1084 if (UndefElts4[MaskVal]) { 1085 NewUndefElts = true; 1086 UndefElts.setBit(i); 1087 } 1088 } else { 1089 if (UndefElts3[MaskVal - LHSVWidth]) { 1090 NewUndefElts = true; 1091 UndefElts.setBit(i); 1092 } 1093 } 1094 } 1095 1096 if (NewUndefElts) { 1097 // Add additional discovered undefs. 1098 SmallVector<Constant*, 16> Elts; 1099 for (unsigned i = 0; i < VWidth; ++i) { 1100 if (UndefElts[i]) 1101 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1102 else 1103 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1104 Shuffle->getMaskValue(i))); 1105 } 1106 I->setOperand(2, ConstantVector::get(Elts)); 1107 MadeChange = true; 1108 } 1109 break; 1110 } 1111 case Instruction::Select: { 1112 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); 1113 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) { 1114 for (unsigned i = 0; i < VWidth; i++) { 1115 if (CV->getAggregateElement(i)->isNullValue()) 1116 LeftDemanded.clearBit(i); 1117 else 1118 RightDemanded.clearBit(i); 1119 } 1120 } 1121 1122 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, 1123 UndefElts, Depth+1); 1124 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1125 1126 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, 1127 UndefElts2, Depth+1); 1128 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } 1129 1130 // Output elements are undefined if both are undefined. 1131 UndefElts &= UndefElts2; 1132 break; 1133 } 1134 case Instruction::BitCast: { 1135 // Vector->vector casts only. 1136 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1137 if (!VTy) break; 1138 unsigned InVWidth = VTy->getNumElements(); 1139 APInt InputDemandedElts(InVWidth, 0); 1140 unsigned Ratio; 1141 1142 if (VWidth == InVWidth) { 1143 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1144 // elements as are demanded of us. 1145 Ratio = 1; 1146 InputDemandedElts = DemandedElts; 1147 } else if (VWidth > InVWidth) { 1148 // Untested so far. 1149 break; 1150 1151 // If there are more elements in the result than there are in the source, 1152 // then an input element is live if any of the corresponding output 1153 // elements are live. 1154 Ratio = VWidth/InVWidth; 1155 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1156 if (DemandedElts[OutIdx]) 1157 InputDemandedElts.setBit(OutIdx/Ratio); 1158 } 1159 } else { 1160 // Untested so far. 1161 break; 1162 1163 // If there are more elements in the source than there are in the result, 1164 // then an input element is live if the corresponding output element is 1165 // live. 1166 Ratio = InVWidth/VWidth; 1167 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1168 if (DemandedElts[InIdx/Ratio]) 1169 InputDemandedElts.setBit(InIdx); 1170 } 1171 1172 // div/rem demand all inputs, because they don't want divide by zero. 1173 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, 1174 UndefElts2, Depth+1); 1175 if (TmpV) { 1176 I->setOperand(0, TmpV); 1177 MadeChange = true; 1178 } 1179 1180 UndefElts = UndefElts2; 1181 if (VWidth > InVWidth) { 1182 llvm_unreachable("Unimp"); 1183 // If there are more elements in the result than there are in the source, 1184 // then an output element is undef if the corresponding input element is 1185 // undef. 1186 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1187 if (UndefElts2[OutIdx/Ratio]) 1188 UndefElts.setBit(OutIdx); 1189 } else if (VWidth < InVWidth) { 1190 llvm_unreachable("Unimp"); 1191 // If there are more elements in the source than there are in the result, 1192 // then a result element is undef if all of the corresponding input 1193 // elements are undef. 1194 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef. 1195 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1196 if (!UndefElts2[InIdx]) // Not undef? 1197 UndefElts.clearBit(InIdx/Ratio); // Clear undef bit. 1198 } 1199 break; 1200 } 1201 case Instruction::And: 1202 case Instruction::Or: 1203 case Instruction::Xor: 1204 case Instruction::Add: 1205 case Instruction::Sub: 1206 case Instruction::Mul: 1207 // div/rem demand all inputs, because they don't want divide by zero. 1208 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1209 UndefElts, Depth+1); 1210 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1211 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, 1212 UndefElts2, Depth+1); 1213 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1214 1215 // Output elements are undefined if both are undefined. Consider things 1216 // like undef&0. The result is known zero, not undef. 1217 UndefElts &= UndefElts2; 1218 break; 1219 case Instruction::FPTrunc: 1220 case Instruction::FPExt: 1221 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1222 UndefElts, Depth+1); 1223 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1224 break; 1225 1226 case Instruction::Call: { 1227 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1228 if (!II) break; 1229 switch (II->getIntrinsicID()) { 1230 default: break; 1231 1232 // Binary vector operations that work column-wise. A dest element is a 1233 // function of the corresponding input elements from the two inputs. 1234 case Intrinsic::x86_sse_sub_ss: 1235 case Intrinsic::x86_sse_mul_ss: 1236 case Intrinsic::x86_sse_min_ss: 1237 case Intrinsic::x86_sse_max_ss: 1238 case Intrinsic::x86_sse2_sub_sd: 1239 case Intrinsic::x86_sse2_mul_sd: 1240 case Intrinsic::x86_sse2_min_sd: 1241 case Intrinsic::x86_sse2_max_sd: 1242 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1243 UndefElts, Depth+1); 1244 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1245 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1246 UndefElts2, Depth+1); 1247 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1248 1249 // If only the low elt is demanded and this is a scalarizable intrinsic, 1250 // scalarize it now. 1251 if (DemandedElts == 1) { 1252 switch (II->getIntrinsicID()) { 1253 default: break; 1254 case Intrinsic::x86_sse_sub_ss: 1255 case Intrinsic::x86_sse_mul_ss: 1256 case Intrinsic::x86_sse2_sub_sd: 1257 case Intrinsic::x86_sse2_mul_sd: 1258 // TODO: Lower MIN/MAX/ABS/etc 1259 Value *LHS = II->getArgOperand(0); 1260 Value *RHS = II->getArgOperand(1); 1261 // Extract the element as scalars. 1262 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS, 1263 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 1264 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS, 1265 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 1266 1267 switch (II->getIntrinsicID()) { 1268 default: llvm_unreachable("Case stmts out of sync!"); 1269 case Intrinsic::x86_sse_sub_ss: 1270 case Intrinsic::x86_sse2_sub_sd: 1271 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS, 1272 II->getName()), *II); 1273 break; 1274 case Intrinsic::x86_sse_mul_ss: 1275 case Intrinsic::x86_sse2_mul_sd: 1276 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS, 1277 II->getName()), *II); 1278 break; 1279 } 1280 1281 Instruction *New = 1282 InsertElementInst::Create( 1283 UndefValue::get(II->getType()), TmpV, 1284 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false), 1285 II->getName()); 1286 InsertNewInstWith(New, *II); 1287 return New; 1288 } 1289 } 1290 1291 // Output elements are undefined if both are undefined. Consider things 1292 // like undef&0. The result is known zero, not undef. 1293 UndefElts &= UndefElts2; 1294 break; 1295 } 1296 break; 1297 } 1298 } 1299 return MadeChange ? I : nullptr; 1300 } 1301