1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/IntrinsicsAMDGPU.h" 18 #include "llvm/IR/IntrinsicsX86.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 namespace { 28 29 struct AMDGPUImageDMaskIntrinsic { 30 unsigned Intr; 31 }; 32 33 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 34 #include "InstCombineTables.inc" 35 36 } // end anonymous namespace 37 38 /// Check to see if the specified operand of the specified instruction is a 39 /// constant integer. If so, check to see if there are any bits set in the 40 /// constant that are not demanded. If so, shrink the constant and return true. 41 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 42 const APInt &Demanded) { 43 assert(I && "No instruction?"); 44 assert(OpNo < I->getNumOperands() && "Operand index too large"); 45 46 // The operand must be a constant integer or splat integer. 47 Value *Op = I->getOperand(OpNo); 48 const APInt *C; 49 if (!match(Op, m_APInt(C))) 50 return false; 51 52 // If there are no bits set that aren't demanded, nothing to do. 53 if (C->isSubsetOf(Demanded)) 54 return false; 55 56 // This instruction is producing bits that are not demanded. Shrink the RHS. 57 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 58 59 return true; 60 } 61 62 63 64 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 65 /// the instruction has any properties that allow us to simplify its operands. 66 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 67 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 68 KnownBits Known(BitWidth); 69 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 70 71 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 72 0, &Inst); 73 if (!V) return false; 74 if (V == &Inst) return true; 75 replaceInstUsesWith(Inst, V); 76 return true; 77 } 78 79 /// This form of SimplifyDemandedBits simplifies the specified instruction 80 /// operand if possible, updating it in place. It returns true if it made any 81 /// change and false otherwise. 82 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 83 const APInt &DemandedMask, 84 KnownBits &Known, 85 unsigned Depth) { 86 Use &U = I->getOperandUse(OpNo); 87 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 88 Depth, I); 89 if (!NewVal) return false; 90 // Add the old operand back to the worklist. 91 Worklist.addValue(U.get()); 92 U = NewVal; 93 return true; 94 } 95 96 97 /// This function attempts to replace V with a simpler value based on the 98 /// demanded bits. When this function is called, it is known that only the bits 99 /// set in DemandedMask of the result of V are ever used downstream. 100 /// Consequently, depending on the mask and V, it may be possible to replace V 101 /// with a constant or one of its operands. In such cases, this function does 102 /// the replacement and returns true. In all other cases, it returns false after 103 /// analyzing the expression and setting KnownOne and known to be one in the 104 /// expression. Known.Zero contains all the bits that are known to be zero in 105 /// the expression. These are provided to potentially allow the caller (which 106 /// might recursively be SimplifyDemandedBits itself) to simplify the 107 /// expression. 108 /// Known.One and Known.Zero always follow the invariant that: 109 /// Known.One & Known.Zero == 0. 110 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 111 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 112 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 113 /// be the same. 114 /// 115 /// This returns null if it did not change anything and it permits no 116 /// simplification. This returns V itself if it did some simplification of V's 117 /// operands based on the information about what bits are demanded. This returns 118 /// some other non-null value if it found out that V is equal to another value 119 /// in the context where the specified bits are demanded, but not for all users. 120 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 121 KnownBits &Known, unsigned Depth, 122 Instruction *CxtI) { 123 assert(V != nullptr && "Null pointer of Value???"); 124 assert(Depth <= 6 && "Limit Search Depth"); 125 uint32_t BitWidth = DemandedMask.getBitWidth(); 126 Type *VTy = V->getType(); 127 assert( 128 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 129 Known.getBitWidth() == BitWidth && 130 "Value *V, DemandedMask and Known must have same BitWidth"); 131 132 if (isa<Constant>(V)) { 133 computeKnownBits(V, Known, Depth, CxtI); 134 return nullptr; 135 } 136 137 Known.resetAll(); 138 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 139 return UndefValue::get(VTy); 140 141 if (Depth == 6) // Limit search depth. 142 return nullptr; 143 144 Instruction *I = dyn_cast<Instruction>(V); 145 if (!I) { 146 computeKnownBits(V, Known, Depth, CxtI); 147 return nullptr; // Only analyze instructions. 148 } 149 150 // If there are multiple uses of this value and we aren't at the root, then 151 // we can't do any simplifications of the operands, because DemandedMask 152 // only reflects the bits demanded by *one* of the users. 153 if (Depth != 0 && !I->hasOneUse()) 154 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 155 156 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 157 158 // If this is the root being simplified, allow it to have multiple uses, 159 // just set the DemandedMask to all bits so that we can try to simplify the 160 // operands. This allows visitTruncInst (for example) to simplify the 161 // operand of a trunc without duplicating all the logic below. 162 if (Depth == 0 && !V->hasOneUse()) 163 DemandedMask.setAllBits(); 164 165 switch (I->getOpcode()) { 166 default: 167 computeKnownBits(I, Known, Depth, CxtI); 168 break; 169 case Instruction::And: { 170 // If either the LHS or the RHS are Zero, the result is zero. 171 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 172 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 173 Depth + 1)) 174 return I; 175 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 176 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 177 178 // Output known-0 are known to be clear if zero in either the LHS | RHS. 179 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 180 // Output known-1 bits are only known if set in both the LHS & RHS. 181 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 182 183 // If the client is only demanding bits that we know, return the known 184 // constant. 185 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 186 return Constant::getIntegerValue(VTy, IKnownOne); 187 188 // If all of the demanded bits are known 1 on one side, return the other. 189 // These bits cannot contribute to the result of the 'and'. 190 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 191 return I->getOperand(0); 192 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 193 return I->getOperand(1); 194 195 // If the RHS is a constant, see if we can simplify it. 196 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 197 return I; 198 199 Known.Zero = std::move(IKnownZero); 200 Known.One = std::move(IKnownOne); 201 break; 202 } 203 case Instruction::Or: { 204 // If either the LHS or the RHS are One, the result is One. 205 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 206 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 207 Depth + 1)) 208 return I; 209 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 210 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 211 212 // Output known-0 bits are only known if clear in both the LHS & RHS. 213 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 214 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 215 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 216 217 // If the client is only demanding bits that we know, return the known 218 // constant. 219 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 220 return Constant::getIntegerValue(VTy, IKnownOne); 221 222 // If all of the demanded bits are known zero on one side, return the other. 223 // These bits cannot contribute to the result of the 'or'. 224 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 225 return I->getOperand(0); 226 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 227 return I->getOperand(1); 228 229 // If the RHS is a constant, see if we can simplify it. 230 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 231 return I; 232 233 Known.Zero = std::move(IKnownZero); 234 Known.One = std::move(IKnownOne); 235 break; 236 } 237 case Instruction::Xor: { 238 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 239 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 240 return I; 241 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 242 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 243 244 // Output known-0 bits are known if clear or set in both the LHS & RHS. 245 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 246 (RHSKnown.One & LHSKnown.One); 247 // Output known-1 are known to be set if set in only one of the LHS, RHS. 248 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 249 (RHSKnown.One & LHSKnown.Zero); 250 251 // If the client is only demanding bits that we know, return the known 252 // constant. 253 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 254 return Constant::getIntegerValue(VTy, IKnownOne); 255 256 // If all of the demanded bits are known zero on one side, return the other. 257 // These bits cannot contribute to the result of the 'xor'. 258 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 259 return I->getOperand(0); 260 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 261 return I->getOperand(1); 262 263 // If all of the demanded bits are known to be zero on one side or the 264 // other, turn this into an *inclusive* or. 265 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 266 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 267 Instruction *Or = 268 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 269 I->getName()); 270 return InsertNewInstWith(Or, *I); 271 } 272 273 // If all of the demanded bits on one side are known, and all of the set 274 // bits on that side are also known to be set on the other side, turn this 275 // into an AND, as we know the bits will be cleared. 276 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 277 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 278 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 279 Constant *AndC = Constant::getIntegerValue(VTy, 280 ~RHSKnown.One & DemandedMask); 281 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 282 return InsertNewInstWith(And, *I); 283 } 284 285 // If the RHS is a constant, see if we can simplify it. 286 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 287 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 288 return I; 289 290 // If our LHS is an 'and' and if it has one use, and if any of the bits we 291 // are flipping are known to be set, then the xor is just resetting those 292 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 293 // simplifying both of them. 294 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 295 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 296 isa<ConstantInt>(I->getOperand(1)) && 297 isa<ConstantInt>(LHSInst->getOperand(1)) && 298 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 299 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 300 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 301 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 302 303 Constant *AndC = 304 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 305 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 306 InsertNewInstWith(NewAnd, *I); 307 308 Constant *XorC = 309 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 310 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 311 return InsertNewInstWith(NewXor, *I); 312 } 313 314 // Output known-0 bits are known if clear or set in both the LHS & RHS. 315 Known.Zero = std::move(IKnownZero); 316 // Output known-1 are known to be set if set in only one of the LHS, RHS. 317 Known.One = std::move(IKnownOne); 318 break; 319 } 320 case Instruction::Select: { 321 Value *LHS, *RHS; 322 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 323 if (SPF == SPF_UMAX) { 324 // UMax(A, C) == A if ... 325 // The lowest non-zero bit of DemandMask is higher than the highest 326 // non-zero bit of C. 327 const APInt *C; 328 unsigned CTZ = DemandedMask.countTrailingZeros(); 329 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 330 return LHS; 331 } else if (SPF == SPF_UMIN) { 332 // UMin(A, C) == A if ... 333 // The lowest non-zero bit of DemandMask is higher than the highest 334 // non-one bit of C. 335 // This comes from using DeMorgans on the above umax example. 336 const APInt *C; 337 unsigned CTZ = DemandedMask.countTrailingZeros(); 338 if (match(RHS, m_APInt(C)) && 339 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 340 return LHS; 341 } 342 343 // If this is a select as part of any other min/max pattern, don't simplify 344 // any further in case we break the structure. 345 if (SPF != SPF_UNKNOWN) 346 return nullptr; 347 348 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 349 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 350 return I; 351 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 352 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 353 354 // If the operands are constants, see if we can simplify them. 355 // This is similar to ShrinkDemandedConstant, but for a select we want to 356 // try to keep the selected constants the same as icmp value constants, if 357 // we can. This helps not break apart (or helps put back together) 358 // canonical patterns like min and max. 359 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 360 APInt DemandedMask) { 361 const APInt *SelC; 362 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 363 return false; 364 365 // Get the constant out of the ICmp, if there is one. 366 const APInt *CmpC; 367 ICmpInst::Predicate Pred; 368 if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) || 369 CmpC->getBitWidth() != SelC->getBitWidth()) 370 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 371 372 // If the constant is already the same as the ICmp, leave it as-is. 373 if (*CmpC == *SelC) 374 return false; 375 // If the constants are not already the same, but can be with the demand 376 // mask, use the constant value from the ICmp. 377 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 378 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 379 return true; 380 } 381 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 382 }; 383 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 384 CanonicalizeSelectConstant(I, 2, DemandedMask)) 385 return I; 386 387 // Only known if known in both the LHS and RHS. 388 Known.One = RHSKnown.One & LHSKnown.One; 389 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 390 break; 391 } 392 case Instruction::ZExt: 393 case Instruction::Trunc: { 394 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 395 396 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 397 KnownBits InputKnown(SrcBitWidth); 398 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 399 return I; 400 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 401 Known = InputKnown.zextOrTrunc(BitWidth); 402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 403 break; 404 } 405 case Instruction::BitCast: 406 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 407 return nullptr; // vector->int or fp->int? 408 409 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 410 if (VectorType *SrcVTy = 411 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 412 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 413 // Don't touch a bitcast between vectors of different element counts. 414 return nullptr; 415 } else 416 // Don't touch a scalar-to-vector bitcast. 417 return nullptr; 418 } else if (I->getOperand(0)->getType()->isVectorTy()) 419 // Don't touch a vector-to-scalar bitcast. 420 return nullptr; 421 422 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 423 return I; 424 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 425 break; 426 case Instruction::SExt: { 427 // Compute the bits in the result that are not present in the input. 428 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 429 430 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 431 432 // If any of the sign extended bits are demanded, we know that the sign 433 // bit is demanded. 434 if (DemandedMask.getActiveBits() > SrcBitWidth) 435 InputDemandedBits.setBit(SrcBitWidth-1); 436 437 KnownBits InputKnown(SrcBitWidth); 438 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 439 return I; 440 441 // If the input sign bit is known zero, or if the NewBits are not demanded 442 // convert this into a zero extension. 443 if (InputKnown.isNonNegative() || 444 DemandedMask.getActiveBits() <= SrcBitWidth) { 445 // Convert to ZExt cast. 446 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 447 return InsertNewInstWith(NewCast, *I); 448 } 449 450 // If the sign bit of the input is known set or clear, then we know the 451 // top bits of the result. 452 Known = InputKnown.sext(BitWidth); 453 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 454 break; 455 } 456 case Instruction::Add: 457 case Instruction::Sub: { 458 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 459 /// about the high bits of the operands. 460 unsigned NLZ = DemandedMask.countLeadingZeros(); 461 // Right fill the mask of bits for this ADD/SUB to demand the most 462 // significant bit and all those below it. 463 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 464 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 465 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 466 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 467 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 468 if (NLZ > 0) { 469 // Disable the nsw and nuw flags here: We can no longer guarantee that 470 // we won't wrap after simplification. Removing the nsw/nuw flags is 471 // legal here because the top bit is not demanded. 472 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 473 BinOP.setHasNoSignedWrap(false); 474 BinOP.setHasNoUnsignedWrap(false); 475 } 476 return I; 477 } 478 479 // If we are known to be adding/subtracting zeros to every bit below 480 // the highest demanded bit, we just return the other side. 481 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 482 return I->getOperand(0); 483 // We can't do this with the LHS for subtraction, unless we are only 484 // demanding the LSB. 485 if ((I->getOpcode() == Instruction::Add || 486 DemandedFromOps.isOneValue()) && 487 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 488 return I->getOperand(1); 489 490 // Otherwise just compute the known bits of the result. 491 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 492 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 493 NSW, LHSKnown, RHSKnown); 494 break; 495 } 496 case Instruction::Shl: { 497 const APInt *SA; 498 if (match(I->getOperand(1), m_APInt(SA))) { 499 const APInt *ShrAmt; 500 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 501 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 502 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 503 DemandedMask, Known)) 504 return R; 505 506 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 507 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 508 509 // If the shift is NUW/NSW, then it does demand the high bits. 510 ShlOperator *IOp = cast<ShlOperator>(I); 511 if (IOp->hasNoSignedWrap()) 512 DemandedMaskIn.setHighBits(ShiftAmt+1); 513 else if (IOp->hasNoUnsignedWrap()) 514 DemandedMaskIn.setHighBits(ShiftAmt); 515 516 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 517 return I; 518 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 519 Known.Zero <<= ShiftAmt; 520 Known.One <<= ShiftAmt; 521 // low bits known zero. 522 if (ShiftAmt) 523 Known.Zero.setLowBits(ShiftAmt); 524 } 525 break; 526 } 527 case Instruction::LShr: { 528 const APInt *SA; 529 if (match(I->getOperand(1), m_APInt(SA))) { 530 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 531 532 // Unsigned shift right. 533 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 534 535 // If the shift is exact, then it does demand the low bits (and knows that 536 // they are zero). 537 if (cast<LShrOperator>(I)->isExact()) 538 DemandedMaskIn.setLowBits(ShiftAmt); 539 540 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 541 return I; 542 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 543 Known.Zero.lshrInPlace(ShiftAmt); 544 Known.One.lshrInPlace(ShiftAmt); 545 if (ShiftAmt) 546 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 547 } 548 break; 549 } 550 case Instruction::AShr: { 551 // If this is an arithmetic shift right and only the low-bit is set, we can 552 // always convert this into a logical shr, even if the shift amount is 553 // variable. The low bit of the shift cannot be an input sign bit unless 554 // the shift amount is >= the size of the datatype, which is undefined. 555 if (DemandedMask.isOneValue()) { 556 // Perform the logical shift right. 557 Instruction *NewVal = BinaryOperator::CreateLShr( 558 I->getOperand(0), I->getOperand(1), I->getName()); 559 return InsertNewInstWith(NewVal, *I); 560 } 561 562 // If the sign bit is the only bit demanded by this ashr, then there is no 563 // need to do it, the shift doesn't change the high bit. 564 if (DemandedMask.isSignMask()) 565 return I->getOperand(0); 566 567 const APInt *SA; 568 if (match(I->getOperand(1), m_APInt(SA))) { 569 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 570 571 // Signed shift right. 572 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 573 // If any of the high bits are demanded, we should set the sign bit as 574 // demanded. 575 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 576 DemandedMaskIn.setSignBit(); 577 578 // If the shift is exact, then it does demand the low bits (and knows that 579 // they are zero). 580 if (cast<AShrOperator>(I)->isExact()) 581 DemandedMaskIn.setLowBits(ShiftAmt); 582 583 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 584 return I; 585 586 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 587 588 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 589 // Compute the new bits that are at the top now plus sign bits. 590 APInt HighBits(APInt::getHighBitsSet( 591 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 592 Known.Zero.lshrInPlace(ShiftAmt); 593 Known.One.lshrInPlace(ShiftAmt); 594 595 // If the input sign bit is known to be zero, or if none of the top bits 596 // are demanded, turn this into an unsigned shift right. 597 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 598 if (Known.Zero[BitWidth-ShiftAmt-1] || 599 !DemandedMask.intersects(HighBits)) { 600 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 601 I->getOperand(1)); 602 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 603 return InsertNewInstWith(LShr, *I); 604 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 605 Known.One |= HighBits; 606 } 607 } 608 break; 609 } 610 case Instruction::UDiv: { 611 // UDiv doesn't demand low bits that are zero in the divisor. 612 const APInt *SA; 613 if (match(I->getOperand(1), m_APInt(SA))) { 614 // If the shift is exact, then it does demand the low bits. 615 if (cast<UDivOperator>(I)->isExact()) 616 break; 617 618 // FIXME: Take the demanded mask of the result into account. 619 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 620 APInt DemandedMaskIn = 621 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 622 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 623 return I; 624 625 // Propagate zero bits from the input. 626 Known.Zero.setHighBits(std::min( 627 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 628 } 629 break; 630 } 631 case Instruction::SRem: 632 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 633 // X % -1 demands all the bits because we don't want to introduce 634 // INT_MIN % -1 (== undef) by accident. 635 if (Rem->isMinusOne()) 636 break; 637 APInt RA = Rem->getValue().abs(); 638 if (RA.isPowerOf2()) { 639 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 640 return I->getOperand(0); 641 642 APInt LowBits = RA - 1; 643 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 644 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 645 return I; 646 647 // The low bits of LHS are unchanged by the srem. 648 Known.Zero = LHSKnown.Zero & LowBits; 649 Known.One = LHSKnown.One & LowBits; 650 651 // If LHS is non-negative or has all low bits zero, then the upper bits 652 // are all zero. 653 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 654 Known.Zero |= ~LowBits; 655 656 // If LHS is negative and not all low bits are zero, then the upper bits 657 // are all one. 658 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 659 Known.One |= ~LowBits; 660 661 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 662 break; 663 } 664 } 665 666 // The sign bit is the LHS's sign bit, except when the result of the 667 // remainder is zero. 668 if (DemandedMask.isSignBitSet()) { 669 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 670 // If it's known zero, our sign bit is also zero. 671 if (LHSKnown.isNonNegative()) 672 Known.makeNonNegative(); 673 } 674 break; 675 case Instruction::URem: { 676 KnownBits Known2(BitWidth); 677 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 678 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 679 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 680 return I; 681 682 unsigned Leaders = Known2.countMinLeadingZeros(); 683 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 684 break; 685 } 686 case Instruction::Call: 687 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 688 switch (II->getIntrinsicID()) { 689 default: break; 690 case Intrinsic::bswap: { 691 // If the only bits demanded come from one byte of the bswap result, 692 // just shift the input byte into position to eliminate the bswap. 693 unsigned NLZ = DemandedMask.countLeadingZeros(); 694 unsigned NTZ = DemandedMask.countTrailingZeros(); 695 696 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 697 // we need all the bits down to bit 8. Likewise, round NLZ. If we 698 // have 14 leading zeros, round to 8. 699 NLZ &= ~7; 700 NTZ &= ~7; 701 // If we need exactly one byte, we can do this transformation. 702 if (BitWidth-NLZ-NTZ == 8) { 703 unsigned ResultBit = NTZ; 704 unsigned InputBit = BitWidth-NTZ-8; 705 706 // Replace this with either a left or right shift to get the byte into 707 // the right place. 708 Instruction *NewVal; 709 if (InputBit > ResultBit) 710 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 711 ConstantInt::get(I->getType(), InputBit-ResultBit)); 712 else 713 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 714 ConstantInt::get(I->getType(), ResultBit-InputBit)); 715 NewVal->takeName(I); 716 return InsertNewInstWith(NewVal, *I); 717 } 718 719 // TODO: Could compute known zero/one bits based on the input. 720 break; 721 } 722 case Intrinsic::fshr: 723 case Intrinsic::fshl: { 724 const APInt *SA; 725 if (!match(I->getOperand(2), m_APInt(SA))) 726 break; 727 728 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 729 // defined, so no need to special-case zero shifts here. 730 uint64_t ShiftAmt = SA->urem(BitWidth); 731 if (II->getIntrinsicID() == Intrinsic::fshr) 732 ShiftAmt = BitWidth - ShiftAmt; 733 734 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 735 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 736 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 737 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 738 return I; 739 740 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 741 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 742 Known.One = LHSKnown.One.shl(ShiftAmt) | 743 RHSKnown.One.lshr(BitWidth - ShiftAmt); 744 break; 745 } 746 case Intrinsic::x86_mmx_pmovmskb: 747 case Intrinsic::x86_sse_movmsk_ps: 748 case Intrinsic::x86_sse2_movmsk_pd: 749 case Intrinsic::x86_sse2_pmovmskb_128: 750 case Intrinsic::x86_avx_movmsk_ps_256: 751 case Intrinsic::x86_avx_movmsk_pd_256: 752 case Intrinsic::x86_avx2_pmovmskb: { 753 // MOVMSK copies the vector elements' sign bits to the low bits 754 // and zeros the high bits. 755 unsigned ArgWidth; 756 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 757 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 758 } else { 759 auto Arg = II->getArgOperand(0); 760 auto ArgType = cast<VectorType>(Arg->getType()); 761 ArgWidth = ArgType->getNumElements(); 762 } 763 764 // If we don't need any of low bits then return zero, 765 // we know that DemandedMask is non-zero already. 766 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 767 if (DemandedElts.isNullValue()) 768 return ConstantInt::getNullValue(VTy); 769 770 // We know that the upper bits are set to zero. 771 Known.Zero.setBitsFrom(ArgWidth); 772 return nullptr; 773 } 774 case Intrinsic::x86_sse42_crc32_64_64: 775 Known.Zero.setBitsFrom(32); 776 return nullptr; 777 } 778 } 779 computeKnownBits(V, Known, Depth, CxtI); 780 break; 781 } 782 783 // If the client is only demanding bits that we know, return the known 784 // constant. 785 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 786 return Constant::getIntegerValue(VTy, Known.One); 787 return nullptr; 788 } 789 790 /// Helper routine of SimplifyDemandedUseBits. It computes Known 791 /// bits. It also tries to handle simplifications that can be done based on 792 /// DemandedMask, but without modifying the Instruction. 793 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 794 const APInt &DemandedMask, 795 KnownBits &Known, 796 unsigned Depth, 797 Instruction *CxtI) { 798 unsigned BitWidth = DemandedMask.getBitWidth(); 799 Type *ITy = I->getType(); 800 801 KnownBits LHSKnown(BitWidth); 802 KnownBits RHSKnown(BitWidth); 803 804 // Despite the fact that we can't simplify this instruction in all User's 805 // context, we can at least compute the known bits, and we can 806 // do simplifications that apply to *just* the one user if we know that 807 // this instruction has a simpler value in that context. 808 switch (I->getOpcode()) { 809 case Instruction::And: { 810 // If either the LHS or the RHS are Zero, the result is zero. 811 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 812 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 813 CxtI); 814 815 // Output known-0 are known to be clear if zero in either the LHS | RHS. 816 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 817 // Output known-1 bits are only known if set in both the LHS & RHS. 818 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 819 820 // If the client is only demanding bits that we know, return the known 821 // constant. 822 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 823 return Constant::getIntegerValue(ITy, IKnownOne); 824 825 // If all of the demanded bits are known 1 on one side, return the other. 826 // These bits cannot contribute to the result of the 'and' in this 827 // context. 828 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 829 return I->getOperand(0); 830 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 831 return I->getOperand(1); 832 833 Known.Zero = std::move(IKnownZero); 834 Known.One = std::move(IKnownOne); 835 break; 836 } 837 case Instruction::Or: { 838 // We can simplify (X|Y) -> X or Y in the user's context if we know that 839 // only bits from X or Y are demanded. 840 841 // If either the LHS or the RHS are One, the result is One. 842 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 843 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 844 CxtI); 845 846 // Output known-0 bits are only known if clear in both the LHS & RHS. 847 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 848 // Output known-1 are known to be set if set in either the LHS | RHS. 849 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 850 851 // If the client is only demanding bits that we know, return the known 852 // constant. 853 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 854 return Constant::getIntegerValue(ITy, IKnownOne); 855 856 // If all of the demanded bits are known zero on one side, return the 857 // other. These bits cannot contribute to the result of the 'or' in this 858 // context. 859 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 860 return I->getOperand(0); 861 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 862 return I->getOperand(1); 863 864 Known.Zero = std::move(IKnownZero); 865 Known.One = std::move(IKnownOne); 866 break; 867 } 868 case Instruction::Xor: { 869 // We can simplify (X^Y) -> X or Y in the user's context if we know that 870 // only bits from X or Y are demanded. 871 872 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 873 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 874 CxtI); 875 876 // Output known-0 bits are known if clear or set in both the LHS & RHS. 877 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 878 (RHSKnown.One & LHSKnown.One); 879 // Output known-1 are known to be set if set in only one of the LHS, RHS. 880 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 881 (RHSKnown.One & LHSKnown.Zero); 882 883 // If the client is only demanding bits that we know, return the known 884 // constant. 885 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 886 return Constant::getIntegerValue(ITy, IKnownOne); 887 888 // If all of the demanded bits are known zero on one side, return the 889 // other. 890 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 891 return I->getOperand(0); 892 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 893 return I->getOperand(1); 894 895 // Output known-0 bits are known if clear or set in both the LHS & RHS. 896 Known.Zero = std::move(IKnownZero); 897 // Output known-1 are known to be set if set in only one of the LHS, RHS. 898 Known.One = std::move(IKnownOne); 899 break; 900 } 901 default: 902 // Compute the Known bits to simplify things downstream. 903 computeKnownBits(I, Known, Depth, CxtI); 904 905 // If this user is only demanding bits that we know, return the known 906 // constant. 907 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 908 return Constant::getIntegerValue(ITy, Known.One); 909 910 break; 911 } 912 913 return nullptr; 914 } 915 916 917 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 918 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 919 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 920 /// of "C2-C1". 921 /// 922 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 923 /// ..., bn}, without considering the specific value X is holding. 924 /// This transformation is legal iff one of following conditions is hold: 925 /// 1) All the bit in S are 0, in this case E1 == E2. 926 /// 2) We don't care those bits in S, per the input DemandedMask. 927 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 928 /// rest bits. 929 /// 930 /// Currently we only test condition 2). 931 /// 932 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 933 /// not successful. 934 Value * 935 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 936 Instruction *Shl, const APInt &ShlOp1, 937 const APInt &DemandedMask, 938 KnownBits &Known) { 939 if (!ShlOp1 || !ShrOp1) 940 return nullptr; // No-op. 941 942 Value *VarX = Shr->getOperand(0); 943 Type *Ty = VarX->getType(); 944 unsigned BitWidth = Ty->getScalarSizeInBits(); 945 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 946 return nullptr; // Undef. 947 948 unsigned ShlAmt = ShlOp1.getZExtValue(); 949 unsigned ShrAmt = ShrOp1.getZExtValue(); 950 951 Known.One.clearAllBits(); 952 Known.Zero.setLowBits(ShlAmt - 1); 953 Known.Zero &= DemandedMask; 954 955 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 956 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 957 958 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 959 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 960 (BitMask1.ashr(ShrAmt) << ShlAmt); 961 962 if (ShrAmt <= ShlAmt) { 963 BitMask2 <<= (ShlAmt - ShrAmt); 964 } else { 965 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 966 BitMask2.ashr(ShrAmt - ShlAmt); 967 } 968 969 // Check if condition-2 (see the comment to this function) is satified. 970 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 971 if (ShrAmt == ShlAmt) 972 return VarX; 973 974 if (!Shr->hasOneUse()) 975 return nullptr; 976 977 BinaryOperator *New; 978 if (ShrAmt < ShlAmt) { 979 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 980 New = BinaryOperator::CreateShl(VarX, Amt); 981 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 982 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 983 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 984 } else { 985 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 986 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 987 BinaryOperator::CreateAShr(VarX, Amt); 988 if (cast<BinaryOperator>(Shr)->isExact()) 989 New->setIsExact(true); 990 } 991 992 return InsertNewInstWith(New, *Shl); 993 } 994 995 return nullptr; 996 } 997 998 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 999 /// 1000 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 1001 /// struct returns. 1002 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, 1003 APInt DemandedElts, 1004 int DMaskIdx) { 1005 1006 // FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported. 1007 if (DMaskIdx < 0 && 1008 II->getType()->getScalarSizeInBits() != 32 && 1009 DemandedElts.getActiveBits() == 3) 1010 return nullptr; 1011 1012 unsigned VWidth = II->getType()->getVectorNumElements(); 1013 if (VWidth == 1) 1014 return nullptr; 1015 1016 IRBuilderBase::InsertPointGuard Guard(Builder); 1017 Builder.SetInsertPoint(II); 1018 1019 // Assume the arguments are unchanged and later override them, if needed. 1020 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 1021 1022 if (DMaskIdx < 0) { 1023 // Buffer case. 1024 1025 const unsigned ActiveBits = DemandedElts.getActiveBits(); 1026 const unsigned UnusedComponentsAtFront = DemandedElts.countTrailingZeros(); 1027 1028 // Start assuming the prefix of elements is demanded, but possibly clear 1029 // some other bits if there are trailing zeros (unused components at front) 1030 // and update offset. 1031 DemandedElts = (1 << ActiveBits) - 1; 1032 1033 if (UnusedComponentsAtFront > 0) { 1034 static const unsigned InvalidOffsetIdx = 0xf; 1035 1036 unsigned OffsetIdx; 1037 switch (II->getIntrinsicID()) { 1038 case Intrinsic::amdgcn_raw_buffer_load: 1039 OffsetIdx = 1; 1040 break; 1041 case Intrinsic::amdgcn_s_buffer_load: 1042 // If resulting type is vec3, there is no point in trimming the 1043 // load with updated offset, as the vec3 would most likely be widened to 1044 // vec4 anyway during lowering. 1045 if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1046 OffsetIdx = InvalidOffsetIdx; 1047 else 1048 OffsetIdx = 1; 1049 break; 1050 case Intrinsic::amdgcn_struct_buffer_load: 1051 OffsetIdx = 2; 1052 break; 1053 default: 1054 // TODO: handle tbuffer* intrinsics. 1055 OffsetIdx = InvalidOffsetIdx; 1056 break; 1057 } 1058 1059 if (OffsetIdx != InvalidOffsetIdx) { 1060 // Clear demanded bits and update the offset. 1061 DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1062 auto *Offset = II->getArgOperand(OffsetIdx); 1063 unsigned SingleComponentSizeInBits = 1064 getDataLayout().getTypeSizeInBits(II->getType()->getScalarType()); 1065 unsigned OffsetAdd = 1066 UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1067 auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1068 Args[OffsetIdx] = Builder.CreateAdd(Offset, OffsetAddVal); 1069 } 1070 } 1071 } else { 1072 // Image case. 1073 1074 ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx)); 1075 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1076 1077 // Mask off values that are undefined because the dmask doesn't cover them 1078 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; 1079 1080 unsigned NewDMaskVal = 0; 1081 unsigned OrigLoadIdx = 0; 1082 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1083 const unsigned Bit = 1 << SrcIdx; 1084 if (!!(DMaskVal & Bit)) { 1085 if (!!DemandedElts[OrigLoadIdx]) 1086 NewDMaskVal |= Bit; 1087 OrigLoadIdx++; 1088 } 1089 } 1090 1091 if (DMaskVal != NewDMaskVal) 1092 Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1093 } 1094 1095 unsigned NewNumElts = DemandedElts.countPopulation(); 1096 if (!NewNumElts) 1097 return UndefValue::get(II->getType()); 1098 1099 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1100 if (DMaskIdx >= 0) 1101 II->setArgOperand(DMaskIdx, Args[DMaskIdx]); 1102 return nullptr; 1103 } 1104 1105 // Determine the overload types of the original intrinsic. 1106 auto IID = II->getIntrinsicID(); 1107 SmallVector<Intrinsic::IITDescriptor, 16> Table; 1108 getIntrinsicInfoTableEntries(IID, Table); 1109 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1110 1111 // Validate function argument and return types, extracting overloaded types 1112 // along the way. 1113 FunctionType *FTy = II->getCalledFunction()->getFunctionType(); 1114 SmallVector<Type *, 6> OverloadTys; 1115 Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys); 1116 1117 Module *M = II->getParent()->getParent()->getParent(); 1118 Type *EltTy = II->getType()->getVectorElementType(); 1119 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts); 1120 1121 OverloadTys[0] = NewTy; 1122 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys); 1123 1124 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); 1125 NewCall->takeName(II); 1126 NewCall->copyMetadata(*II); 1127 1128 if (NewNumElts == 1) { 1129 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall, 1130 DemandedElts.countTrailingZeros()); 1131 } 1132 1133 SmallVector<uint32_t, 8> EltMask; 1134 unsigned NewLoadIdx = 0; 1135 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1136 if (!!DemandedElts[OrigLoadIdx]) 1137 EltMask.push_back(NewLoadIdx++); 1138 else 1139 EltMask.push_back(NewNumElts); 1140 } 1141 1142 Value *Shuffle = 1143 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask); 1144 1145 return Shuffle; 1146 } 1147 1148 /// The specified value produces a vector with any number of elements. 1149 /// This method analyzes which elements of the operand are undef and returns 1150 /// that information in UndefElts. 1151 /// 1152 /// DemandedElts contains the set of elements that are actually used by the 1153 /// caller, and by default (AllowMultipleUsers equals false) the value is 1154 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1155 /// to true, DemandedElts refers to the union of sets of elements that are 1156 /// used by all callers. 1157 /// 1158 /// If the information about demanded elements can be used to simplify the 1159 /// operation, the operation is simplified, then the resultant value is 1160 /// returned. This returns null if no change was made. 1161 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 1162 APInt &UndefElts, 1163 unsigned Depth, 1164 bool AllowMultipleUsers) { 1165 unsigned VWidth = V->getType()->getVectorNumElements(); 1166 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1167 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1168 1169 if (isa<UndefValue>(V)) { 1170 // If the entire vector is undefined, just return this info. 1171 UndefElts = EltMask; 1172 return nullptr; 1173 } 1174 1175 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 1176 UndefElts = EltMask; 1177 return UndefValue::get(V->getType()); 1178 } 1179 1180 UndefElts = 0; 1181 1182 if (auto *C = dyn_cast<Constant>(V)) { 1183 // Check if this is identity. If so, return 0 since we are not simplifying 1184 // anything. 1185 if (DemandedElts.isAllOnesValue()) 1186 return nullptr; 1187 1188 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1189 Constant *Undef = UndefValue::get(EltTy); 1190 SmallVector<Constant*, 16> Elts; 1191 for (unsigned i = 0; i != VWidth; ++i) { 1192 if (!DemandedElts[i]) { // If not demanded, set to undef. 1193 Elts.push_back(Undef); 1194 UndefElts.setBit(i); 1195 continue; 1196 } 1197 1198 Constant *Elt = C->getAggregateElement(i); 1199 if (!Elt) return nullptr; 1200 1201 if (isa<UndefValue>(Elt)) { // Already undef. 1202 Elts.push_back(Undef); 1203 UndefElts.setBit(i); 1204 } else { // Otherwise, defined. 1205 Elts.push_back(Elt); 1206 } 1207 } 1208 1209 // If we changed the constant, return it. 1210 Constant *NewCV = ConstantVector::get(Elts); 1211 return NewCV != C ? NewCV : nullptr; 1212 } 1213 1214 // Limit search depth. 1215 if (Depth == 10) 1216 return nullptr; 1217 1218 if (!AllowMultipleUsers) { 1219 // If multiple users are using the root value, proceed with 1220 // simplification conservatively assuming that all elements 1221 // are needed. 1222 if (!V->hasOneUse()) { 1223 // Quit if we find multiple users of a non-root value though. 1224 // They'll be handled when it's their turn to be visited by 1225 // the main instcombine process. 1226 if (Depth != 0) 1227 // TODO: Just compute the UndefElts information recursively. 1228 return nullptr; 1229 1230 // Conservatively assume that all elements are needed. 1231 DemandedElts = EltMask; 1232 } 1233 } 1234 1235 Instruction *I = dyn_cast<Instruction>(V); 1236 if (!I) return nullptr; // Only analyze instructions. 1237 1238 bool MadeChange = false; 1239 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1240 APInt Demanded, APInt &Undef) { 1241 auto *II = dyn_cast<IntrinsicInst>(Inst); 1242 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1243 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1244 if (II) 1245 II->setArgOperand(OpNum, V); 1246 else 1247 Inst->setOperand(OpNum, V); 1248 MadeChange = true; 1249 } 1250 }; 1251 1252 APInt UndefElts2(VWidth, 0); 1253 APInt UndefElts3(VWidth, 0); 1254 switch (I->getOpcode()) { 1255 default: break; 1256 1257 case Instruction::GetElementPtr: { 1258 // The LangRef requires that struct geps have all constant indices. As 1259 // such, we can't convert any operand to partial undef. 1260 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1261 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1262 I != E; I++) 1263 if (I.isStruct()) 1264 return true;; 1265 return false; 1266 }; 1267 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1268 break; 1269 1270 // Conservatively track the demanded elements back through any vector 1271 // operands we may have. We know there must be at least one, or we 1272 // wouldn't have a vector result to get here. Note that we intentionally 1273 // merge the undef bits here since gepping with either an undef base or 1274 // index results in undef. 1275 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1276 if (isa<UndefValue>(I->getOperand(i))) { 1277 // If the entire vector is undefined, just return this info. 1278 UndefElts = EltMask; 1279 return nullptr; 1280 } 1281 if (I->getOperand(i)->getType()->isVectorTy()) { 1282 APInt UndefEltsOp(VWidth, 0); 1283 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1284 UndefElts |= UndefEltsOp; 1285 } 1286 } 1287 1288 break; 1289 } 1290 case Instruction::InsertElement: { 1291 // If this is a variable index, we don't know which element it overwrites. 1292 // demand exactly the same input as we produce. 1293 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1294 if (!Idx) { 1295 // Note that we can't propagate undef elt info, because we don't know 1296 // which elt is getting updated. 1297 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1298 break; 1299 } 1300 1301 // The element inserted overwrites whatever was there, so the input demanded 1302 // set is simpler than the output set. 1303 unsigned IdxNo = Idx->getZExtValue(); 1304 APInt PreInsertDemandedElts = DemandedElts; 1305 if (IdxNo < VWidth) 1306 PreInsertDemandedElts.clearBit(IdxNo); 1307 1308 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1309 1310 // If this is inserting an element that isn't demanded, remove this 1311 // insertelement. 1312 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1313 Worklist.push(I); 1314 return I->getOperand(0); 1315 } 1316 1317 // The inserted element is defined. 1318 UndefElts.clearBit(IdxNo); 1319 break; 1320 } 1321 case Instruction::ShuffleVector: { 1322 auto *Shuffle = cast<ShuffleVectorInst>(I); 1323 assert(Shuffle->getOperand(0)->getType() == 1324 Shuffle->getOperand(1)->getType() && 1325 "Expected shuffle operands to have same type"); 1326 unsigned OpWidth = 1327 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1328 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1329 for (unsigned i = 0; i < VWidth; i++) { 1330 if (DemandedElts[i]) { 1331 unsigned MaskVal = Shuffle->getMaskValue(i); 1332 if (MaskVal != -1u) { 1333 assert(MaskVal < OpWidth * 2 && 1334 "shufflevector mask index out of range!"); 1335 if (MaskVal < OpWidth) 1336 LeftDemanded.setBit(MaskVal); 1337 else 1338 RightDemanded.setBit(MaskVal - OpWidth); 1339 } 1340 } 1341 } 1342 1343 APInt LHSUndefElts(OpWidth, 0); 1344 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1345 1346 APInt RHSUndefElts(OpWidth, 0); 1347 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1348 1349 // If this shuffle does not change the vector length and the elements 1350 // demanded by this shuffle are an identity mask, then this shuffle is 1351 // unnecessary. 1352 // 1353 // We are assuming canonical form for the mask, so the source vector is 1354 // operand 0 and operand 1 is not used. 1355 // 1356 // Note that if an element is demanded and this shuffle mask is undefined 1357 // for that element, then the shuffle is not considered an identity 1358 // operation. The shuffle prevents poison from the operand vector from 1359 // leaking to the result by replacing poison with an undefined value. 1360 if (VWidth == OpWidth) { 1361 bool IsIdentityShuffle = true; 1362 for (unsigned i = 0; i < VWidth; i++) { 1363 unsigned MaskVal = Shuffle->getMaskValue(i); 1364 if (DemandedElts[i] && i != MaskVal) { 1365 IsIdentityShuffle = false; 1366 break; 1367 } 1368 } 1369 if (IsIdentityShuffle) 1370 return Shuffle->getOperand(0); 1371 } 1372 1373 bool NewUndefElts = false; 1374 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1375 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1376 bool LHSUniform = true; 1377 bool RHSUniform = true; 1378 for (unsigned i = 0; i < VWidth; i++) { 1379 unsigned MaskVal = Shuffle->getMaskValue(i); 1380 if (MaskVal == -1u) { 1381 UndefElts.setBit(i); 1382 } else if (!DemandedElts[i]) { 1383 NewUndefElts = true; 1384 UndefElts.setBit(i); 1385 } else if (MaskVal < OpWidth) { 1386 if (LHSUndefElts[MaskVal]) { 1387 NewUndefElts = true; 1388 UndefElts.setBit(i); 1389 } else { 1390 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1391 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1392 LHSUniform = LHSUniform && (MaskVal == i); 1393 } 1394 } else { 1395 if (RHSUndefElts[MaskVal - OpWidth]) { 1396 NewUndefElts = true; 1397 UndefElts.setBit(i); 1398 } else { 1399 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1400 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1401 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1402 } 1403 } 1404 } 1405 1406 // Try to transform shuffle with constant vector and single element from 1407 // this constant vector to single insertelement instruction. 1408 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1409 // insertelement V, C[ci], ci-n 1410 if (OpWidth == Shuffle->getType()->getNumElements()) { 1411 Value *Op = nullptr; 1412 Constant *Value = nullptr; 1413 unsigned Idx = -1u; 1414 1415 // Find constant vector with the single element in shuffle (LHS or RHS). 1416 if (LHSIdx < OpWidth && RHSUniform) { 1417 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1418 Op = Shuffle->getOperand(1); 1419 Value = CV->getOperand(LHSValIdx); 1420 Idx = LHSIdx; 1421 } 1422 } 1423 if (RHSIdx < OpWidth && LHSUniform) { 1424 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1425 Op = Shuffle->getOperand(0); 1426 Value = CV->getOperand(RHSValIdx); 1427 Idx = RHSIdx; 1428 } 1429 } 1430 // Found constant vector with single element - convert to insertelement. 1431 if (Op && Value) { 1432 Instruction *New = InsertElementInst::Create( 1433 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1434 Shuffle->getName()); 1435 InsertNewInstWith(New, *Shuffle); 1436 return New; 1437 } 1438 } 1439 if (NewUndefElts) { 1440 // Add additional discovered undefs. 1441 SmallVector<Constant*, 16> Elts; 1442 for (unsigned i = 0; i < VWidth; ++i) { 1443 if (UndefElts[i]) 1444 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1445 else 1446 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1447 Shuffle->getMaskValue(i))); 1448 } 1449 I->setOperand(2, ConstantVector::get(Elts)); 1450 MadeChange = true; 1451 } 1452 break; 1453 } 1454 case Instruction::Select: { 1455 // If this is a vector select, try to transform the select condition based 1456 // on the current demanded elements. 1457 SelectInst *Sel = cast<SelectInst>(I); 1458 if (Sel->getCondition()->getType()->isVectorTy()) { 1459 // TODO: We are not doing anything with UndefElts based on this call. 1460 // It is overwritten below based on the other select operands. If an 1461 // element of the select condition is known undef, then we are free to 1462 // choose the output value from either arm of the select. If we know that 1463 // one of those values is undef, then the output can be undef. 1464 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1465 } 1466 1467 // Next, see if we can transform the arms of the select. 1468 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1469 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1470 for (unsigned i = 0; i < VWidth; i++) { 1471 // isNullValue() always returns false when called on a ConstantExpr. 1472 // Skip constant expressions to avoid propagating incorrect information. 1473 Constant *CElt = CV->getAggregateElement(i); 1474 if (isa<ConstantExpr>(CElt)) 1475 continue; 1476 // TODO: If a select condition element is undef, we can demand from 1477 // either side. If one side is known undef, choosing that side would 1478 // propagate undef. 1479 if (CElt->isNullValue()) 1480 DemandedLHS.clearBit(i); 1481 else 1482 DemandedRHS.clearBit(i); 1483 } 1484 } 1485 1486 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1487 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1488 1489 // Output elements are undefined if the element from each arm is undefined. 1490 // TODO: This can be improved. See comment in select condition handling. 1491 UndefElts = UndefElts2 & UndefElts3; 1492 break; 1493 } 1494 case Instruction::BitCast: { 1495 // Vector->vector casts only. 1496 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1497 if (!VTy) break; 1498 unsigned InVWidth = VTy->getNumElements(); 1499 APInt InputDemandedElts(InVWidth, 0); 1500 UndefElts2 = APInt(InVWidth, 0); 1501 unsigned Ratio; 1502 1503 if (VWidth == InVWidth) { 1504 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1505 // elements as are demanded of us. 1506 Ratio = 1; 1507 InputDemandedElts = DemandedElts; 1508 } else if ((VWidth % InVWidth) == 0) { 1509 // If the number of elements in the output is a multiple of the number of 1510 // elements in the input then an input element is live if any of the 1511 // corresponding output elements are live. 1512 Ratio = VWidth / InVWidth; 1513 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1514 if (DemandedElts[OutIdx]) 1515 InputDemandedElts.setBit(OutIdx / Ratio); 1516 } else if ((InVWidth % VWidth) == 0) { 1517 // If the number of elements in the input is a multiple of the number of 1518 // elements in the output then an input element is live if the 1519 // corresponding output element is live. 1520 Ratio = InVWidth / VWidth; 1521 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1522 if (DemandedElts[InIdx / Ratio]) 1523 InputDemandedElts.setBit(InIdx); 1524 } else { 1525 // Unsupported so far. 1526 break; 1527 } 1528 1529 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1530 1531 if (VWidth == InVWidth) { 1532 UndefElts = UndefElts2; 1533 } else if ((VWidth % InVWidth) == 0) { 1534 // If the number of elements in the output is a multiple of the number of 1535 // elements in the input then an output element is undef if the 1536 // corresponding input element is undef. 1537 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1538 if (UndefElts2[OutIdx / Ratio]) 1539 UndefElts.setBit(OutIdx); 1540 } else if ((InVWidth % VWidth) == 0) { 1541 // If the number of elements in the input is a multiple of the number of 1542 // elements in the output then an output element is undef if all of the 1543 // corresponding input elements are undef. 1544 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1545 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1546 if (SubUndef.countPopulation() == Ratio) 1547 UndefElts.setBit(OutIdx); 1548 } 1549 } else { 1550 llvm_unreachable("Unimp"); 1551 } 1552 break; 1553 } 1554 case Instruction::FPTrunc: 1555 case Instruction::FPExt: 1556 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1557 break; 1558 1559 case Instruction::Call: { 1560 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1561 if (!II) break; 1562 switch (II->getIntrinsicID()) { 1563 case Intrinsic::masked_gather: // fallthrough 1564 case Intrinsic::masked_load: { 1565 // Subtlety: If we load from a pointer, the pointer must be valid 1566 // regardless of whether the element is demanded. Doing otherwise risks 1567 // segfaults which didn't exist in the original program. 1568 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1569 DemandedPassThrough(DemandedElts); 1570 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1571 for (unsigned i = 0; i < VWidth; i++) { 1572 Constant *CElt = CV->getAggregateElement(i); 1573 if (CElt->isNullValue()) 1574 DemandedPtrs.clearBit(i); 1575 else if (CElt->isAllOnesValue()) 1576 DemandedPassThrough.clearBit(i); 1577 } 1578 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1579 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1580 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1581 1582 // Output elements are undefined if the element from both sources are. 1583 // TODO: can strengthen via mask as well. 1584 UndefElts = UndefElts2 & UndefElts3; 1585 break; 1586 } 1587 case Intrinsic::x86_xop_vfrcz_ss: 1588 case Intrinsic::x86_xop_vfrcz_sd: 1589 // The instructions for these intrinsics are speced to zero upper bits not 1590 // pass them through like other scalar intrinsics. So we shouldn't just 1591 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1592 // Instead we should return a zero vector. 1593 if (!DemandedElts[0]) { 1594 Worklist.push(II); 1595 return ConstantAggregateZero::get(II->getType()); 1596 } 1597 1598 // Only the lower element is used. 1599 DemandedElts = 1; 1600 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1601 1602 // Only the lower element is undefined. The high elements are zero. 1603 UndefElts = UndefElts[0]; 1604 break; 1605 1606 // Unary scalar-as-vector operations that work column-wise. 1607 case Intrinsic::x86_sse_rcp_ss: 1608 case Intrinsic::x86_sse_rsqrt_ss: 1609 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1610 1611 // If lowest element of a scalar op isn't used then use Arg0. 1612 if (!DemandedElts[0]) { 1613 Worklist.push(II); 1614 return II->getArgOperand(0); 1615 } 1616 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1617 // checks). 1618 break; 1619 1620 // Binary scalar-as-vector operations that work column-wise. The high 1621 // elements come from operand 0. The low element is a function of both 1622 // operands. 1623 case Intrinsic::x86_sse_min_ss: 1624 case Intrinsic::x86_sse_max_ss: 1625 case Intrinsic::x86_sse_cmp_ss: 1626 case Intrinsic::x86_sse2_min_sd: 1627 case Intrinsic::x86_sse2_max_sd: 1628 case Intrinsic::x86_sse2_cmp_sd: { 1629 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1630 1631 // If lowest element of a scalar op isn't used then use Arg0. 1632 if (!DemandedElts[0]) { 1633 Worklist.push(II); 1634 return II->getArgOperand(0); 1635 } 1636 1637 // Only lower element is used for operand 1. 1638 DemandedElts = 1; 1639 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1640 1641 // Lower element is undefined if both lower elements are undefined. 1642 // Consider things like undef&0. The result is known zero, not undef. 1643 if (!UndefElts2[0]) 1644 UndefElts.clearBit(0); 1645 1646 break; 1647 } 1648 1649 // Binary scalar-as-vector operations that work column-wise. The high 1650 // elements come from operand 0 and the low element comes from operand 1. 1651 case Intrinsic::x86_sse41_round_ss: 1652 case Intrinsic::x86_sse41_round_sd: { 1653 // Don't use the low element of operand 0. 1654 APInt DemandedElts2 = DemandedElts; 1655 DemandedElts2.clearBit(0); 1656 simplifyAndSetOp(II, 0, DemandedElts2, UndefElts); 1657 1658 // If lowest element of a scalar op isn't used then use Arg0. 1659 if (!DemandedElts[0]) { 1660 Worklist.push(II); 1661 return II->getArgOperand(0); 1662 } 1663 1664 // Only lower element is used for operand 1. 1665 DemandedElts = 1; 1666 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1667 1668 // Take the high undef elements from operand 0 and take the lower element 1669 // from operand 1. 1670 UndefElts.clearBit(0); 1671 UndefElts |= UndefElts2[0]; 1672 break; 1673 } 1674 1675 // Three input scalar-as-vector operations that work column-wise. The high 1676 // elements come from operand 0 and the low element is a function of all 1677 // three inputs. 1678 case Intrinsic::x86_avx512_mask_add_ss_round: 1679 case Intrinsic::x86_avx512_mask_div_ss_round: 1680 case Intrinsic::x86_avx512_mask_mul_ss_round: 1681 case Intrinsic::x86_avx512_mask_sub_ss_round: 1682 case Intrinsic::x86_avx512_mask_max_ss_round: 1683 case Intrinsic::x86_avx512_mask_min_ss_round: 1684 case Intrinsic::x86_avx512_mask_add_sd_round: 1685 case Intrinsic::x86_avx512_mask_div_sd_round: 1686 case Intrinsic::x86_avx512_mask_mul_sd_round: 1687 case Intrinsic::x86_avx512_mask_sub_sd_round: 1688 case Intrinsic::x86_avx512_mask_max_sd_round: 1689 case Intrinsic::x86_avx512_mask_min_sd_round: 1690 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1691 1692 // If lowest element of a scalar op isn't used then use Arg0. 1693 if (!DemandedElts[0]) { 1694 Worklist.push(II); 1695 return II->getArgOperand(0); 1696 } 1697 1698 // Only lower element is used for operand 1 and 2. 1699 DemandedElts = 1; 1700 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1701 simplifyAndSetOp(II, 2, DemandedElts, UndefElts3); 1702 1703 // Lower element is undefined if all three lower elements are undefined. 1704 // Consider things like undef&0. The result is known zero, not undef. 1705 if (!UndefElts2[0] || !UndefElts3[0]) 1706 UndefElts.clearBit(0); 1707 1708 break; 1709 1710 case Intrinsic::x86_sse2_packssdw_128: 1711 case Intrinsic::x86_sse2_packsswb_128: 1712 case Intrinsic::x86_sse2_packuswb_128: 1713 case Intrinsic::x86_sse41_packusdw: 1714 case Intrinsic::x86_avx2_packssdw: 1715 case Intrinsic::x86_avx2_packsswb: 1716 case Intrinsic::x86_avx2_packusdw: 1717 case Intrinsic::x86_avx2_packuswb: 1718 case Intrinsic::x86_avx512_packssdw_512: 1719 case Intrinsic::x86_avx512_packsswb_512: 1720 case Intrinsic::x86_avx512_packusdw_512: 1721 case Intrinsic::x86_avx512_packuswb_512: { 1722 auto *Ty0 = II->getArgOperand(0)->getType(); 1723 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1724 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1725 1726 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1727 unsigned VWidthPerLane = VWidth / NumLanes; 1728 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1729 1730 // Per lane, pack the elements of the first input and then the second. 1731 // e.g. 1732 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1733 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1734 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1735 APInt OpDemandedElts(InnerVWidth, 0); 1736 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1737 unsigned LaneIdx = Lane * VWidthPerLane; 1738 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1739 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1740 if (DemandedElts[Idx]) 1741 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1742 } 1743 } 1744 1745 // Demand elements from the operand. 1746 APInt OpUndefElts(InnerVWidth, 0); 1747 simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts); 1748 1749 // Pack the operand's UNDEF elements, one lane at a time. 1750 OpUndefElts = OpUndefElts.zext(VWidth); 1751 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1752 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1753 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1754 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1755 UndefElts |= LaneElts; 1756 } 1757 } 1758 break; 1759 } 1760 1761 // PSHUFB 1762 case Intrinsic::x86_ssse3_pshuf_b_128: 1763 case Intrinsic::x86_avx2_pshuf_b: 1764 case Intrinsic::x86_avx512_pshuf_b_512: 1765 // PERMILVAR 1766 case Intrinsic::x86_avx_vpermilvar_ps: 1767 case Intrinsic::x86_avx_vpermilvar_ps_256: 1768 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1769 case Intrinsic::x86_avx_vpermilvar_pd: 1770 case Intrinsic::x86_avx_vpermilvar_pd_256: 1771 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1772 // PERMV 1773 case Intrinsic::x86_avx2_permd: 1774 case Intrinsic::x86_avx2_permps: { 1775 simplifyAndSetOp(II, 1, DemandedElts, UndefElts); 1776 break; 1777 } 1778 1779 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1780 // in an undefined state. 1781 case Intrinsic::x86_sse4a_extrq: 1782 case Intrinsic::x86_sse4a_extrqi: 1783 case Intrinsic::x86_sse4a_insertq: 1784 case Intrinsic::x86_sse4a_insertqi: 1785 UndefElts.setHighBits(VWidth / 2); 1786 break; 1787 case Intrinsic::amdgcn_buffer_load: 1788 case Intrinsic::amdgcn_buffer_load_format: 1789 case Intrinsic::amdgcn_raw_buffer_load: 1790 case Intrinsic::amdgcn_raw_buffer_load_format: 1791 case Intrinsic::amdgcn_raw_tbuffer_load: 1792 case Intrinsic::amdgcn_s_buffer_load: 1793 case Intrinsic::amdgcn_struct_buffer_load: 1794 case Intrinsic::amdgcn_struct_buffer_load_format: 1795 case Intrinsic::amdgcn_struct_tbuffer_load: 1796 case Intrinsic::amdgcn_tbuffer_load: 1797 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts); 1798 default: { 1799 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) 1800 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0); 1801 1802 break; 1803 } 1804 } // switch on IntrinsicID 1805 break; 1806 } // case Call 1807 } // switch on Opcode 1808 1809 // TODO: We bail completely on integer div/rem and shifts because they have 1810 // UB/poison potential, but that should be refined. 1811 BinaryOperator *BO; 1812 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1813 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1814 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1815 1816 // Any change to an instruction with potential poison must clear those flags 1817 // because we can not guarantee those constraints now. Other analysis may 1818 // determine that it is safe to re-apply the flags. 1819 if (MadeChange) 1820 BO->dropPoisonGeneratingFlags(); 1821 1822 // Output elements are undefined if both are undefined. Consider things 1823 // like undef & 0. The result is known zero, not undef. 1824 UndefElts &= UndefElts2; 1825 } 1826 1827 // If we've proven all of the lanes undef, return an undef value. 1828 // TODO: Intersect w/demanded lanes 1829 if (UndefElts.isAllOnesValue()) 1830 return UndefValue::get(I->getType());; 1831 1832 return MadeChange ? I : nullptr; 1833 } 1834