1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstCombineInternal.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 
21 using namespace llvm;
22 using namespace llvm::PatternMatch;
23 
24 #define DEBUG_TYPE "instcombine"
25 
26 namespace {
27 
28 struct AMDGPUImageDMaskIntrinsic {
29   unsigned Intr;
30 };
31 
32 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
33 #include "InstCombineTables.inc"
34 
35 } // end anonymous namespace
36 
37 /// Check to see if the specified operand of the specified instruction is a
38 /// constant integer. If so, check to see if there are any bits set in the
39 /// constant that are not demanded. If so, shrink the constant and return true.
40 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
41                                    const APInt &Demanded) {
42   assert(I && "No instruction?");
43   assert(OpNo < I->getNumOperands() && "Operand index too large");
44 
45   // The operand must be a constant integer or splat integer.
46   Value *Op = I->getOperand(OpNo);
47   const APInt *C;
48   if (!match(Op, m_APInt(C)))
49     return false;
50 
51   // If there are no bits set that aren't demanded, nothing to do.
52   if (C->isSubsetOf(Demanded))
53     return false;
54 
55   // This instruction is producing bits that are not demanded. Shrink the RHS.
56   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
57 
58   return true;
59 }
60 
61 
62 
63 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
64 /// the instruction has any properties that allow us to simplify its operands.
65 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
66   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
67   KnownBits Known(BitWidth);
68   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
69 
70   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
71                                      0, &Inst);
72   if (!V) return false;
73   if (V == &Inst) return true;
74   replaceInstUsesWith(Inst, V);
75   return true;
76 }
77 
78 /// This form of SimplifyDemandedBits simplifies the specified instruction
79 /// operand if possible, updating it in place. It returns true if it made any
80 /// change and false otherwise.
81 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
82                                         const APInt &DemandedMask,
83                                         KnownBits &Known,
84                                         unsigned Depth) {
85   Use &U = I->getOperandUse(OpNo);
86   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
87                                           Depth, I);
88   if (!NewVal) return false;
89   U = NewVal;
90   return true;
91 }
92 
93 
94 /// This function attempts to replace V with a simpler value based on the
95 /// demanded bits. When this function is called, it is known that only the bits
96 /// set in DemandedMask of the result of V are ever used downstream.
97 /// Consequently, depending on the mask and V, it may be possible to replace V
98 /// with a constant or one of its operands. In such cases, this function does
99 /// the replacement and returns true. In all other cases, it returns false after
100 /// analyzing the expression and setting KnownOne and known to be one in the
101 /// expression. Known.Zero contains all the bits that are known to be zero in
102 /// the expression. These are provided to potentially allow the caller (which
103 /// might recursively be SimplifyDemandedBits itself) to simplify the
104 /// expression.
105 /// Known.One and Known.Zero always follow the invariant that:
106 ///   Known.One & Known.Zero == 0.
107 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
108 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
109 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
110 /// be the same.
111 ///
112 /// This returns null if it did not change anything and it permits no
113 /// simplification.  This returns V itself if it did some simplification of V's
114 /// operands based on the information about what bits are demanded. This returns
115 /// some other non-null value if it found out that V is equal to another value
116 /// in the context where the specified bits are demanded, but not for all users.
117 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
118                                              KnownBits &Known, unsigned Depth,
119                                              Instruction *CxtI) {
120   assert(V != nullptr && "Null pointer of Value???");
121   assert(Depth <= 6 && "Limit Search Depth");
122   uint32_t BitWidth = DemandedMask.getBitWidth();
123   Type *VTy = V->getType();
124   assert(
125       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
126       Known.getBitWidth() == BitWidth &&
127       "Value *V, DemandedMask and Known must have same BitWidth");
128 
129   if (isa<Constant>(V)) {
130     computeKnownBits(V, Known, Depth, CxtI);
131     return nullptr;
132   }
133 
134   Known.resetAll();
135   if (DemandedMask.isNullValue())     // Not demanding any bits from V.
136     return UndefValue::get(VTy);
137 
138   if (Depth == 6)        // Limit search depth.
139     return nullptr;
140 
141   Instruction *I = dyn_cast<Instruction>(V);
142   if (!I) {
143     computeKnownBits(V, Known, Depth, CxtI);
144     return nullptr;        // Only analyze instructions.
145   }
146 
147   // If there are multiple uses of this value and we aren't at the root, then
148   // we can't do any simplifications of the operands, because DemandedMask
149   // only reflects the bits demanded by *one* of the users.
150   if (Depth != 0 && !I->hasOneUse())
151     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
152 
153   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
154 
155   // If this is the root being simplified, allow it to have multiple uses,
156   // just set the DemandedMask to all bits so that we can try to simplify the
157   // operands.  This allows visitTruncInst (for example) to simplify the
158   // operand of a trunc without duplicating all the logic below.
159   if (Depth == 0 && !V->hasOneUse())
160     DemandedMask.setAllBits();
161 
162   switch (I->getOpcode()) {
163   default:
164     computeKnownBits(I, Known, Depth, CxtI);
165     break;
166   case Instruction::And: {
167     // If either the LHS or the RHS are Zero, the result is zero.
168     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
169         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
170                              Depth + 1))
171       return I;
172     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
173     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
174 
175     // Output known-0 are known to be clear if zero in either the LHS | RHS.
176     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
177     // Output known-1 bits are only known if set in both the LHS & RHS.
178     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
179 
180     // If the client is only demanding bits that we know, return the known
181     // constant.
182     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
183       return Constant::getIntegerValue(VTy, IKnownOne);
184 
185     // If all of the demanded bits are known 1 on one side, return the other.
186     // These bits cannot contribute to the result of the 'and'.
187     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
188       return I->getOperand(0);
189     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
190       return I->getOperand(1);
191 
192     // If the RHS is a constant, see if we can simplify it.
193     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
194       return I;
195 
196     Known.Zero = std::move(IKnownZero);
197     Known.One  = std::move(IKnownOne);
198     break;
199   }
200   case Instruction::Or: {
201     // If either the LHS or the RHS are One, the result is One.
202     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
203         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
204                              Depth + 1))
205       return I;
206     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
207     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
208 
209     // Output known-0 bits are only known if clear in both the LHS & RHS.
210     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
211     // Output known-1 are known. to be set if s.et in either the LHS | RHS.
212     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
213 
214     // If the client is only demanding bits that we know, return the known
215     // constant.
216     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
217       return Constant::getIntegerValue(VTy, IKnownOne);
218 
219     // If all of the demanded bits are known zero on one side, return the other.
220     // These bits cannot contribute to the result of the 'or'.
221     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
222       return I->getOperand(0);
223     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
224       return I->getOperand(1);
225 
226     // If the RHS is a constant, see if we can simplify it.
227     if (ShrinkDemandedConstant(I, 1, DemandedMask))
228       return I;
229 
230     Known.Zero = std::move(IKnownZero);
231     Known.One  = std::move(IKnownOne);
232     break;
233   }
234   case Instruction::Xor: {
235     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
236         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
237       return I;
238     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
239     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
240 
241     // Output known-0 bits are known if clear or set in both the LHS & RHS.
242     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
243                        (RHSKnown.One & LHSKnown.One);
244     // Output known-1 are known to be set if set in only one of the LHS, RHS.
245     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
246                        (RHSKnown.One & LHSKnown.Zero);
247 
248     // If the client is only demanding bits that we know, return the known
249     // constant.
250     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
251       return Constant::getIntegerValue(VTy, IKnownOne);
252 
253     // If all of the demanded bits are known zero on one side, return the other.
254     // These bits cannot contribute to the result of the 'xor'.
255     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
256       return I->getOperand(0);
257     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
258       return I->getOperand(1);
259 
260     // If all of the demanded bits are known to be zero on one side or the
261     // other, turn this into an *inclusive* or.
262     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
263     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
264       Instruction *Or =
265         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
266                                  I->getName());
267       return InsertNewInstWith(Or, *I);
268     }
269 
270     // If all of the demanded bits on one side are known, and all of the set
271     // bits on that side are also known to be set on the other side, turn this
272     // into an AND, as we know the bits will be cleared.
273     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
274     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
275         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
276       Constant *AndC = Constant::getIntegerValue(VTy,
277                                                  ~RHSKnown.One & DemandedMask);
278       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
279       return InsertNewInstWith(And, *I);
280     }
281 
282     // If the RHS is a constant, see if we can simplify it.
283     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
284     if (ShrinkDemandedConstant(I, 1, DemandedMask))
285       return I;
286 
287     // If our LHS is an 'and' and if it has one use, and if any of the bits we
288     // are flipping are known to be set, then the xor is just resetting those
289     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
290     // simplifying both of them.
291     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
292       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
293           isa<ConstantInt>(I->getOperand(1)) &&
294           isa<ConstantInt>(LHSInst->getOperand(1)) &&
295           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
296         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
297         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
298         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
299 
300         Constant *AndC =
301           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
302         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
303         InsertNewInstWith(NewAnd, *I);
304 
305         Constant *XorC =
306           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
307         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
308         return InsertNewInstWith(NewXor, *I);
309       }
310 
311     // Output known-0 bits are known if clear or set in both the LHS & RHS.
312     Known.Zero = std::move(IKnownZero);
313     // Output known-1 are known to be set if set in only one of the LHS, RHS.
314     Known.One  = std::move(IKnownOne);
315     break;
316   }
317   case Instruction::Select: {
318     Value *LHS, *RHS;
319     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
320     if (SPF == SPF_UMAX) {
321       // UMax(A, C) == A if ...
322       // The lowest non-zero bit of DemandMask is higher than the highest
323       // non-zero bit of C.
324       const APInt *C;
325       unsigned CTZ = DemandedMask.countTrailingZeros();
326       if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
327         return LHS;
328     } else if (SPF == SPF_UMIN) {
329       // UMin(A, C) == A if ...
330       // The lowest non-zero bit of DemandMask is higher than the highest
331       // non-one bit of C.
332       // This comes from using DeMorgans on the above umax example.
333       const APInt *C;
334       unsigned CTZ = DemandedMask.countTrailingZeros();
335       if (match(RHS, m_APInt(C)) &&
336           CTZ >= C->getBitWidth() - C->countLeadingOnes())
337         return LHS;
338     }
339 
340     // If this is a select as part of any other min/max pattern, don't simplify
341     // any further in case we break the structure.
342     if (SPF != SPF_UNKNOWN)
343       return nullptr;
344 
345     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
346         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
347       return I;
348     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
349     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
350 
351     // If the operands are constants, see if we can simplify them.
352     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
353         ShrinkDemandedConstant(I, 2, DemandedMask))
354       return I;
355 
356     // Only known if known in both the LHS and RHS.
357     Known.One = RHSKnown.One & LHSKnown.One;
358     Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
359     break;
360   }
361   case Instruction::ZExt:
362   case Instruction::Trunc: {
363     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
364 
365     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
366     KnownBits InputKnown(SrcBitWidth);
367     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
368       return I;
369     Known = InputKnown.zextOrTrunc(BitWidth);
370     // Any top bits are known to be zero.
371     if (BitWidth > SrcBitWidth)
372       Known.Zero.setBitsFrom(SrcBitWidth);
373     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
374     break;
375   }
376   case Instruction::BitCast:
377     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
378       return nullptr;  // vector->int or fp->int?
379 
380     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
381       if (VectorType *SrcVTy =
382             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
383         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
384           // Don't touch a bitcast between vectors of different element counts.
385           return nullptr;
386       } else
387         // Don't touch a scalar-to-vector bitcast.
388         return nullptr;
389     } else if (I->getOperand(0)->getType()->isVectorTy())
390       // Don't touch a vector-to-scalar bitcast.
391       return nullptr;
392 
393     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
394       return I;
395     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
396     break;
397   case Instruction::SExt: {
398     // Compute the bits in the result that are not present in the input.
399     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
400 
401     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
402 
403     // If any of the sign extended bits are demanded, we know that the sign
404     // bit is demanded.
405     if (DemandedMask.getActiveBits() > SrcBitWidth)
406       InputDemandedBits.setBit(SrcBitWidth-1);
407 
408     KnownBits InputKnown(SrcBitWidth);
409     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
410       return I;
411 
412     // If the input sign bit is known zero, or if the NewBits are not demanded
413     // convert this into a zero extension.
414     if (InputKnown.isNonNegative() ||
415         DemandedMask.getActiveBits() <= SrcBitWidth) {
416       // Convert to ZExt cast.
417       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
418       return InsertNewInstWith(NewCast, *I);
419      }
420 
421     // If the sign bit of the input is known set or clear, then we know the
422     // top bits of the result.
423     Known = InputKnown.sext(BitWidth);
424     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
425     break;
426   }
427   case Instruction::Add:
428   case Instruction::Sub: {
429     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
430     /// about the high bits of the operands.
431     unsigned NLZ = DemandedMask.countLeadingZeros();
432     // Right fill the mask of bits for this ADD/SUB to demand the most
433     // significant bit and all those below it.
434     APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
435     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
436         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
437         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
438         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
439       if (NLZ > 0) {
440         // Disable the nsw and nuw flags here: We can no longer guarantee that
441         // we won't wrap after simplification. Removing the nsw/nuw flags is
442         // legal here because the top bit is not demanded.
443         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
444         BinOP.setHasNoSignedWrap(false);
445         BinOP.setHasNoUnsignedWrap(false);
446       }
447       return I;
448     }
449 
450     // If we are known to be adding/subtracting zeros to every bit below
451     // the highest demanded bit, we just return the other side.
452     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
453       return I->getOperand(0);
454     // We can't do this with the LHS for subtraction, unless we are only
455     // demanding the LSB.
456     if ((I->getOpcode() == Instruction::Add ||
457          DemandedFromOps.isOneValue()) &&
458         DemandedFromOps.isSubsetOf(LHSKnown.Zero))
459       return I->getOperand(1);
460 
461     // Otherwise just compute the known bits of the result.
462     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
463     Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
464                                         NSW, LHSKnown, RHSKnown);
465     break;
466   }
467   case Instruction::Shl: {
468     const APInt *SA;
469     if (match(I->getOperand(1), m_APInt(SA))) {
470       const APInt *ShrAmt;
471       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
472         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
473           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
474                                                     DemandedMask, Known))
475             return R;
476 
477       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
478       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
479 
480       // If the shift is NUW/NSW, then it does demand the high bits.
481       ShlOperator *IOp = cast<ShlOperator>(I);
482       if (IOp->hasNoSignedWrap())
483         DemandedMaskIn.setHighBits(ShiftAmt+1);
484       else if (IOp->hasNoUnsignedWrap())
485         DemandedMaskIn.setHighBits(ShiftAmt);
486 
487       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
488         return I;
489       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
490       Known.Zero <<= ShiftAmt;
491       Known.One  <<= ShiftAmt;
492       // low bits known zero.
493       if (ShiftAmt)
494         Known.Zero.setLowBits(ShiftAmt);
495     }
496     break;
497   }
498   case Instruction::LShr: {
499     const APInt *SA;
500     if (match(I->getOperand(1), m_APInt(SA))) {
501       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
502 
503       // Unsigned shift right.
504       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
505 
506       // If the shift is exact, then it does demand the low bits (and knows that
507       // they are zero).
508       if (cast<LShrOperator>(I)->isExact())
509         DemandedMaskIn.setLowBits(ShiftAmt);
510 
511       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
512         return I;
513       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
514       Known.Zero.lshrInPlace(ShiftAmt);
515       Known.One.lshrInPlace(ShiftAmt);
516       if (ShiftAmt)
517         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
518     }
519     break;
520   }
521   case Instruction::AShr: {
522     // If this is an arithmetic shift right and only the low-bit is set, we can
523     // always convert this into a logical shr, even if the shift amount is
524     // variable.  The low bit of the shift cannot be an input sign bit unless
525     // the shift amount is >= the size of the datatype, which is undefined.
526     if (DemandedMask.isOneValue()) {
527       // Perform the logical shift right.
528       Instruction *NewVal = BinaryOperator::CreateLShr(
529                         I->getOperand(0), I->getOperand(1), I->getName());
530       return InsertNewInstWith(NewVal, *I);
531     }
532 
533     // If the sign bit is the only bit demanded by this ashr, then there is no
534     // need to do it, the shift doesn't change the high bit.
535     if (DemandedMask.isSignMask())
536       return I->getOperand(0);
537 
538     const APInt *SA;
539     if (match(I->getOperand(1), m_APInt(SA))) {
540       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
541 
542       // Signed shift right.
543       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
544       // If any of the high bits are demanded, we should set the sign bit as
545       // demanded.
546       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
547         DemandedMaskIn.setSignBit();
548 
549       // If the shift is exact, then it does demand the low bits (and knows that
550       // they are zero).
551       if (cast<AShrOperator>(I)->isExact())
552         DemandedMaskIn.setLowBits(ShiftAmt);
553 
554       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
555         return I;
556 
557       unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
558 
559       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
560       // Compute the new bits that are at the top now plus sign bits.
561       APInt HighBits(APInt::getHighBitsSet(
562           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
563       Known.Zero.lshrInPlace(ShiftAmt);
564       Known.One.lshrInPlace(ShiftAmt);
565 
566       // If the input sign bit is known to be zero, or if none of the top bits
567       // are demanded, turn this into an unsigned shift right.
568       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
569       if (Known.Zero[BitWidth-ShiftAmt-1] ||
570           !DemandedMask.intersects(HighBits)) {
571         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
572                                                           I->getOperand(1));
573         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
574         return InsertNewInstWith(LShr, *I);
575       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
576         Known.One |= HighBits;
577       }
578     }
579     break;
580   }
581   case Instruction::UDiv: {
582     // UDiv doesn't demand low bits that are zero in the divisor.
583     const APInt *SA;
584     if (match(I->getOperand(1), m_APInt(SA))) {
585       // If the shift is exact, then it does demand the low bits.
586       if (cast<UDivOperator>(I)->isExact())
587         break;
588 
589       // FIXME: Take the demanded mask of the result into account.
590       unsigned RHSTrailingZeros = SA->countTrailingZeros();
591       APInt DemandedMaskIn =
592           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
593       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
594         return I;
595 
596       // Propagate zero bits from the input.
597       Known.Zero.setHighBits(std::min(
598           BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
599     }
600     break;
601   }
602   case Instruction::SRem:
603     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
604       // X % -1 demands all the bits because we don't want to introduce
605       // INT_MIN % -1 (== undef) by accident.
606       if (Rem->isMinusOne())
607         break;
608       APInt RA = Rem->getValue().abs();
609       if (RA.isPowerOf2()) {
610         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
611           return I->getOperand(0);
612 
613         APInt LowBits = RA - 1;
614         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
615         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
616           return I;
617 
618         // The low bits of LHS are unchanged by the srem.
619         Known.Zero = LHSKnown.Zero & LowBits;
620         Known.One = LHSKnown.One & LowBits;
621 
622         // If LHS is non-negative or has all low bits zero, then the upper bits
623         // are all zero.
624         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
625           Known.Zero |= ~LowBits;
626 
627         // If LHS is negative and not all low bits are zero, then the upper bits
628         // are all one.
629         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
630           Known.One |= ~LowBits;
631 
632         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
633         break;
634       }
635     }
636 
637     // The sign bit is the LHS's sign bit, except when the result of the
638     // remainder is zero.
639     if (DemandedMask.isSignBitSet()) {
640       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
641       // If it's known zero, our sign bit is also zero.
642       if (LHSKnown.isNonNegative())
643         Known.makeNonNegative();
644     }
645     break;
646   case Instruction::URem: {
647     KnownBits Known2(BitWidth);
648     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
649     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
650         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
651       return I;
652 
653     unsigned Leaders = Known2.countMinLeadingZeros();
654     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
655     break;
656   }
657   case Instruction::Call:
658     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
659       switch (II->getIntrinsicID()) {
660       default: break;
661       case Intrinsic::bswap: {
662         // If the only bits demanded come from one byte of the bswap result,
663         // just shift the input byte into position to eliminate the bswap.
664         unsigned NLZ = DemandedMask.countLeadingZeros();
665         unsigned NTZ = DemandedMask.countTrailingZeros();
666 
667         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
668         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
669         // have 14 leading zeros, round to 8.
670         NLZ &= ~7;
671         NTZ &= ~7;
672         // If we need exactly one byte, we can do this transformation.
673         if (BitWidth-NLZ-NTZ == 8) {
674           unsigned ResultBit = NTZ;
675           unsigned InputBit = BitWidth-NTZ-8;
676 
677           // Replace this with either a left or right shift to get the byte into
678           // the right place.
679           Instruction *NewVal;
680           if (InputBit > ResultBit)
681             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
682                     ConstantInt::get(I->getType(), InputBit-ResultBit));
683           else
684             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
685                     ConstantInt::get(I->getType(), ResultBit-InputBit));
686           NewVal->takeName(I);
687           return InsertNewInstWith(NewVal, *I);
688         }
689 
690         // TODO: Could compute known zero/one bits based on the input.
691         break;
692       }
693       case Intrinsic::x86_mmx_pmovmskb:
694       case Intrinsic::x86_sse_movmsk_ps:
695       case Intrinsic::x86_sse2_movmsk_pd:
696       case Intrinsic::x86_sse2_pmovmskb_128:
697       case Intrinsic::x86_avx_movmsk_ps_256:
698       case Intrinsic::x86_avx_movmsk_pd_256:
699       case Intrinsic::x86_avx2_pmovmskb: {
700         // MOVMSK copies the vector elements' sign bits to the low bits
701         // and zeros the high bits.
702         unsigned ArgWidth;
703         if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
704           ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
705         } else {
706           auto Arg = II->getArgOperand(0);
707           auto ArgType = cast<VectorType>(Arg->getType());
708           ArgWidth = ArgType->getNumElements();
709         }
710 
711         // If we don't need any of low bits then return zero,
712         // we know that DemandedMask is non-zero already.
713         APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
714         if (DemandedElts.isNullValue())
715           return ConstantInt::getNullValue(VTy);
716 
717         // We know that the upper bits are set to zero.
718         Known.Zero.setBitsFrom(ArgWidth);
719         return nullptr;
720       }
721       case Intrinsic::x86_sse42_crc32_64_64:
722         Known.Zero.setBitsFrom(32);
723         return nullptr;
724       }
725     }
726     computeKnownBits(V, Known, Depth, CxtI);
727     break;
728   }
729 
730   // If the client is only demanding bits that we know, return the known
731   // constant.
732   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
733     return Constant::getIntegerValue(VTy, Known.One);
734   return nullptr;
735 }
736 
737 /// Helper routine of SimplifyDemandedUseBits. It computes Known
738 /// bits. It also tries to handle simplifications that can be done based on
739 /// DemandedMask, but without modifying the Instruction.
740 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
741                                                      const APInt &DemandedMask,
742                                                      KnownBits &Known,
743                                                      unsigned Depth,
744                                                      Instruction *CxtI) {
745   unsigned BitWidth = DemandedMask.getBitWidth();
746   Type *ITy = I->getType();
747 
748   KnownBits LHSKnown(BitWidth);
749   KnownBits RHSKnown(BitWidth);
750 
751   // Despite the fact that we can't simplify this instruction in all User's
752   // context, we can at least compute the known bits, and we can
753   // do simplifications that apply to *just* the one user if we know that
754   // this instruction has a simpler value in that context.
755   switch (I->getOpcode()) {
756   case Instruction::And: {
757     // If either the LHS or the RHS are Zero, the result is zero.
758     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
759     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
760                      CxtI);
761 
762     // Output known-0 are known to be clear if zero in either the LHS | RHS.
763     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
764     // Output known-1 bits are only known if set in both the LHS & RHS.
765     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
766 
767     // If the client is only demanding bits that we know, return the known
768     // constant.
769     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
770       return Constant::getIntegerValue(ITy, IKnownOne);
771 
772     // If all of the demanded bits are known 1 on one side, return the other.
773     // These bits cannot contribute to the result of the 'and' in this
774     // context.
775     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
776       return I->getOperand(0);
777     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
778       return I->getOperand(1);
779 
780     Known.Zero = std::move(IKnownZero);
781     Known.One  = std::move(IKnownOne);
782     break;
783   }
784   case Instruction::Or: {
785     // We can simplify (X|Y) -> X or Y in the user's context if we know that
786     // only bits from X or Y are demanded.
787 
788     // If either the LHS or the RHS are One, the result is One.
789     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
790     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
791                      CxtI);
792 
793     // Output known-0 bits are only known if clear in both the LHS & RHS.
794     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
795     // Output known-1 are known to be set if set in either the LHS | RHS.
796     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
797 
798     // If the client is only demanding bits that we know, return the known
799     // constant.
800     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
801       return Constant::getIntegerValue(ITy, IKnownOne);
802 
803     // If all of the demanded bits are known zero on one side, return the
804     // other.  These bits cannot contribute to the result of the 'or' in this
805     // context.
806     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
807       return I->getOperand(0);
808     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
809       return I->getOperand(1);
810 
811     Known.Zero = std::move(IKnownZero);
812     Known.One  = std::move(IKnownOne);
813     break;
814   }
815   case Instruction::Xor: {
816     // We can simplify (X^Y) -> X or Y in the user's context if we know that
817     // only bits from X or Y are demanded.
818 
819     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
820     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
821                      CxtI);
822 
823     // Output known-0 bits are known if clear or set in both the LHS & RHS.
824     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
825                        (RHSKnown.One & LHSKnown.One);
826     // Output known-1 are known to be set if set in only one of the LHS, RHS.
827     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
828                        (RHSKnown.One & LHSKnown.Zero);
829 
830     // If the client is only demanding bits that we know, return the known
831     // constant.
832     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
833       return Constant::getIntegerValue(ITy, IKnownOne);
834 
835     // If all of the demanded bits are known zero on one side, return the
836     // other.
837     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
838       return I->getOperand(0);
839     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
840       return I->getOperand(1);
841 
842     // Output known-0 bits are known if clear or set in both the LHS & RHS.
843     Known.Zero = std::move(IKnownZero);
844     // Output known-1 are known to be set if set in only one of the LHS, RHS.
845     Known.One  = std::move(IKnownOne);
846     break;
847   }
848   default:
849     // Compute the Known bits to simplify things downstream.
850     computeKnownBits(I, Known, Depth, CxtI);
851 
852     // If this user is only demanding bits that we know, return the known
853     // constant.
854     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
855       return Constant::getIntegerValue(ITy, Known.One);
856 
857     break;
858   }
859 
860   return nullptr;
861 }
862 
863 
864 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
865 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
866 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
867 /// of "C2-C1".
868 ///
869 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
870 /// ..., bn}, without considering the specific value X is holding.
871 /// This transformation is legal iff one of following conditions is hold:
872 ///  1) All the bit in S are 0, in this case E1 == E2.
873 ///  2) We don't care those bits in S, per the input DemandedMask.
874 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
875 ///     rest bits.
876 ///
877 /// Currently we only test condition 2).
878 ///
879 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
880 /// not successful.
881 Value *
882 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
883                                          Instruction *Shl, const APInt &ShlOp1,
884                                          const APInt &DemandedMask,
885                                          KnownBits &Known) {
886   if (!ShlOp1 || !ShrOp1)
887     return nullptr; // No-op.
888 
889   Value *VarX = Shr->getOperand(0);
890   Type *Ty = VarX->getType();
891   unsigned BitWidth = Ty->getScalarSizeInBits();
892   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
893     return nullptr; // Undef.
894 
895   unsigned ShlAmt = ShlOp1.getZExtValue();
896   unsigned ShrAmt = ShrOp1.getZExtValue();
897 
898   Known.One.clearAllBits();
899   Known.Zero.setLowBits(ShlAmt - 1);
900   Known.Zero &= DemandedMask;
901 
902   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
903   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
904 
905   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
906   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
907                       (BitMask1.ashr(ShrAmt) << ShlAmt);
908 
909   if (ShrAmt <= ShlAmt) {
910     BitMask2 <<= (ShlAmt - ShrAmt);
911   } else {
912     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
913                         BitMask2.ashr(ShrAmt - ShlAmt);
914   }
915 
916   // Check if condition-2 (see the comment to this function) is satified.
917   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
918     if (ShrAmt == ShlAmt)
919       return VarX;
920 
921     if (!Shr->hasOneUse())
922       return nullptr;
923 
924     BinaryOperator *New;
925     if (ShrAmt < ShlAmt) {
926       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
927       New = BinaryOperator::CreateShl(VarX, Amt);
928       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
929       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
930       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
931     } else {
932       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
933       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
934                      BinaryOperator::CreateAShr(VarX, Amt);
935       if (cast<BinaryOperator>(Shr)->isExact())
936         New->setIsExact(true);
937     }
938 
939     return InsertNewInstWith(New, *Shl);
940   }
941 
942   return nullptr;
943 }
944 
945 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
946 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
947                                                            APInt DemandedElts,
948                                                            int DMaskIdx) {
949   unsigned VWidth = II->getType()->getVectorNumElements();
950   if (VWidth == 1)
951     return nullptr;
952 
953   ConstantInt *NewDMask = nullptr;
954 
955   if (DMaskIdx < 0) {
956     // Pretend that a prefix of elements is demanded to simplify the code
957     // below.
958     DemandedElts = (1 << DemandedElts.getActiveBits()) - 1;
959   } else {
960     ConstantInt *DMask = dyn_cast<ConstantInt>(II->getArgOperand(DMaskIdx));
961     if (!DMask)
962       return nullptr; // non-constant dmask is not supported by codegen
963 
964     unsigned DMaskVal = DMask->getZExtValue() & 0xf;
965 
966     // Mask off values that are undefined because the dmask doesn't cover them
967     DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
968 
969     unsigned NewDMaskVal = 0;
970     unsigned OrigLoadIdx = 0;
971     for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
972       const unsigned Bit = 1 << SrcIdx;
973       if (!!(DMaskVal & Bit)) {
974         if (!!DemandedElts[OrigLoadIdx])
975           NewDMaskVal |= Bit;
976         OrigLoadIdx++;
977       }
978     }
979 
980     if (DMaskVal != NewDMaskVal)
981       NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal);
982   }
983 
984   // TODO: Handle 3 vectors when supported in code gen.
985   unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countPopulation());
986   if (!NewNumElts)
987     return UndefValue::get(II->getType());
988 
989   if (NewNumElts >= VWidth && DemandedElts.isMask()) {
990     if (NewDMask)
991       II->setArgOperand(DMaskIdx, NewDMask);
992     return nullptr;
993   }
994 
995   // Determine the overload types of the original intrinsic.
996   auto IID = II->getIntrinsicID();
997   SmallVector<Intrinsic::IITDescriptor, 16> Table;
998   getIntrinsicInfoTableEntries(IID, Table);
999   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1000 
1001   FunctionType *FTy = II->getCalledFunction()->getFunctionType();
1002   SmallVector<Type *, 6> OverloadTys;
1003   Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, OverloadTys);
1004   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1005     Intrinsic::matchIntrinsicType(FTy->getParamType(i), TableRef, OverloadTys);
1006 
1007   // Get the new return type overload of the intrinsic.
1008   Module *M = II->getParent()->getParent()->getParent();
1009   Type *EltTy = II->getType()->getVectorElementType();
1010   Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
1011 
1012   OverloadTys[0] = NewTy;
1013   Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
1014 
1015   SmallVector<Value *, 16> Args;
1016   for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1017     Args.push_back(II->getArgOperand(I));
1018 
1019   if (NewDMask)
1020     Args[DMaskIdx] = NewDMask;
1021 
1022   IRBuilderBase::InsertPointGuard Guard(Builder);
1023   Builder.SetInsertPoint(II);
1024 
1025   CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
1026   NewCall->takeName(II);
1027   NewCall->copyMetadata(*II);
1028 
1029   if (NewNumElts == 1) {
1030     return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
1031                                        DemandedElts.countTrailingZeros());
1032   }
1033 
1034   SmallVector<uint32_t, 8> EltMask;
1035   unsigned NewLoadIdx = 0;
1036   for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
1037     if (!!DemandedElts[OrigLoadIdx])
1038       EltMask.push_back(NewLoadIdx++);
1039     else
1040       EltMask.push_back(NewNumElts);
1041   }
1042 
1043   Value *Shuffle =
1044       Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
1045 
1046   return Shuffle;
1047 }
1048 
1049 /// The specified value produces a vector with any number of elements.
1050 /// DemandedElts contains the set of elements that are actually used by the
1051 /// caller. This method analyzes which elements of the operand are undef and
1052 /// returns that information in UndefElts.
1053 ///
1054 /// If the information about demanded elements can be used to simplify the
1055 /// operation, the operation is simplified, then the resultant value is
1056 /// returned.  This returns null if no change was made.
1057 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
1058                                                 APInt &UndefElts,
1059                                                 unsigned Depth) {
1060   unsigned VWidth = V->getType()->getVectorNumElements();
1061   APInt EltMask(APInt::getAllOnesValue(VWidth));
1062   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1063 
1064   if (isa<UndefValue>(V)) {
1065     // If the entire vector is undefined, just return this info.
1066     UndefElts = EltMask;
1067     return nullptr;
1068   }
1069 
1070   if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
1071     UndefElts = EltMask;
1072     return UndefValue::get(V->getType());
1073   }
1074 
1075   UndefElts = 0;
1076 
1077   if (auto *C = dyn_cast<Constant>(V)) {
1078     // Check if this is identity. If so, return 0 since we are not simplifying
1079     // anything.
1080     if (DemandedElts.isAllOnesValue())
1081       return nullptr;
1082 
1083     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1084     Constant *Undef = UndefValue::get(EltTy);
1085     SmallVector<Constant*, 16> Elts;
1086     for (unsigned i = 0; i != VWidth; ++i) {
1087       if (!DemandedElts[i]) {   // If not demanded, set to undef.
1088         Elts.push_back(Undef);
1089         UndefElts.setBit(i);
1090         continue;
1091       }
1092 
1093       Constant *Elt = C->getAggregateElement(i);
1094       if (!Elt) return nullptr;
1095 
1096       if (isa<UndefValue>(Elt)) {   // Already undef.
1097         Elts.push_back(Undef);
1098         UndefElts.setBit(i);
1099       } else {                               // Otherwise, defined.
1100         Elts.push_back(Elt);
1101       }
1102     }
1103 
1104     // If we changed the constant, return it.
1105     Constant *NewCV = ConstantVector::get(Elts);
1106     return NewCV != C ? NewCV : nullptr;
1107   }
1108 
1109   // Limit search depth.
1110   if (Depth == 10)
1111     return nullptr;
1112 
1113   // If multiple users are using the root value, proceed with
1114   // simplification conservatively assuming that all elements
1115   // are needed.
1116   if (!V->hasOneUse()) {
1117     // Quit if we find multiple users of a non-root value though.
1118     // They'll be handled when it's their turn to be visited by
1119     // the main instcombine process.
1120     if (Depth != 0)
1121       // TODO: Just compute the UndefElts information recursively.
1122       return nullptr;
1123 
1124     // Conservatively assume that all elements are needed.
1125     DemandedElts = EltMask;
1126   }
1127 
1128   Instruction *I = dyn_cast<Instruction>(V);
1129   if (!I) return nullptr;        // Only analyze instructions.
1130 
1131   bool MadeChange = false;
1132   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1133                               APInt Demanded, APInt &Undef) {
1134     auto *II = dyn_cast<IntrinsicInst>(Inst);
1135     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1136     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1137       if (II)
1138         II->setArgOperand(OpNum, V);
1139       else
1140         Inst->setOperand(OpNum, V);
1141       MadeChange = true;
1142     }
1143   };
1144 
1145   APInt UndefElts2(VWidth, 0);
1146   APInt UndefElts3(VWidth, 0);
1147   switch (I->getOpcode()) {
1148   default: break;
1149 
1150   case Instruction::InsertElement: {
1151     // If this is a variable index, we don't know which element it overwrites.
1152     // demand exactly the same input as we produce.
1153     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1154     if (!Idx) {
1155       // Note that we can't propagate undef elt info, because we don't know
1156       // which elt is getting updated.
1157       simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1158       break;
1159     }
1160 
1161     // The element inserted overwrites whatever was there, so the input demanded
1162     // set is simpler than the output set.
1163     unsigned IdxNo = Idx->getZExtValue();
1164     APInt PreInsertDemandedElts = DemandedElts;
1165     if (IdxNo < VWidth)
1166       PreInsertDemandedElts.clearBit(IdxNo);
1167 
1168     simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1169 
1170     // If this is inserting an element that isn't demanded, remove this
1171     // insertelement.
1172     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1173       Worklist.Add(I);
1174       return I->getOperand(0);
1175     }
1176 
1177     // The inserted element is defined.
1178     UndefElts.clearBit(IdxNo);
1179     break;
1180   }
1181   case Instruction::ShuffleVector: {
1182     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1183     unsigned LHSVWidth =
1184       Shuffle->getOperand(0)->getType()->getVectorNumElements();
1185     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1186     for (unsigned i = 0; i < VWidth; i++) {
1187       if (DemandedElts[i]) {
1188         unsigned MaskVal = Shuffle->getMaskValue(i);
1189         if (MaskVal != -1u) {
1190           assert(MaskVal < LHSVWidth * 2 &&
1191                  "shufflevector mask index out of range!");
1192           if (MaskVal < LHSVWidth)
1193             LeftDemanded.setBit(MaskVal);
1194           else
1195             RightDemanded.setBit(MaskVal - LHSVWidth);
1196         }
1197       }
1198     }
1199 
1200     APInt LHSUndefElts(LHSVWidth, 0);
1201     simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1202 
1203     APInt RHSUndefElts(LHSVWidth, 0);
1204     simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1205 
1206     bool NewUndefElts = false;
1207     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1208     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1209     bool LHSUniform = true;
1210     bool RHSUniform = true;
1211     for (unsigned i = 0; i < VWidth; i++) {
1212       unsigned MaskVal = Shuffle->getMaskValue(i);
1213       if (MaskVal == -1u) {
1214         UndefElts.setBit(i);
1215       } else if (!DemandedElts[i]) {
1216         NewUndefElts = true;
1217         UndefElts.setBit(i);
1218       } else if (MaskVal < LHSVWidth) {
1219         if (LHSUndefElts[MaskVal]) {
1220           NewUndefElts = true;
1221           UndefElts.setBit(i);
1222         } else {
1223           LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1224           LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
1225           LHSUniform = LHSUniform && (MaskVal == i);
1226         }
1227       } else {
1228         if (RHSUndefElts[MaskVal - LHSVWidth]) {
1229           NewUndefElts = true;
1230           UndefElts.setBit(i);
1231         } else {
1232           RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1233           RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
1234           RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
1235         }
1236       }
1237     }
1238 
1239     // Try to transform shuffle with constant vector and single element from
1240     // this constant vector to single insertelement instruction.
1241     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1242     // insertelement V, C[ci], ci-n
1243     if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1244       Value *Op = nullptr;
1245       Constant *Value = nullptr;
1246       unsigned Idx = -1u;
1247 
1248       // Find constant vector with the single element in shuffle (LHS or RHS).
1249       if (LHSIdx < LHSVWidth && RHSUniform) {
1250         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1251           Op = Shuffle->getOperand(1);
1252           Value = CV->getOperand(LHSValIdx);
1253           Idx = LHSIdx;
1254         }
1255       }
1256       if (RHSIdx < LHSVWidth && LHSUniform) {
1257         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1258           Op = Shuffle->getOperand(0);
1259           Value = CV->getOperand(RHSValIdx);
1260           Idx = RHSIdx;
1261         }
1262       }
1263       // Found constant vector with single element - convert to insertelement.
1264       if (Op && Value) {
1265         Instruction *New = InsertElementInst::Create(
1266             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1267             Shuffle->getName());
1268         InsertNewInstWith(New, *Shuffle);
1269         return New;
1270       }
1271     }
1272     if (NewUndefElts) {
1273       // Add additional discovered undefs.
1274       SmallVector<Constant*, 16> Elts;
1275       for (unsigned i = 0; i < VWidth; ++i) {
1276         if (UndefElts[i])
1277           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1278         else
1279           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1280                                           Shuffle->getMaskValue(i)));
1281       }
1282       I->setOperand(2, ConstantVector::get(Elts));
1283       MadeChange = true;
1284     }
1285     break;
1286   }
1287   case Instruction::Select: {
1288     // If this is a vector select, try to transform the select condition based
1289     // on the current demanded elements.
1290     SelectInst *Sel = cast<SelectInst>(I);
1291     if (Sel->getCondition()->getType()->isVectorTy()) {
1292       // TODO: We are not doing anything with UndefElts based on this call.
1293       // It is overwritten below based on the other select operands. If an
1294       // element of the select condition is known undef, then we are free to
1295       // choose the output value from either arm of the select. If we know that
1296       // one of those values is undef, then the output can be undef.
1297       simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1298     }
1299 
1300     // Next, see if we can transform the arms of the select.
1301     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1302     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1303       for (unsigned i = 0; i < VWidth; i++) {
1304         // isNullValue() always returns false when called on a ConstantExpr.
1305         // Skip constant expressions to avoid propagating incorrect information.
1306         Constant *CElt = CV->getAggregateElement(i);
1307         if (isa<ConstantExpr>(CElt))
1308           continue;
1309         // TODO: If a select condition element is undef, we can demand from
1310         // either side. If one side is known undef, choosing that side would
1311         // propagate undef.
1312         if (CElt->isNullValue())
1313           DemandedLHS.clearBit(i);
1314         else
1315           DemandedRHS.clearBit(i);
1316       }
1317     }
1318 
1319     simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1320     simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1321 
1322     // Output elements are undefined if the element from each arm is undefined.
1323     // TODO: This can be improved. See comment in select condition handling.
1324     UndefElts = UndefElts2 & UndefElts3;
1325     break;
1326   }
1327   case Instruction::BitCast: {
1328     // Vector->vector casts only.
1329     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1330     if (!VTy) break;
1331     unsigned InVWidth = VTy->getNumElements();
1332     APInt InputDemandedElts(InVWidth, 0);
1333     UndefElts2 = APInt(InVWidth, 0);
1334     unsigned Ratio;
1335 
1336     if (VWidth == InVWidth) {
1337       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1338       // elements as are demanded of us.
1339       Ratio = 1;
1340       InputDemandedElts = DemandedElts;
1341     } else if ((VWidth % InVWidth) == 0) {
1342       // If the number of elements in the output is a multiple of the number of
1343       // elements in the input then an input element is live if any of the
1344       // corresponding output elements are live.
1345       Ratio = VWidth / InVWidth;
1346       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1347         if (DemandedElts[OutIdx])
1348           InputDemandedElts.setBit(OutIdx / Ratio);
1349     } else if ((InVWidth % VWidth) == 0) {
1350       // If the number of elements in the input is a multiple of the number of
1351       // elements in the output then an input element is live if the
1352       // corresponding output element is live.
1353       Ratio = InVWidth / VWidth;
1354       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1355         if (DemandedElts[InIdx / Ratio])
1356           InputDemandedElts.setBit(InIdx);
1357     } else {
1358       // Unsupported so far.
1359       break;
1360     }
1361 
1362     simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1363 
1364     if (VWidth == InVWidth) {
1365       UndefElts = UndefElts2;
1366     } else if ((VWidth % InVWidth) == 0) {
1367       // If the number of elements in the output is a multiple of the number of
1368       // elements in the input then an output element is undef if the
1369       // corresponding input element is undef.
1370       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1371         if (UndefElts2[OutIdx / Ratio])
1372           UndefElts.setBit(OutIdx);
1373     } else if ((InVWidth % VWidth) == 0) {
1374       // If the number of elements in the input is a multiple of the number of
1375       // elements in the output then an output element is undef if all of the
1376       // corresponding input elements are undef.
1377       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1378         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1379         if (SubUndef.countPopulation() == Ratio)
1380           UndefElts.setBit(OutIdx);
1381       }
1382     } else {
1383       llvm_unreachable("Unimp");
1384     }
1385     break;
1386   }
1387   case Instruction::FPTrunc:
1388   case Instruction::FPExt:
1389     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1390     break;
1391 
1392   case Instruction::Call: {
1393     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1394     if (!II) break;
1395     switch (II->getIntrinsicID()) {
1396     case Intrinsic::x86_xop_vfrcz_ss:
1397     case Intrinsic::x86_xop_vfrcz_sd:
1398       // The instructions for these intrinsics are speced to zero upper bits not
1399       // pass them through like other scalar intrinsics. So we shouldn't just
1400       // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1401       // Instead we should return a zero vector.
1402       if (!DemandedElts[0]) {
1403         Worklist.Add(II);
1404         return ConstantAggregateZero::get(II->getType());
1405       }
1406 
1407       // Only the lower element is used.
1408       DemandedElts = 1;
1409       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1410 
1411       // Only the lower element is undefined. The high elements are zero.
1412       UndefElts = UndefElts[0];
1413       break;
1414 
1415     // Unary scalar-as-vector operations that work column-wise.
1416     case Intrinsic::x86_sse_rcp_ss:
1417     case Intrinsic::x86_sse_rsqrt_ss:
1418       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1419 
1420       // If lowest element of a scalar op isn't used then use Arg0.
1421       if (!DemandedElts[0]) {
1422         Worklist.Add(II);
1423         return II->getArgOperand(0);
1424       }
1425       // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1426       // checks).
1427       break;
1428 
1429     // Binary scalar-as-vector operations that work column-wise. The high
1430     // elements come from operand 0. The low element is a function of both
1431     // operands.
1432     case Intrinsic::x86_sse_min_ss:
1433     case Intrinsic::x86_sse_max_ss:
1434     case Intrinsic::x86_sse_cmp_ss:
1435     case Intrinsic::x86_sse2_min_sd:
1436     case Intrinsic::x86_sse2_max_sd:
1437     case Intrinsic::x86_sse2_cmp_sd: {
1438       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1439 
1440       // If lowest element of a scalar op isn't used then use Arg0.
1441       if (!DemandedElts[0]) {
1442         Worklist.Add(II);
1443         return II->getArgOperand(0);
1444       }
1445 
1446       // Only lower element is used for operand 1.
1447       DemandedElts = 1;
1448       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1449 
1450       // Lower element is undefined if both lower elements are undefined.
1451       // Consider things like undef&0.  The result is known zero, not undef.
1452       if (!UndefElts2[0])
1453         UndefElts.clearBit(0);
1454 
1455       break;
1456     }
1457 
1458     // Binary scalar-as-vector operations that work column-wise. The high
1459     // elements come from operand 0 and the low element comes from operand 1.
1460     case Intrinsic::x86_sse41_round_ss:
1461     case Intrinsic::x86_sse41_round_sd: {
1462       // Don't use the low element of operand 0.
1463       APInt DemandedElts2 = DemandedElts;
1464       DemandedElts2.clearBit(0);
1465       simplifyAndSetOp(II, 0, DemandedElts2, UndefElts);
1466 
1467       // If lowest element of a scalar op isn't used then use Arg0.
1468       if (!DemandedElts[0]) {
1469         Worklist.Add(II);
1470         return II->getArgOperand(0);
1471       }
1472 
1473       // Only lower element is used for operand 1.
1474       DemandedElts = 1;
1475       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1476 
1477       // Take the high undef elements from operand 0 and take the lower element
1478       // from operand 1.
1479       UndefElts.clearBit(0);
1480       UndefElts |= UndefElts2[0];
1481       break;
1482     }
1483 
1484     // Three input scalar-as-vector operations that work column-wise. The high
1485     // elements come from operand 0 and the low element is a function of all
1486     // three inputs.
1487     case Intrinsic::x86_avx512_mask_add_ss_round:
1488     case Intrinsic::x86_avx512_mask_div_ss_round:
1489     case Intrinsic::x86_avx512_mask_mul_ss_round:
1490     case Intrinsic::x86_avx512_mask_sub_ss_round:
1491     case Intrinsic::x86_avx512_mask_max_ss_round:
1492     case Intrinsic::x86_avx512_mask_min_ss_round:
1493     case Intrinsic::x86_avx512_mask_add_sd_round:
1494     case Intrinsic::x86_avx512_mask_div_sd_round:
1495     case Intrinsic::x86_avx512_mask_mul_sd_round:
1496     case Intrinsic::x86_avx512_mask_sub_sd_round:
1497     case Intrinsic::x86_avx512_mask_max_sd_round:
1498     case Intrinsic::x86_avx512_mask_min_sd_round:
1499       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1500 
1501       // If lowest element of a scalar op isn't used then use Arg0.
1502       if (!DemandedElts[0]) {
1503         Worklist.Add(II);
1504         return II->getArgOperand(0);
1505       }
1506 
1507       // Only lower element is used for operand 1 and 2.
1508       DemandedElts = 1;
1509       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1510       simplifyAndSetOp(II, 2, DemandedElts, UndefElts3);
1511 
1512       // Lower element is undefined if all three lower elements are undefined.
1513       // Consider things like undef&0.  The result is known zero, not undef.
1514       if (!UndefElts2[0] || !UndefElts3[0])
1515         UndefElts.clearBit(0);
1516 
1517       break;
1518 
1519     case Intrinsic::x86_sse2_packssdw_128:
1520     case Intrinsic::x86_sse2_packsswb_128:
1521     case Intrinsic::x86_sse2_packuswb_128:
1522     case Intrinsic::x86_sse41_packusdw:
1523     case Intrinsic::x86_avx2_packssdw:
1524     case Intrinsic::x86_avx2_packsswb:
1525     case Intrinsic::x86_avx2_packusdw:
1526     case Intrinsic::x86_avx2_packuswb:
1527     case Intrinsic::x86_avx512_packssdw_512:
1528     case Intrinsic::x86_avx512_packsswb_512:
1529     case Intrinsic::x86_avx512_packusdw_512:
1530     case Intrinsic::x86_avx512_packuswb_512: {
1531       auto *Ty0 = II->getArgOperand(0)->getType();
1532       unsigned InnerVWidth = Ty0->getVectorNumElements();
1533       assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1534 
1535       unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1536       unsigned VWidthPerLane = VWidth / NumLanes;
1537       unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1538 
1539       // Per lane, pack the elements of the first input and then the second.
1540       // e.g.
1541       // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1542       // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1543       for (int OpNum = 0; OpNum != 2; ++OpNum) {
1544         APInt OpDemandedElts(InnerVWidth, 0);
1545         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1546           unsigned LaneIdx = Lane * VWidthPerLane;
1547           for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1548             unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1549             if (DemandedElts[Idx])
1550               OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1551           }
1552         }
1553 
1554         // Demand elements from the operand.
1555         APInt OpUndefElts(InnerVWidth, 0);
1556         simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts);
1557 
1558         // Pack the operand's UNDEF elements, one lane at a time.
1559         OpUndefElts = OpUndefElts.zext(VWidth);
1560         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1561           APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1562           LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1563           LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
1564           UndefElts |= LaneElts;
1565         }
1566       }
1567       break;
1568     }
1569 
1570     // PSHUFB
1571     case Intrinsic::x86_ssse3_pshuf_b_128:
1572     case Intrinsic::x86_avx2_pshuf_b:
1573     case Intrinsic::x86_avx512_pshuf_b_512:
1574     // PERMILVAR
1575     case Intrinsic::x86_avx_vpermilvar_ps:
1576     case Intrinsic::x86_avx_vpermilvar_ps_256:
1577     case Intrinsic::x86_avx512_vpermilvar_ps_512:
1578     case Intrinsic::x86_avx_vpermilvar_pd:
1579     case Intrinsic::x86_avx_vpermilvar_pd_256:
1580     case Intrinsic::x86_avx512_vpermilvar_pd_512:
1581     // PERMV
1582     case Intrinsic::x86_avx2_permd:
1583     case Intrinsic::x86_avx2_permps: {
1584       simplifyAndSetOp(II, 1, DemandedElts, UndefElts);
1585       break;
1586     }
1587 
1588     // SSE4A instructions leave the upper 64-bits of the 128-bit result
1589     // in an undefined state.
1590     case Intrinsic::x86_sse4a_extrq:
1591     case Intrinsic::x86_sse4a_extrqi:
1592     case Intrinsic::x86_sse4a_insertq:
1593     case Intrinsic::x86_sse4a_insertqi:
1594       UndefElts.setHighBits(VWidth / 2);
1595       break;
1596     case Intrinsic::amdgcn_buffer_load:
1597     case Intrinsic::amdgcn_buffer_load_format:
1598       return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
1599     default: {
1600       if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID()))
1601         return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);
1602 
1603       break;
1604     }
1605     } // switch on IntrinsicID
1606     break;
1607   } // case Call
1608   } // switch on Opcode
1609 
1610   // TODO: We bail completely on integer div/rem and shifts because they have
1611   // UB/poison potential, but that should be refined.
1612   BinaryOperator *BO;
1613   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1614     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1615     simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1616 
1617     // Any change to an instruction with potential poison must clear those flags
1618     // because we can not guarantee those constraints now. Other analysis may
1619     // determine that it is safe to re-apply the flags.
1620     if (MadeChange)
1621       BO->dropPoisonGeneratingFlags();
1622 
1623     // Output elements are undefined if both are undefined. Consider things
1624     // like undef & 0. The result is known zero, not undef.
1625     UndefElts &= UndefElts2;
1626   }
1627 
1628   return MadeChange ? I : nullptr;
1629 }
1630