1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstCombineInternal.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 
20 using namespace llvm;
21 using namespace llvm::PatternMatch;
22 
23 #define DEBUG_TYPE "instcombine"
24 
25 /// Check to see if the specified operand of the specified instruction is a
26 /// constant integer. If so, check to see if there are any bits set in the
27 /// constant that are not demanded. If so, shrink the constant and return true.
28 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
29                                    APInt Demanded) {
30   assert(I && "No instruction?");
31   assert(OpNo < I->getNumOperands() && "Operand index too large");
32 
33   // The operand must be a constant integer or splat integer.
34   Value *Op = I->getOperand(OpNo);
35   const APInt *C;
36   if (!match(Op, m_APInt(C)))
37     return false;
38 
39   // If there are no bits set that aren't demanded, nothing to do.
40   Demanded = Demanded.zextOrTrunc(C->getBitWidth());
41   if ((~Demanded & *C) == 0)
42     return false;
43 
44   // This instruction is producing bits that are not demanded. Shrink the RHS.
45   Demanded &= *C;
46   I->setOperand(OpNo, ConstantInt::get(Op->getType(), Demanded));
47 
48   return true;
49 }
50 
51 
52 
53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54 /// the instruction has any properties that allow us to simplify its operands.
55 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
56   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
58   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
59 
60   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne,
61                                      0, &Inst);
62   if (!V) return false;
63   if (V == &Inst) return true;
64   replaceInstUsesWith(Inst, V);
65   return true;
66 }
67 
68 /// This form of SimplifyDemandedBits simplifies the specified instruction
69 /// operand if possible, updating it in place. It returns true if it made any
70 /// change and false otherwise.
71 bool InstCombiner::SimplifyDemandedBits(Use &U, const APInt &DemandedMask,
72                                         APInt &KnownZero, APInt &KnownOne,
73                                         unsigned Depth) {
74   auto *UserI = dyn_cast<Instruction>(U.getUser());
75   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero,
76                                           KnownOne, Depth, UserI);
77   if (!NewVal) return false;
78   U = NewVal;
79   return true;
80 }
81 
82 
83 /// This function attempts to replace V with a simpler value based on the
84 /// demanded bits. When this function is called, it is known that only the bits
85 /// set in DemandedMask of the result of V are ever used downstream.
86 /// Consequently, depending on the mask and V, it may be possible to replace V
87 /// with a constant or one of its operands. In such cases, this function does
88 /// the replacement and returns true. In all other cases, it returns false after
89 /// analyzing the expression and setting KnownOne and known to be one in the
90 /// expression. KnownZero contains all the bits that are known to be zero in the
91 /// expression. These are provided to potentially allow the caller (which might
92 /// recursively be SimplifyDemandedBits itself) to simplify the expression.
93 /// KnownOne and KnownZero always follow the invariant that:
94 ///   KnownOne & KnownZero == 0.
95 /// That is, a bit can't be both 1 and 0. Note that the bits in KnownOne and
96 /// KnownZero may only be accurate for those bits set in DemandedMask. Note also
97 /// that the bitwidth of V, DemandedMask, KnownZero and KnownOne must all be the
98 /// same.
99 ///
100 /// This returns null if it did not change anything and it permits no
101 /// simplification.  This returns V itself if it did some simplification of V's
102 /// operands based on the information about what bits are demanded. This returns
103 /// some other non-null value if it found out that V is equal to another value
104 /// in the context where the specified bits are demanded, but not for all users.
105 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
106                                              APInt &KnownZero, APInt &KnownOne,
107                                              unsigned Depth,
108                                              Instruction *CxtI) {
109   assert(V != nullptr && "Null pointer of Value???");
110   assert(Depth <= 6 && "Limit Search Depth");
111   uint32_t BitWidth = DemandedMask.getBitWidth();
112   Type *VTy = V->getType();
113   assert(
114       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
115       KnownZero.getBitWidth() == BitWidth &&
116       KnownOne.getBitWidth() == BitWidth &&
117       "Value *V, DemandedMask, KnownZero and KnownOne "
118       "must have same BitWidth");
119   const APInt *C;
120   if (match(V, m_APInt(C))) {
121     // We know all of the bits for a scalar constant or a splat vector constant!
122     KnownOne = *C & DemandedMask;
123     KnownZero = ~KnownOne & DemandedMask;
124     return nullptr;
125   }
126   if (isa<ConstantPointerNull>(V)) {
127     // We know all of the bits for a constant!
128     KnownOne.clearAllBits();
129     KnownZero = DemandedMask;
130     return nullptr;
131   }
132 
133   KnownZero.clearAllBits();
134   KnownOne.clearAllBits();
135   if (DemandedMask == 0) {   // Not demanding any bits from V.
136     if (isa<UndefValue>(V))
137       return nullptr;
138     return UndefValue::get(VTy);
139   }
140 
141   if (Depth == 6)        // Limit search depth.
142     return nullptr;
143 
144   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
145   APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
146 
147   Instruction *I = dyn_cast<Instruction>(V);
148   if (!I) {
149     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
150     return nullptr;        // Only analyze instructions.
151   }
152 
153   // If there are multiple uses of this value and we aren't at the root, then
154   // we can't do any simplifications of the operands, because DemandedMask
155   // only reflects the bits demanded by *one* of the users.
156   if (Depth != 0 && !I->hasOneUse()) {
157     // Despite the fact that we can't simplify this instruction in all User's
158     // context, we can at least compute the knownzero/knownone bits, and we can
159     // do simplifications that apply to *just* the one user if we know that
160     // this instruction has a simpler value in that context.
161     if (I->getOpcode() == Instruction::And) {
162       // If either the LHS or the RHS are Zero, the result is zero.
163       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
164                        CxtI);
165       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
166                        CxtI);
167 
168       // If all of the demanded bits are known 1 on one side, return the other.
169       // These bits cannot contribute to the result of the 'and' in this
170       // context.
171       if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
172           (DemandedMask & ~LHSKnownZero))
173         return I->getOperand(0);
174       if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
175           (DemandedMask & ~RHSKnownZero))
176         return I->getOperand(1);
177 
178       // If all of the demanded bits in the inputs are known zeros, return zero.
179       if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
180         return Constant::getNullValue(VTy);
181 
182     } else if (I->getOpcode() == Instruction::Or) {
183       // We can simplify (X|Y) -> X or Y in the user's context if we know that
184       // only bits from X or Y are demanded.
185 
186       // If either the LHS or the RHS are One, the result is One.
187       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
188                        CxtI);
189       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
190                        CxtI);
191 
192       // If all of the demanded bits are known zero on one side, return the
193       // other.  These bits cannot contribute to the result of the 'or' in this
194       // context.
195       if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
196           (DemandedMask & ~LHSKnownOne))
197         return I->getOperand(0);
198       if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
199           (DemandedMask & ~RHSKnownOne))
200         return I->getOperand(1);
201 
202       // If all of the potentially set bits on one side are known to be set on
203       // the other side, just use the 'other' side.
204       if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
205           (DemandedMask & (~RHSKnownZero)))
206         return I->getOperand(0);
207       if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
208           (DemandedMask & (~LHSKnownZero)))
209         return I->getOperand(1);
210     } else if (I->getOpcode() == Instruction::Xor) {
211       // We can simplify (X^Y) -> X or Y in the user's context if we know that
212       // only bits from X or Y are demanded.
213 
214       computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
215                        CxtI);
216       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
217                        CxtI);
218 
219       // If all of the demanded bits are known zero on one side, return the
220       // other.
221       if ((DemandedMask & RHSKnownZero) == DemandedMask)
222         return I->getOperand(0);
223       if ((DemandedMask & LHSKnownZero) == DemandedMask)
224         return I->getOperand(1);
225     }
226 
227     // Compute the KnownZero/KnownOne bits to simplify things downstream.
228     computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
229     return nullptr;
230   }
231 
232   // If this is the root being simplified, allow it to have multiple uses,
233   // just set the DemandedMask to all bits so that we can try to simplify the
234   // operands.  This allows visitTruncInst (for example) to simplify the
235   // operand of a trunc without duplicating all the logic below.
236   if (Depth == 0 && !V->hasOneUse())
237     DemandedMask = APInt::getAllOnesValue(BitWidth);
238 
239   switch (I->getOpcode()) {
240   default:
241     computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
242     break;
243   case Instruction::And:
244     // If either the LHS or the RHS are Zero, the result is zero.
245     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
246                              RHSKnownOne, Depth + 1) ||
247         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
248                              LHSKnownZero, LHSKnownOne, Depth + 1))
249       return I;
250     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
251     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
252 
253     // If the client is only demanding bits that we know, return the known
254     // constant.
255     if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)|
256                          (RHSKnownOne & LHSKnownOne))) == DemandedMask)
257       return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne);
258 
259     // If all of the demanded bits are known 1 on one side, return the other.
260     // These bits cannot contribute to the result of the 'and'.
261     if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
262         (DemandedMask & ~LHSKnownZero))
263       return I->getOperand(0);
264     if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
265         (DemandedMask & ~RHSKnownZero))
266       return I->getOperand(1);
267 
268     // If all of the demanded bits in the inputs are known zeros, return zero.
269     if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
270       return Constant::getNullValue(VTy);
271 
272     // If the RHS is a constant, see if we can simplify it.
273     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
274       return I;
275 
276     // Output known-1 bits are only known if set in both the LHS & RHS.
277     KnownOne = RHSKnownOne & LHSKnownOne;
278     // Output known-0 are known to be clear if zero in either the LHS | RHS.
279     KnownZero = RHSKnownZero | LHSKnownZero;
280     break;
281   case Instruction::Or:
282     // If either the LHS or the RHS are One, the result is One.
283     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
284                              RHSKnownOne, Depth + 1) ||
285         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
286                              LHSKnownZero, LHSKnownOne, Depth + 1))
287       return I;
288     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
289     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
290 
291     // If the client is only demanding bits that we know, return the known
292     // constant.
293     if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)|
294                          (RHSKnownOne | LHSKnownOne))) == DemandedMask)
295       return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne);
296 
297     // If all of the demanded bits are known zero on one side, return the other.
298     // These bits cannot contribute to the result of the 'or'.
299     if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
300         (DemandedMask & ~LHSKnownOne))
301       return I->getOperand(0);
302     if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
303         (DemandedMask & ~RHSKnownOne))
304       return I->getOperand(1);
305 
306     // If all of the potentially set bits on one side are known to be set on
307     // the other side, just use the 'other' side.
308     if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
309         (DemandedMask & (~RHSKnownZero)))
310       return I->getOperand(0);
311     if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
312         (DemandedMask & (~LHSKnownZero)))
313       return I->getOperand(1);
314 
315     // If the RHS is a constant, see if we can simplify it.
316     if (ShrinkDemandedConstant(I, 1, DemandedMask))
317       return I;
318 
319     // Output known-0 bits are only known if clear in both the LHS & RHS.
320     KnownZero = RHSKnownZero & LHSKnownZero;
321     // Output known-1 are known to be set if set in either the LHS | RHS.
322     KnownOne = RHSKnownOne | LHSKnownOne;
323     break;
324   case Instruction::Xor: {
325     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
326                              RHSKnownOne, Depth + 1) ||
327         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero,
328                              LHSKnownOne, Depth + 1))
329       return I;
330     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
331     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
332 
333     // Output known-0 bits are known if clear or set in both the LHS & RHS.
334     APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
335                        (RHSKnownOne & LHSKnownOne);
336     // Output known-1 are known to be set if set in only one of the LHS, RHS.
337     APInt IKnownOne =  (RHSKnownZero & LHSKnownOne) |
338                        (RHSKnownOne & LHSKnownZero);
339 
340     // If the client is only demanding bits that we know, return the known
341     // constant.
342     if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
343       return Constant::getIntegerValue(VTy, IKnownOne);
344 
345     // If all of the demanded bits are known zero on one side, return the other.
346     // These bits cannot contribute to the result of the 'xor'.
347     if ((DemandedMask & RHSKnownZero) == DemandedMask)
348       return I->getOperand(0);
349     if ((DemandedMask & LHSKnownZero) == DemandedMask)
350       return I->getOperand(1);
351 
352     // If all of the demanded bits are known to be zero on one side or the
353     // other, turn this into an *inclusive* or.
354     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
355     if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
356       Instruction *Or =
357         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
358                                  I->getName());
359       return InsertNewInstWith(Or, *I);
360     }
361 
362     // If all of the demanded bits on one side are known, and all of the set
363     // bits on that side are also known to be set on the other side, turn this
364     // into an AND, as we know the bits will be cleared.
365     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
366     if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
367       // all known
368       if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
369         Constant *AndC = Constant::getIntegerValue(VTy,
370                                                    ~RHSKnownOne & DemandedMask);
371         Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
372         return InsertNewInstWith(And, *I);
373       }
374     }
375 
376     // If the RHS is a constant, see if we can simplify it.
377     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
378     if (ShrinkDemandedConstant(I, 1, DemandedMask))
379       return I;
380 
381     // If our LHS is an 'and' and if it has one use, and if any of the bits we
382     // are flipping are known to be set, then the xor is just resetting those
383     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
384     // simplifying both of them.
385     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
386       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
387           isa<ConstantInt>(I->getOperand(1)) &&
388           isa<ConstantInt>(LHSInst->getOperand(1)) &&
389           (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
390         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
391         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
392         APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
393 
394         Constant *AndC =
395           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
396         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
397         InsertNewInstWith(NewAnd, *I);
398 
399         Constant *XorC =
400           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
401         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
402         return InsertNewInstWith(NewXor, *I);
403       }
404 
405     // Output known-0 bits are known if clear or set in both the LHS & RHS.
406     KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
407     // Output known-1 are known to be set if set in only one of the LHS, RHS.
408     KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
409     break;
410   }
411   case Instruction::Select:
412     // If this is a select as part of a min/max pattern, don't simplify any
413     // further in case we break the structure.
414     Value *LHS, *RHS;
415     if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
416       return nullptr;
417 
418     if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero,
419                              RHSKnownOne, Depth + 1) ||
420         SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero,
421                              LHSKnownOne, Depth + 1))
422       return I;
423     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
424     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
425 
426     // If the operands are constants, see if we can simplify them.
427     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
428         ShrinkDemandedConstant(I, 2, DemandedMask))
429       return I;
430 
431     // Only known if known in both the LHS and RHS.
432     KnownOne = RHSKnownOne & LHSKnownOne;
433     KnownZero = RHSKnownZero & LHSKnownZero;
434     break;
435   case Instruction::Trunc: {
436     unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
437     DemandedMask = DemandedMask.zext(truncBf);
438     KnownZero = KnownZero.zext(truncBf);
439     KnownOne = KnownOne.zext(truncBf);
440     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
441                              KnownOne, Depth + 1))
442       return I;
443     DemandedMask = DemandedMask.trunc(BitWidth);
444     KnownZero = KnownZero.trunc(BitWidth);
445     KnownOne = KnownOne.trunc(BitWidth);
446     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
447     break;
448   }
449   case Instruction::BitCast:
450     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
451       return nullptr;  // vector->int or fp->int?
452 
453     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
454       if (VectorType *SrcVTy =
455             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
456         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
457           // Don't touch a bitcast between vectors of different element counts.
458           return nullptr;
459       } else
460         // Don't touch a scalar-to-vector bitcast.
461         return nullptr;
462     } else if (I->getOperand(0)->getType()->isVectorTy())
463       // Don't touch a vector-to-scalar bitcast.
464       return nullptr;
465 
466     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
467                              KnownOne, Depth + 1))
468       return I;
469     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
470     break;
471   case Instruction::ZExt: {
472     // Compute the bits in the result that are not present in the input.
473     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
474 
475     DemandedMask = DemandedMask.trunc(SrcBitWidth);
476     KnownZero = KnownZero.trunc(SrcBitWidth);
477     KnownOne = KnownOne.trunc(SrcBitWidth);
478     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
479                              KnownOne, Depth + 1))
480       return I;
481     DemandedMask = DemandedMask.zext(BitWidth);
482     KnownZero = KnownZero.zext(BitWidth);
483     KnownOne = KnownOne.zext(BitWidth);
484     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
485     // The top bits are known to be zero.
486     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
487     break;
488   }
489   case Instruction::SExt: {
490     // Compute the bits in the result that are not present in the input.
491     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
492 
493     APInt InputDemandedBits = DemandedMask &
494                               APInt::getLowBitsSet(BitWidth, SrcBitWidth);
495 
496     APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
497     // If any of the sign extended bits are demanded, we know that the sign
498     // bit is demanded.
499     if ((NewBits & DemandedMask) != 0)
500       InputDemandedBits.setBit(SrcBitWidth-1);
501 
502     InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
503     KnownZero = KnownZero.trunc(SrcBitWidth);
504     KnownOne = KnownOne.trunc(SrcBitWidth);
505     if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, KnownZero,
506                              KnownOne, Depth + 1))
507       return I;
508     InputDemandedBits = InputDemandedBits.zext(BitWidth);
509     KnownZero = KnownZero.zext(BitWidth);
510     KnownOne = KnownOne.zext(BitWidth);
511     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
512 
513     // If the sign bit of the input is known set or clear, then we know the
514     // top bits of the result.
515 
516     // If the input sign bit is known zero, or if the NewBits are not demanded
517     // convert this into a zero extension.
518     if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
519       // Convert to ZExt cast
520       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
521       return InsertNewInstWith(NewCast, *I);
522     } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
523       KnownOne |= NewBits;
524     }
525     break;
526   }
527   case Instruction::Add:
528   case Instruction::Sub: {
529     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
530     /// about the high bits of the operands.
531     unsigned NLZ = DemandedMask.countLeadingZeros();
532     if (NLZ > 0) {
533       // Right fill the mask of bits for this ADD/SUB to demand the most
534       // significant bit and all those below it.
535       APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
536       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
537                                LHSKnownZero, LHSKnownOne, Depth + 1) ||
538           ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
539           SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
540                                LHSKnownZero, LHSKnownOne, Depth + 1)) {
541         // Disable the nsw and nuw flags here: We can no longer guarantee that
542         // we won't wrap after simplification. Removing the nsw/nuw flags is
543         // legal here because the top bit is not demanded.
544         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
545         BinOP.setHasNoSignedWrap(false);
546         BinOP.setHasNoUnsignedWrap(false);
547         return I;
548       }
549     }
550 
551     // Otherwise just hand the add/sub off to computeKnownBits to fill in
552     // the known zeros and ones.
553     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
554     break;
555   }
556   case Instruction::Shl:
557     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
558       {
559         Value *VarX; ConstantInt *C1;
560         if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
561           Instruction *Shr = cast<Instruction>(I->getOperand(0));
562           Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
563                                                 KnownZero, KnownOne);
564           if (R)
565             return R;
566         }
567       }
568 
569       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
570       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
571 
572       // If the shift is NUW/NSW, then it does demand the high bits.
573       ShlOperator *IOp = cast<ShlOperator>(I);
574       if (IOp->hasNoSignedWrap())
575         DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
576       else if (IOp->hasNoUnsignedWrap())
577         DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
578 
579       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
580                                KnownOne, Depth + 1))
581         return I;
582       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
583       KnownZero <<= ShiftAmt;
584       KnownOne  <<= ShiftAmt;
585       // low bits known zero.
586       if (ShiftAmt)
587         KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
588     }
589     break;
590   case Instruction::LShr:
591     // For a logical shift right
592     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
593       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
594 
595       // Unsigned shift right.
596       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
597 
598       // If the shift is exact, then it does demand the low bits (and knows that
599       // they are zero).
600       if (cast<LShrOperator>(I)->isExact())
601         DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
602 
603       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
604                                KnownOne, Depth + 1))
605         return I;
606       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
607       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
608       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
609       if (ShiftAmt) {
610         // Compute the new bits that are at the top now.
611         APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
612         KnownZero |= HighBits;  // high bits known zero.
613       }
614     }
615     break;
616   case Instruction::AShr:
617     // If this is an arithmetic shift right and only the low-bit is set, we can
618     // always convert this into a logical shr, even if the shift amount is
619     // variable.  The low bit of the shift cannot be an input sign bit unless
620     // the shift amount is >= the size of the datatype, which is undefined.
621     if (DemandedMask == 1) {
622       // Perform the logical shift right.
623       Instruction *NewVal = BinaryOperator::CreateLShr(
624                         I->getOperand(0), I->getOperand(1), I->getName());
625       return InsertNewInstWith(NewVal, *I);
626     }
627 
628     // If the sign bit is the only bit demanded by this ashr, then there is no
629     // need to do it, the shift doesn't change the high bit.
630     if (DemandedMask.isSignBit())
631       return I->getOperand(0);
632 
633     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
634       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
635 
636       // Signed shift right.
637       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
638       // If any of the "high bits" are demanded, we should set the sign bit as
639       // demanded.
640       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
641         DemandedMaskIn.setBit(BitWidth-1);
642 
643       // If the shift is exact, then it does demand the low bits (and knows that
644       // they are zero).
645       if (cast<AShrOperator>(I)->isExact())
646         DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
647 
648       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
649                                KnownOne, Depth + 1))
650         return I;
651       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
652       // Compute the new bits that are at the top now.
653       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
654       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
655       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
656 
657       // Handle the sign bits.
658       APInt SignBit(APInt::getSignBit(BitWidth));
659       // Adjust to where it is now in the mask.
660       SignBit = APIntOps::lshr(SignBit, ShiftAmt);
661 
662       // If the input sign bit is known to be zero, or if none of the top bits
663       // are demanded, turn this into an unsigned shift right.
664       if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
665           (HighBits & ~DemandedMask) == HighBits) {
666         // Perform the logical shift right.
667         BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
668                                                             SA, I->getName());
669         NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
670         return InsertNewInstWith(NewVal, *I);
671       } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
672         KnownOne |= HighBits;
673       }
674     }
675     break;
676   case Instruction::SRem:
677     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
678       // X % -1 demands all the bits because we don't want to introduce
679       // INT_MIN % -1 (== undef) by accident.
680       if (Rem->isAllOnesValue())
681         break;
682       APInt RA = Rem->getValue().abs();
683       if (RA.isPowerOf2()) {
684         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
685           return I->getOperand(0);
686 
687         APInt LowBits = RA - 1;
688         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
689         if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero,
690                                  LHSKnownOne, Depth + 1))
691           return I;
692 
693         // The low bits of LHS are unchanged by the srem.
694         KnownZero = LHSKnownZero & LowBits;
695         KnownOne = LHSKnownOne & LowBits;
696 
697         // If LHS is non-negative or has all low bits zero, then the upper bits
698         // are all zero.
699         if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
700           KnownZero |= ~LowBits;
701 
702         // If LHS is negative and not all low bits are zero, then the upper bits
703         // are all one.
704         if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
705           KnownOne |= ~LowBits;
706 
707         assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
708       }
709     }
710 
711     // The sign bit is the LHS's sign bit, except when the result of the
712     // remainder is zero.
713     if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
714       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
715       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
716                        CxtI);
717       // If it's known zero, our sign bit is also zero.
718       if (LHSKnownZero.isNegative())
719         KnownZero.setBit(KnownZero.getBitWidth() - 1);
720     }
721     break;
722   case Instruction::URem: {
723     APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
724     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
725     if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2,
726                              KnownOne2, Depth + 1) ||
727         SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2,
728                              KnownOne2, Depth + 1))
729       return I;
730 
731     unsigned Leaders = KnownZero2.countLeadingOnes();
732     Leaders = std::max(Leaders,
733                        KnownZero2.countLeadingOnes());
734     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
735     break;
736   }
737   case Instruction::Call:
738     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
739       switch (II->getIntrinsicID()) {
740       default: break;
741       case Intrinsic::bswap: {
742         // If the only bits demanded come from one byte of the bswap result,
743         // just shift the input byte into position to eliminate the bswap.
744         unsigned NLZ = DemandedMask.countLeadingZeros();
745         unsigned NTZ = DemandedMask.countTrailingZeros();
746 
747         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
748         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
749         // have 14 leading zeros, round to 8.
750         NLZ &= ~7;
751         NTZ &= ~7;
752         // If we need exactly one byte, we can do this transformation.
753         if (BitWidth-NLZ-NTZ == 8) {
754           unsigned ResultBit = NTZ;
755           unsigned InputBit = BitWidth-NTZ-8;
756 
757           // Replace this with either a left or right shift to get the byte into
758           // the right place.
759           Instruction *NewVal;
760           if (InputBit > ResultBit)
761             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
762                     ConstantInt::get(I->getType(), InputBit-ResultBit));
763           else
764             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
765                     ConstantInt::get(I->getType(), ResultBit-InputBit));
766           NewVal->takeName(I);
767           return InsertNewInstWith(NewVal, *I);
768         }
769 
770         // TODO: Could compute known zero/one bits based on the input.
771         break;
772       }
773       case Intrinsic::x86_mmx_pmovmskb:
774       case Intrinsic::x86_sse_movmsk_ps:
775       case Intrinsic::x86_sse2_movmsk_pd:
776       case Intrinsic::x86_sse2_pmovmskb_128:
777       case Intrinsic::x86_avx_movmsk_ps_256:
778       case Intrinsic::x86_avx_movmsk_pd_256:
779       case Intrinsic::x86_avx2_pmovmskb: {
780         // MOVMSK copies the vector elements' sign bits to the low bits
781         // and zeros the high bits.
782         unsigned ArgWidth;
783         if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
784           ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
785         } else {
786           auto Arg = II->getArgOperand(0);
787           auto ArgType = cast<VectorType>(Arg->getType());
788           ArgWidth = ArgType->getNumElements();
789         }
790 
791         // If we don't need any of low bits then return zero,
792         // we know that DemandedMask is non-zero already.
793         APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
794         if (DemandedElts == 0)
795           return ConstantInt::getNullValue(VTy);
796 
797         // We know that the upper bits are set to zero.
798         KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - ArgWidth);
799         return nullptr;
800       }
801       case Intrinsic::x86_sse42_crc32_64_64:
802         KnownZero = APInt::getHighBitsSet(64, 32);
803         return nullptr;
804       }
805     }
806     computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
807     break;
808   }
809 
810   // If the client is only demanding bits that we know, return the known
811   // constant.
812   if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
813     return Constant::getIntegerValue(VTy, KnownOne);
814   return nullptr;
815 }
816 
817 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
818 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
819 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
820 /// of "C2-C1".
821 ///
822 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
823 /// ..., bn}, without considering the specific value X is holding.
824 /// This transformation is legal iff one of following conditions is hold:
825 ///  1) All the bit in S are 0, in this case E1 == E2.
826 ///  2) We don't care those bits in S, per the input DemandedMask.
827 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
828 ///     rest bits.
829 ///
830 /// Currently we only test condition 2).
831 ///
832 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
833 /// not successful.
834 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
835                                                 Instruction *Shl,
836                                                 const APInt &DemandedMask,
837                                                 APInt &KnownZero,
838                                                 APInt &KnownOne) {
839 
840   const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
841   const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
842   if (!ShlOp1 || !ShrOp1)
843       return nullptr; // Noop.
844 
845   Value *VarX = Shr->getOperand(0);
846   Type *Ty = VarX->getType();
847   unsigned BitWidth = Ty->getIntegerBitWidth();
848   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
849     return nullptr; // Undef.
850 
851   unsigned ShlAmt = ShlOp1.getZExtValue();
852   unsigned ShrAmt = ShrOp1.getZExtValue();
853 
854   KnownOne.clearAllBits();
855   KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
856   KnownZero &= DemandedMask;
857 
858   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
859   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
860 
861   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
862   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
863                       (BitMask1.ashr(ShrAmt) << ShlAmt);
864 
865   if (ShrAmt <= ShlAmt) {
866     BitMask2 <<= (ShlAmt - ShrAmt);
867   } else {
868     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
869                         BitMask2.ashr(ShrAmt - ShlAmt);
870   }
871 
872   // Check if condition-2 (see the comment to this function) is satified.
873   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
874     if (ShrAmt == ShlAmt)
875       return VarX;
876 
877     if (!Shr->hasOneUse())
878       return nullptr;
879 
880     BinaryOperator *New;
881     if (ShrAmt < ShlAmt) {
882       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
883       New = BinaryOperator::CreateShl(VarX, Amt);
884       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
885       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
886       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
887     } else {
888       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
889       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
890                      BinaryOperator::CreateAShr(VarX, Amt);
891       if (cast<BinaryOperator>(Shr)->isExact())
892         New->setIsExact(true);
893     }
894 
895     return InsertNewInstWith(New, *Shl);
896   }
897 
898   return nullptr;
899 }
900 
901 /// The specified value produces a vector with any number of elements.
902 /// DemandedElts contains the set of elements that are actually used by the
903 /// caller. This method analyzes which elements of the operand are undef and
904 /// returns that information in UndefElts.
905 ///
906 /// If the information about demanded elements can be used to simplify the
907 /// operation, the operation is simplified, then the resultant value is
908 /// returned.  This returns null if no change was made.
909 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
910                                                 APInt &UndefElts,
911                                                 unsigned Depth) {
912   unsigned VWidth = V->getType()->getVectorNumElements();
913   APInt EltMask(APInt::getAllOnesValue(VWidth));
914   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
915 
916   if (isa<UndefValue>(V)) {
917     // If the entire vector is undefined, just return this info.
918     UndefElts = EltMask;
919     return nullptr;
920   }
921 
922   if (DemandedElts == 0) { // If nothing is demanded, provide undef.
923     UndefElts = EltMask;
924     return UndefValue::get(V->getType());
925   }
926 
927   UndefElts = 0;
928 
929   // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
930   if (Constant *C = dyn_cast<Constant>(V)) {
931     // Check if this is identity. If so, return 0 since we are not simplifying
932     // anything.
933     if (DemandedElts.isAllOnesValue())
934       return nullptr;
935 
936     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
937     Constant *Undef = UndefValue::get(EltTy);
938 
939     SmallVector<Constant*, 16> Elts;
940     for (unsigned i = 0; i != VWidth; ++i) {
941       if (!DemandedElts[i]) {   // If not demanded, set to undef.
942         Elts.push_back(Undef);
943         UndefElts.setBit(i);
944         continue;
945       }
946 
947       Constant *Elt = C->getAggregateElement(i);
948       if (!Elt) return nullptr;
949 
950       if (isa<UndefValue>(Elt)) {   // Already undef.
951         Elts.push_back(Undef);
952         UndefElts.setBit(i);
953       } else {                               // Otherwise, defined.
954         Elts.push_back(Elt);
955       }
956     }
957 
958     // If we changed the constant, return it.
959     Constant *NewCV = ConstantVector::get(Elts);
960     return NewCV != C ? NewCV : nullptr;
961   }
962 
963   // Limit search depth.
964   if (Depth == 10)
965     return nullptr;
966 
967   // If multiple users are using the root value, proceed with
968   // simplification conservatively assuming that all elements
969   // are needed.
970   if (!V->hasOneUse()) {
971     // Quit if we find multiple users of a non-root value though.
972     // They'll be handled when it's their turn to be visited by
973     // the main instcombine process.
974     if (Depth != 0)
975       // TODO: Just compute the UndefElts information recursively.
976       return nullptr;
977 
978     // Conservatively assume that all elements are needed.
979     DemandedElts = EltMask;
980   }
981 
982   Instruction *I = dyn_cast<Instruction>(V);
983   if (!I) return nullptr;        // Only analyze instructions.
984 
985   bool MadeChange = false;
986   APInt UndefElts2(VWidth, 0);
987   APInt UndefElts3(VWidth, 0);
988   Value *TmpV;
989   switch (I->getOpcode()) {
990   default: break;
991 
992   case Instruction::InsertElement: {
993     // If this is a variable index, we don't know which element it overwrites.
994     // demand exactly the same input as we produce.
995     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
996     if (!Idx) {
997       // Note that we can't propagate undef elt info, because we don't know
998       // which elt is getting updated.
999       TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1000                                         UndefElts2, Depth + 1);
1001       if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1002       break;
1003     }
1004 
1005     // If this is inserting an element that isn't demanded, remove this
1006     // insertelement.
1007     unsigned IdxNo = Idx->getZExtValue();
1008     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1009       Worklist.Add(I);
1010       return I->getOperand(0);
1011     }
1012 
1013     // Otherwise, the element inserted overwrites whatever was there, so the
1014     // input demanded set is simpler than the output set.
1015     APInt DemandedElts2 = DemandedElts;
1016     DemandedElts2.clearBit(IdxNo);
1017     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
1018                                       UndefElts, Depth + 1);
1019     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1020 
1021     // The inserted element is defined.
1022     UndefElts.clearBit(IdxNo);
1023     break;
1024   }
1025   case Instruction::ShuffleVector: {
1026     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1027     unsigned LHSVWidth =
1028       Shuffle->getOperand(0)->getType()->getVectorNumElements();
1029     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1030     for (unsigned i = 0; i < VWidth; i++) {
1031       if (DemandedElts[i]) {
1032         unsigned MaskVal = Shuffle->getMaskValue(i);
1033         if (MaskVal != -1u) {
1034           assert(MaskVal < LHSVWidth * 2 &&
1035                  "shufflevector mask index out of range!");
1036           if (MaskVal < LHSVWidth)
1037             LeftDemanded.setBit(MaskVal);
1038           else
1039             RightDemanded.setBit(MaskVal - LHSVWidth);
1040         }
1041       }
1042     }
1043 
1044     APInt LHSUndefElts(LHSVWidth, 0);
1045     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1046                                       LHSUndefElts, Depth + 1);
1047     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1048 
1049     APInt RHSUndefElts(LHSVWidth, 0);
1050     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1051                                       RHSUndefElts, Depth + 1);
1052     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1053 
1054     bool NewUndefElts = false;
1055     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1056     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1057     bool LHSUniform = true;
1058     bool RHSUniform = true;
1059     for (unsigned i = 0; i < VWidth; i++) {
1060       unsigned MaskVal = Shuffle->getMaskValue(i);
1061       if (MaskVal == -1u) {
1062         UndefElts.setBit(i);
1063       } else if (!DemandedElts[i]) {
1064         NewUndefElts = true;
1065         UndefElts.setBit(i);
1066       } else if (MaskVal < LHSVWidth) {
1067         if (LHSUndefElts[MaskVal]) {
1068           NewUndefElts = true;
1069           UndefElts.setBit(i);
1070         } else {
1071           LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1072           LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
1073           LHSUniform = LHSUniform && (MaskVal == i);
1074         }
1075       } else {
1076         if (RHSUndefElts[MaskVal - LHSVWidth]) {
1077           NewUndefElts = true;
1078           UndefElts.setBit(i);
1079         } else {
1080           RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1081           RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
1082           RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
1083         }
1084       }
1085     }
1086 
1087     // Try to transform shuffle with constant vector and single element from
1088     // this constant vector to single insertelement instruction.
1089     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1090     // insertelement V, C[ci], ci-n
1091     if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1092       Value *Op = nullptr;
1093       Constant *Value = nullptr;
1094       unsigned Idx = -1u;
1095 
1096       // Find constant vector with the single element in shuffle (LHS or RHS).
1097       if (LHSIdx < LHSVWidth && RHSUniform) {
1098         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1099           Op = Shuffle->getOperand(1);
1100           Value = CV->getOperand(LHSValIdx);
1101           Idx = LHSIdx;
1102         }
1103       }
1104       if (RHSIdx < LHSVWidth && LHSUniform) {
1105         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1106           Op = Shuffle->getOperand(0);
1107           Value = CV->getOperand(RHSValIdx);
1108           Idx = RHSIdx;
1109         }
1110       }
1111       // Found constant vector with single element - convert to insertelement.
1112       if (Op && Value) {
1113         Instruction *New = InsertElementInst::Create(
1114             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1115             Shuffle->getName());
1116         InsertNewInstWith(New, *Shuffle);
1117         return New;
1118       }
1119     }
1120     if (NewUndefElts) {
1121       // Add additional discovered undefs.
1122       SmallVector<Constant*, 16> Elts;
1123       for (unsigned i = 0; i < VWidth; ++i) {
1124         if (UndefElts[i])
1125           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1126         else
1127           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1128                                           Shuffle->getMaskValue(i)));
1129       }
1130       I->setOperand(2, ConstantVector::get(Elts));
1131       MadeChange = true;
1132     }
1133     break;
1134   }
1135   case Instruction::Select: {
1136     APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1137     if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1138       for (unsigned i = 0; i < VWidth; i++) {
1139         Constant *CElt = CV->getAggregateElement(i);
1140         // Method isNullValue always returns false when called on a
1141         // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1142         // to avoid propagating incorrect information.
1143         if (isa<ConstantExpr>(CElt))
1144           continue;
1145         if (CElt->isNullValue())
1146           LeftDemanded.clearBit(i);
1147         else
1148           RightDemanded.clearBit(i);
1149       }
1150     }
1151 
1152     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1153                                       Depth + 1);
1154     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1155 
1156     TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1157                                       UndefElts2, Depth + 1);
1158     if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1159 
1160     // Output elements are undefined if both are undefined.
1161     UndefElts &= UndefElts2;
1162     break;
1163   }
1164   case Instruction::BitCast: {
1165     // Vector->vector casts only.
1166     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1167     if (!VTy) break;
1168     unsigned InVWidth = VTy->getNumElements();
1169     APInt InputDemandedElts(InVWidth, 0);
1170     UndefElts2 = APInt(InVWidth, 0);
1171     unsigned Ratio;
1172 
1173     if (VWidth == InVWidth) {
1174       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1175       // elements as are demanded of us.
1176       Ratio = 1;
1177       InputDemandedElts = DemandedElts;
1178     } else if ((VWidth % InVWidth) == 0) {
1179       // If the number of elements in the output is a multiple of the number of
1180       // elements in the input then an input element is live if any of the
1181       // corresponding output elements are live.
1182       Ratio = VWidth / InVWidth;
1183       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1184         if (DemandedElts[OutIdx])
1185           InputDemandedElts.setBit(OutIdx / Ratio);
1186     } else if ((InVWidth % VWidth) == 0) {
1187       // If the number of elements in the input is a multiple of the number of
1188       // elements in the output then an input element is live if the
1189       // corresponding output element is live.
1190       Ratio = InVWidth / VWidth;
1191       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1192         if (DemandedElts[InIdx / Ratio])
1193           InputDemandedElts.setBit(InIdx);
1194     } else {
1195       // Unsupported so far.
1196       break;
1197     }
1198 
1199     // div/rem demand all inputs, because they don't want divide by zero.
1200     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1201                                       UndefElts2, Depth + 1);
1202     if (TmpV) {
1203       I->setOperand(0, TmpV);
1204       MadeChange = true;
1205     }
1206 
1207     if (VWidth == InVWidth) {
1208       UndefElts = UndefElts2;
1209     } else if ((VWidth % InVWidth) == 0) {
1210       // If the number of elements in the output is a multiple of the number of
1211       // elements in the input then an output element is undef if the
1212       // corresponding input element is undef.
1213       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1214         if (UndefElts2[OutIdx / Ratio])
1215           UndefElts.setBit(OutIdx);
1216     } else if ((InVWidth % VWidth) == 0) {
1217       // If the number of elements in the input is a multiple of the number of
1218       // elements in the output then an output element is undef if all of the
1219       // corresponding input elements are undef.
1220       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1221         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1222         if (SubUndef.countPopulation() == Ratio)
1223           UndefElts.setBit(OutIdx);
1224       }
1225     } else {
1226       llvm_unreachable("Unimp");
1227     }
1228     break;
1229   }
1230   case Instruction::And:
1231   case Instruction::Or:
1232   case Instruction::Xor:
1233   case Instruction::Add:
1234   case Instruction::Sub:
1235   case Instruction::Mul:
1236     // div/rem demand all inputs, because they don't want divide by zero.
1237     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1238                                       Depth + 1);
1239     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1240     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1241                                       UndefElts2, Depth + 1);
1242     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1243 
1244     // Output elements are undefined if both are undefined.  Consider things
1245     // like undef&0.  The result is known zero, not undef.
1246     UndefElts &= UndefElts2;
1247     break;
1248   case Instruction::FPTrunc:
1249   case Instruction::FPExt:
1250     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1251                                       Depth + 1);
1252     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1253     break;
1254 
1255   case Instruction::Call: {
1256     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1257     if (!II) break;
1258     switch (II->getIntrinsicID()) {
1259     default: break;
1260 
1261     case Intrinsic::x86_xop_vfrcz_ss:
1262     case Intrinsic::x86_xop_vfrcz_sd:
1263       // The instructions for these intrinsics are speced to zero upper bits not
1264       // pass them through like other scalar intrinsics. So we shouldn't just
1265       // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1266       // Instead we should return a zero vector.
1267       if (!DemandedElts[0]) {
1268         Worklist.Add(II);
1269         return ConstantAggregateZero::get(II->getType());
1270       }
1271 
1272       // Only the lower element is used.
1273       DemandedElts = 1;
1274       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1275                                         UndefElts, Depth + 1);
1276       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1277 
1278       // Only the lower element is undefined. The high elements are zero.
1279       UndefElts = UndefElts[0];
1280       break;
1281 
1282     // Unary scalar-as-vector operations that work column-wise.
1283     case Intrinsic::x86_sse_rcp_ss:
1284     case Intrinsic::x86_sse_rsqrt_ss:
1285     case Intrinsic::x86_sse_sqrt_ss:
1286     case Intrinsic::x86_sse2_sqrt_sd:
1287       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1288                                         UndefElts, Depth + 1);
1289       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1290 
1291       // If lowest element of a scalar op isn't used then use Arg0.
1292       if (!DemandedElts[0]) {
1293         Worklist.Add(II);
1294         return II->getArgOperand(0);
1295       }
1296       // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1297       // checks).
1298       break;
1299 
1300     // Binary scalar-as-vector operations that work column-wise. The high
1301     // elements come from operand 0. The low element is a function of both
1302     // operands.
1303     case Intrinsic::x86_sse_min_ss:
1304     case Intrinsic::x86_sse_max_ss:
1305     case Intrinsic::x86_sse_cmp_ss:
1306     case Intrinsic::x86_sse2_min_sd:
1307     case Intrinsic::x86_sse2_max_sd:
1308     case Intrinsic::x86_sse2_cmp_sd: {
1309       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1310                                         UndefElts, Depth + 1);
1311       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1312 
1313       // If lowest element of a scalar op isn't used then use Arg0.
1314       if (!DemandedElts[0]) {
1315         Worklist.Add(II);
1316         return II->getArgOperand(0);
1317       }
1318 
1319       // Only lower element is used for operand 1.
1320       DemandedElts = 1;
1321       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1322                                         UndefElts2, Depth + 1);
1323       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1324 
1325       // Lower element is undefined if both lower elements are undefined.
1326       // Consider things like undef&0.  The result is known zero, not undef.
1327       if (!UndefElts2[0])
1328         UndefElts.clearBit(0);
1329 
1330       break;
1331     }
1332 
1333     // Binary scalar-as-vector operations that work column-wise. The high
1334     // elements come from operand 0 and the low element comes from operand 1.
1335     case Intrinsic::x86_sse41_round_ss:
1336     case Intrinsic::x86_sse41_round_sd: {
1337       // Don't use the low element of operand 0.
1338       APInt DemandedElts2 = DemandedElts;
1339       DemandedElts2.clearBit(0);
1340       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2,
1341                                         UndefElts, Depth + 1);
1342       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1343 
1344       // If lowest element of a scalar op isn't used then use Arg0.
1345       if (!DemandedElts[0]) {
1346         Worklist.Add(II);
1347         return II->getArgOperand(0);
1348       }
1349 
1350       // Only lower element is used for operand 1.
1351       DemandedElts = 1;
1352       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1353                                         UndefElts2, Depth + 1);
1354       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1355 
1356       // Take the high undef elements from operand 0 and take the lower element
1357       // from operand 1.
1358       UndefElts.clearBit(0);
1359       UndefElts |= UndefElts2[0];
1360       break;
1361     }
1362 
1363     // Three input scalar-as-vector operations that work column-wise. The high
1364     // elements come from operand 0 and the low element is a function of all
1365     // three inputs.
1366     case Intrinsic::x86_avx512_mask_add_ss_round:
1367     case Intrinsic::x86_avx512_mask_div_ss_round:
1368     case Intrinsic::x86_avx512_mask_mul_ss_round:
1369     case Intrinsic::x86_avx512_mask_sub_ss_round:
1370     case Intrinsic::x86_avx512_mask_max_ss_round:
1371     case Intrinsic::x86_avx512_mask_min_ss_round:
1372     case Intrinsic::x86_avx512_mask_add_sd_round:
1373     case Intrinsic::x86_avx512_mask_div_sd_round:
1374     case Intrinsic::x86_avx512_mask_mul_sd_round:
1375     case Intrinsic::x86_avx512_mask_sub_sd_round:
1376     case Intrinsic::x86_avx512_mask_max_sd_round:
1377     case Intrinsic::x86_avx512_mask_min_sd_round:
1378     case Intrinsic::x86_fma_vfmadd_ss:
1379     case Intrinsic::x86_fma_vfmsub_ss:
1380     case Intrinsic::x86_fma_vfnmadd_ss:
1381     case Intrinsic::x86_fma_vfnmsub_ss:
1382     case Intrinsic::x86_fma_vfmadd_sd:
1383     case Intrinsic::x86_fma_vfmsub_sd:
1384     case Intrinsic::x86_fma_vfnmadd_sd:
1385     case Intrinsic::x86_fma_vfnmsub_sd:
1386     case Intrinsic::x86_avx512_mask_vfmadd_ss:
1387     case Intrinsic::x86_avx512_mask_vfmadd_sd:
1388     case Intrinsic::x86_avx512_maskz_vfmadd_ss:
1389     case Intrinsic::x86_avx512_maskz_vfmadd_sd:
1390       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1391                                         UndefElts, Depth + 1);
1392       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1393 
1394       // If lowest element of a scalar op isn't used then use Arg0.
1395       if (!DemandedElts[0]) {
1396         Worklist.Add(II);
1397         return II->getArgOperand(0);
1398       }
1399 
1400       // Only lower element is used for operand 1 and 2.
1401       DemandedElts = 1;
1402       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1403                                         UndefElts2, Depth + 1);
1404       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1405       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1406                                         UndefElts3, Depth + 1);
1407       if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1408 
1409       // Lower element is undefined if all three lower elements are undefined.
1410       // Consider things like undef&0.  The result is known zero, not undef.
1411       if (!UndefElts2[0] || !UndefElts3[0])
1412         UndefElts.clearBit(0);
1413 
1414       break;
1415 
1416     case Intrinsic::x86_avx512_mask3_vfmadd_ss:
1417     case Intrinsic::x86_avx512_mask3_vfmadd_sd:
1418     case Intrinsic::x86_avx512_mask3_vfmsub_ss:
1419     case Intrinsic::x86_avx512_mask3_vfmsub_sd:
1420     case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
1421     case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
1422       // These intrinsics get the passthru bits from operand 2.
1423       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1424                                         UndefElts, Depth + 1);
1425       if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1426 
1427       // If lowest element of a scalar op isn't used then use Arg2.
1428       if (!DemandedElts[0]) {
1429         Worklist.Add(II);
1430         return II->getArgOperand(2);
1431       }
1432 
1433       // Only lower element is used for operand 0 and 1.
1434       DemandedElts = 1;
1435       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1436                                         UndefElts2, Depth + 1);
1437       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1438       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1439                                         UndefElts3, Depth + 1);
1440       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1441 
1442       // Lower element is undefined if all three lower elements are undefined.
1443       // Consider things like undef&0.  The result is known zero, not undef.
1444       if (!UndefElts2[0] || !UndefElts3[0])
1445         UndefElts.clearBit(0);
1446 
1447       break;
1448 
1449     case Intrinsic::x86_sse2_pmulu_dq:
1450     case Intrinsic::x86_sse41_pmuldq:
1451     case Intrinsic::x86_avx2_pmul_dq:
1452     case Intrinsic::x86_avx2_pmulu_dq:
1453     case Intrinsic::x86_avx512_pmul_dq_512:
1454     case Intrinsic::x86_avx512_pmulu_dq_512: {
1455       Value *Op0 = II->getArgOperand(0);
1456       Value *Op1 = II->getArgOperand(1);
1457       unsigned InnerVWidth = Op0->getType()->getVectorNumElements();
1458       assert((VWidth * 2) == InnerVWidth && "Unexpected input size");
1459 
1460       APInt InnerDemandedElts(InnerVWidth, 0);
1461       for (unsigned i = 0; i != VWidth; ++i)
1462         if (DemandedElts[i])
1463           InnerDemandedElts.setBit(i * 2);
1464 
1465       UndefElts2 = APInt(InnerVWidth, 0);
1466       TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2,
1467                                         Depth + 1);
1468       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1469 
1470       UndefElts3 = APInt(InnerVWidth, 0);
1471       TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3,
1472                                         Depth + 1);
1473       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1474 
1475       break;
1476     }
1477 
1478     case Intrinsic::x86_sse2_packssdw_128:
1479     case Intrinsic::x86_sse2_packsswb_128:
1480     case Intrinsic::x86_sse2_packuswb_128:
1481     case Intrinsic::x86_sse41_packusdw:
1482     case Intrinsic::x86_avx2_packssdw:
1483     case Intrinsic::x86_avx2_packsswb:
1484     case Intrinsic::x86_avx2_packusdw:
1485     case Intrinsic::x86_avx2_packuswb:
1486     case Intrinsic::x86_avx512_packssdw_512:
1487     case Intrinsic::x86_avx512_packsswb_512:
1488     case Intrinsic::x86_avx512_packusdw_512:
1489     case Intrinsic::x86_avx512_packuswb_512: {
1490       auto *Ty0 = II->getArgOperand(0)->getType();
1491       unsigned InnerVWidth = Ty0->getVectorNumElements();
1492       assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1493 
1494       unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1495       unsigned VWidthPerLane = VWidth / NumLanes;
1496       unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1497 
1498       // Per lane, pack the elements of the first input and then the second.
1499       // e.g.
1500       // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1501       // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1502       for (int OpNum = 0; OpNum != 2; ++OpNum) {
1503         APInt OpDemandedElts(InnerVWidth, 0);
1504         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1505           unsigned LaneIdx = Lane * VWidthPerLane;
1506           for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1507             unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1508             if (DemandedElts[Idx])
1509               OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1510           }
1511         }
1512 
1513         // Demand elements from the operand.
1514         auto *Op = II->getArgOperand(OpNum);
1515         APInt OpUndefElts(InnerVWidth, 0);
1516         TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts,
1517                                           Depth + 1);
1518         if (TmpV) {
1519           II->setArgOperand(OpNum, TmpV);
1520           MadeChange = true;
1521         }
1522 
1523         // Pack the operand's UNDEF elements, one lane at a time.
1524         OpUndefElts = OpUndefElts.zext(VWidth);
1525         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1526           APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1527           LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1528           LaneElts = LaneElts.shl(InnerVWidthPerLane * (2 * Lane + OpNum));
1529           UndefElts |= LaneElts;
1530         }
1531       }
1532       break;
1533     }
1534 
1535     // PSHUFB
1536     case Intrinsic::x86_ssse3_pshuf_b_128:
1537     case Intrinsic::x86_avx2_pshuf_b:
1538     case Intrinsic::x86_avx512_pshuf_b_512:
1539     // PERMILVAR
1540     case Intrinsic::x86_avx_vpermilvar_ps:
1541     case Intrinsic::x86_avx_vpermilvar_ps_256:
1542     case Intrinsic::x86_avx512_vpermilvar_ps_512:
1543     case Intrinsic::x86_avx_vpermilvar_pd:
1544     case Intrinsic::x86_avx_vpermilvar_pd_256:
1545     case Intrinsic::x86_avx512_vpermilvar_pd_512:
1546     // PERMV
1547     case Intrinsic::x86_avx2_permd:
1548     case Intrinsic::x86_avx2_permps: {
1549       Value *Op1 = II->getArgOperand(1);
1550       TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts,
1551                                         Depth + 1);
1552       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1553       break;
1554     }
1555 
1556     // SSE4A instructions leave the upper 64-bits of the 128-bit result
1557     // in an undefined state.
1558     case Intrinsic::x86_sse4a_extrq:
1559     case Intrinsic::x86_sse4a_extrqi:
1560     case Intrinsic::x86_sse4a_insertq:
1561     case Intrinsic::x86_sse4a_insertqi:
1562       UndefElts |= APInt::getHighBitsSet(VWidth, VWidth / 2);
1563       break;
1564     }
1565     break;
1566   }
1567   }
1568   return MadeChange ? I : nullptr;
1569 }
1570