1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstCombineInternal.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 
21 using namespace llvm;
22 using namespace llvm::PatternMatch;
23 
24 #define DEBUG_TYPE "instcombine"
25 
26 namespace {
27 
28 struct AMDGPUImageDMaskIntrinsic {
29   unsigned Intr;
30 };
31 
32 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
33 #include "InstCombineTables.inc"
34 
35 } // end anonymous namespace
36 
37 /// Check to see if the specified operand of the specified instruction is a
38 /// constant integer. If so, check to see if there are any bits set in the
39 /// constant that are not demanded. If so, shrink the constant and return true.
40 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
41                                    const APInt &Demanded) {
42   assert(I && "No instruction?");
43   assert(OpNo < I->getNumOperands() && "Operand index too large");
44 
45   // The operand must be a constant integer or splat integer.
46   Value *Op = I->getOperand(OpNo);
47   const APInt *C;
48   if (!match(Op, m_APInt(C)))
49     return false;
50 
51   // If there are no bits set that aren't demanded, nothing to do.
52   if (C->isSubsetOf(Demanded))
53     return false;
54 
55   // This instruction is producing bits that are not demanded. Shrink the RHS.
56   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
57 
58   return true;
59 }
60 
61 
62 
63 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
64 /// the instruction has any properties that allow us to simplify its operands.
65 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
66   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
67   KnownBits Known(BitWidth);
68   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
69 
70   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
71                                      0, &Inst);
72   if (!V) return false;
73   if (V == &Inst) return true;
74   replaceInstUsesWith(Inst, V);
75   return true;
76 }
77 
78 /// This form of SimplifyDemandedBits simplifies the specified instruction
79 /// operand if possible, updating it in place. It returns true if it made any
80 /// change and false otherwise.
81 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
82                                         const APInt &DemandedMask,
83                                         KnownBits &Known,
84                                         unsigned Depth) {
85   Use &U = I->getOperandUse(OpNo);
86   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
87                                           Depth, I);
88   if (!NewVal) return false;
89   U = NewVal;
90   return true;
91 }
92 
93 
94 /// This function attempts to replace V with a simpler value based on the
95 /// demanded bits. When this function is called, it is known that only the bits
96 /// set in DemandedMask of the result of V are ever used downstream.
97 /// Consequently, depending on the mask and V, it may be possible to replace V
98 /// with a constant or one of its operands. In such cases, this function does
99 /// the replacement and returns true. In all other cases, it returns false after
100 /// analyzing the expression and setting KnownOne and known to be one in the
101 /// expression. Known.Zero contains all the bits that are known to be zero in
102 /// the expression. These are provided to potentially allow the caller (which
103 /// might recursively be SimplifyDemandedBits itself) to simplify the
104 /// expression.
105 /// Known.One and Known.Zero always follow the invariant that:
106 ///   Known.One & Known.Zero == 0.
107 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
108 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
109 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
110 /// be the same.
111 ///
112 /// This returns null if it did not change anything and it permits no
113 /// simplification.  This returns V itself if it did some simplification of V's
114 /// operands based on the information about what bits are demanded. This returns
115 /// some other non-null value if it found out that V is equal to another value
116 /// in the context where the specified bits are demanded, but not for all users.
117 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
118                                              KnownBits &Known, unsigned Depth,
119                                              Instruction *CxtI) {
120   assert(V != nullptr && "Null pointer of Value???");
121   assert(Depth <= 6 && "Limit Search Depth");
122   uint32_t BitWidth = DemandedMask.getBitWidth();
123   Type *VTy = V->getType();
124   assert(
125       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
126       Known.getBitWidth() == BitWidth &&
127       "Value *V, DemandedMask and Known must have same BitWidth");
128 
129   if (isa<Constant>(V)) {
130     computeKnownBits(V, Known, Depth, CxtI);
131     return nullptr;
132   }
133 
134   Known.resetAll();
135   if (DemandedMask.isNullValue())     // Not demanding any bits from V.
136     return UndefValue::get(VTy);
137 
138   if (Depth == 6)        // Limit search depth.
139     return nullptr;
140 
141   Instruction *I = dyn_cast<Instruction>(V);
142   if (!I) {
143     computeKnownBits(V, Known, Depth, CxtI);
144     return nullptr;        // Only analyze instructions.
145   }
146 
147   // If there are multiple uses of this value and we aren't at the root, then
148   // we can't do any simplifications of the operands, because DemandedMask
149   // only reflects the bits demanded by *one* of the users.
150   if (Depth != 0 && !I->hasOneUse())
151     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
152 
153   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
154 
155   // If this is the root being simplified, allow it to have multiple uses,
156   // just set the DemandedMask to all bits so that we can try to simplify the
157   // operands.  This allows visitTruncInst (for example) to simplify the
158   // operand of a trunc without duplicating all the logic below.
159   if (Depth == 0 && !V->hasOneUse())
160     DemandedMask.setAllBits();
161 
162   switch (I->getOpcode()) {
163   default:
164     computeKnownBits(I, Known, Depth, CxtI);
165     break;
166   case Instruction::And: {
167     // If either the LHS or the RHS are Zero, the result is zero.
168     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
169         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
170                              Depth + 1))
171       return I;
172     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
173     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
174 
175     // Output known-0 are known to be clear if zero in either the LHS | RHS.
176     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
177     // Output known-1 bits are only known if set in both the LHS & RHS.
178     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
179 
180     // If the client is only demanding bits that we know, return the known
181     // constant.
182     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
183       return Constant::getIntegerValue(VTy, IKnownOne);
184 
185     // If all of the demanded bits are known 1 on one side, return the other.
186     // These bits cannot contribute to the result of the 'and'.
187     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
188       return I->getOperand(0);
189     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
190       return I->getOperand(1);
191 
192     // If the RHS is a constant, see if we can simplify it.
193     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
194       return I;
195 
196     Known.Zero = std::move(IKnownZero);
197     Known.One  = std::move(IKnownOne);
198     break;
199   }
200   case Instruction::Or: {
201     // If either the LHS or the RHS are One, the result is One.
202     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
203         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
204                              Depth + 1))
205       return I;
206     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
207     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
208 
209     // Output known-0 bits are only known if clear in both the LHS & RHS.
210     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
211     // Output known-1 are known. to be set if s.et in either the LHS | RHS.
212     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
213 
214     // If the client is only demanding bits that we know, return the known
215     // constant.
216     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
217       return Constant::getIntegerValue(VTy, IKnownOne);
218 
219     // If all of the demanded bits are known zero on one side, return the other.
220     // These bits cannot contribute to the result of the 'or'.
221     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
222       return I->getOperand(0);
223     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
224       return I->getOperand(1);
225 
226     // If the RHS is a constant, see if we can simplify it.
227     if (ShrinkDemandedConstant(I, 1, DemandedMask))
228       return I;
229 
230     Known.Zero = std::move(IKnownZero);
231     Known.One  = std::move(IKnownOne);
232     break;
233   }
234   case Instruction::Xor: {
235     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
236         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
237       return I;
238     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
239     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
240 
241     // Output known-0 bits are known if clear or set in both the LHS & RHS.
242     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
243                        (RHSKnown.One & LHSKnown.One);
244     // Output known-1 are known to be set if set in only one of the LHS, RHS.
245     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
246                        (RHSKnown.One & LHSKnown.Zero);
247 
248     // If the client is only demanding bits that we know, return the known
249     // constant.
250     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
251       return Constant::getIntegerValue(VTy, IKnownOne);
252 
253     // If all of the demanded bits are known zero on one side, return the other.
254     // These bits cannot contribute to the result of the 'xor'.
255     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
256       return I->getOperand(0);
257     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
258       return I->getOperand(1);
259 
260     // If all of the demanded bits are known to be zero on one side or the
261     // other, turn this into an *inclusive* or.
262     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
263     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
264       Instruction *Or =
265         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
266                                  I->getName());
267       return InsertNewInstWith(Or, *I);
268     }
269 
270     // If all of the demanded bits on one side are known, and all of the set
271     // bits on that side are also known to be set on the other side, turn this
272     // into an AND, as we know the bits will be cleared.
273     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
274     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
275         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
276       Constant *AndC = Constant::getIntegerValue(VTy,
277                                                  ~RHSKnown.One & DemandedMask);
278       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
279       return InsertNewInstWith(And, *I);
280     }
281 
282     // If the RHS is a constant, see if we can simplify it.
283     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
284     if (ShrinkDemandedConstant(I, 1, DemandedMask))
285       return I;
286 
287     // If our LHS is an 'and' and if it has one use, and if any of the bits we
288     // are flipping are known to be set, then the xor is just resetting those
289     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
290     // simplifying both of them.
291     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
292       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
293           isa<ConstantInt>(I->getOperand(1)) &&
294           isa<ConstantInt>(LHSInst->getOperand(1)) &&
295           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
296         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
297         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
298         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
299 
300         Constant *AndC =
301           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
302         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
303         InsertNewInstWith(NewAnd, *I);
304 
305         Constant *XorC =
306           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
307         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
308         return InsertNewInstWith(NewXor, *I);
309       }
310 
311     // Output known-0 bits are known if clear or set in both the LHS & RHS.
312     Known.Zero = std::move(IKnownZero);
313     // Output known-1 are known to be set if set in only one of the LHS, RHS.
314     Known.One  = std::move(IKnownOne);
315     break;
316   }
317   case Instruction::Select: {
318     Value *LHS, *RHS;
319     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
320     if (SPF == SPF_UMAX) {
321       // UMax(A, C) == A if ...
322       // The lowest non-zero bit of DemandMask is higher than the highest
323       // non-zero bit of C.
324       const APInt *C;
325       unsigned CTZ = DemandedMask.countTrailingZeros();
326       if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
327         return LHS;
328     } else if (SPF == SPF_UMIN) {
329       // UMin(A, C) == A if ...
330       // The lowest non-zero bit of DemandMask is higher than the highest
331       // non-one bit of C.
332       // This comes from using DeMorgans on the above umax example.
333       const APInt *C;
334       unsigned CTZ = DemandedMask.countTrailingZeros();
335       if (match(RHS, m_APInt(C)) &&
336           CTZ >= C->getBitWidth() - C->countLeadingOnes())
337         return LHS;
338     }
339 
340     // If this is a select as part of any other min/max pattern, don't simplify
341     // any further in case we break the structure.
342     if (SPF != SPF_UNKNOWN)
343       return nullptr;
344 
345     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
346         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
347       return I;
348     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
349     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
350 
351     // If the operands are constants, see if we can simplify them.
352     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
353         ShrinkDemandedConstant(I, 2, DemandedMask))
354       return I;
355 
356     // Only known if known in both the LHS and RHS.
357     Known.One = RHSKnown.One & LHSKnown.One;
358     Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
359     break;
360   }
361   case Instruction::ZExt:
362   case Instruction::Trunc: {
363     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
364 
365     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
366     KnownBits InputKnown(SrcBitWidth);
367     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
368       return I;
369     Known = InputKnown.zextOrTrunc(BitWidth);
370     // Any top bits are known to be zero.
371     if (BitWidth > SrcBitWidth)
372       Known.Zero.setBitsFrom(SrcBitWidth);
373     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
374     break;
375   }
376   case Instruction::BitCast:
377     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
378       return nullptr;  // vector->int or fp->int?
379 
380     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
381       if (VectorType *SrcVTy =
382             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
383         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
384           // Don't touch a bitcast between vectors of different element counts.
385           return nullptr;
386       } else
387         // Don't touch a scalar-to-vector bitcast.
388         return nullptr;
389     } else if (I->getOperand(0)->getType()->isVectorTy())
390       // Don't touch a vector-to-scalar bitcast.
391       return nullptr;
392 
393     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
394       return I;
395     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
396     break;
397   case Instruction::SExt: {
398     // Compute the bits in the result that are not present in the input.
399     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
400 
401     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
402 
403     // If any of the sign extended bits are demanded, we know that the sign
404     // bit is demanded.
405     if (DemandedMask.getActiveBits() > SrcBitWidth)
406       InputDemandedBits.setBit(SrcBitWidth-1);
407 
408     KnownBits InputKnown(SrcBitWidth);
409     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
410       return I;
411 
412     // If the input sign bit is known zero, or if the NewBits are not demanded
413     // convert this into a zero extension.
414     if (InputKnown.isNonNegative() ||
415         DemandedMask.getActiveBits() <= SrcBitWidth) {
416       // Convert to ZExt cast.
417       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
418       return InsertNewInstWith(NewCast, *I);
419      }
420 
421     // If the sign bit of the input is known set or clear, then we know the
422     // top bits of the result.
423     Known = InputKnown.sext(BitWidth);
424     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
425     break;
426   }
427   case Instruction::Add:
428   case Instruction::Sub: {
429     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
430     /// about the high bits of the operands.
431     unsigned NLZ = DemandedMask.countLeadingZeros();
432     // Right fill the mask of bits for this ADD/SUB to demand the most
433     // significant bit and all those below it.
434     APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
435     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
436         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
437         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
438         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
439       if (NLZ > 0) {
440         // Disable the nsw and nuw flags here: We can no longer guarantee that
441         // we won't wrap after simplification. Removing the nsw/nuw flags is
442         // legal here because the top bit is not demanded.
443         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
444         BinOP.setHasNoSignedWrap(false);
445         BinOP.setHasNoUnsignedWrap(false);
446       }
447       return I;
448     }
449 
450     // If we are known to be adding/subtracting zeros to every bit below
451     // the highest demanded bit, we just return the other side.
452     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
453       return I->getOperand(0);
454     // We can't do this with the LHS for subtraction, unless we are only
455     // demanding the LSB.
456     if ((I->getOpcode() == Instruction::Add ||
457          DemandedFromOps.isOneValue()) &&
458         DemandedFromOps.isSubsetOf(LHSKnown.Zero))
459       return I->getOperand(1);
460 
461     // Otherwise just compute the known bits of the result.
462     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
463     Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
464                                         NSW, LHSKnown, RHSKnown);
465     break;
466   }
467   case Instruction::Shl: {
468     const APInt *SA;
469     if (match(I->getOperand(1), m_APInt(SA))) {
470       const APInt *ShrAmt;
471       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
472         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
473           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
474                                                     DemandedMask, Known))
475             return R;
476 
477       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
478       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
479 
480       // If the shift is NUW/NSW, then it does demand the high bits.
481       ShlOperator *IOp = cast<ShlOperator>(I);
482       if (IOp->hasNoSignedWrap())
483         DemandedMaskIn.setHighBits(ShiftAmt+1);
484       else if (IOp->hasNoUnsignedWrap())
485         DemandedMaskIn.setHighBits(ShiftAmt);
486 
487       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
488         return I;
489       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
490       Known.Zero <<= ShiftAmt;
491       Known.One  <<= ShiftAmt;
492       // low bits known zero.
493       if (ShiftAmt)
494         Known.Zero.setLowBits(ShiftAmt);
495     }
496     break;
497   }
498   case Instruction::LShr: {
499     const APInt *SA;
500     if (match(I->getOperand(1), m_APInt(SA))) {
501       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
502 
503       // Unsigned shift right.
504       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
505 
506       // If the shift is exact, then it does demand the low bits (and knows that
507       // they are zero).
508       if (cast<LShrOperator>(I)->isExact())
509         DemandedMaskIn.setLowBits(ShiftAmt);
510 
511       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
512         return I;
513       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
514       Known.Zero.lshrInPlace(ShiftAmt);
515       Known.One.lshrInPlace(ShiftAmt);
516       if (ShiftAmt)
517         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
518     }
519     break;
520   }
521   case Instruction::AShr: {
522     // If this is an arithmetic shift right and only the low-bit is set, we can
523     // always convert this into a logical shr, even if the shift amount is
524     // variable.  The low bit of the shift cannot be an input sign bit unless
525     // the shift amount is >= the size of the datatype, which is undefined.
526     if (DemandedMask.isOneValue()) {
527       // Perform the logical shift right.
528       Instruction *NewVal = BinaryOperator::CreateLShr(
529                         I->getOperand(0), I->getOperand(1), I->getName());
530       return InsertNewInstWith(NewVal, *I);
531     }
532 
533     // If the sign bit is the only bit demanded by this ashr, then there is no
534     // need to do it, the shift doesn't change the high bit.
535     if (DemandedMask.isSignMask())
536       return I->getOperand(0);
537 
538     const APInt *SA;
539     if (match(I->getOperand(1), m_APInt(SA))) {
540       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
541 
542       // Signed shift right.
543       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
544       // If any of the high bits are demanded, we should set the sign bit as
545       // demanded.
546       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
547         DemandedMaskIn.setSignBit();
548 
549       // If the shift is exact, then it does demand the low bits (and knows that
550       // they are zero).
551       if (cast<AShrOperator>(I)->isExact())
552         DemandedMaskIn.setLowBits(ShiftAmt);
553 
554       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
555         return I;
556 
557       unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
558 
559       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
560       // Compute the new bits that are at the top now plus sign bits.
561       APInt HighBits(APInt::getHighBitsSet(
562           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
563       Known.Zero.lshrInPlace(ShiftAmt);
564       Known.One.lshrInPlace(ShiftAmt);
565 
566       // If the input sign bit is known to be zero, or if none of the top bits
567       // are demanded, turn this into an unsigned shift right.
568       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
569       if (Known.Zero[BitWidth-ShiftAmt-1] ||
570           !DemandedMask.intersects(HighBits)) {
571         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
572                                                           I->getOperand(1));
573         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
574         return InsertNewInstWith(LShr, *I);
575       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
576         Known.One |= HighBits;
577       }
578     }
579     break;
580   }
581   case Instruction::UDiv: {
582     // UDiv doesn't demand low bits that are zero in the divisor.
583     const APInt *SA;
584     if (match(I->getOperand(1), m_APInt(SA))) {
585       // If the shift is exact, then it does demand the low bits.
586       if (cast<UDivOperator>(I)->isExact())
587         break;
588 
589       // FIXME: Take the demanded mask of the result into account.
590       unsigned RHSTrailingZeros = SA->countTrailingZeros();
591       APInt DemandedMaskIn =
592           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
593       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
594         return I;
595 
596       // Propagate zero bits from the input.
597       Known.Zero.setHighBits(std::min(
598           BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
599     }
600     break;
601   }
602   case Instruction::SRem:
603     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
604       // X % -1 demands all the bits because we don't want to introduce
605       // INT_MIN % -1 (== undef) by accident.
606       if (Rem->isMinusOne())
607         break;
608       APInt RA = Rem->getValue().abs();
609       if (RA.isPowerOf2()) {
610         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
611           return I->getOperand(0);
612 
613         APInt LowBits = RA - 1;
614         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
615         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
616           return I;
617 
618         // The low bits of LHS are unchanged by the srem.
619         Known.Zero = LHSKnown.Zero & LowBits;
620         Known.One = LHSKnown.One & LowBits;
621 
622         // If LHS is non-negative or has all low bits zero, then the upper bits
623         // are all zero.
624         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
625           Known.Zero |= ~LowBits;
626 
627         // If LHS is negative and not all low bits are zero, then the upper bits
628         // are all one.
629         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
630           Known.One |= ~LowBits;
631 
632         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
633         break;
634       }
635     }
636 
637     // The sign bit is the LHS's sign bit, except when the result of the
638     // remainder is zero.
639     if (DemandedMask.isSignBitSet()) {
640       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
641       // If it's known zero, our sign bit is also zero.
642       if (LHSKnown.isNonNegative())
643         Known.makeNonNegative();
644     }
645     break;
646   case Instruction::URem: {
647     KnownBits Known2(BitWidth);
648     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
649     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
650         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
651       return I;
652 
653     unsigned Leaders = Known2.countMinLeadingZeros();
654     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
655     break;
656   }
657   case Instruction::Call:
658     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
659       switch (II->getIntrinsicID()) {
660       default: break;
661       case Intrinsic::bswap: {
662         // If the only bits demanded come from one byte of the bswap result,
663         // just shift the input byte into position to eliminate the bswap.
664         unsigned NLZ = DemandedMask.countLeadingZeros();
665         unsigned NTZ = DemandedMask.countTrailingZeros();
666 
667         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
668         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
669         // have 14 leading zeros, round to 8.
670         NLZ &= ~7;
671         NTZ &= ~7;
672         // If we need exactly one byte, we can do this transformation.
673         if (BitWidth-NLZ-NTZ == 8) {
674           unsigned ResultBit = NTZ;
675           unsigned InputBit = BitWidth-NTZ-8;
676 
677           // Replace this with either a left or right shift to get the byte into
678           // the right place.
679           Instruction *NewVal;
680           if (InputBit > ResultBit)
681             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
682                     ConstantInt::get(I->getType(), InputBit-ResultBit));
683           else
684             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
685                     ConstantInt::get(I->getType(), ResultBit-InputBit));
686           NewVal->takeName(I);
687           return InsertNewInstWith(NewVal, *I);
688         }
689 
690         // TODO: Could compute known zero/one bits based on the input.
691         break;
692       }
693       case Intrinsic::fshr:
694       case Intrinsic::fshl: {
695         const APInt *SA;
696         if (!match(I->getOperand(2), m_APInt(SA)))
697           break;
698 
699         // Normalize to funnel shift left. APInt shifts of BitWidth are well-
700         // defined, so no need to special-case zero shifts here.
701         uint64_t ShiftAmt = SA->urem(BitWidth);
702         if (II->getIntrinsicID() == Intrinsic::fshr)
703           ShiftAmt = BitWidth - ShiftAmt;
704 
705         APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
706         APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
707         if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
708             SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
709           return I;
710 
711         Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
712                      RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
713         Known.One = LHSKnown.One.shl(ShiftAmt) |
714                     RHSKnown.One.lshr(BitWidth - ShiftAmt);
715         break;
716       }
717       case Intrinsic::x86_mmx_pmovmskb:
718       case Intrinsic::x86_sse_movmsk_ps:
719       case Intrinsic::x86_sse2_movmsk_pd:
720       case Intrinsic::x86_sse2_pmovmskb_128:
721       case Intrinsic::x86_avx_movmsk_ps_256:
722       case Intrinsic::x86_avx_movmsk_pd_256:
723       case Intrinsic::x86_avx2_pmovmskb: {
724         // MOVMSK copies the vector elements' sign bits to the low bits
725         // and zeros the high bits.
726         unsigned ArgWidth;
727         if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
728           ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
729         } else {
730           auto Arg = II->getArgOperand(0);
731           auto ArgType = cast<VectorType>(Arg->getType());
732           ArgWidth = ArgType->getNumElements();
733         }
734 
735         // If we don't need any of low bits then return zero,
736         // we know that DemandedMask is non-zero already.
737         APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
738         if (DemandedElts.isNullValue())
739           return ConstantInt::getNullValue(VTy);
740 
741         // We know that the upper bits are set to zero.
742         Known.Zero.setBitsFrom(ArgWidth);
743         return nullptr;
744       }
745       case Intrinsic::x86_sse42_crc32_64_64:
746         Known.Zero.setBitsFrom(32);
747         return nullptr;
748       }
749     }
750     computeKnownBits(V, Known, Depth, CxtI);
751     break;
752   }
753 
754   // If the client is only demanding bits that we know, return the known
755   // constant.
756   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
757     return Constant::getIntegerValue(VTy, Known.One);
758   return nullptr;
759 }
760 
761 /// Helper routine of SimplifyDemandedUseBits. It computes Known
762 /// bits. It also tries to handle simplifications that can be done based on
763 /// DemandedMask, but without modifying the Instruction.
764 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
765                                                      const APInt &DemandedMask,
766                                                      KnownBits &Known,
767                                                      unsigned Depth,
768                                                      Instruction *CxtI) {
769   unsigned BitWidth = DemandedMask.getBitWidth();
770   Type *ITy = I->getType();
771 
772   KnownBits LHSKnown(BitWidth);
773   KnownBits RHSKnown(BitWidth);
774 
775   // Despite the fact that we can't simplify this instruction in all User's
776   // context, we can at least compute the known bits, and we can
777   // do simplifications that apply to *just* the one user if we know that
778   // this instruction has a simpler value in that context.
779   switch (I->getOpcode()) {
780   case Instruction::And: {
781     // If either the LHS or the RHS are Zero, the result is zero.
782     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
783     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
784                      CxtI);
785 
786     // Output known-0 are known to be clear if zero in either the LHS | RHS.
787     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
788     // Output known-1 bits are only known if set in both the LHS & RHS.
789     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
790 
791     // If the client is only demanding bits that we know, return the known
792     // constant.
793     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
794       return Constant::getIntegerValue(ITy, IKnownOne);
795 
796     // If all of the demanded bits are known 1 on one side, return the other.
797     // These bits cannot contribute to the result of the 'and' in this
798     // context.
799     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
800       return I->getOperand(0);
801     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
802       return I->getOperand(1);
803 
804     Known.Zero = std::move(IKnownZero);
805     Known.One  = std::move(IKnownOne);
806     break;
807   }
808   case Instruction::Or: {
809     // We can simplify (X|Y) -> X or Y in the user's context if we know that
810     // only bits from X or Y are demanded.
811 
812     // If either the LHS or the RHS are One, the result is One.
813     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
814     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
815                      CxtI);
816 
817     // Output known-0 bits are only known if clear in both the LHS & RHS.
818     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
819     // Output known-1 are known to be set if set in either the LHS | RHS.
820     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
821 
822     // If the client is only demanding bits that we know, return the known
823     // constant.
824     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
825       return Constant::getIntegerValue(ITy, IKnownOne);
826 
827     // If all of the demanded bits are known zero on one side, return the
828     // other.  These bits cannot contribute to the result of the 'or' in this
829     // context.
830     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
831       return I->getOperand(0);
832     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
833       return I->getOperand(1);
834 
835     Known.Zero = std::move(IKnownZero);
836     Known.One  = std::move(IKnownOne);
837     break;
838   }
839   case Instruction::Xor: {
840     // We can simplify (X^Y) -> X or Y in the user's context if we know that
841     // only bits from X or Y are demanded.
842 
843     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
844     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
845                      CxtI);
846 
847     // Output known-0 bits are known if clear or set in both the LHS & RHS.
848     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
849                        (RHSKnown.One & LHSKnown.One);
850     // Output known-1 are known to be set if set in only one of the LHS, RHS.
851     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
852                        (RHSKnown.One & LHSKnown.Zero);
853 
854     // If the client is only demanding bits that we know, return the known
855     // constant.
856     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
857       return Constant::getIntegerValue(ITy, IKnownOne);
858 
859     // If all of the demanded bits are known zero on one side, return the
860     // other.
861     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
862       return I->getOperand(0);
863     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
864       return I->getOperand(1);
865 
866     // Output known-0 bits are known if clear or set in both the LHS & RHS.
867     Known.Zero = std::move(IKnownZero);
868     // Output known-1 are known to be set if set in only one of the LHS, RHS.
869     Known.One  = std::move(IKnownOne);
870     break;
871   }
872   default:
873     // Compute the Known bits to simplify things downstream.
874     computeKnownBits(I, Known, Depth, CxtI);
875 
876     // If this user is only demanding bits that we know, return the known
877     // constant.
878     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
879       return Constant::getIntegerValue(ITy, Known.One);
880 
881     break;
882   }
883 
884   return nullptr;
885 }
886 
887 
888 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
889 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
890 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
891 /// of "C2-C1".
892 ///
893 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
894 /// ..., bn}, without considering the specific value X is holding.
895 /// This transformation is legal iff one of following conditions is hold:
896 ///  1) All the bit in S are 0, in this case E1 == E2.
897 ///  2) We don't care those bits in S, per the input DemandedMask.
898 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
899 ///     rest bits.
900 ///
901 /// Currently we only test condition 2).
902 ///
903 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
904 /// not successful.
905 Value *
906 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
907                                          Instruction *Shl, const APInt &ShlOp1,
908                                          const APInt &DemandedMask,
909                                          KnownBits &Known) {
910   if (!ShlOp1 || !ShrOp1)
911     return nullptr; // No-op.
912 
913   Value *VarX = Shr->getOperand(0);
914   Type *Ty = VarX->getType();
915   unsigned BitWidth = Ty->getScalarSizeInBits();
916   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
917     return nullptr; // Undef.
918 
919   unsigned ShlAmt = ShlOp1.getZExtValue();
920   unsigned ShrAmt = ShrOp1.getZExtValue();
921 
922   Known.One.clearAllBits();
923   Known.Zero.setLowBits(ShlAmt - 1);
924   Known.Zero &= DemandedMask;
925 
926   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
927   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
928 
929   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
930   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
931                       (BitMask1.ashr(ShrAmt) << ShlAmt);
932 
933   if (ShrAmt <= ShlAmt) {
934     BitMask2 <<= (ShlAmt - ShrAmt);
935   } else {
936     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
937                         BitMask2.ashr(ShrAmt - ShlAmt);
938   }
939 
940   // Check if condition-2 (see the comment to this function) is satified.
941   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
942     if (ShrAmt == ShlAmt)
943       return VarX;
944 
945     if (!Shr->hasOneUse())
946       return nullptr;
947 
948     BinaryOperator *New;
949     if (ShrAmt < ShlAmt) {
950       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
951       New = BinaryOperator::CreateShl(VarX, Amt);
952       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
953       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
954       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
955     } else {
956       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
957       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
958                      BinaryOperator::CreateAShr(VarX, Amt);
959       if (cast<BinaryOperator>(Shr)->isExact())
960         New->setIsExact(true);
961     }
962 
963     return InsertNewInstWith(New, *Shl);
964   }
965 
966   return nullptr;
967 }
968 
969 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
970 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
971                                                            APInt DemandedElts,
972                                                            int DMaskIdx) {
973   unsigned VWidth = II->getType()->getVectorNumElements();
974   if (VWidth == 1)
975     return nullptr;
976 
977   ConstantInt *NewDMask = nullptr;
978 
979   if (DMaskIdx < 0) {
980     // Pretend that a prefix of elements is demanded to simplify the code
981     // below.
982     DemandedElts = (1 << DemandedElts.getActiveBits()) - 1;
983   } else {
984     ConstantInt *DMask = dyn_cast<ConstantInt>(II->getArgOperand(DMaskIdx));
985     if (!DMask)
986       return nullptr; // non-constant dmask is not supported by codegen
987 
988     unsigned DMaskVal = DMask->getZExtValue() & 0xf;
989 
990     // Mask off values that are undefined because the dmask doesn't cover them
991     DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
992 
993     unsigned NewDMaskVal = 0;
994     unsigned OrigLoadIdx = 0;
995     for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
996       const unsigned Bit = 1 << SrcIdx;
997       if (!!(DMaskVal & Bit)) {
998         if (!!DemandedElts[OrigLoadIdx])
999           NewDMaskVal |= Bit;
1000         OrigLoadIdx++;
1001       }
1002     }
1003 
1004     if (DMaskVal != NewDMaskVal)
1005       NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal);
1006   }
1007 
1008   // TODO: Handle 3 vectors when supported in code gen.
1009   unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countPopulation());
1010   if (!NewNumElts)
1011     return UndefValue::get(II->getType());
1012 
1013   if (NewNumElts >= VWidth && DemandedElts.isMask()) {
1014     if (NewDMask)
1015       II->setArgOperand(DMaskIdx, NewDMask);
1016     return nullptr;
1017   }
1018 
1019   // Determine the overload types of the original intrinsic.
1020   auto IID = II->getIntrinsicID();
1021   SmallVector<Intrinsic::IITDescriptor, 16> Table;
1022   getIntrinsicInfoTableEntries(IID, Table);
1023   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1024 
1025   FunctionType *FTy = II->getCalledFunction()->getFunctionType();
1026   SmallVector<Type *, 6> OverloadTys;
1027   Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, OverloadTys);
1028   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1029     Intrinsic::matchIntrinsicType(FTy->getParamType(i), TableRef, OverloadTys);
1030 
1031   // Get the new return type overload of the intrinsic.
1032   Module *M = II->getParent()->getParent()->getParent();
1033   Type *EltTy = II->getType()->getVectorElementType();
1034   Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
1035 
1036   OverloadTys[0] = NewTy;
1037   Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
1038 
1039   SmallVector<Value *, 16> Args;
1040   for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1041     Args.push_back(II->getArgOperand(I));
1042 
1043   if (NewDMask)
1044     Args[DMaskIdx] = NewDMask;
1045 
1046   IRBuilderBase::InsertPointGuard Guard(Builder);
1047   Builder.SetInsertPoint(II);
1048 
1049   CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
1050   NewCall->takeName(II);
1051   NewCall->copyMetadata(*II);
1052 
1053   if (NewNumElts == 1) {
1054     return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
1055                                        DemandedElts.countTrailingZeros());
1056   }
1057 
1058   SmallVector<uint32_t, 8> EltMask;
1059   unsigned NewLoadIdx = 0;
1060   for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
1061     if (!!DemandedElts[OrigLoadIdx])
1062       EltMask.push_back(NewLoadIdx++);
1063     else
1064       EltMask.push_back(NewNumElts);
1065   }
1066 
1067   Value *Shuffle =
1068       Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
1069 
1070   return Shuffle;
1071 }
1072 
1073 /// The specified value produces a vector with any number of elements.
1074 /// DemandedElts contains the set of elements that are actually used by the
1075 /// caller. This method analyzes which elements of the operand are undef and
1076 /// returns that information in UndefElts.
1077 ///
1078 /// If the information about demanded elements can be used to simplify the
1079 /// operation, the operation is simplified, then the resultant value is
1080 /// returned.  This returns null if no change was made.
1081 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
1082                                                 APInt &UndefElts,
1083                                                 unsigned Depth) {
1084   unsigned VWidth = V->getType()->getVectorNumElements();
1085   APInt EltMask(APInt::getAllOnesValue(VWidth));
1086   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1087 
1088   if (isa<UndefValue>(V)) {
1089     // If the entire vector is undefined, just return this info.
1090     UndefElts = EltMask;
1091     return nullptr;
1092   }
1093 
1094   if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
1095     UndefElts = EltMask;
1096     return UndefValue::get(V->getType());
1097   }
1098 
1099   UndefElts = 0;
1100 
1101   if (auto *C = dyn_cast<Constant>(V)) {
1102     // Check if this is identity. If so, return 0 since we are not simplifying
1103     // anything.
1104     if (DemandedElts.isAllOnesValue())
1105       return nullptr;
1106 
1107     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1108     Constant *Undef = UndefValue::get(EltTy);
1109     SmallVector<Constant*, 16> Elts;
1110     for (unsigned i = 0; i != VWidth; ++i) {
1111       if (!DemandedElts[i]) {   // If not demanded, set to undef.
1112         Elts.push_back(Undef);
1113         UndefElts.setBit(i);
1114         continue;
1115       }
1116 
1117       Constant *Elt = C->getAggregateElement(i);
1118       if (!Elt) return nullptr;
1119 
1120       if (isa<UndefValue>(Elt)) {   // Already undef.
1121         Elts.push_back(Undef);
1122         UndefElts.setBit(i);
1123       } else {                               // Otherwise, defined.
1124         Elts.push_back(Elt);
1125       }
1126     }
1127 
1128     // If we changed the constant, return it.
1129     Constant *NewCV = ConstantVector::get(Elts);
1130     return NewCV != C ? NewCV : nullptr;
1131   }
1132 
1133   // Limit search depth.
1134   if (Depth == 10)
1135     return nullptr;
1136 
1137   // If multiple users are using the root value, proceed with
1138   // simplification conservatively assuming that all elements
1139   // are needed.
1140   if (!V->hasOneUse()) {
1141     // Quit if we find multiple users of a non-root value though.
1142     // They'll be handled when it's their turn to be visited by
1143     // the main instcombine process.
1144     if (Depth != 0)
1145       // TODO: Just compute the UndefElts information recursively.
1146       return nullptr;
1147 
1148     // Conservatively assume that all elements are needed.
1149     DemandedElts = EltMask;
1150   }
1151 
1152   Instruction *I = dyn_cast<Instruction>(V);
1153   if (!I) return nullptr;        // Only analyze instructions.
1154 
1155   bool MadeChange = false;
1156   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1157                               APInt Demanded, APInt &Undef) {
1158     auto *II = dyn_cast<IntrinsicInst>(Inst);
1159     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1160     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1161       if (II)
1162         II->setArgOperand(OpNum, V);
1163       else
1164         Inst->setOperand(OpNum, V);
1165       MadeChange = true;
1166     }
1167   };
1168 
1169   APInt UndefElts2(VWidth, 0);
1170   APInt UndefElts3(VWidth, 0);
1171   switch (I->getOpcode()) {
1172   default: break;
1173 
1174   case Instruction::InsertElement: {
1175     // If this is a variable index, we don't know which element it overwrites.
1176     // demand exactly the same input as we produce.
1177     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1178     if (!Idx) {
1179       // Note that we can't propagate undef elt info, because we don't know
1180       // which elt is getting updated.
1181       simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1182       break;
1183     }
1184 
1185     // The element inserted overwrites whatever was there, so the input demanded
1186     // set is simpler than the output set.
1187     unsigned IdxNo = Idx->getZExtValue();
1188     APInt PreInsertDemandedElts = DemandedElts;
1189     if (IdxNo < VWidth)
1190       PreInsertDemandedElts.clearBit(IdxNo);
1191 
1192     simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1193 
1194     // If this is inserting an element that isn't demanded, remove this
1195     // insertelement.
1196     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1197       Worklist.Add(I);
1198       return I->getOperand(0);
1199     }
1200 
1201     // The inserted element is defined.
1202     UndefElts.clearBit(IdxNo);
1203     break;
1204   }
1205   case Instruction::ShuffleVector: {
1206     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1207     unsigned LHSVWidth =
1208       Shuffle->getOperand(0)->getType()->getVectorNumElements();
1209     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1210     for (unsigned i = 0; i < VWidth; i++) {
1211       if (DemandedElts[i]) {
1212         unsigned MaskVal = Shuffle->getMaskValue(i);
1213         if (MaskVal != -1u) {
1214           assert(MaskVal < LHSVWidth * 2 &&
1215                  "shufflevector mask index out of range!");
1216           if (MaskVal < LHSVWidth)
1217             LeftDemanded.setBit(MaskVal);
1218           else
1219             RightDemanded.setBit(MaskVal - LHSVWidth);
1220         }
1221       }
1222     }
1223 
1224     APInt LHSUndefElts(LHSVWidth, 0);
1225     simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1226 
1227     APInt RHSUndefElts(LHSVWidth, 0);
1228     simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1229 
1230     bool NewUndefElts = false;
1231     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1232     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1233     bool LHSUniform = true;
1234     bool RHSUniform = true;
1235     for (unsigned i = 0; i < VWidth; i++) {
1236       unsigned MaskVal = Shuffle->getMaskValue(i);
1237       if (MaskVal == -1u) {
1238         UndefElts.setBit(i);
1239       } else if (!DemandedElts[i]) {
1240         NewUndefElts = true;
1241         UndefElts.setBit(i);
1242       } else if (MaskVal < LHSVWidth) {
1243         if (LHSUndefElts[MaskVal]) {
1244           NewUndefElts = true;
1245           UndefElts.setBit(i);
1246         } else {
1247           LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1248           LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
1249           LHSUniform = LHSUniform && (MaskVal == i);
1250         }
1251       } else {
1252         if (RHSUndefElts[MaskVal - LHSVWidth]) {
1253           NewUndefElts = true;
1254           UndefElts.setBit(i);
1255         } else {
1256           RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1257           RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
1258           RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
1259         }
1260       }
1261     }
1262 
1263     // Try to transform shuffle with constant vector and single element from
1264     // this constant vector to single insertelement instruction.
1265     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1266     // insertelement V, C[ci], ci-n
1267     if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1268       Value *Op = nullptr;
1269       Constant *Value = nullptr;
1270       unsigned Idx = -1u;
1271 
1272       // Find constant vector with the single element in shuffle (LHS or RHS).
1273       if (LHSIdx < LHSVWidth && RHSUniform) {
1274         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1275           Op = Shuffle->getOperand(1);
1276           Value = CV->getOperand(LHSValIdx);
1277           Idx = LHSIdx;
1278         }
1279       }
1280       if (RHSIdx < LHSVWidth && LHSUniform) {
1281         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1282           Op = Shuffle->getOperand(0);
1283           Value = CV->getOperand(RHSValIdx);
1284           Idx = RHSIdx;
1285         }
1286       }
1287       // Found constant vector with single element - convert to insertelement.
1288       if (Op && Value) {
1289         Instruction *New = InsertElementInst::Create(
1290             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1291             Shuffle->getName());
1292         InsertNewInstWith(New, *Shuffle);
1293         return New;
1294       }
1295     }
1296     if (NewUndefElts) {
1297       // Add additional discovered undefs.
1298       SmallVector<Constant*, 16> Elts;
1299       for (unsigned i = 0; i < VWidth; ++i) {
1300         if (UndefElts[i])
1301           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1302         else
1303           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1304                                           Shuffle->getMaskValue(i)));
1305       }
1306       I->setOperand(2, ConstantVector::get(Elts));
1307       MadeChange = true;
1308     }
1309     break;
1310   }
1311   case Instruction::Select: {
1312     // If this is a vector select, try to transform the select condition based
1313     // on the current demanded elements.
1314     SelectInst *Sel = cast<SelectInst>(I);
1315     if (Sel->getCondition()->getType()->isVectorTy()) {
1316       // TODO: We are not doing anything with UndefElts based on this call.
1317       // It is overwritten below based on the other select operands. If an
1318       // element of the select condition is known undef, then we are free to
1319       // choose the output value from either arm of the select. If we know that
1320       // one of those values is undef, then the output can be undef.
1321       simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1322     }
1323 
1324     // Next, see if we can transform the arms of the select.
1325     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1326     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1327       for (unsigned i = 0; i < VWidth; i++) {
1328         // isNullValue() always returns false when called on a ConstantExpr.
1329         // Skip constant expressions to avoid propagating incorrect information.
1330         Constant *CElt = CV->getAggregateElement(i);
1331         if (isa<ConstantExpr>(CElt))
1332           continue;
1333         // TODO: If a select condition element is undef, we can demand from
1334         // either side. If one side is known undef, choosing that side would
1335         // propagate undef.
1336         if (CElt->isNullValue())
1337           DemandedLHS.clearBit(i);
1338         else
1339           DemandedRHS.clearBit(i);
1340       }
1341     }
1342 
1343     simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1344     simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1345 
1346     // Output elements are undefined if the element from each arm is undefined.
1347     // TODO: This can be improved. See comment in select condition handling.
1348     UndefElts = UndefElts2 & UndefElts3;
1349     break;
1350   }
1351   case Instruction::BitCast: {
1352     // Vector->vector casts only.
1353     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1354     if (!VTy) break;
1355     unsigned InVWidth = VTy->getNumElements();
1356     APInt InputDemandedElts(InVWidth, 0);
1357     UndefElts2 = APInt(InVWidth, 0);
1358     unsigned Ratio;
1359 
1360     if (VWidth == InVWidth) {
1361       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1362       // elements as are demanded of us.
1363       Ratio = 1;
1364       InputDemandedElts = DemandedElts;
1365     } else if ((VWidth % InVWidth) == 0) {
1366       // If the number of elements in the output is a multiple of the number of
1367       // elements in the input then an input element is live if any of the
1368       // corresponding output elements are live.
1369       Ratio = VWidth / InVWidth;
1370       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1371         if (DemandedElts[OutIdx])
1372           InputDemandedElts.setBit(OutIdx / Ratio);
1373     } else if ((InVWidth % VWidth) == 0) {
1374       // If the number of elements in the input is a multiple of the number of
1375       // elements in the output then an input element is live if the
1376       // corresponding output element is live.
1377       Ratio = InVWidth / VWidth;
1378       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1379         if (DemandedElts[InIdx / Ratio])
1380           InputDemandedElts.setBit(InIdx);
1381     } else {
1382       // Unsupported so far.
1383       break;
1384     }
1385 
1386     simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1387 
1388     if (VWidth == InVWidth) {
1389       UndefElts = UndefElts2;
1390     } else if ((VWidth % InVWidth) == 0) {
1391       // If the number of elements in the output is a multiple of the number of
1392       // elements in the input then an output element is undef if the
1393       // corresponding input element is undef.
1394       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1395         if (UndefElts2[OutIdx / Ratio])
1396           UndefElts.setBit(OutIdx);
1397     } else if ((InVWidth % VWidth) == 0) {
1398       // If the number of elements in the input is a multiple of the number of
1399       // elements in the output then an output element is undef if all of the
1400       // corresponding input elements are undef.
1401       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1402         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1403         if (SubUndef.countPopulation() == Ratio)
1404           UndefElts.setBit(OutIdx);
1405       }
1406     } else {
1407       llvm_unreachable("Unimp");
1408     }
1409     break;
1410   }
1411   case Instruction::FPTrunc:
1412   case Instruction::FPExt:
1413     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1414     break;
1415 
1416   case Instruction::Call: {
1417     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1418     if (!II) break;
1419     switch (II->getIntrinsicID()) {
1420     case Intrinsic::x86_xop_vfrcz_ss:
1421     case Intrinsic::x86_xop_vfrcz_sd:
1422       // The instructions for these intrinsics are speced to zero upper bits not
1423       // pass them through like other scalar intrinsics. So we shouldn't just
1424       // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1425       // Instead we should return a zero vector.
1426       if (!DemandedElts[0]) {
1427         Worklist.Add(II);
1428         return ConstantAggregateZero::get(II->getType());
1429       }
1430 
1431       // Only the lower element is used.
1432       DemandedElts = 1;
1433       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1434 
1435       // Only the lower element is undefined. The high elements are zero.
1436       UndefElts = UndefElts[0];
1437       break;
1438 
1439     // Unary scalar-as-vector operations that work column-wise.
1440     case Intrinsic::x86_sse_rcp_ss:
1441     case Intrinsic::x86_sse_rsqrt_ss:
1442       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1443 
1444       // If lowest element of a scalar op isn't used then use Arg0.
1445       if (!DemandedElts[0]) {
1446         Worklist.Add(II);
1447         return II->getArgOperand(0);
1448       }
1449       // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1450       // checks).
1451       break;
1452 
1453     // Binary scalar-as-vector operations that work column-wise. The high
1454     // elements come from operand 0. The low element is a function of both
1455     // operands.
1456     case Intrinsic::x86_sse_min_ss:
1457     case Intrinsic::x86_sse_max_ss:
1458     case Intrinsic::x86_sse_cmp_ss:
1459     case Intrinsic::x86_sse2_min_sd:
1460     case Intrinsic::x86_sse2_max_sd:
1461     case Intrinsic::x86_sse2_cmp_sd: {
1462       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1463 
1464       // If lowest element of a scalar op isn't used then use Arg0.
1465       if (!DemandedElts[0]) {
1466         Worklist.Add(II);
1467         return II->getArgOperand(0);
1468       }
1469 
1470       // Only lower element is used for operand 1.
1471       DemandedElts = 1;
1472       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1473 
1474       // Lower element is undefined if both lower elements are undefined.
1475       // Consider things like undef&0.  The result is known zero, not undef.
1476       if (!UndefElts2[0])
1477         UndefElts.clearBit(0);
1478 
1479       break;
1480     }
1481 
1482     // Binary scalar-as-vector operations that work column-wise. The high
1483     // elements come from operand 0 and the low element comes from operand 1.
1484     case Intrinsic::x86_sse41_round_ss:
1485     case Intrinsic::x86_sse41_round_sd: {
1486       // Don't use the low element of operand 0.
1487       APInt DemandedElts2 = DemandedElts;
1488       DemandedElts2.clearBit(0);
1489       simplifyAndSetOp(II, 0, DemandedElts2, UndefElts);
1490 
1491       // If lowest element of a scalar op isn't used then use Arg0.
1492       if (!DemandedElts[0]) {
1493         Worklist.Add(II);
1494         return II->getArgOperand(0);
1495       }
1496 
1497       // Only lower element is used for operand 1.
1498       DemandedElts = 1;
1499       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1500 
1501       // Take the high undef elements from operand 0 and take the lower element
1502       // from operand 1.
1503       UndefElts.clearBit(0);
1504       UndefElts |= UndefElts2[0];
1505       break;
1506     }
1507 
1508     // Three input scalar-as-vector operations that work column-wise. The high
1509     // elements come from operand 0 and the low element is a function of all
1510     // three inputs.
1511     case Intrinsic::x86_avx512_mask_add_ss_round:
1512     case Intrinsic::x86_avx512_mask_div_ss_round:
1513     case Intrinsic::x86_avx512_mask_mul_ss_round:
1514     case Intrinsic::x86_avx512_mask_sub_ss_round:
1515     case Intrinsic::x86_avx512_mask_max_ss_round:
1516     case Intrinsic::x86_avx512_mask_min_ss_round:
1517     case Intrinsic::x86_avx512_mask_add_sd_round:
1518     case Intrinsic::x86_avx512_mask_div_sd_round:
1519     case Intrinsic::x86_avx512_mask_mul_sd_round:
1520     case Intrinsic::x86_avx512_mask_sub_sd_round:
1521     case Intrinsic::x86_avx512_mask_max_sd_round:
1522     case Intrinsic::x86_avx512_mask_min_sd_round:
1523       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1524 
1525       // If lowest element of a scalar op isn't used then use Arg0.
1526       if (!DemandedElts[0]) {
1527         Worklist.Add(II);
1528         return II->getArgOperand(0);
1529       }
1530 
1531       // Only lower element is used for operand 1 and 2.
1532       DemandedElts = 1;
1533       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1534       simplifyAndSetOp(II, 2, DemandedElts, UndefElts3);
1535 
1536       // Lower element is undefined if all three lower elements are undefined.
1537       // Consider things like undef&0.  The result is known zero, not undef.
1538       if (!UndefElts2[0] || !UndefElts3[0])
1539         UndefElts.clearBit(0);
1540 
1541       break;
1542 
1543     case Intrinsic::x86_sse2_packssdw_128:
1544     case Intrinsic::x86_sse2_packsswb_128:
1545     case Intrinsic::x86_sse2_packuswb_128:
1546     case Intrinsic::x86_sse41_packusdw:
1547     case Intrinsic::x86_avx2_packssdw:
1548     case Intrinsic::x86_avx2_packsswb:
1549     case Intrinsic::x86_avx2_packusdw:
1550     case Intrinsic::x86_avx2_packuswb:
1551     case Intrinsic::x86_avx512_packssdw_512:
1552     case Intrinsic::x86_avx512_packsswb_512:
1553     case Intrinsic::x86_avx512_packusdw_512:
1554     case Intrinsic::x86_avx512_packuswb_512: {
1555       auto *Ty0 = II->getArgOperand(0)->getType();
1556       unsigned InnerVWidth = Ty0->getVectorNumElements();
1557       assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1558 
1559       unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1560       unsigned VWidthPerLane = VWidth / NumLanes;
1561       unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1562 
1563       // Per lane, pack the elements of the first input and then the second.
1564       // e.g.
1565       // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1566       // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1567       for (int OpNum = 0; OpNum != 2; ++OpNum) {
1568         APInt OpDemandedElts(InnerVWidth, 0);
1569         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1570           unsigned LaneIdx = Lane * VWidthPerLane;
1571           for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1572             unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1573             if (DemandedElts[Idx])
1574               OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1575           }
1576         }
1577 
1578         // Demand elements from the operand.
1579         APInt OpUndefElts(InnerVWidth, 0);
1580         simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts);
1581 
1582         // Pack the operand's UNDEF elements, one lane at a time.
1583         OpUndefElts = OpUndefElts.zext(VWidth);
1584         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1585           APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1586           LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1587           LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
1588           UndefElts |= LaneElts;
1589         }
1590       }
1591       break;
1592     }
1593 
1594     // PSHUFB
1595     case Intrinsic::x86_ssse3_pshuf_b_128:
1596     case Intrinsic::x86_avx2_pshuf_b:
1597     case Intrinsic::x86_avx512_pshuf_b_512:
1598     // PERMILVAR
1599     case Intrinsic::x86_avx_vpermilvar_ps:
1600     case Intrinsic::x86_avx_vpermilvar_ps_256:
1601     case Intrinsic::x86_avx512_vpermilvar_ps_512:
1602     case Intrinsic::x86_avx_vpermilvar_pd:
1603     case Intrinsic::x86_avx_vpermilvar_pd_256:
1604     case Intrinsic::x86_avx512_vpermilvar_pd_512:
1605     // PERMV
1606     case Intrinsic::x86_avx2_permd:
1607     case Intrinsic::x86_avx2_permps: {
1608       simplifyAndSetOp(II, 1, DemandedElts, UndefElts);
1609       break;
1610     }
1611 
1612     // SSE4A instructions leave the upper 64-bits of the 128-bit result
1613     // in an undefined state.
1614     case Intrinsic::x86_sse4a_extrq:
1615     case Intrinsic::x86_sse4a_extrqi:
1616     case Intrinsic::x86_sse4a_insertq:
1617     case Intrinsic::x86_sse4a_insertqi:
1618       UndefElts.setHighBits(VWidth / 2);
1619       break;
1620     case Intrinsic::amdgcn_buffer_load:
1621     case Intrinsic::amdgcn_buffer_load_format:
1622     case Intrinsic::amdgcn_raw_buffer_load:
1623     case Intrinsic::amdgcn_raw_buffer_load_format:
1624     case Intrinsic::amdgcn_struct_buffer_load:
1625     case Intrinsic::amdgcn_struct_buffer_load_format:
1626       return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
1627     default: {
1628       if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID()))
1629         return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);
1630 
1631       break;
1632     }
1633     } // switch on IntrinsicID
1634     break;
1635   } // case Call
1636   } // switch on Opcode
1637 
1638   // TODO: We bail completely on integer div/rem and shifts because they have
1639   // UB/poison potential, but that should be refined.
1640   BinaryOperator *BO;
1641   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1642     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1643     simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1644 
1645     // Any change to an instruction with potential poison must clear those flags
1646     // because we can not guarantee those constraints now. Other analysis may
1647     // determine that it is safe to re-apply the flags.
1648     if (MadeChange)
1649       BO->dropPoisonGeneratingFlags();
1650 
1651     // Output elements are undefined if both are undefined. Consider things
1652     // like undef & 0. The result is known zero, not undef.
1653     UndefElts &= UndefElts2;
1654   }
1655 
1656   return MadeChange ? I : nullptr;
1657 }
1658