1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/TargetTransformInfo.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == MaxAnalysisRecursionDepth) 131 return nullptr; 132 133 if (isa<ScalableVectorType>(VTy)) 134 return nullptr; 135 136 Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) { 138 computeKnownBits(V, Known, Depth, CxtI); 139 return nullptr; // Only analyze instructions. 140 } 141 142 // If there are multiple uses of this value and we aren't at the root, then 143 // we can't do any simplifications of the operands, because DemandedMask 144 // only reflects the bits demanded by *one* of the users. 145 if (Depth != 0 && !I->hasOneUse()) 146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 147 148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 149 150 // If this is the root being simplified, allow it to have multiple uses, 151 // just set the DemandedMask to all bits so that we can try to simplify the 152 // operands. This allows visitTruncInst (for example) to simplify the 153 // operand of a trunc without duplicating all the logic below. 154 if (Depth == 0 && !V->hasOneUse()) 155 DemandedMask.setAllBits(); 156 157 switch (I->getOpcode()) { 158 default: 159 computeKnownBits(I, Known, Depth, CxtI); 160 break; 161 case Instruction::And: { 162 // If either the LHS or the RHS are Zero, the result is zero. 163 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 164 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 165 Depth + 1)) 166 return I; 167 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 168 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 169 170 Known = LHSKnown & RHSKnown; 171 172 // If the client is only demanding bits that we know, return the known 173 // constant. 174 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 175 return Constant::getIntegerValue(VTy, Known.One); 176 177 // If all of the demanded bits are known 1 on one side, return the other. 178 // These bits cannot contribute to the result of the 'and'. 179 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 180 return I->getOperand(0); 181 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 182 return I->getOperand(1); 183 184 // If the RHS is a constant, see if we can simplify it. 185 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 186 return I; 187 188 break; 189 } 190 case Instruction::Or: { 191 // If either the LHS or the RHS are One, the result is One. 192 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 193 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 194 Depth + 1)) 195 return I; 196 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 197 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 198 199 Known = LHSKnown | RHSKnown; 200 201 // If the client is only demanding bits that we know, return the known 202 // constant. 203 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 204 return Constant::getIntegerValue(VTy, Known.One); 205 206 // If all of the demanded bits are known zero on one side, return the other. 207 // These bits cannot contribute to the result of the 'or'. 208 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 209 return I->getOperand(0); 210 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 211 return I->getOperand(1); 212 213 // If the RHS is a constant, see if we can simplify it. 214 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 215 return I; 216 217 break; 218 } 219 case Instruction::Xor: { 220 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 221 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 222 return I; 223 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 224 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 225 226 Known = LHSKnown ^ RHSKnown; 227 228 // If the client is only demanding bits that we know, return the known 229 // constant. 230 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 231 return Constant::getIntegerValue(VTy, Known.One); 232 233 // If all of the demanded bits are known zero on one side, return the other. 234 // These bits cannot contribute to the result of the 'xor'. 235 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 236 return I->getOperand(0); 237 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 238 return I->getOperand(1); 239 240 // If all of the demanded bits are known to be zero on one side or the 241 // other, turn this into an *inclusive* or. 242 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 243 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 244 Instruction *Or = 245 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 246 I->getName()); 247 return InsertNewInstWith(Or, *I); 248 } 249 250 // If all of the demanded bits on one side are known, and all of the set 251 // bits on that side are also known to be set on the other side, turn this 252 // into an AND, as we know the bits will be cleared. 253 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 254 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 255 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 256 Constant *AndC = Constant::getIntegerValue(VTy, 257 ~RHSKnown.One & DemandedMask); 258 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 259 return InsertNewInstWith(And, *I); 260 } 261 262 // If the RHS is a constant, see if we can change it. Don't alter a -1 263 // constant because that's a canonical 'not' op, and that is better for 264 // combining, SCEV, and codegen. 265 const APInt *C; 266 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnesValue()) { 267 if ((*C | ~DemandedMask).isAllOnesValue()) { 268 // Force bits to 1 to create a 'not' op. 269 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 270 return I; 271 } 272 // If we can't turn this into a 'not', try to shrink the constant. 273 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 274 return I; 275 } 276 277 // If our LHS is an 'and' and if it has one use, and if any of the bits we 278 // are flipping are known to be set, then the xor is just resetting those 279 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 280 // simplifying both of them. 281 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 282 ConstantInt *AndRHS, *XorRHS; 283 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 284 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 285 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 286 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 287 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 288 289 Constant *AndC = 290 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 291 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 292 InsertNewInstWith(NewAnd, *I); 293 294 Constant *XorC = 295 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 296 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 297 return InsertNewInstWith(NewXor, *I); 298 } 299 } 300 break; 301 } 302 case Instruction::Select: { 303 Value *LHS, *RHS; 304 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 305 if (SPF == SPF_UMAX) { 306 // UMax(A, C) == A if ... 307 // The lowest non-zero bit of DemandMask is higher than the highest 308 // non-zero bit of C. 309 const APInt *C; 310 unsigned CTZ = DemandedMask.countTrailingZeros(); 311 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 312 return LHS; 313 } else if (SPF == SPF_UMIN) { 314 // UMin(A, C) == A if ... 315 // The lowest non-zero bit of DemandMask is higher than the highest 316 // non-one bit of C. 317 // This comes from using DeMorgans on the above umax example. 318 const APInt *C; 319 unsigned CTZ = DemandedMask.countTrailingZeros(); 320 if (match(RHS, m_APInt(C)) && 321 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 322 return LHS; 323 } 324 325 // If this is a select as part of any other min/max pattern, don't simplify 326 // any further in case we break the structure. 327 if (SPF != SPF_UNKNOWN) 328 return nullptr; 329 330 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 331 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 332 return I; 333 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 334 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 335 336 // If the operands are constants, see if we can simplify them. 337 // This is similar to ShrinkDemandedConstant, but for a select we want to 338 // try to keep the selected constants the same as icmp value constants, if 339 // we can. This helps not break apart (or helps put back together) 340 // canonical patterns like min and max. 341 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 342 const APInt &DemandedMask) { 343 const APInt *SelC; 344 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 345 return false; 346 347 // Get the constant out of the ICmp, if there is one. 348 // Only try this when exactly 1 operand is a constant (if both operands 349 // are constant, the icmp should eventually simplify). Otherwise, we may 350 // invert the transform that reduces set bits and infinite-loop. 351 Value *X; 352 const APInt *CmpC; 353 ICmpInst::Predicate Pred; 354 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 355 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 356 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 357 358 // If the constant is already the same as the ICmp, leave it as-is. 359 if (*CmpC == *SelC) 360 return false; 361 // If the constants are not already the same, but can be with the demand 362 // mask, use the constant value from the ICmp. 363 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 364 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 365 return true; 366 } 367 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 368 }; 369 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 370 CanonicalizeSelectConstant(I, 2, DemandedMask)) 371 return I; 372 373 // Only known if known in both the LHS and RHS. 374 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 375 break; 376 } 377 case Instruction::ZExt: 378 case Instruction::Trunc: { 379 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 380 381 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 382 KnownBits InputKnown(SrcBitWidth); 383 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 384 return I; 385 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 386 Known = InputKnown.zextOrTrunc(BitWidth); 387 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 388 break; 389 } 390 case Instruction::BitCast: 391 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 392 return nullptr; // vector->int or fp->int? 393 394 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 395 if (VectorType *SrcVTy = 396 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 397 if (cast<FixedVectorType>(DstVTy)->getNumElements() != 398 cast<FixedVectorType>(SrcVTy)->getNumElements()) 399 // Don't touch a bitcast between vectors of different element counts. 400 return nullptr; 401 } else 402 // Don't touch a scalar-to-vector bitcast. 403 return nullptr; 404 } else if (I->getOperand(0)->getType()->isVectorTy()) 405 // Don't touch a vector-to-scalar bitcast. 406 return nullptr; 407 408 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 409 return I; 410 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 411 break; 412 case Instruction::SExt: { 413 // Compute the bits in the result that are not present in the input. 414 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 415 416 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 417 418 // If any of the sign extended bits are demanded, we know that the sign 419 // bit is demanded. 420 if (DemandedMask.getActiveBits() > SrcBitWidth) 421 InputDemandedBits.setBit(SrcBitWidth-1); 422 423 KnownBits InputKnown(SrcBitWidth); 424 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 425 return I; 426 427 // If the input sign bit is known zero, or if the NewBits are not demanded 428 // convert this into a zero extension. 429 if (InputKnown.isNonNegative() || 430 DemandedMask.getActiveBits() <= SrcBitWidth) { 431 // Convert to ZExt cast. 432 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 433 return InsertNewInstWith(NewCast, *I); 434 } 435 436 // If the sign bit of the input is known set or clear, then we know the 437 // top bits of the result. 438 Known = InputKnown.sext(BitWidth); 439 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 440 break; 441 } 442 case Instruction::Add: 443 if ((DemandedMask & 1) == 0) { 444 // If we do not need the low bit, try to convert bool math to logic: 445 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 446 Value *X, *Y; 447 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 448 m_OneUse(m_SExt(m_Value(Y))))) && 449 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 450 // Truth table for inputs and output signbits: 451 // X:0 | X:1 452 // ---------- 453 // Y:0 | 0 | 0 | 454 // Y:1 | -1 | 0 | 455 // ---------- 456 IRBuilderBase::InsertPointGuard Guard(Builder); 457 Builder.SetInsertPoint(I); 458 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 459 return Builder.CreateSExt(AndNot, VTy); 460 } 461 462 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 463 // TODO: Relax the one-use checks because we are removing an instruction? 464 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 465 m_OneUse(m_SExt(m_Value(Y))))) && 466 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 467 // Truth table for inputs and output signbits: 468 // X:0 | X:1 469 // ----------- 470 // Y:0 | -1 | -1 | 471 // Y:1 | -1 | 0 | 472 // ----------- 473 IRBuilderBase::InsertPointGuard Guard(Builder); 474 Builder.SetInsertPoint(I); 475 Value *Or = Builder.CreateOr(X, Y); 476 return Builder.CreateSExt(Or, VTy); 477 } 478 } 479 LLVM_FALLTHROUGH; 480 case Instruction::Sub: { 481 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 482 /// about the high bits of the operands. 483 unsigned NLZ = DemandedMask.countLeadingZeros(); 484 // Right fill the mask of bits for this ADD/SUB to demand the most 485 // significant bit and all those below it. 486 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 487 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 488 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 489 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 490 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 491 if (NLZ > 0) { 492 // Disable the nsw and nuw flags here: We can no longer guarantee that 493 // we won't wrap after simplification. Removing the nsw/nuw flags is 494 // legal here because the top bit is not demanded. 495 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 496 BinOP.setHasNoSignedWrap(false); 497 BinOP.setHasNoUnsignedWrap(false); 498 } 499 return I; 500 } 501 502 // If we are known to be adding/subtracting zeros to every bit below 503 // the highest demanded bit, we just return the other side. 504 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 505 return I->getOperand(0); 506 // We can't do this with the LHS for subtraction, unless we are only 507 // demanding the LSB. 508 if ((I->getOpcode() == Instruction::Add || 509 DemandedFromOps.isOneValue()) && 510 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 511 return I->getOperand(1); 512 513 // Otherwise just compute the known bits of the result. 514 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 515 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 516 NSW, LHSKnown, RHSKnown); 517 break; 518 } 519 case Instruction::Shl: { 520 const APInt *SA; 521 if (match(I->getOperand(1), m_APInt(SA))) { 522 const APInt *ShrAmt; 523 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 524 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 525 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 526 DemandedMask, Known)) 527 return R; 528 529 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 530 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 531 532 // If the shift is NUW/NSW, then it does demand the high bits. 533 ShlOperator *IOp = cast<ShlOperator>(I); 534 if (IOp->hasNoSignedWrap()) 535 DemandedMaskIn.setHighBits(ShiftAmt+1); 536 else if (IOp->hasNoUnsignedWrap()) 537 DemandedMaskIn.setHighBits(ShiftAmt); 538 539 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 540 return I; 541 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 542 543 bool SignBitZero = Known.Zero.isSignBitSet(); 544 bool SignBitOne = Known.One.isSignBitSet(); 545 Known.Zero <<= ShiftAmt; 546 Known.One <<= ShiftAmt; 547 // low bits known zero. 548 if (ShiftAmt) 549 Known.Zero.setLowBits(ShiftAmt); 550 551 // If this shift has "nsw" keyword, then the result is either a poison 552 // value or has the same sign bit as the first operand. 553 if (IOp->hasNoSignedWrap()) { 554 if (SignBitZero) 555 Known.Zero.setSignBit(); 556 else if (SignBitOne) 557 Known.One.setSignBit(); 558 if (Known.hasConflict()) 559 return UndefValue::get(I->getType()); 560 } 561 } else { 562 computeKnownBits(I, Known, Depth, CxtI); 563 } 564 break; 565 } 566 case Instruction::LShr: { 567 const APInt *SA; 568 if (match(I->getOperand(1), m_APInt(SA))) { 569 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 570 571 // Unsigned shift right. 572 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 573 574 // If the shift is exact, then it does demand the low bits (and knows that 575 // they are zero). 576 if (cast<LShrOperator>(I)->isExact()) 577 DemandedMaskIn.setLowBits(ShiftAmt); 578 579 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 580 return I; 581 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 582 Known.Zero.lshrInPlace(ShiftAmt); 583 Known.One.lshrInPlace(ShiftAmt); 584 if (ShiftAmt) 585 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 586 } else { 587 computeKnownBits(I, Known, Depth, CxtI); 588 } 589 break; 590 } 591 case Instruction::AShr: { 592 // If this is an arithmetic shift right and only the low-bit is set, we can 593 // always convert this into a logical shr, even if the shift amount is 594 // variable. The low bit of the shift cannot be an input sign bit unless 595 // the shift amount is >= the size of the datatype, which is undefined. 596 if (DemandedMask.isOneValue()) { 597 // Perform the logical shift right. 598 Instruction *NewVal = BinaryOperator::CreateLShr( 599 I->getOperand(0), I->getOperand(1), I->getName()); 600 return InsertNewInstWith(NewVal, *I); 601 } 602 603 // If the sign bit is the only bit demanded by this ashr, then there is no 604 // need to do it, the shift doesn't change the high bit. 605 if (DemandedMask.isSignMask()) 606 return I->getOperand(0); 607 608 const APInt *SA; 609 if (match(I->getOperand(1), m_APInt(SA))) { 610 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 611 612 // Signed shift right. 613 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 614 // If any of the high bits are demanded, we should set the sign bit as 615 // demanded. 616 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 617 DemandedMaskIn.setSignBit(); 618 619 // If the shift is exact, then it does demand the low bits (and knows that 620 // they are zero). 621 if (cast<AShrOperator>(I)->isExact()) 622 DemandedMaskIn.setLowBits(ShiftAmt); 623 624 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 625 return I; 626 627 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 628 629 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 630 // Compute the new bits that are at the top now plus sign bits. 631 APInt HighBits(APInt::getHighBitsSet( 632 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 633 Known.Zero.lshrInPlace(ShiftAmt); 634 Known.One.lshrInPlace(ShiftAmt); 635 636 // If the input sign bit is known to be zero, or if none of the top bits 637 // are demanded, turn this into an unsigned shift right. 638 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 639 if (Known.Zero[BitWidth-ShiftAmt-1] || 640 !DemandedMask.intersects(HighBits)) { 641 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 642 I->getOperand(1)); 643 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 644 return InsertNewInstWith(LShr, *I); 645 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 646 Known.One |= HighBits; 647 } 648 } else { 649 computeKnownBits(I, Known, Depth, CxtI); 650 } 651 break; 652 } 653 case Instruction::UDiv: { 654 // UDiv doesn't demand low bits that are zero in the divisor. 655 const APInt *SA; 656 if (match(I->getOperand(1), m_APInt(SA))) { 657 // If the shift is exact, then it does demand the low bits. 658 if (cast<UDivOperator>(I)->isExact()) 659 break; 660 661 // FIXME: Take the demanded mask of the result into account. 662 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 663 APInt DemandedMaskIn = 664 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 665 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 666 return I; 667 668 // Propagate zero bits from the input. 669 Known.Zero.setHighBits(std::min( 670 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 671 } else { 672 computeKnownBits(I, Known, Depth, CxtI); 673 } 674 break; 675 } 676 case Instruction::SRem: { 677 ConstantInt *Rem; 678 if (match(I->getOperand(1), m_ConstantInt(Rem))) { 679 // X % -1 demands all the bits because we don't want to introduce 680 // INT_MIN % -1 (== undef) by accident. 681 if (Rem->isMinusOne()) 682 break; 683 APInt RA = Rem->getValue().abs(); 684 if (RA.isPowerOf2()) { 685 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 686 return I->getOperand(0); 687 688 APInt LowBits = RA - 1; 689 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 690 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 691 return I; 692 693 // The low bits of LHS are unchanged by the srem. 694 Known.Zero = LHSKnown.Zero & LowBits; 695 Known.One = LHSKnown.One & LowBits; 696 697 // If LHS is non-negative or has all low bits zero, then the upper bits 698 // are all zero. 699 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 700 Known.Zero |= ~LowBits; 701 702 // If LHS is negative and not all low bits are zero, then the upper bits 703 // are all one. 704 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 705 Known.One |= ~LowBits; 706 707 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 708 break; 709 } 710 } 711 712 // The sign bit is the LHS's sign bit, except when the result of the 713 // remainder is zero. 714 if (DemandedMask.isSignBitSet()) { 715 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 716 // If it's known zero, our sign bit is also zero. 717 if (LHSKnown.isNonNegative()) 718 Known.makeNonNegative(); 719 } 720 break; 721 } 722 case Instruction::URem: { 723 KnownBits Known2(BitWidth); 724 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 725 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 726 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 727 return I; 728 729 unsigned Leaders = Known2.countMinLeadingZeros(); 730 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 731 break; 732 } 733 case Instruction::Call: { 734 bool KnownBitsComputed = false; 735 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 736 switch (II->getIntrinsicID()) { 737 case Intrinsic::abs: { 738 if (DemandedMask == 1) 739 return II->getArgOperand(0); 740 break; 741 } 742 case Intrinsic::bswap: { 743 // If the only bits demanded come from one byte of the bswap result, 744 // just shift the input byte into position to eliminate the bswap. 745 unsigned NLZ = DemandedMask.countLeadingZeros(); 746 unsigned NTZ = DemandedMask.countTrailingZeros(); 747 748 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 749 // we need all the bits down to bit 8. Likewise, round NLZ. If we 750 // have 14 leading zeros, round to 8. 751 NLZ &= ~7; 752 NTZ &= ~7; 753 // If we need exactly one byte, we can do this transformation. 754 if (BitWidth-NLZ-NTZ == 8) { 755 unsigned ResultBit = NTZ; 756 unsigned InputBit = BitWidth-NTZ-8; 757 758 // Replace this with either a left or right shift to get the byte into 759 // the right place. 760 Instruction *NewVal; 761 if (InputBit > ResultBit) 762 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 763 ConstantInt::get(I->getType(), InputBit-ResultBit)); 764 else 765 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 766 ConstantInt::get(I->getType(), ResultBit-InputBit)); 767 NewVal->takeName(I); 768 return InsertNewInstWith(NewVal, *I); 769 } 770 break; 771 } 772 case Intrinsic::fshr: 773 case Intrinsic::fshl: { 774 const APInt *SA; 775 if (!match(I->getOperand(2), m_APInt(SA))) 776 break; 777 778 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 779 // defined, so no need to special-case zero shifts here. 780 uint64_t ShiftAmt = SA->urem(BitWidth); 781 if (II->getIntrinsicID() == Intrinsic::fshr) 782 ShiftAmt = BitWidth - ShiftAmt; 783 784 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 785 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 786 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 787 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 788 return I; 789 790 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 791 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 792 Known.One = LHSKnown.One.shl(ShiftAmt) | 793 RHSKnown.One.lshr(BitWidth - ShiftAmt); 794 KnownBitsComputed = true; 795 break; 796 } 797 default: { 798 // Handle target specific intrinsics 799 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 800 *II, DemandedMask, Known, KnownBitsComputed); 801 if (V.hasValue()) 802 return V.getValue(); 803 break; 804 } 805 } 806 } 807 808 if (!KnownBitsComputed) 809 computeKnownBits(V, Known, Depth, CxtI); 810 break; 811 } 812 } 813 814 // If the client is only demanding bits that we know, return the known 815 // constant. 816 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 817 return Constant::getIntegerValue(VTy, Known.One); 818 return nullptr; 819 } 820 821 /// Helper routine of SimplifyDemandedUseBits. It computes Known 822 /// bits. It also tries to handle simplifications that can be done based on 823 /// DemandedMask, but without modifying the Instruction. 824 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 825 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 826 Instruction *CxtI) { 827 unsigned BitWidth = DemandedMask.getBitWidth(); 828 Type *ITy = I->getType(); 829 830 KnownBits LHSKnown(BitWidth); 831 KnownBits RHSKnown(BitWidth); 832 833 // Despite the fact that we can't simplify this instruction in all User's 834 // context, we can at least compute the known bits, and we can 835 // do simplifications that apply to *just* the one user if we know that 836 // this instruction has a simpler value in that context. 837 switch (I->getOpcode()) { 838 case Instruction::And: { 839 // If either the LHS or the RHS are Zero, the result is zero. 840 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 841 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 842 CxtI); 843 844 Known = LHSKnown & RHSKnown; 845 846 // If the client is only demanding bits that we know, return the known 847 // constant. 848 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 849 return Constant::getIntegerValue(ITy, Known.One); 850 851 // If all of the demanded bits are known 1 on one side, return the other. 852 // These bits cannot contribute to the result of the 'and' in this 853 // context. 854 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 855 return I->getOperand(0); 856 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 857 return I->getOperand(1); 858 859 break; 860 } 861 case Instruction::Or: { 862 // We can simplify (X|Y) -> X or Y in the user's context if we know that 863 // only bits from X or Y are demanded. 864 865 // If either the LHS or the RHS are One, the result is One. 866 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 867 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 868 CxtI); 869 870 Known = LHSKnown | RHSKnown; 871 872 // If the client is only demanding bits that we know, return the known 873 // constant. 874 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 875 return Constant::getIntegerValue(ITy, Known.One); 876 877 // If all of the demanded bits are known zero on one side, return the 878 // other. These bits cannot contribute to the result of the 'or' in this 879 // context. 880 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 881 return I->getOperand(0); 882 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 883 return I->getOperand(1); 884 885 break; 886 } 887 case Instruction::Xor: { 888 // We can simplify (X^Y) -> X or Y in the user's context if we know that 889 // only bits from X or Y are demanded. 890 891 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 892 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 893 CxtI); 894 895 Known = LHSKnown ^ RHSKnown; 896 897 // If the client is only demanding bits that we know, return the known 898 // constant. 899 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 900 return Constant::getIntegerValue(ITy, Known.One); 901 902 // If all of the demanded bits are known zero on one side, return the 903 // other. 904 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 905 return I->getOperand(0); 906 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 907 return I->getOperand(1); 908 909 break; 910 } 911 case Instruction::AShr: { 912 // Compute the Known bits to simplify things downstream. 913 computeKnownBits(I, Known, Depth, CxtI); 914 915 // If this user is only demanding bits that we know, return the known 916 // constant. 917 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 918 return Constant::getIntegerValue(ITy, Known.One); 919 920 // If the right shift operand 0 is a result of a left shift by the same 921 // amount, this is probably a zero/sign extension, which may be unnecessary, 922 // if we do not demand any of the new sign bits. So, return the original 923 // operand instead. 924 const APInt *ShiftRC; 925 const APInt *ShiftLC; 926 Value *X; 927 unsigned BitWidth = DemandedMask.getBitWidth(); 928 if (match(I, 929 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 930 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && 931 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 932 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 933 return X; 934 } 935 936 break; 937 } 938 default: 939 // Compute the Known bits to simplify things downstream. 940 computeKnownBits(I, Known, Depth, CxtI); 941 942 // If this user is only demanding bits that we know, return the known 943 // constant. 944 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 945 return Constant::getIntegerValue(ITy, Known.One); 946 947 break; 948 } 949 950 return nullptr; 951 } 952 953 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 954 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 955 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 956 /// of "C2-C1". 957 /// 958 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 959 /// ..., bn}, without considering the specific value X is holding. 960 /// This transformation is legal iff one of following conditions is hold: 961 /// 1) All the bit in S are 0, in this case E1 == E2. 962 /// 2) We don't care those bits in S, per the input DemandedMask. 963 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 964 /// rest bits. 965 /// 966 /// Currently we only test condition 2). 967 /// 968 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 969 /// not successful. 970 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 971 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 972 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 973 if (!ShlOp1 || !ShrOp1) 974 return nullptr; // No-op. 975 976 Value *VarX = Shr->getOperand(0); 977 Type *Ty = VarX->getType(); 978 unsigned BitWidth = Ty->getScalarSizeInBits(); 979 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 980 return nullptr; // Undef. 981 982 unsigned ShlAmt = ShlOp1.getZExtValue(); 983 unsigned ShrAmt = ShrOp1.getZExtValue(); 984 985 Known.One.clearAllBits(); 986 Known.Zero.setLowBits(ShlAmt - 1); 987 Known.Zero &= DemandedMask; 988 989 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 990 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 991 992 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 993 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 994 (BitMask1.ashr(ShrAmt) << ShlAmt); 995 996 if (ShrAmt <= ShlAmt) { 997 BitMask2 <<= (ShlAmt - ShrAmt); 998 } else { 999 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1000 BitMask2.ashr(ShrAmt - ShlAmt); 1001 } 1002 1003 // Check if condition-2 (see the comment to this function) is satified. 1004 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1005 if (ShrAmt == ShlAmt) 1006 return VarX; 1007 1008 if (!Shr->hasOneUse()) 1009 return nullptr; 1010 1011 BinaryOperator *New; 1012 if (ShrAmt < ShlAmt) { 1013 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1014 New = BinaryOperator::CreateShl(VarX, Amt); 1015 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1016 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1017 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1018 } else { 1019 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1020 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1021 BinaryOperator::CreateAShr(VarX, Amt); 1022 if (cast<BinaryOperator>(Shr)->isExact()) 1023 New->setIsExact(true); 1024 } 1025 1026 return InsertNewInstWith(New, *Shl); 1027 } 1028 1029 return nullptr; 1030 } 1031 1032 /// The specified value produces a vector with any number of elements. 1033 /// This method analyzes which elements of the operand are undef or poison and 1034 /// returns that information in UndefElts. 1035 /// 1036 /// DemandedElts contains the set of elements that are actually used by the 1037 /// caller, and by default (AllowMultipleUsers equals false) the value is 1038 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1039 /// to true, DemandedElts refers to the union of sets of elements that are 1040 /// used by all callers. 1041 /// 1042 /// If the information about demanded elements can be used to simplify the 1043 /// operation, the operation is simplified, then the resultant value is 1044 /// returned. This returns null if no change was made. 1045 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1046 APInt DemandedElts, 1047 APInt &UndefElts, 1048 unsigned Depth, 1049 bool AllowMultipleUsers) { 1050 // Cannot analyze scalable type. The number of vector elements is not a 1051 // compile-time constant. 1052 if (isa<ScalableVectorType>(V->getType())) 1053 return nullptr; 1054 1055 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1056 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1057 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1058 1059 if (isa<UndefValue>(V)) { 1060 // If the entire vector is undef or poison, just return this info. 1061 UndefElts = EltMask; 1062 return nullptr; 1063 } 1064 1065 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide poison. 1066 UndefElts = EltMask; 1067 return PoisonValue::get(V->getType()); 1068 } 1069 1070 UndefElts = 0; 1071 1072 if (auto *C = dyn_cast<Constant>(V)) { 1073 // Check if this is identity. If so, return 0 since we are not simplifying 1074 // anything. 1075 if (DemandedElts.isAllOnesValue()) 1076 return nullptr; 1077 1078 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1079 Constant *Poison = PoisonValue::get(EltTy); 1080 SmallVector<Constant*, 16> Elts; 1081 for (unsigned i = 0; i != VWidth; ++i) { 1082 if (!DemandedElts[i]) { // If not demanded, set to poison. 1083 Elts.push_back(Poison); 1084 UndefElts.setBit(i); 1085 continue; 1086 } 1087 1088 Constant *Elt = C->getAggregateElement(i); 1089 if (!Elt) return nullptr; 1090 1091 Elts.push_back(Elt); 1092 if (isa<UndefValue>(Elt)) // Already undef or poison. 1093 UndefElts.setBit(i); 1094 } 1095 1096 // If we changed the constant, return it. 1097 Constant *NewCV = ConstantVector::get(Elts); 1098 return NewCV != C ? NewCV : nullptr; 1099 } 1100 1101 // Limit search depth. 1102 if (Depth == 10) 1103 return nullptr; 1104 1105 if (!AllowMultipleUsers) { 1106 // If multiple users are using the root value, proceed with 1107 // simplification conservatively assuming that all elements 1108 // are needed. 1109 if (!V->hasOneUse()) { 1110 // Quit if we find multiple users of a non-root value though. 1111 // They'll be handled when it's their turn to be visited by 1112 // the main instcombine process. 1113 if (Depth != 0) 1114 // TODO: Just compute the UndefElts information recursively. 1115 return nullptr; 1116 1117 // Conservatively assume that all elements are needed. 1118 DemandedElts = EltMask; 1119 } 1120 } 1121 1122 Instruction *I = dyn_cast<Instruction>(V); 1123 if (!I) return nullptr; // Only analyze instructions. 1124 1125 bool MadeChange = false; 1126 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1127 APInt Demanded, APInt &Undef) { 1128 auto *II = dyn_cast<IntrinsicInst>(Inst); 1129 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1130 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1131 replaceOperand(*Inst, OpNum, V); 1132 MadeChange = true; 1133 } 1134 }; 1135 1136 APInt UndefElts2(VWidth, 0); 1137 APInt UndefElts3(VWidth, 0); 1138 switch (I->getOpcode()) { 1139 default: break; 1140 1141 case Instruction::GetElementPtr: { 1142 // The LangRef requires that struct geps have all constant indices. As 1143 // such, we can't convert any operand to partial undef. 1144 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1145 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1146 I != E; I++) 1147 if (I.isStruct()) 1148 return true;; 1149 return false; 1150 }; 1151 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1152 break; 1153 1154 // Conservatively track the demanded elements back through any vector 1155 // operands we may have. We know there must be at least one, or we 1156 // wouldn't have a vector result to get here. Note that we intentionally 1157 // merge the undef bits here since gepping with either an undef base or 1158 // index results in undef. 1159 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1160 if (isa<UndefValue>(I->getOperand(i))) { 1161 // If the entire vector is undefined, just return this info. 1162 UndefElts = EltMask; 1163 return nullptr; 1164 } 1165 if (I->getOperand(i)->getType()->isVectorTy()) { 1166 APInt UndefEltsOp(VWidth, 0); 1167 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1168 UndefElts |= UndefEltsOp; 1169 } 1170 } 1171 1172 break; 1173 } 1174 case Instruction::InsertElement: { 1175 // If this is a variable index, we don't know which element it overwrites. 1176 // demand exactly the same input as we produce. 1177 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1178 if (!Idx) { 1179 // Note that we can't propagate undef elt info, because we don't know 1180 // which elt is getting updated. 1181 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1182 break; 1183 } 1184 1185 // The element inserted overwrites whatever was there, so the input demanded 1186 // set is simpler than the output set. 1187 unsigned IdxNo = Idx->getZExtValue(); 1188 APInt PreInsertDemandedElts = DemandedElts; 1189 if (IdxNo < VWidth) 1190 PreInsertDemandedElts.clearBit(IdxNo); 1191 1192 // If we only demand the element that is being inserted and that element 1193 // was extracted from the same index in another vector with the same type, 1194 // replace this insert with that other vector. 1195 // Note: This is attempted before the call to simplifyAndSetOp because that 1196 // may change UndefElts to a value that does not match with Vec. 1197 Value *Vec; 1198 if (PreInsertDemandedElts == 0 && 1199 match(I->getOperand(1), 1200 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1201 Vec->getType() == I->getType()) { 1202 return Vec; 1203 } 1204 1205 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1206 1207 // If this is inserting an element that isn't demanded, remove this 1208 // insertelement. 1209 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1210 Worklist.push(I); 1211 return I->getOperand(0); 1212 } 1213 1214 // The inserted element is defined. 1215 UndefElts.clearBit(IdxNo); 1216 break; 1217 } 1218 case Instruction::ShuffleVector: { 1219 auto *Shuffle = cast<ShuffleVectorInst>(I); 1220 assert(Shuffle->getOperand(0)->getType() == 1221 Shuffle->getOperand(1)->getType() && 1222 "Expected shuffle operands to have same type"); 1223 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1224 ->getNumElements(); 1225 // Handle trivial case of a splat. Only check the first element of LHS 1226 // operand. 1227 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1228 DemandedElts.isAllOnesValue()) { 1229 if (!isa<UndefValue>(I->getOperand(1))) { 1230 I->setOperand(1, UndefValue::get(I->getOperand(1)->getType())); 1231 MadeChange = true; 1232 } 1233 APInt LeftDemanded(OpWidth, 1); 1234 APInt LHSUndefElts(OpWidth, 0); 1235 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1236 if (LHSUndefElts[0]) 1237 UndefElts = EltMask; 1238 else 1239 UndefElts.clearAllBits(); 1240 break; 1241 } 1242 1243 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1244 for (unsigned i = 0; i < VWidth; i++) { 1245 if (DemandedElts[i]) { 1246 unsigned MaskVal = Shuffle->getMaskValue(i); 1247 if (MaskVal != -1u) { 1248 assert(MaskVal < OpWidth * 2 && 1249 "shufflevector mask index out of range!"); 1250 if (MaskVal < OpWidth) 1251 LeftDemanded.setBit(MaskVal); 1252 else 1253 RightDemanded.setBit(MaskVal - OpWidth); 1254 } 1255 } 1256 } 1257 1258 APInt LHSUndefElts(OpWidth, 0); 1259 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1260 1261 APInt RHSUndefElts(OpWidth, 0); 1262 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1263 1264 // If this shuffle does not change the vector length and the elements 1265 // demanded by this shuffle are an identity mask, then this shuffle is 1266 // unnecessary. 1267 // 1268 // We are assuming canonical form for the mask, so the source vector is 1269 // operand 0 and operand 1 is not used. 1270 // 1271 // Note that if an element is demanded and this shuffle mask is undefined 1272 // for that element, then the shuffle is not considered an identity 1273 // operation. The shuffle prevents poison from the operand vector from 1274 // leaking to the result by replacing poison with an undefined value. 1275 if (VWidth == OpWidth) { 1276 bool IsIdentityShuffle = true; 1277 for (unsigned i = 0; i < VWidth; i++) { 1278 unsigned MaskVal = Shuffle->getMaskValue(i); 1279 if (DemandedElts[i] && i != MaskVal) { 1280 IsIdentityShuffle = false; 1281 break; 1282 } 1283 } 1284 if (IsIdentityShuffle) 1285 return Shuffle->getOperand(0); 1286 } 1287 1288 bool NewUndefElts = false; 1289 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1290 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1291 bool LHSUniform = true; 1292 bool RHSUniform = true; 1293 for (unsigned i = 0; i < VWidth; i++) { 1294 unsigned MaskVal = Shuffle->getMaskValue(i); 1295 if (MaskVal == -1u) { 1296 UndefElts.setBit(i); 1297 } else if (!DemandedElts[i]) { 1298 NewUndefElts = true; 1299 UndefElts.setBit(i); 1300 } else if (MaskVal < OpWidth) { 1301 if (LHSUndefElts[MaskVal]) { 1302 NewUndefElts = true; 1303 UndefElts.setBit(i); 1304 } else { 1305 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1306 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1307 LHSUniform = LHSUniform && (MaskVal == i); 1308 } 1309 } else { 1310 if (RHSUndefElts[MaskVal - OpWidth]) { 1311 NewUndefElts = true; 1312 UndefElts.setBit(i); 1313 } else { 1314 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1315 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1316 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1317 } 1318 } 1319 } 1320 1321 // Try to transform shuffle with constant vector and single element from 1322 // this constant vector to single insertelement instruction. 1323 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1324 // insertelement V, C[ci], ci-n 1325 if (OpWidth == 1326 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1327 Value *Op = nullptr; 1328 Constant *Value = nullptr; 1329 unsigned Idx = -1u; 1330 1331 // Find constant vector with the single element in shuffle (LHS or RHS). 1332 if (LHSIdx < OpWidth && RHSUniform) { 1333 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1334 Op = Shuffle->getOperand(1); 1335 Value = CV->getOperand(LHSValIdx); 1336 Idx = LHSIdx; 1337 } 1338 } 1339 if (RHSIdx < OpWidth && LHSUniform) { 1340 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1341 Op = Shuffle->getOperand(0); 1342 Value = CV->getOperand(RHSValIdx); 1343 Idx = RHSIdx; 1344 } 1345 } 1346 // Found constant vector with single element - convert to insertelement. 1347 if (Op && Value) { 1348 Instruction *New = InsertElementInst::Create( 1349 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1350 Shuffle->getName()); 1351 InsertNewInstWith(New, *Shuffle); 1352 return New; 1353 } 1354 } 1355 if (NewUndefElts) { 1356 // Add additional discovered undefs. 1357 SmallVector<int, 16> Elts; 1358 for (unsigned i = 0; i < VWidth; ++i) { 1359 if (UndefElts[i]) 1360 Elts.push_back(UndefMaskElem); 1361 else 1362 Elts.push_back(Shuffle->getMaskValue(i)); 1363 } 1364 Shuffle->setShuffleMask(Elts); 1365 MadeChange = true; 1366 } 1367 break; 1368 } 1369 case Instruction::Select: { 1370 // If this is a vector select, try to transform the select condition based 1371 // on the current demanded elements. 1372 SelectInst *Sel = cast<SelectInst>(I); 1373 if (Sel->getCondition()->getType()->isVectorTy()) { 1374 // TODO: We are not doing anything with UndefElts based on this call. 1375 // It is overwritten below based on the other select operands. If an 1376 // element of the select condition is known undef, then we are free to 1377 // choose the output value from either arm of the select. If we know that 1378 // one of those values is undef, then the output can be undef. 1379 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1380 } 1381 1382 // Next, see if we can transform the arms of the select. 1383 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1384 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1385 for (unsigned i = 0; i < VWidth; i++) { 1386 // isNullValue() always returns false when called on a ConstantExpr. 1387 // Skip constant expressions to avoid propagating incorrect information. 1388 Constant *CElt = CV->getAggregateElement(i); 1389 if (isa<ConstantExpr>(CElt)) 1390 continue; 1391 // TODO: If a select condition element is undef, we can demand from 1392 // either side. If one side is known undef, choosing that side would 1393 // propagate undef. 1394 if (CElt->isNullValue()) 1395 DemandedLHS.clearBit(i); 1396 else 1397 DemandedRHS.clearBit(i); 1398 } 1399 } 1400 1401 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1402 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1403 1404 // Output elements are undefined if the element from each arm is undefined. 1405 // TODO: This can be improved. See comment in select condition handling. 1406 UndefElts = UndefElts2 & UndefElts3; 1407 break; 1408 } 1409 case Instruction::BitCast: { 1410 // Vector->vector casts only. 1411 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1412 if (!VTy) break; 1413 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1414 APInt InputDemandedElts(InVWidth, 0); 1415 UndefElts2 = APInt(InVWidth, 0); 1416 unsigned Ratio; 1417 1418 if (VWidth == InVWidth) { 1419 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1420 // elements as are demanded of us. 1421 Ratio = 1; 1422 InputDemandedElts = DemandedElts; 1423 } else if ((VWidth % InVWidth) == 0) { 1424 // If the number of elements in the output is a multiple of the number of 1425 // elements in the input then an input element is live if any of the 1426 // corresponding output elements are live. 1427 Ratio = VWidth / InVWidth; 1428 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1429 if (DemandedElts[OutIdx]) 1430 InputDemandedElts.setBit(OutIdx / Ratio); 1431 } else if ((InVWidth % VWidth) == 0) { 1432 // If the number of elements in the input is a multiple of the number of 1433 // elements in the output then an input element is live if the 1434 // corresponding output element is live. 1435 Ratio = InVWidth / VWidth; 1436 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1437 if (DemandedElts[InIdx / Ratio]) 1438 InputDemandedElts.setBit(InIdx); 1439 } else { 1440 // Unsupported so far. 1441 break; 1442 } 1443 1444 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1445 1446 if (VWidth == InVWidth) { 1447 UndefElts = UndefElts2; 1448 } else if ((VWidth % InVWidth) == 0) { 1449 // If the number of elements in the output is a multiple of the number of 1450 // elements in the input then an output element is undef if the 1451 // corresponding input element is undef. 1452 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1453 if (UndefElts2[OutIdx / Ratio]) 1454 UndefElts.setBit(OutIdx); 1455 } else if ((InVWidth % VWidth) == 0) { 1456 // If the number of elements in the input is a multiple of the number of 1457 // elements in the output then an output element is undef if all of the 1458 // corresponding input elements are undef. 1459 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1460 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1461 if (SubUndef.countPopulation() == Ratio) 1462 UndefElts.setBit(OutIdx); 1463 } 1464 } else { 1465 llvm_unreachable("Unimp"); 1466 } 1467 break; 1468 } 1469 case Instruction::FPTrunc: 1470 case Instruction::FPExt: 1471 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1472 break; 1473 1474 case Instruction::Call: { 1475 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1476 if (!II) break; 1477 switch (II->getIntrinsicID()) { 1478 case Intrinsic::masked_gather: // fallthrough 1479 case Intrinsic::masked_load: { 1480 // Subtlety: If we load from a pointer, the pointer must be valid 1481 // regardless of whether the element is demanded. Doing otherwise risks 1482 // segfaults which didn't exist in the original program. 1483 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1484 DemandedPassThrough(DemandedElts); 1485 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1486 for (unsigned i = 0; i < VWidth; i++) { 1487 Constant *CElt = CV->getAggregateElement(i); 1488 if (CElt->isNullValue()) 1489 DemandedPtrs.clearBit(i); 1490 else if (CElt->isAllOnesValue()) 1491 DemandedPassThrough.clearBit(i); 1492 } 1493 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1494 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1495 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1496 1497 // Output elements are undefined if the element from both sources are. 1498 // TODO: can strengthen via mask as well. 1499 UndefElts = UndefElts2 & UndefElts3; 1500 break; 1501 } 1502 default: { 1503 // Handle target specific intrinsics 1504 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1505 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1506 simplifyAndSetOp); 1507 if (V.hasValue()) 1508 return V.getValue(); 1509 break; 1510 } 1511 } // switch on IntrinsicID 1512 break; 1513 } // case Call 1514 } // switch on Opcode 1515 1516 // TODO: We bail completely on integer div/rem and shifts because they have 1517 // UB/poison potential, but that should be refined. 1518 BinaryOperator *BO; 1519 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1520 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1521 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1522 1523 // Any change to an instruction with potential poison must clear those flags 1524 // because we can not guarantee those constraints now. Other analysis may 1525 // determine that it is safe to re-apply the flags. 1526 if (MadeChange) 1527 BO->dropPoisonGeneratingFlags(); 1528 1529 // Output elements are undefined if both are undefined. Consider things 1530 // like undef & 0. The result is known zero, not undef. 1531 UndefElts &= UndefElts2; 1532 } 1533 1534 // If we've proven all of the lanes undef, return an undef value. 1535 // TODO: Intersect w/demanded lanes 1536 if (UndefElts.isAllOnesValue()) 1537 return UndefValue::get(I->getType());; 1538 1539 return MadeChange ? I : nullptr; 1540 } 1541