1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/IntrinsicsAMDGPU.h" 18 #include "llvm/IR/IntrinsicsX86.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 namespace { 28 29 struct AMDGPUImageDMaskIntrinsic { 30 unsigned Intr; 31 }; 32 33 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 34 #include "InstCombineTables.inc" 35 36 } // end anonymous namespace 37 38 /// Check to see if the specified operand of the specified instruction is a 39 /// constant integer. If so, check to see if there are any bits set in the 40 /// constant that are not demanded. If so, shrink the constant and return true. 41 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 42 const APInt &Demanded) { 43 assert(I && "No instruction?"); 44 assert(OpNo < I->getNumOperands() && "Operand index too large"); 45 46 // The operand must be a constant integer or splat integer. 47 Value *Op = I->getOperand(OpNo); 48 const APInt *C; 49 if (!match(Op, m_APInt(C))) 50 return false; 51 52 // If there are no bits set that aren't demanded, nothing to do. 53 if (C->isSubsetOf(Demanded)) 54 return false; 55 56 // This instruction is producing bits that are not demanded. Shrink the RHS. 57 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 58 59 return true; 60 } 61 62 63 64 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 65 /// the instruction has any properties that allow us to simplify its operands. 66 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 67 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 68 KnownBits Known(BitWidth); 69 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 70 71 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 72 0, &Inst); 73 if (!V) return false; 74 if (V == &Inst) return true; 75 replaceInstUsesWith(Inst, V); 76 return true; 77 } 78 79 /// This form of SimplifyDemandedBits simplifies the specified instruction 80 /// operand if possible, updating it in place. It returns true if it made any 81 /// change and false otherwise. 82 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 83 const APInt &DemandedMask, 84 KnownBits &Known, 85 unsigned Depth) { 86 Use &U = I->getOperandUse(OpNo); 87 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 88 Depth, I); 89 if (!NewVal) return false; 90 // Add the old operand back to the worklist. 91 Worklist.addValue(U.get()); 92 U = NewVal; 93 return true; 94 } 95 96 97 /// This function attempts to replace V with a simpler value based on the 98 /// demanded bits. When this function is called, it is known that only the bits 99 /// set in DemandedMask of the result of V are ever used downstream. 100 /// Consequently, depending on the mask and V, it may be possible to replace V 101 /// with a constant or one of its operands. In such cases, this function does 102 /// the replacement and returns true. In all other cases, it returns false after 103 /// analyzing the expression and setting KnownOne and known to be one in the 104 /// expression. Known.Zero contains all the bits that are known to be zero in 105 /// the expression. These are provided to potentially allow the caller (which 106 /// might recursively be SimplifyDemandedBits itself) to simplify the 107 /// expression. 108 /// Known.One and Known.Zero always follow the invariant that: 109 /// Known.One & Known.Zero == 0. 110 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 111 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 112 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 113 /// be the same. 114 /// 115 /// This returns null if it did not change anything and it permits no 116 /// simplification. This returns V itself if it did some simplification of V's 117 /// operands based on the information about what bits are demanded. This returns 118 /// some other non-null value if it found out that V is equal to another value 119 /// in the context where the specified bits are demanded, but not for all users. 120 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 121 KnownBits &Known, unsigned Depth, 122 Instruction *CxtI) { 123 assert(V != nullptr && "Null pointer of Value???"); 124 assert(Depth <= 6 && "Limit Search Depth"); 125 uint32_t BitWidth = DemandedMask.getBitWidth(); 126 Type *VTy = V->getType(); 127 assert( 128 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 129 Known.getBitWidth() == BitWidth && 130 "Value *V, DemandedMask and Known must have same BitWidth"); 131 132 if (isa<Constant>(V)) { 133 computeKnownBits(V, Known, Depth, CxtI); 134 return nullptr; 135 } 136 137 Known.resetAll(); 138 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 139 return UndefValue::get(VTy); 140 141 if (Depth == 6) // Limit search depth. 142 return nullptr; 143 144 Instruction *I = dyn_cast<Instruction>(V); 145 if (!I) { 146 computeKnownBits(V, Known, Depth, CxtI); 147 return nullptr; // Only analyze instructions. 148 } 149 150 // If there are multiple uses of this value and we aren't at the root, then 151 // we can't do any simplifications of the operands, because DemandedMask 152 // only reflects the bits demanded by *one* of the users. 153 if (Depth != 0 && !I->hasOneUse()) 154 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 155 156 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 157 158 // If this is the root being simplified, allow it to have multiple uses, 159 // just set the DemandedMask to all bits so that we can try to simplify the 160 // operands. This allows visitTruncInst (for example) to simplify the 161 // operand of a trunc without duplicating all the logic below. 162 if (Depth == 0 && !V->hasOneUse()) 163 DemandedMask.setAllBits(); 164 165 switch (I->getOpcode()) { 166 default: 167 computeKnownBits(I, Known, Depth, CxtI); 168 break; 169 case Instruction::And: { 170 // If either the LHS or the RHS are Zero, the result is zero. 171 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 172 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 173 Depth + 1)) 174 return I; 175 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 176 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 177 178 // Output known-0 are known to be clear if zero in either the LHS | RHS. 179 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 180 // Output known-1 bits are only known if set in both the LHS & RHS. 181 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 182 183 // If the client is only demanding bits that we know, return the known 184 // constant. 185 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 186 return Constant::getIntegerValue(VTy, IKnownOne); 187 188 // If all of the demanded bits are known 1 on one side, return the other. 189 // These bits cannot contribute to the result of the 'and'. 190 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 191 return I->getOperand(0); 192 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 193 return I->getOperand(1); 194 195 // If the RHS is a constant, see if we can simplify it. 196 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 197 return I; 198 199 Known.Zero = std::move(IKnownZero); 200 Known.One = std::move(IKnownOne); 201 break; 202 } 203 case Instruction::Or: { 204 // If either the LHS or the RHS are One, the result is One. 205 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 206 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 207 Depth + 1)) 208 return I; 209 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 210 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 211 212 // Output known-0 bits are only known if clear in both the LHS & RHS. 213 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 214 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 215 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 216 217 // If the client is only demanding bits that we know, return the known 218 // constant. 219 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 220 return Constant::getIntegerValue(VTy, IKnownOne); 221 222 // If all of the demanded bits are known zero on one side, return the other. 223 // These bits cannot contribute to the result of the 'or'. 224 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 225 return I->getOperand(0); 226 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 227 return I->getOperand(1); 228 229 // If the RHS is a constant, see if we can simplify it. 230 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 231 return I; 232 233 Known.Zero = std::move(IKnownZero); 234 Known.One = std::move(IKnownOne); 235 break; 236 } 237 case Instruction::Xor: { 238 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 239 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 240 return I; 241 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 242 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 243 244 // Output known-0 bits are known if clear or set in both the LHS & RHS. 245 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 246 (RHSKnown.One & LHSKnown.One); 247 // Output known-1 are known to be set if set in only one of the LHS, RHS. 248 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 249 (RHSKnown.One & LHSKnown.Zero); 250 251 // If the client is only demanding bits that we know, return the known 252 // constant. 253 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 254 return Constant::getIntegerValue(VTy, IKnownOne); 255 256 // If all of the demanded bits are known zero on one side, return the other. 257 // These bits cannot contribute to the result of the 'xor'. 258 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 259 return I->getOperand(0); 260 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 261 return I->getOperand(1); 262 263 // If all of the demanded bits are known to be zero on one side or the 264 // other, turn this into an *inclusive* or. 265 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 266 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 267 Instruction *Or = 268 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 269 I->getName()); 270 return InsertNewInstWith(Or, *I); 271 } 272 273 // If all of the demanded bits on one side are known, and all of the set 274 // bits on that side are also known to be set on the other side, turn this 275 // into an AND, as we know the bits will be cleared. 276 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 277 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 278 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 279 Constant *AndC = Constant::getIntegerValue(VTy, 280 ~RHSKnown.One & DemandedMask); 281 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 282 return InsertNewInstWith(And, *I); 283 } 284 285 // If the RHS is a constant, see if we can simplify it. 286 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 287 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 288 return I; 289 290 // If our LHS is an 'and' and if it has one use, and if any of the bits we 291 // are flipping are known to be set, then the xor is just resetting those 292 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 293 // simplifying both of them. 294 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 295 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 296 isa<ConstantInt>(I->getOperand(1)) && 297 isa<ConstantInt>(LHSInst->getOperand(1)) && 298 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 299 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 300 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 301 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 302 303 Constant *AndC = 304 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 305 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 306 InsertNewInstWith(NewAnd, *I); 307 308 Constant *XorC = 309 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 310 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 311 return InsertNewInstWith(NewXor, *I); 312 } 313 314 // Output known-0 bits are known if clear or set in both the LHS & RHS. 315 Known.Zero = std::move(IKnownZero); 316 // Output known-1 are known to be set if set in only one of the LHS, RHS. 317 Known.One = std::move(IKnownOne); 318 break; 319 } 320 case Instruction::Select: { 321 Value *LHS, *RHS; 322 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 323 if (SPF == SPF_UMAX) { 324 // UMax(A, C) == A if ... 325 // The lowest non-zero bit of DemandMask is higher than the highest 326 // non-zero bit of C. 327 const APInt *C; 328 unsigned CTZ = DemandedMask.countTrailingZeros(); 329 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 330 return LHS; 331 } else if (SPF == SPF_UMIN) { 332 // UMin(A, C) == A if ... 333 // The lowest non-zero bit of DemandMask is higher than the highest 334 // non-one bit of C. 335 // This comes from using DeMorgans on the above umax example. 336 const APInt *C; 337 unsigned CTZ = DemandedMask.countTrailingZeros(); 338 if (match(RHS, m_APInt(C)) && 339 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 340 return LHS; 341 } 342 343 // If this is a select as part of any other min/max pattern, don't simplify 344 // any further in case we break the structure. 345 if (SPF != SPF_UNKNOWN) 346 return nullptr; 347 348 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 349 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 350 return I; 351 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 352 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 353 354 // If the operands are constants, see if we can simplify them. 355 // This is similar to ShrinkDemandedConstant, but for a select we want to 356 // try to keep the selected constants the same as icmp value constants, if 357 // we can. This helps not break apart (or helps put back together) 358 // canonical patterns like min and max. 359 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 360 APInt DemandedMask) { 361 const APInt *SelC; 362 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 363 return false; 364 365 // Get the constant out of the ICmp, if there is one. 366 const APInt *CmpC; 367 ICmpInst::Predicate Pred; 368 if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) || 369 CmpC->getBitWidth() != SelC->getBitWidth()) 370 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 371 372 // If the constant is already the same as the ICmp, leave it as-is. 373 if (*CmpC == *SelC) 374 return false; 375 // If the constants are not already the same, but can be with the demand 376 // mask, use the constant value from the ICmp. 377 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 378 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 379 return true; 380 } 381 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 382 }; 383 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 384 CanonicalizeSelectConstant(I, 2, DemandedMask)) 385 return I; 386 387 // Only known if known in both the LHS and RHS. 388 Known.One = RHSKnown.One & LHSKnown.One; 389 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 390 break; 391 } 392 case Instruction::ZExt: 393 case Instruction::Trunc: { 394 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 395 396 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 397 KnownBits InputKnown(SrcBitWidth); 398 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 399 return I; 400 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 401 Known = InputKnown.zextOrTrunc(BitWidth); 402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 403 break; 404 } 405 case Instruction::BitCast: 406 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 407 return nullptr; // vector->int or fp->int? 408 409 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 410 if (VectorType *SrcVTy = 411 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 412 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 413 // Don't touch a bitcast between vectors of different element counts. 414 return nullptr; 415 } else 416 // Don't touch a scalar-to-vector bitcast. 417 return nullptr; 418 } else if (I->getOperand(0)->getType()->isVectorTy()) 419 // Don't touch a vector-to-scalar bitcast. 420 return nullptr; 421 422 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 423 return I; 424 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 425 break; 426 case Instruction::SExt: { 427 // Compute the bits in the result that are not present in the input. 428 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 429 430 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 431 432 // If any of the sign extended bits are demanded, we know that the sign 433 // bit is demanded. 434 if (DemandedMask.getActiveBits() > SrcBitWidth) 435 InputDemandedBits.setBit(SrcBitWidth-1); 436 437 KnownBits InputKnown(SrcBitWidth); 438 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 439 return I; 440 441 // If the input sign bit is known zero, or if the NewBits are not demanded 442 // convert this into a zero extension. 443 if (InputKnown.isNonNegative() || 444 DemandedMask.getActiveBits() <= SrcBitWidth) { 445 // Convert to ZExt cast. 446 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 447 return InsertNewInstWith(NewCast, *I); 448 } 449 450 // If the sign bit of the input is known set or clear, then we know the 451 // top bits of the result. 452 Known = InputKnown.sext(BitWidth); 453 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 454 break; 455 } 456 case Instruction::Add: 457 if ((DemandedMask & 1) == 0) { 458 // If we do not need the low bit, try to convert bool math to logic: 459 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 460 Value *X, *Y; 461 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 462 m_OneUse(m_SExt(m_Value(Y))))) && 463 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 464 // Truth table for inputs and output signbits: 465 // X:0 | X:1 466 // ---------- 467 // Y:0 | 0 | 0 | 468 // Y:1 | -1 | 0 | 469 // ---------- 470 IRBuilderBase::InsertPointGuard Guard(Builder); 471 Builder.SetInsertPoint(I); 472 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 473 return Builder.CreateSExt(AndNot, VTy); 474 } 475 476 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 477 // TODO: Relax the one-use checks because we are removing an instruction? 478 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 479 m_OneUse(m_SExt(m_Value(Y))))) && 480 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 481 // Truth table for inputs and output signbits: 482 // X:0 | X:1 483 // ----------- 484 // Y:0 | -1 | -1 | 485 // Y:1 | -1 | 0 | 486 // ----------- 487 IRBuilderBase::InsertPointGuard Guard(Builder); 488 Builder.SetInsertPoint(I); 489 Value *Or = Builder.CreateOr(X, Y); 490 return Builder.CreateSExt(Or, VTy); 491 } 492 } 493 LLVM_FALLTHROUGH; 494 case Instruction::Sub: { 495 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 496 /// about the high bits of the operands. 497 unsigned NLZ = DemandedMask.countLeadingZeros(); 498 // Right fill the mask of bits for this ADD/SUB to demand the most 499 // significant bit and all those below it. 500 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 501 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 502 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 503 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 504 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 505 if (NLZ > 0) { 506 // Disable the nsw and nuw flags here: We can no longer guarantee that 507 // we won't wrap after simplification. Removing the nsw/nuw flags is 508 // legal here because the top bit is not demanded. 509 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 510 BinOP.setHasNoSignedWrap(false); 511 BinOP.setHasNoUnsignedWrap(false); 512 } 513 return I; 514 } 515 516 // If we are known to be adding/subtracting zeros to every bit below 517 // the highest demanded bit, we just return the other side. 518 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 519 return I->getOperand(0); 520 // We can't do this with the LHS for subtraction, unless we are only 521 // demanding the LSB. 522 if ((I->getOpcode() == Instruction::Add || 523 DemandedFromOps.isOneValue()) && 524 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 525 return I->getOperand(1); 526 527 // Otherwise just compute the known bits of the result. 528 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 529 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 530 NSW, LHSKnown, RHSKnown); 531 break; 532 } 533 case Instruction::Shl: { 534 const APInt *SA; 535 if (match(I->getOperand(1), m_APInt(SA))) { 536 const APInt *ShrAmt; 537 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 538 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 539 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 540 DemandedMask, Known)) 541 return R; 542 543 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 544 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 545 546 // If the shift is NUW/NSW, then it does demand the high bits. 547 ShlOperator *IOp = cast<ShlOperator>(I); 548 if (IOp->hasNoSignedWrap()) 549 DemandedMaskIn.setHighBits(ShiftAmt+1); 550 else if (IOp->hasNoUnsignedWrap()) 551 DemandedMaskIn.setHighBits(ShiftAmt); 552 553 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 554 return I; 555 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 556 557 bool SignBitZero = Known.Zero.isSignBitSet(); 558 bool SignBitOne = Known.One.isSignBitSet(); 559 Known.Zero <<= ShiftAmt; 560 Known.One <<= ShiftAmt; 561 // low bits known zero. 562 if (ShiftAmt) 563 Known.Zero.setLowBits(ShiftAmt); 564 565 // If this shift has "nsw" keyword, then the result is either a poison 566 // value or has the same sign bit as the first operand. 567 if (IOp->hasNoSignedWrap()) { 568 if (SignBitZero) 569 Known.Zero.setSignBit(); 570 else if (SignBitOne) 571 Known.One.setSignBit(); 572 if (Known.hasConflict()) 573 return UndefValue::get(I->getType()); 574 } 575 } else { 576 computeKnownBits(I, Known, Depth, CxtI); 577 } 578 break; 579 } 580 case Instruction::LShr: { 581 const APInt *SA; 582 if (match(I->getOperand(1), m_APInt(SA))) { 583 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 584 585 // Unsigned shift right. 586 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 587 588 // If the shift is exact, then it does demand the low bits (and knows that 589 // they are zero). 590 if (cast<LShrOperator>(I)->isExact()) 591 DemandedMaskIn.setLowBits(ShiftAmt); 592 593 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 594 return I; 595 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 596 Known.Zero.lshrInPlace(ShiftAmt); 597 Known.One.lshrInPlace(ShiftAmt); 598 if (ShiftAmt) 599 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 600 } else { 601 computeKnownBits(I, Known, Depth, CxtI); 602 } 603 break; 604 } 605 case Instruction::AShr: { 606 // If this is an arithmetic shift right and only the low-bit is set, we can 607 // always convert this into a logical shr, even if the shift amount is 608 // variable. The low bit of the shift cannot be an input sign bit unless 609 // the shift amount is >= the size of the datatype, which is undefined. 610 if (DemandedMask.isOneValue()) { 611 // Perform the logical shift right. 612 Instruction *NewVal = BinaryOperator::CreateLShr( 613 I->getOperand(0), I->getOperand(1), I->getName()); 614 return InsertNewInstWith(NewVal, *I); 615 } 616 617 // If the sign bit is the only bit demanded by this ashr, then there is no 618 // need to do it, the shift doesn't change the high bit. 619 if (DemandedMask.isSignMask()) 620 return I->getOperand(0); 621 622 const APInt *SA; 623 if (match(I->getOperand(1), m_APInt(SA))) { 624 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 625 626 // Signed shift right. 627 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 628 // If any of the high bits are demanded, we should set the sign bit as 629 // demanded. 630 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 631 DemandedMaskIn.setSignBit(); 632 633 // If the shift is exact, then it does demand the low bits (and knows that 634 // they are zero). 635 if (cast<AShrOperator>(I)->isExact()) 636 DemandedMaskIn.setLowBits(ShiftAmt); 637 638 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 639 return I; 640 641 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 642 643 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 644 // Compute the new bits that are at the top now plus sign bits. 645 APInt HighBits(APInt::getHighBitsSet( 646 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 647 Known.Zero.lshrInPlace(ShiftAmt); 648 Known.One.lshrInPlace(ShiftAmt); 649 650 // If the input sign bit is known to be zero, or if none of the top bits 651 // are demanded, turn this into an unsigned shift right. 652 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 653 if (Known.Zero[BitWidth-ShiftAmt-1] || 654 !DemandedMask.intersects(HighBits)) { 655 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 656 I->getOperand(1)); 657 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 658 return InsertNewInstWith(LShr, *I); 659 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 660 Known.One |= HighBits; 661 } 662 } else { 663 computeKnownBits(I, Known, Depth, CxtI); 664 } 665 break; 666 } 667 case Instruction::UDiv: { 668 // UDiv doesn't demand low bits that are zero in the divisor. 669 const APInt *SA; 670 if (match(I->getOperand(1), m_APInt(SA))) { 671 // If the shift is exact, then it does demand the low bits. 672 if (cast<UDivOperator>(I)->isExact()) 673 break; 674 675 // FIXME: Take the demanded mask of the result into account. 676 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 677 APInt DemandedMaskIn = 678 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 679 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 680 return I; 681 682 // Propagate zero bits from the input. 683 Known.Zero.setHighBits(std::min( 684 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 685 } else { 686 computeKnownBits(I, Known, Depth, CxtI); 687 } 688 break; 689 } 690 case Instruction::SRem: 691 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 692 // X % -1 demands all the bits because we don't want to introduce 693 // INT_MIN % -1 (== undef) by accident. 694 if (Rem->isMinusOne()) 695 break; 696 APInt RA = Rem->getValue().abs(); 697 if (RA.isPowerOf2()) { 698 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 699 return I->getOperand(0); 700 701 APInt LowBits = RA - 1; 702 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 703 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 704 return I; 705 706 // The low bits of LHS are unchanged by the srem. 707 Known.Zero = LHSKnown.Zero & LowBits; 708 Known.One = LHSKnown.One & LowBits; 709 710 // If LHS is non-negative or has all low bits zero, then the upper bits 711 // are all zero. 712 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 713 Known.Zero |= ~LowBits; 714 715 // If LHS is negative and not all low bits are zero, then the upper bits 716 // are all one. 717 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 718 Known.One |= ~LowBits; 719 720 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 721 break; 722 } 723 } 724 725 // The sign bit is the LHS's sign bit, except when the result of the 726 // remainder is zero. 727 if (DemandedMask.isSignBitSet()) { 728 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 729 // If it's known zero, our sign bit is also zero. 730 if (LHSKnown.isNonNegative()) 731 Known.makeNonNegative(); 732 } 733 break; 734 case Instruction::URem: { 735 KnownBits Known2(BitWidth); 736 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 737 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 738 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 739 return I; 740 741 unsigned Leaders = Known2.countMinLeadingZeros(); 742 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 743 break; 744 } 745 case Instruction::Call: { 746 bool KnownBitsComputed = false; 747 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 748 switch (II->getIntrinsicID()) { 749 default: break; 750 case Intrinsic::bswap: { 751 // If the only bits demanded come from one byte of the bswap result, 752 // just shift the input byte into position to eliminate the bswap. 753 unsigned NLZ = DemandedMask.countLeadingZeros(); 754 unsigned NTZ = DemandedMask.countTrailingZeros(); 755 756 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 757 // we need all the bits down to bit 8. Likewise, round NLZ. If we 758 // have 14 leading zeros, round to 8. 759 NLZ &= ~7; 760 NTZ &= ~7; 761 // If we need exactly one byte, we can do this transformation. 762 if (BitWidth-NLZ-NTZ == 8) { 763 unsigned ResultBit = NTZ; 764 unsigned InputBit = BitWidth-NTZ-8; 765 766 // Replace this with either a left or right shift to get the byte into 767 // the right place. 768 Instruction *NewVal; 769 if (InputBit > ResultBit) 770 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 771 ConstantInt::get(I->getType(), InputBit-ResultBit)); 772 else 773 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 774 ConstantInt::get(I->getType(), ResultBit-InputBit)); 775 NewVal->takeName(I); 776 return InsertNewInstWith(NewVal, *I); 777 } 778 break; 779 } 780 case Intrinsic::fshr: 781 case Intrinsic::fshl: { 782 const APInt *SA; 783 if (!match(I->getOperand(2), m_APInt(SA))) 784 break; 785 786 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 787 // defined, so no need to special-case zero shifts here. 788 uint64_t ShiftAmt = SA->urem(BitWidth); 789 if (II->getIntrinsicID() == Intrinsic::fshr) 790 ShiftAmt = BitWidth - ShiftAmt; 791 792 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 793 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 794 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 795 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 796 return I; 797 798 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 799 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 800 Known.One = LHSKnown.One.shl(ShiftAmt) | 801 RHSKnown.One.lshr(BitWidth - ShiftAmt); 802 KnownBitsComputed = true; 803 break; 804 } 805 case Intrinsic::x86_mmx_pmovmskb: 806 case Intrinsic::x86_sse_movmsk_ps: 807 case Intrinsic::x86_sse2_movmsk_pd: 808 case Intrinsic::x86_sse2_pmovmskb_128: 809 case Intrinsic::x86_avx_movmsk_ps_256: 810 case Intrinsic::x86_avx_movmsk_pd_256: 811 case Intrinsic::x86_avx2_pmovmskb: { 812 // MOVMSK copies the vector elements' sign bits to the low bits 813 // and zeros the high bits. 814 unsigned ArgWidth; 815 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 816 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 817 } else { 818 auto Arg = II->getArgOperand(0); 819 auto ArgType = cast<VectorType>(Arg->getType()); 820 ArgWidth = ArgType->getNumElements(); 821 } 822 823 // If we don't need any of low bits then return zero, 824 // we know that DemandedMask is non-zero already. 825 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 826 if (DemandedElts.isNullValue()) 827 return ConstantInt::getNullValue(VTy); 828 829 // We know that the upper bits are set to zero. 830 Known.Zero.setBitsFrom(ArgWidth); 831 KnownBitsComputed = true; 832 break; 833 } 834 case Intrinsic::x86_sse42_crc32_64_64: 835 Known.Zero.setBitsFrom(32); 836 KnownBitsComputed = true; 837 break; 838 } 839 } 840 841 if (!KnownBitsComputed) 842 computeKnownBits(V, Known, Depth, CxtI); 843 break; 844 } 845 } 846 847 // If the client is only demanding bits that we know, return the known 848 // constant. 849 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 850 return Constant::getIntegerValue(VTy, Known.One); 851 return nullptr; 852 } 853 854 /// Helper routine of SimplifyDemandedUseBits. It computes Known 855 /// bits. It also tries to handle simplifications that can be done based on 856 /// DemandedMask, but without modifying the Instruction. 857 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 858 const APInt &DemandedMask, 859 KnownBits &Known, 860 unsigned Depth, 861 Instruction *CxtI) { 862 unsigned BitWidth = DemandedMask.getBitWidth(); 863 Type *ITy = I->getType(); 864 865 KnownBits LHSKnown(BitWidth); 866 KnownBits RHSKnown(BitWidth); 867 868 // Despite the fact that we can't simplify this instruction in all User's 869 // context, we can at least compute the known bits, and we can 870 // do simplifications that apply to *just* the one user if we know that 871 // this instruction has a simpler value in that context. 872 switch (I->getOpcode()) { 873 case Instruction::And: { 874 // If either the LHS or the RHS are Zero, the result is zero. 875 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 876 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 877 CxtI); 878 879 // Output known-0 are known to be clear if zero in either the LHS | RHS. 880 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 881 // Output known-1 bits are only known if set in both the LHS & RHS. 882 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 883 884 // If the client is only demanding bits that we know, return the known 885 // constant. 886 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 887 return Constant::getIntegerValue(ITy, IKnownOne); 888 889 // If all of the demanded bits are known 1 on one side, return the other. 890 // These bits cannot contribute to the result of the 'and' in this 891 // context. 892 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 893 return I->getOperand(0); 894 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 895 return I->getOperand(1); 896 897 Known.Zero = std::move(IKnownZero); 898 Known.One = std::move(IKnownOne); 899 break; 900 } 901 case Instruction::Or: { 902 // We can simplify (X|Y) -> X or Y in the user's context if we know that 903 // only bits from X or Y are demanded. 904 905 // If either the LHS or the RHS are One, the result is One. 906 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 907 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 908 CxtI); 909 910 // Output known-0 bits are only known if clear in both the LHS & RHS. 911 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 912 // Output known-1 are known to be set if set in either the LHS | RHS. 913 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 914 915 // If the client is only demanding bits that we know, return the known 916 // constant. 917 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 918 return Constant::getIntegerValue(ITy, IKnownOne); 919 920 // If all of the demanded bits are known zero on one side, return the 921 // other. These bits cannot contribute to the result of the 'or' in this 922 // context. 923 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 924 return I->getOperand(0); 925 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 926 return I->getOperand(1); 927 928 Known.Zero = std::move(IKnownZero); 929 Known.One = std::move(IKnownOne); 930 break; 931 } 932 case Instruction::Xor: { 933 // We can simplify (X^Y) -> X or Y in the user's context if we know that 934 // only bits from X or Y are demanded. 935 936 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 937 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 938 CxtI); 939 940 // Output known-0 bits are known if clear or set in both the LHS & RHS. 941 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 942 (RHSKnown.One & LHSKnown.One); 943 // Output known-1 are known to be set if set in only one of the LHS, RHS. 944 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 945 (RHSKnown.One & LHSKnown.Zero); 946 947 // If the client is only demanding bits that we know, return the known 948 // constant. 949 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 950 return Constant::getIntegerValue(ITy, IKnownOne); 951 952 // If all of the demanded bits are known zero on one side, return the 953 // other. 954 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 955 return I->getOperand(0); 956 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 957 return I->getOperand(1); 958 959 // Output known-0 bits are known if clear or set in both the LHS & RHS. 960 Known.Zero = std::move(IKnownZero); 961 // Output known-1 are known to be set if set in only one of the LHS, RHS. 962 Known.One = std::move(IKnownOne); 963 break; 964 } 965 default: 966 // Compute the Known bits to simplify things downstream. 967 computeKnownBits(I, Known, Depth, CxtI); 968 969 // If this user is only demanding bits that we know, return the known 970 // constant. 971 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 972 return Constant::getIntegerValue(ITy, Known.One); 973 974 break; 975 } 976 977 return nullptr; 978 } 979 980 981 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 982 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 983 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 984 /// of "C2-C1". 985 /// 986 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 987 /// ..., bn}, without considering the specific value X is holding. 988 /// This transformation is legal iff one of following conditions is hold: 989 /// 1) All the bit in S are 0, in this case E1 == E2. 990 /// 2) We don't care those bits in S, per the input DemandedMask. 991 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 992 /// rest bits. 993 /// 994 /// Currently we only test condition 2). 995 /// 996 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 997 /// not successful. 998 Value * 999 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 1000 Instruction *Shl, const APInt &ShlOp1, 1001 const APInt &DemandedMask, 1002 KnownBits &Known) { 1003 if (!ShlOp1 || !ShrOp1) 1004 return nullptr; // No-op. 1005 1006 Value *VarX = Shr->getOperand(0); 1007 Type *Ty = VarX->getType(); 1008 unsigned BitWidth = Ty->getScalarSizeInBits(); 1009 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1010 return nullptr; // Undef. 1011 1012 unsigned ShlAmt = ShlOp1.getZExtValue(); 1013 unsigned ShrAmt = ShrOp1.getZExtValue(); 1014 1015 Known.One.clearAllBits(); 1016 Known.Zero.setLowBits(ShlAmt - 1); 1017 Known.Zero &= DemandedMask; 1018 1019 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 1020 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 1021 1022 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1023 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1024 (BitMask1.ashr(ShrAmt) << ShlAmt); 1025 1026 if (ShrAmt <= ShlAmt) { 1027 BitMask2 <<= (ShlAmt - ShrAmt); 1028 } else { 1029 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1030 BitMask2.ashr(ShrAmt - ShlAmt); 1031 } 1032 1033 // Check if condition-2 (see the comment to this function) is satified. 1034 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1035 if (ShrAmt == ShlAmt) 1036 return VarX; 1037 1038 if (!Shr->hasOneUse()) 1039 return nullptr; 1040 1041 BinaryOperator *New; 1042 if (ShrAmt < ShlAmt) { 1043 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1044 New = BinaryOperator::CreateShl(VarX, Amt); 1045 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1046 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1047 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1048 } else { 1049 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1050 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1051 BinaryOperator::CreateAShr(VarX, Amt); 1052 if (cast<BinaryOperator>(Shr)->isExact()) 1053 New->setIsExact(true); 1054 } 1055 1056 return InsertNewInstWith(New, *Shl); 1057 } 1058 1059 return nullptr; 1060 } 1061 1062 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 1063 /// 1064 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 1065 /// struct returns. 1066 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, 1067 APInt DemandedElts, 1068 int DMaskIdx) { 1069 1070 // FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported. 1071 if (DMaskIdx < 0 && 1072 II->getType()->getScalarSizeInBits() != 32 && 1073 DemandedElts.getActiveBits() == 3) 1074 return nullptr; 1075 1076 unsigned VWidth = II->getType()->getVectorNumElements(); 1077 if (VWidth == 1) 1078 return nullptr; 1079 1080 IRBuilderBase::InsertPointGuard Guard(Builder); 1081 Builder.SetInsertPoint(II); 1082 1083 // Assume the arguments are unchanged and later override them, if needed. 1084 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 1085 1086 if (DMaskIdx < 0) { 1087 // Buffer case. 1088 1089 const unsigned ActiveBits = DemandedElts.getActiveBits(); 1090 const unsigned UnusedComponentsAtFront = DemandedElts.countTrailingZeros(); 1091 1092 // Start assuming the prefix of elements is demanded, but possibly clear 1093 // some other bits if there are trailing zeros (unused components at front) 1094 // and update offset. 1095 DemandedElts = (1 << ActiveBits) - 1; 1096 1097 if (UnusedComponentsAtFront > 0) { 1098 static const unsigned InvalidOffsetIdx = 0xf; 1099 1100 unsigned OffsetIdx; 1101 switch (II->getIntrinsicID()) { 1102 case Intrinsic::amdgcn_raw_buffer_load: 1103 OffsetIdx = 1; 1104 break; 1105 case Intrinsic::amdgcn_s_buffer_load: 1106 // If resulting type is vec3, there is no point in trimming the 1107 // load with updated offset, as the vec3 would most likely be widened to 1108 // vec4 anyway during lowering. 1109 if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1110 OffsetIdx = InvalidOffsetIdx; 1111 else 1112 OffsetIdx = 1; 1113 break; 1114 case Intrinsic::amdgcn_struct_buffer_load: 1115 OffsetIdx = 2; 1116 break; 1117 default: 1118 // TODO: handle tbuffer* intrinsics. 1119 OffsetIdx = InvalidOffsetIdx; 1120 break; 1121 } 1122 1123 if (OffsetIdx != InvalidOffsetIdx) { 1124 // Clear demanded bits and update the offset. 1125 DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1126 auto *Offset = II->getArgOperand(OffsetIdx); 1127 unsigned SingleComponentSizeInBits = 1128 getDataLayout().getTypeSizeInBits(II->getType()->getScalarType()); 1129 unsigned OffsetAdd = 1130 UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1131 auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1132 Args[OffsetIdx] = Builder.CreateAdd(Offset, OffsetAddVal); 1133 } 1134 } 1135 } else { 1136 // Image case. 1137 1138 ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx)); 1139 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1140 1141 // Mask off values that are undefined because the dmask doesn't cover them 1142 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; 1143 1144 unsigned NewDMaskVal = 0; 1145 unsigned OrigLoadIdx = 0; 1146 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1147 const unsigned Bit = 1 << SrcIdx; 1148 if (!!(DMaskVal & Bit)) { 1149 if (!!DemandedElts[OrigLoadIdx]) 1150 NewDMaskVal |= Bit; 1151 OrigLoadIdx++; 1152 } 1153 } 1154 1155 if (DMaskVal != NewDMaskVal) 1156 Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1157 } 1158 1159 unsigned NewNumElts = DemandedElts.countPopulation(); 1160 if (!NewNumElts) 1161 return UndefValue::get(II->getType()); 1162 1163 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1164 if (DMaskIdx >= 0) 1165 II->setArgOperand(DMaskIdx, Args[DMaskIdx]); 1166 return nullptr; 1167 } 1168 1169 // Determine the overload types of the original intrinsic. 1170 auto IID = II->getIntrinsicID(); 1171 SmallVector<Intrinsic::IITDescriptor, 16> Table; 1172 getIntrinsicInfoTableEntries(IID, Table); 1173 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1174 1175 // Validate function argument and return types, extracting overloaded types 1176 // along the way. 1177 FunctionType *FTy = II->getCalledFunction()->getFunctionType(); 1178 SmallVector<Type *, 6> OverloadTys; 1179 Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys); 1180 1181 Module *M = II->getParent()->getParent()->getParent(); 1182 Type *EltTy = II->getType()->getVectorElementType(); 1183 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts); 1184 1185 OverloadTys[0] = NewTy; 1186 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys); 1187 1188 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); 1189 NewCall->takeName(II); 1190 NewCall->copyMetadata(*II); 1191 1192 if (NewNumElts == 1) { 1193 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall, 1194 DemandedElts.countTrailingZeros()); 1195 } 1196 1197 SmallVector<uint32_t, 8> EltMask; 1198 unsigned NewLoadIdx = 0; 1199 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1200 if (!!DemandedElts[OrigLoadIdx]) 1201 EltMask.push_back(NewLoadIdx++); 1202 else 1203 EltMask.push_back(NewNumElts); 1204 } 1205 1206 Value *Shuffle = 1207 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask); 1208 1209 return Shuffle; 1210 } 1211 1212 /// The specified value produces a vector with any number of elements. 1213 /// This method analyzes which elements of the operand are undef and returns 1214 /// that information in UndefElts. 1215 /// 1216 /// DemandedElts contains the set of elements that are actually used by the 1217 /// caller, and by default (AllowMultipleUsers equals false) the value is 1218 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1219 /// to true, DemandedElts refers to the union of sets of elements that are 1220 /// used by all callers. 1221 /// 1222 /// If the information about demanded elements can be used to simplify the 1223 /// operation, the operation is simplified, then the resultant value is 1224 /// returned. This returns null if no change was made. 1225 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 1226 APInt &UndefElts, 1227 unsigned Depth, 1228 bool AllowMultipleUsers) { 1229 unsigned VWidth = V->getType()->getVectorNumElements(); 1230 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1231 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1232 1233 if (isa<UndefValue>(V)) { 1234 // If the entire vector is undefined, just return this info. 1235 UndefElts = EltMask; 1236 return nullptr; 1237 } 1238 1239 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 1240 UndefElts = EltMask; 1241 return UndefValue::get(V->getType()); 1242 } 1243 1244 UndefElts = 0; 1245 1246 if (auto *C = dyn_cast<Constant>(V)) { 1247 // Check if this is identity. If so, return 0 since we are not simplifying 1248 // anything. 1249 if (DemandedElts.isAllOnesValue()) 1250 return nullptr; 1251 1252 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1253 Constant *Undef = UndefValue::get(EltTy); 1254 SmallVector<Constant*, 16> Elts; 1255 for (unsigned i = 0; i != VWidth; ++i) { 1256 if (!DemandedElts[i]) { // If not demanded, set to undef. 1257 Elts.push_back(Undef); 1258 UndefElts.setBit(i); 1259 continue; 1260 } 1261 1262 Constant *Elt = C->getAggregateElement(i); 1263 if (!Elt) return nullptr; 1264 1265 if (isa<UndefValue>(Elt)) { // Already undef. 1266 Elts.push_back(Undef); 1267 UndefElts.setBit(i); 1268 } else { // Otherwise, defined. 1269 Elts.push_back(Elt); 1270 } 1271 } 1272 1273 // If we changed the constant, return it. 1274 Constant *NewCV = ConstantVector::get(Elts); 1275 return NewCV != C ? NewCV : nullptr; 1276 } 1277 1278 // Limit search depth. 1279 if (Depth == 10) 1280 return nullptr; 1281 1282 if (!AllowMultipleUsers) { 1283 // If multiple users are using the root value, proceed with 1284 // simplification conservatively assuming that all elements 1285 // are needed. 1286 if (!V->hasOneUse()) { 1287 // Quit if we find multiple users of a non-root value though. 1288 // They'll be handled when it's their turn to be visited by 1289 // the main instcombine process. 1290 if (Depth != 0) 1291 // TODO: Just compute the UndefElts information recursively. 1292 return nullptr; 1293 1294 // Conservatively assume that all elements are needed. 1295 DemandedElts = EltMask; 1296 } 1297 } 1298 1299 Instruction *I = dyn_cast<Instruction>(V); 1300 if (!I) return nullptr; // Only analyze instructions. 1301 1302 bool MadeChange = false; 1303 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1304 APInt Demanded, APInt &Undef) { 1305 auto *II = dyn_cast<IntrinsicInst>(Inst); 1306 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1307 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1308 if (II) 1309 II->setArgOperand(OpNum, V); 1310 else 1311 Inst->setOperand(OpNum, V); 1312 MadeChange = true; 1313 } 1314 }; 1315 1316 APInt UndefElts2(VWidth, 0); 1317 APInt UndefElts3(VWidth, 0); 1318 switch (I->getOpcode()) { 1319 default: break; 1320 1321 case Instruction::GetElementPtr: { 1322 // The LangRef requires that struct geps have all constant indices. As 1323 // such, we can't convert any operand to partial undef. 1324 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1325 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1326 I != E; I++) 1327 if (I.isStruct()) 1328 return true;; 1329 return false; 1330 }; 1331 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1332 break; 1333 1334 // Conservatively track the demanded elements back through any vector 1335 // operands we may have. We know there must be at least one, or we 1336 // wouldn't have a vector result to get here. Note that we intentionally 1337 // merge the undef bits here since gepping with either an undef base or 1338 // index results in undef. 1339 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1340 if (isa<UndefValue>(I->getOperand(i))) { 1341 // If the entire vector is undefined, just return this info. 1342 UndefElts = EltMask; 1343 return nullptr; 1344 } 1345 if (I->getOperand(i)->getType()->isVectorTy()) { 1346 APInt UndefEltsOp(VWidth, 0); 1347 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1348 UndefElts |= UndefEltsOp; 1349 } 1350 } 1351 1352 break; 1353 } 1354 case Instruction::InsertElement: { 1355 // If this is a variable index, we don't know which element it overwrites. 1356 // demand exactly the same input as we produce. 1357 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1358 if (!Idx) { 1359 // Note that we can't propagate undef elt info, because we don't know 1360 // which elt is getting updated. 1361 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1362 break; 1363 } 1364 1365 // The element inserted overwrites whatever was there, so the input demanded 1366 // set is simpler than the output set. 1367 unsigned IdxNo = Idx->getZExtValue(); 1368 APInt PreInsertDemandedElts = DemandedElts; 1369 if (IdxNo < VWidth) 1370 PreInsertDemandedElts.clearBit(IdxNo); 1371 1372 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1373 1374 // If this is inserting an element that isn't demanded, remove this 1375 // insertelement. 1376 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1377 Worklist.push(I); 1378 return I->getOperand(0); 1379 } 1380 1381 // The inserted element is defined. 1382 UndefElts.clearBit(IdxNo); 1383 break; 1384 } 1385 case Instruction::ShuffleVector: { 1386 auto *Shuffle = cast<ShuffleVectorInst>(I); 1387 assert(Shuffle->getOperand(0)->getType() == 1388 Shuffle->getOperand(1)->getType() && 1389 "Expected shuffle operands to have same type"); 1390 unsigned OpWidth = 1391 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1392 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1393 for (unsigned i = 0; i < VWidth; i++) { 1394 if (DemandedElts[i]) { 1395 unsigned MaskVal = Shuffle->getMaskValue(i); 1396 if (MaskVal != -1u) { 1397 assert(MaskVal < OpWidth * 2 && 1398 "shufflevector mask index out of range!"); 1399 if (MaskVal < OpWidth) 1400 LeftDemanded.setBit(MaskVal); 1401 else 1402 RightDemanded.setBit(MaskVal - OpWidth); 1403 } 1404 } 1405 } 1406 1407 APInt LHSUndefElts(OpWidth, 0); 1408 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1409 1410 APInt RHSUndefElts(OpWidth, 0); 1411 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1412 1413 // If this shuffle does not change the vector length and the elements 1414 // demanded by this shuffle are an identity mask, then this shuffle is 1415 // unnecessary. 1416 // 1417 // We are assuming canonical form for the mask, so the source vector is 1418 // operand 0 and operand 1 is not used. 1419 // 1420 // Note that if an element is demanded and this shuffle mask is undefined 1421 // for that element, then the shuffle is not considered an identity 1422 // operation. The shuffle prevents poison from the operand vector from 1423 // leaking to the result by replacing poison with an undefined value. 1424 if (VWidth == OpWidth) { 1425 bool IsIdentityShuffle = true; 1426 for (unsigned i = 0; i < VWidth; i++) { 1427 unsigned MaskVal = Shuffle->getMaskValue(i); 1428 if (DemandedElts[i] && i != MaskVal) { 1429 IsIdentityShuffle = false; 1430 break; 1431 } 1432 } 1433 if (IsIdentityShuffle) 1434 return Shuffle->getOperand(0); 1435 } 1436 1437 bool NewUndefElts = false; 1438 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1439 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1440 bool LHSUniform = true; 1441 bool RHSUniform = true; 1442 for (unsigned i = 0; i < VWidth; i++) { 1443 unsigned MaskVal = Shuffle->getMaskValue(i); 1444 if (MaskVal == -1u) { 1445 UndefElts.setBit(i); 1446 } else if (!DemandedElts[i]) { 1447 NewUndefElts = true; 1448 UndefElts.setBit(i); 1449 } else if (MaskVal < OpWidth) { 1450 if (LHSUndefElts[MaskVal]) { 1451 NewUndefElts = true; 1452 UndefElts.setBit(i); 1453 } else { 1454 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1455 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1456 LHSUniform = LHSUniform && (MaskVal == i); 1457 } 1458 } else { 1459 if (RHSUndefElts[MaskVal - OpWidth]) { 1460 NewUndefElts = true; 1461 UndefElts.setBit(i); 1462 } else { 1463 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1464 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1465 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1466 } 1467 } 1468 } 1469 1470 // Try to transform shuffle with constant vector and single element from 1471 // this constant vector to single insertelement instruction. 1472 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1473 // insertelement V, C[ci], ci-n 1474 if (OpWidth == Shuffle->getType()->getNumElements()) { 1475 Value *Op = nullptr; 1476 Constant *Value = nullptr; 1477 unsigned Idx = -1u; 1478 1479 // Find constant vector with the single element in shuffle (LHS or RHS). 1480 if (LHSIdx < OpWidth && RHSUniform) { 1481 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1482 Op = Shuffle->getOperand(1); 1483 Value = CV->getOperand(LHSValIdx); 1484 Idx = LHSIdx; 1485 } 1486 } 1487 if (RHSIdx < OpWidth && LHSUniform) { 1488 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1489 Op = Shuffle->getOperand(0); 1490 Value = CV->getOperand(RHSValIdx); 1491 Idx = RHSIdx; 1492 } 1493 } 1494 // Found constant vector with single element - convert to insertelement. 1495 if (Op && Value) { 1496 Instruction *New = InsertElementInst::Create( 1497 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1498 Shuffle->getName()); 1499 InsertNewInstWith(New, *Shuffle); 1500 return New; 1501 } 1502 } 1503 if (NewUndefElts) { 1504 // Add additional discovered undefs. 1505 SmallVector<Constant*, 16> Elts; 1506 for (unsigned i = 0; i < VWidth; ++i) { 1507 if (UndefElts[i]) 1508 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1509 else 1510 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1511 Shuffle->getMaskValue(i))); 1512 } 1513 I->setOperand(2, ConstantVector::get(Elts)); 1514 MadeChange = true; 1515 } 1516 break; 1517 } 1518 case Instruction::Select: { 1519 // If this is a vector select, try to transform the select condition based 1520 // on the current demanded elements. 1521 SelectInst *Sel = cast<SelectInst>(I); 1522 if (Sel->getCondition()->getType()->isVectorTy()) { 1523 // TODO: We are not doing anything with UndefElts based on this call. 1524 // It is overwritten below based on the other select operands. If an 1525 // element of the select condition is known undef, then we are free to 1526 // choose the output value from either arm of the select. If we know that 1527 // one of those values is undef, then the output can be undef. 1528 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1529 } 1530 1531 // Next, see if we can transform the arms of the select. 1532 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1533 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1534 for (unsigned i = 0; i < VWidth; i++) { 1535 // isNullValue() always returns false when called on a ConstantExpr. 1536 // Skip constant expressions to avoid propagating incorrect information. 1537 Constant *CElt = CV->getAggregateElement(i); 1538 if (isa<ConstantExpr>(CElt)) 1539 continue; 1540 // TODO: If a select condition element is undef, we can demand from 1541 // either side. If one side is known undef, choosing that side would 1542 // propagate undef. 1543 if (CElt->isNullValue()) 1544 DemandedLHS.clearBit(i); 1545 else 1546 DemandedRHS.clearBit(i); 1547 } 1548 } 1549 1550 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1551 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1552 1553 // Output elements are undefined if the element from each arm is undefined. 1554 // TODO: This can be improved. See comment in select condition handling. 1555 UndefElts = UndefElts2 & UndefElts3; 1556 break; 1557 } 1558 case Instruction::BitCast: { 1559 // Vector->vector casts only. 1560 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1561 if (!VTy) break; 1562 unsigned InVWidth = VTy->getNumElements(); 1563 APInt InputDemandedElts(InVWidth, 0); 1564 UndefElts2 = APInt(InVWidth, 0); 1565 unsigned Ratio; 1566 1567 if (VWidth == InVWidth) { 1568 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1569 // elements as are demanded of us. 1570 Ratio = 1; 1571 InputDemandedElts = DemandedElts; 1572 } else if ((VWidth % InVWidth) == 0) { 1573 // If the number of elements in the output is a multiple of the number of 1574 // elements in the input then an input element is live if any of the 1575 // corresponding output elements are live. 1576 Ratio = VWidth / InVWidth; 1577 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1578 if (DemandedElts[OutIdx]) 1579 InputDemandedElts.setBit(OutIdx / Ratio); 1580 } else if ((InVWidth % VWidth) == 0) { 1581 // If the number of elements in the input is a multiple of the number of 1582 // elements in the output then an input element is live if the 1583 // corresponding output element is live. 1584 Ratio = InVWidth / VWidth; 1585 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1586 if (DemandedElts[InIdx / Ratio]) 1587 InputDemandedElts.setBit(InIdx); 1588 } else { 1589 // Unsupported so far. 1590 break; 1591 } 1592 1593 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1594 1595 if (VWidth == InVWidth) { 1596 UndefElts = UndefElts2; 1597 } else if ((VWidth % InVWidth) == 0) { 1598 // If the number of elements in the output is a multiple of the number of 1599 // elements in the input then an output element is undef if the 1600 // corresponding input element is undef. 1601 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1602 if (UndefElts2[OutIdx / Ratio]) 1603 UndefElts.setBit(OutIdx); 1604 } else if ((InVWidth % VWidth) == 0) { 1605 // If the number of elements in the input is a multiple of the number of 1606 // elements in the output then an output element is undef if all of the 1607 // corresponding input elements are undef. 1608 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1609 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1610 if (SubUndef.countPopulation() == Ratio) 1611 UndefElts.setBit(OutIdx); 1612 } 1613 } else { 1614 llvm_unreachable("Unimp"); 1615 } 1616 break; 1617 } 1618 case Instruction::FPTrunc: 1619 case Instruction::FPExt: 1620 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1621 break; 1622 1623 case Instruction::Call: { 1624 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1625 if (!II) break; 1626 switch (II->getIntrinsicID()) { 1627 case Intrinsic::masked_gather: // fallthrough 1628 case Intrinsic::masked_load: { 1629 // Subtlety: If we load from a pointer, the pointer must be valid 1630 // regardless of whether the element is demanded. Doing otherwise risks 1631 // segfaults which didn't exist in the original program. 1632 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1633 DemandedPassThrough(DemandedElts); 1634 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1635 for (unsigned i = 0; i < VWidth; i++) { 1636 Constant *CElt = CV->getAggregateElement(i); 1637 if (CElt->isNullValue()) 1638 DemandedPtrs.clearBit(i); 1639 else if (CElt->isAllOnesValue()) 1640 DemandedPassThrough.clearBit(i); 1641 } 1642 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1643 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1644 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1645 1646 // Output elements are undefined if the element from both sources are. 1647 // TODO: can strengthen via mask as well. 1648 UndefElts = UndefElts2 & UndefElts3; 1649 break; 1650 } 1651 case Intrinsic::x86_xop_vfrcz_ss: 1652 case Intrinsic::x86_xop_vfrcz_sd: 1653 // The instructions for these intrinsics are speced to zero upper bits not 1654 // pass them through like other scalar intrinsics. So we shouldn't just 1655 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1656 // Instead we should return a zero vector. 1657 if (!DemandedElts[0]) { 1658 Worklist.push(II); 1659 return ConstantAggregateZero::get(II->getType()); 1660 } 1661 1662 // Only the lower element is used. 1663 DemandedElts = 1; 1664 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1665 1666 // Only the lower element is undefined. The high elements are zero. 1667 UndefElts = UndefElts[0]; 1668 break; 1669 1670 // Unary scalar-as-vector operations that work column-wise. 1671 case Intrinsic::x86_sse_rcp_ss: 1672 case Intrinsic::x86_sse_rsqrt_ss: 1673 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1674 1675 // If lowest element of a scalar op isn't used then use Arg0. 1676 if (!DemandedElts[0]) { 1677 Worklist.push(II); 1678 return II->getArgOperand(0); 1679 } 1680 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1681 // checks). 1682 break; 1683 1684 // Binary scalar-as-vector operations that work column-wise. The high 1685 // elements come from operand 0. The low element is a function of both 1686 // operands. 1687 case Intrinsic::x86_sse_min_ss: 1688 case Intrinsic::x86_sse_max_ss: 1689 case Intrinsic::x86_sse_cmp_ss: 1690 case Intrinsic::x86_sse2_min_sd: 1691 case Intrinsic::x86_sse2_max_sd: 1692 case Intrinsic::x86_sse2_cmp_sd: { 1693 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1694 1695 // If lowest element of a scalar op isn't used then use Arg0. 1696 if (!DemandedElts[0]) { 1697 Worklist.push(II); 1698 return II->getArgOperand(0); 1699 } 1700 1701 // Only lower element is used for operand 1. 1702 DemandedElts = 1; 1703 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1704 1705 // Lower element is undefined if both lower elements are undefined. 1706 // Consider things like undef&0. The result is known zero, not undef. 1707 if (!UndefElts2[0]) 1708 UndefElts.clearBit(0); 1709 1710 break; 1711 } 1712 1713 // Binary scalar-as-vector operations that work column-wise. The high 1714 // elements come from operand 0 and the low element comes from operand 1. 1715 case Intrinsic::x86_sse41_round_ss: 1716 case Intrinsic::x86_sse41_round_sd: { 1717 // Don't use the low element of operand 0. 1718 APInt DemandedElts2 = DemandedElts; 1719 DemandedElts2.clearBit(0); 1720 simplifyAndSetOp(II, 0, DemandedElts2, UndefElts); 1721 1722 // If lowest element of a scalar op isn't used then use Arg0. 1723 if (!DemandedElts[0]) { 1724 Worklist.push(II); 1725 return II->getArgOperand(0); 1726 } 1727 1728 // Only lower element is used for operand 1. 1729 DemandedElts = 1; 1730 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1731 1732 // Take the high undef elements from operand 0 and take the lower element 1733 // from operand 1. 1734 UndefElts.clearBit(0); 1735 UndefElts |= UndefElts2[0]; 1736 break; 1737 } 1738 1739 // Three input scalar-as-vector operations that work column-wise. The high 1740 // elements come from operand 0 and the low element is a function of all 1741 // three inputs. 1742 case Intrinsic::x86_avx512_mask_add_ss_round: 1743 case Intrinsic::x86_avx512_mask_div_ss_round: 1744 case Intrinsic::x86_avx512_mask_mul_ss_round: 1745 case Intrinsic::x86_avx512_mask_sub_ss_round: 1746 case Intrinsic::x86_avx512_mask_max_ss_round: 1747 case Intrinsic::x86_avx512_mask_min_ss_round: 1748 case Intrinsic::x86_avx512_mask_add_sd_round: 1749 case Intrinsic::x86_avx512_mask_div_sd_round: 1750 case Intrinsic::x86_avx512_mask_mul_sd_round: 1751 case Intrinsic::x86_avx512_mask_sub_sd_round: 1752 case Intrinsic::x86_avx512_mask_max_sd_round: 1753 case Intrinsic::x86_avx512_mask_min_sd_round: 1754 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1755 1756 // If lowest element of a scalar op isn't used then use Arg0. 1757 if (!DemandedElts[0]) { 1758 Worklist.push(II); 1759 return II->getArgOperand(0); 1760 } 1761 1762 // Only lower element is used for operand 1 and 2. 1763 DemandedElts = 1; 1764 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1765 simplifyAndSetOp(II, 2, DemandedElts, UndefElts3); 1766 1767 // Lower element is undefined if all three lower elements are undefined. 1768 // Consider things like undef&0. The result is known zero, not undef. 1769 if (!UndefElts2[0] || !UndefElts3[0]) 1770 UndefElts.clearBit(0); 1771 1772 break; 1773 1774 case Intrinsic::x86_sse2_packssdw_128: 1775 case Intrinsic::x86_sse2_packsswb_128: 1776 case Intrinsic::x86_sse2_packuswb_128: 1777 case Intrinsic::x86_sse41_packusdw: 1778 case Intrinsic::x86_avx2_packssdw: 1779 case Intrinsic::x86_avx2_packsswb: 1780 case Intrinsic::x86_avx2_packusdw: 1781 case Intrinsic::x86_avx2_packuswb: 1782 case Intrinsic::x86_avx512_packssdw_512: 1783 case Intrinsic::x86_avx512_packsswb_512: 1784 case Intrinsic::x86_avx512_packusdw_512: 1785 case Intrinsic::x86_avx512_packuswb_512: { 1786 auto *Ty0 = II->getArgOperand(0)->getType(); 1787 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1788 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1789 1790 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1791 unsigned VWidthPerLane = VWidth / NumLanes; 1792 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1793 1794 // Per lane, pack the elements of the first input and then the second. 1795 // e.g. 1796 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1797 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1798 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1799 APInt OpDemandedElts(InnerVWidth, 0); 1800 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1801 unsigned LaneIdx = Lane * VWidthPerLane; 1802 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1803 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1804 if (DemandedElts[Idx]) 1805 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1806 } 1807 } 1808 1809 // Demand elements from the operand. 1810 APInt OpUndefElts(InnerVWidth, 0); 1811 simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts); 1812 1813 // Pack the operand's UNDEF elements, one lane at a time. 1814 OpUndefElts = OpUndefElts.zext(VWidth); 1815 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1816 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1817 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1818 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1819 UndefElts |= LaneElts; 1820 } 1821 } 1822 break; 1823 } 1824 1825 // PSHUFB 1826 case Intrinsic::x86_ssse3_pshuf_b_128: 1827 case Intrinsic::x86_avx2_pshuf_b: 1828 case Intrinsic::x86_avx512_pshuf_b_512: 1829 // PERMILVAR 1830 case Intrinsic::x86_avx_vpermilvar_ps: 1831 case Intrinsic::x86_avx_vpermilvar_ps_256: 1832 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1833 case Intrinsic::x86_avx_vpermilvar_pd: 1834 case Intrinsic::x86_avx_vpermilvar_pd_256: 1835 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1836 // PERMV 1837 case Intrinsic::x86_avx2_permd: 1838 case Intrinsic::x86_avx2_permps: { 1839 simplifyAndSetOp(II, 1, DemandedElts, UndefElts); 1840 break; 1841 } 1842 1843 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1844 // in an undefined state. 1845 case Intrinsic::x86_sse4a_extrq: 1846 case Intrinsic::x86_sse4a_extrqi: 1847 case Intrinsic::x86_sse4a_insertq: 1848 case Intrinsic::x86_sse4a_insertqi: 1849 UndefElts.setHighBits(VWidth / 2); 1850 break; 1851 case Intrinsic::amdgcn_buffer_load: 1852 case Intrinsic::amdgcn_buffer_load_format: 1853 case Intrinsic::amdgcn_raw_buffer_load: 1854 case Intrinsic::amdgcn_raw_buffer_load_format: 1855 case Intrinsic::amdgcn_raw_tbuffer_load: 1856 case Intrinsic::amdgcn_s_buffer_load: 1857 case Intrinsic::amdgcn_struct_buffer_load: 1858 case Intrinsic::amdgcn_struct_buffer_load_format: 1859 case Intrinsic::amdgcn_struct_tbuffer_load: 1860 case Intrinsic::amdgcn_tbuffer_load: 1861 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts); 1862 default: { 1863 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) 1864 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0); 1865 1866 break; 1867 } 1868 } // switch on IntrinsicID 1869 break; 1870 } // case Call 1871 } // switch on Opcode 1872 1873 // TODO: We bail completely on integer div/rem and shifts because they have 1874 // UB/poison potential, but that should be refined. 1875 BinaryOperator *BO; 1876 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1877 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1878 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1879 1880 // Any change to an instruction with potential poison must clear those flags 1881 // because we can not guarantee those constraints now. Other analysis may 1882 // determine that it is safe to re-apply the flags. 1883 if (MadeChange) 1884 BO->dropPoisonGeneratingFlags(); 1885 1886 // Output elements are undefined if both are undefined. Consider things 1887 // like undef & 0. The result is known zero, not undef. 1888 UndefElts &= UndefElts2; 1889 } 1890 1891 // If we've proven all of the lanes undef, return an undef value. 1892 // TODO: Intersect w/demanded lanes 1893 if (UndefElts.isAllOnesValue()) 1894 return UndefValue::get(I->getType());; 1895 1896 return MadeChange ? I : nullptr; 1897 } 1898