1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/TargetTransformInfo.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= 6 && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == 6) // Limit search depth. 131 return nullptr; 132 133 Instruction *I = dyn_cast<Instruction>(V); 134 if (!I) { 135 computeKnownBits(V, Known, Depth, CxtI); 136 return nullptr; // Only analyze instructions. 137 } 138 139 // If there are multiple uses of this value and we aren't at the root, then 140 // we can't do any simplifications of the operands, because DemandedMask 141 // only reflects the bits demanded by *one* of the users. 142 if (Depth != 0 && !I->hasOneUse()) 143 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 144 145 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 146 147 // If this is the root being simplified, allow it to have multiple uses, 148 // just set the DemandedMask to all bits so that we can try to simplify the 149 // operands. This allows visitTruncInst (for example) to simplify the 150 // operand of a trunc without duplicating all the logic below. 151 if (Depth == 0 && !V->hasOneUse()) 152 DemandedMask.setAllBits(); 153 154 switch (I->getOpcode()) { 155 default: 156 computeKnownBits(I, Known, Depth, CxtI); 157 break; 158 case Instruction::And: { 159 // If either the LHS or the RHS are Zero, the result is zero. 160 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 161 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 162 Depth + 1)) 163 return I; 164 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 165 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 166 167 Known = LHSKnown & RHSKnown; 168 169 // If the client is only demanding bits that we know, return the known 170 // constant. 171 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 172 return Constant::getIntegerValue(VTy, Known.One); 173 174 // If all of the demanded bits are known 1 on one side, return the other. 175 // These bits cannot contribute to the result of the 'and'. 176 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 177 return I->getOperand(0); 178 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 179 return I->getOperand(1); 180 181 // If the RHS is a constant, see if we can simplify it. 182 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 183 return I; 184 185 break; 186 } 187 case Instruction::Or: { 188 // If either the LHS or the RHS are One, the result is One. 189 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 190 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 191 Depth + 1)) 192 return I; 193 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 194 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 195 196 Known = LHSKnown | RHSKnown; 197 198 // If the client is only demanding bits that we know, return the known 199 // constant. 200 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 201 return Constant::getIntegerValue(VTy, Known.One); 202 203 // If all of the demanded bits are known zero on one side, return the other. 204 // These bits cannot contribute to the result of the 'or'. 205 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 206 return I->getOperand(0); 207 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 208 return I->getOperand(1); 209 210 // If the RHS is a constant, see if we can simplify it. 211 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 212 return I; 213 214 break; 215 } 216 case Instruction::Xor: { 217 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 218 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 219 return I; 220 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 221 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 222 223 Known = LHSKnown ^ RHSKnown; 224 225 // If the client is only demanding bits that we know, return the known 226 // constant. 227 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 228 return Constant::getIntegerValue(VTy, Known.One); 229 230 // If all of the demanded bits are known zero on one side, return the other. 231 // These bits cannot contribute to the result of the 'xor'. 232 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 233 return I->getOperand(0); 234 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 235 return I->getOperand(1); 236 237 // If all of the demanded bits are known to be zero on one side or the 238 // other, turn this into an *inclusive* or. 239 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 240 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 241 Instruction *Or = 242 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 243 I->getName()); 244 return InsertNewInstWith(Or, *I); 245 } 246 247 // If all of the demanded bits on one side are known, and all of the set 248 // bits on that side are also known to be set on the other side, turn this 249 // into an AND, as we know the bits will be cleared. 250 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 251 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 252 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 253 Constant *AndC = Constant::getIntegerValue(VTy, 254 ~RHSKnown.One & DemandedMask); 255 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 256 return InsertNewInstWith(And, *I); 257 } 258 259 // If the RHS is a constant, see if we can change it. Don't alter a -1 260 // constant because that's a canonical 'not' op, and that is better for 261 // combining, SCEV, and codegen. 262 const APInt *C; 263 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnesValue()) { 264 if ((*C | ~DemandedMask).isAllOnesValue()) { 265 // Force bits to 1 to create a 'not' op. 266 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 267 return I; 268 } 269 // If we can't turn this into a 'not', try to shrink the constant. 270 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 271 return I; 272 } 273 274 // If our LHS is an 'and' and if it has one use, and if any of the bits we 275 // are flipping are known to be set, then the xor is just resetting those 276 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 277 // simplifying both of them. 278 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 279 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 280 isa<ConstantInt>(I->getOperand(1)) && 281 isa<ConstantInt>(LHSInst->getOperand(1)) && 282 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 283 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 284 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 285 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 286 287 Constant *AndC = 288 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 289 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 290 InsertNewInstWith(NewAnd, *I); 291 292 Constant *XorC = 293 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 294 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 295 return InsertNewInstWith(NewXor, *I); 296 } 297 298 break; 299 } 300 case Instruction::Select: { 301 Value *LHS, *RHS; 302 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 303 if (SPF == SPF_UMAX) { 304 // UMax(A, C) == A if ... 305 // The lowest non-zero bit of DemandMask is higher than the highest 306 // non-zero bit of C. 307 const APInt *C; 308 unsigned CTZ = DemandedMask.countTrailingZeros(); 309 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 310 return LHS; 311 } else if (SPF == SPF_UMIN) { 312 // UMin(A, C) == A if ... 313 // The lowest non-zero bit of DemandMask is higher than the highest 314 // non-one bit of C. 315 // This comes from using DeMorgans on the above umax example. 316 const APInt *C; 317 unsigned CTZ = DemandedMask.countTrailingZeros(); 318 if (match(RHS, m_APInt(C)) && 319 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 320 return LHS; 321 } 322 323 // If this is a select as part of any other min/max pattern, don't simplify 324 // any further in case we break the structure. 325 if (SPF != SPF_UNKNOWN) 326 return nullptr; 327 328 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 329 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 330 return I; 331 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 332 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 333 334 // If the operands are constants, see if we can simplify them. 335 // This is similar to ShrinkDemandedConstant, but for a select we want to 336 // try to keep the selected constants the same as icmp value constants, if 337 // we can. This helps not break apart (or helps put back together) 338 // canonical patterns like min and max. 339 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 340 APInt DemandedMask) { 341 const APInt *SelC; 342 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 343 return false; 344 345 // Get the constant out of the ICmp, if there is one. 346 const APInt *CmpC; 347 ICmpInst::Predicate Pred; 348 if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) || 349 CmpC->getBitWidth() != SelC->getBitWidth()) 350 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 351 352 // If the constant is already the same as the ICmp, leave it as-is. 353 if (*CmpC == *SelC) 354 return false; 355 // If the constants are not already the same, but can be with the demand 356 // mask, use the constant value from the ICmp. 357 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 358 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 359 return true; 360 } 361 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 362 }; 363 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 364 CanonicalizeSelectConstant(I, 2, DemandedMask)) 365 return I; 366 367 // Only known if known in both the LHS and RHS. 368 Known.One = RHSKnown.One & LHSKnown.One; 369 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 370 break; 371 } 372 case Instruction::ZExt: 373 case Instruction::Trunc: { 374 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 375 376 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 377 KnownBits InputKnown(SrcBitWidth); 378 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 379 return I; 380 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 381 Known = InputKnown.zextOrTrunc(BitWidth); 382 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 383 break; 384 } 385 case Instruction::BitCast: 386 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 387 return nullptr; // vector->int or fp->int? 388 389 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 390 if (VectorType *SrcVTy = 391 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 392 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 393 // Don't touch a bitcast between vectors of different element counts. 394 return nullptr; 395 } else 396 // Don't touch a scalar-to-vector bitcast. 397 return nullptr; 398 } else if (I->getOperand(0)->getType()->isVectorTy()) 399 // Don't touch a vector-to-scalar bitcast. 400 return nullptr; 401 402 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 403 return I; 404 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 405 break; 406 case Instruction::SExt: { 407 // Compute the bits in the result that are not present in the input. 408 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 409 410 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 411 412 // If any of the sign extended bits are demanded, we know that the sign 413 // bit is demanded. 414 if (DemandedMask.getActiveBits() > SrcBitWidth) 415 InputDemandedBits.setBit(SrcBitWidth-1); 416 417 KnownBits InputKnown(SrcBitWidth); 418 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 419 return I; 420 421 // If the input sign bit is known zero, or if the NewBits are not demanded 422 // convert this into a zero extension. 423 if (InputKnown.isNonNegative() || 424 DemandedMask.getActiveBits() <= SrcBitWidth) { 425 // Convert to ZExt cast. 426 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 427 return InsertNewInstWith(NewCast, *I); 428 } 429 430 // If the sign bit of the input is known set or clear, then we know the 431 // top bits of the result. 432 Known = InputKnown.sext(BitWidth); 433 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 434 break; 435 } 436 case Instruction::Add: 437 if ((DemandedMask & 1) == 0) { 438 // If we do not need the low bit, try to convert bool math to logic: 439 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 440 Value *X, *Y; 441 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 442 m_OneUse(m_SExt(m_Value(Y))))) && 443 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 444 // Truth table for inputs and output signbits: 445 // X:0 | X:1 446 // ---------- 447 // Y:0 | 0 | 0 | 448 // Y:1 | -1 | 0 | 449 // ---------- 450 IRBuilderBase::InsertPointGuard Guard(Builder); 451 Builder.SetInsertPoint(I); 452 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 453 return Builder.CreateSExt(AndNot, VTy); 454 } 455 456 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 457 // TODO: Relax the one-use checks because we are removing an instruction? 458 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 459 m_OneUse(m_SExt(m_Value(Y))))) && 460 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 461 // Truth table for inputs and output signbits: 462 // X:0 | X:1 463 // ----------- 464 // Y:0 | -1 | -1 | 465 // Y:1 | -1 | 0 | 466 // ----------- 467 IRBuilderBase::InsertPointGuard Guard(Builder); 468 Builder.SetInsertPoint(I); 469 Value *Or = Builder.CreateOr(X, Y); 470 return Builder.CreateSExt(Or, VTy); 471 } 472 } 473 LLVM_FALLTHROUGH; 474 case Instruction::Sub: { 475 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 476 /// about the high bits of the operands. 477 unsigned NLZ = DemandedMask.countLeadingZeros(); 478 // Right fill the mask of bits for this ADD/SUB to demand the most 479 // significant bit and all those below it. 480 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 481 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 482 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 483 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 484 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 485 if (NLZ > 0) { 486 // Disable the nsw and nuw flags here: We can no longer guarantee that 487 // we won't wrap after simplification. Removing the nsw/nuw flags is 488 // legal here because the top bit is not demanded. 489 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 490 BinOP.setHasNoSignedWrap(false); 491 BinOP.setHasNoUnsignedWrap(false); 492 } 493 return I; 494 } 495 496 // If we are known to be adding/subtracting zeros to every bit below 497 // the highest demanded bit, we just return the other side. 498 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 499 return I->getOperand(0); 500 // We can't do this with the LHS for subtraction, unless we are only 501 // demanding the LSB. 502 if ((I->getOpcode() == Instruction::Add || 503 DemandedFromOps.isOneValue()) && 504 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 505 return I->getOperand(1); 506 507 // Otherwise just compute the known bits of the result. 508 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 509 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 510 NSW, LHSKnown, RHSKnown); 511 break; 512 } 513 case Instruction::Shl: { 514 const APInt *SA; 515 if (match(I->getOperand(1), m_APInt(SA))) { 516 const APInt *ShrAmt; 517 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 518 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 519 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 520 DemandedMask, Known)) 521 return R; 522 523 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 524 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 525 526 // If the shift is NUW/NSW, then it does demand the high bits. 527 ShlOperator *IOp = cast<ShlOperator>(I); 528 if (IOp->hasNoSignedWrap()) 529 DemandedMaskIn.setHighBits(ShiftAmt+1); 530 else if (IOp->hasNoUnsignedWrap()) 531 DemandedMaskIn.setHighBits(ShiftAmt); 532 533 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 534 return I; 535 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 536 537 bool SignBitZero = Known.Zero.isSignBitSet(); 538 bool SignBitOne = Known.One.isSignBitSet(); 539 Known.Zero <<= ShiftAmt; 540 Known.One <<= ShiftAmt; 541 // low bits known zero. 542 if (ShiftAmt) 543 Known.Zero.setLowBits(ShiftAmt); 544 545 // If this shift has "nsw" keyword, then the result is either a poison 546 // value or has the same sign bit as the first operand. 547 if (IOp->hasNoSignedWrap()) { 548 if (SignBitZero) 549 Known.Zero.setSignBit(); 550 else if (SignBitOne) 551 Known.One.setSignBit(); 552 if (Known.hasConflict()) 553 return UndefValue::get(I->getType()); 554 } 555 } else { 556 computeKnownBits(I, Known, Depth, CxtI); 557 } 558 break; 559 } 560 case Instruction::LShr: { 561 const APInt *SA; 562 if (match(I->getOperand(1), m_APInt(SA))) { 563 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 564 565 // Unsigned shift right. 566 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 567 568 // If the shift is exact, then it does demand the low bits (and knows that 569 // they are zero). 570 if (cast<LShrOperator>(I)->isExact()) 571 DemandedMaskIn.setLowBits(ShiftAmt); 572 573 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 574 return I; 575 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 576 Known.Zero.lshrInPlace(ShiftAmt); 577 Known.One.lshrInPlace(ShiftAmt); 578 if (ShiftAmt) 579 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 580 } else { 581 computeKnownBits(I, Known, Depth, CxtI); 582 } 583 break; 584 } 585 case Instruction::AShr: { 586 // If this is an arithmetic shift right and only the low-bit is set, we can 587 // always convert this into a logical shr, even if the shift amount is 588 // variable. The low bit of the shift cannot be an input sign bit unless 589 // the shift amount is >= the size of the datatype, which is undefined. 590 if (DemandedMask.isOneValue()) { 591 // Perform the logical shift right. 592 Instruction *NewVal = BinaryOperator::CreateLShr( 593 I->getOperand(0), I->getOperand(1), I->getName()); 594 return InsertNewInstWith(NewVal, *I); 595 } 596 597 // If the sign bit is the only bit demanded by this ashr, then there is no 598 // need to do it, the shift doesn't change the high bit. 599 if (DemandedMask.isSignMask()) 600 return I->getOperand(0); 601 602 const APInt *SA; 603 if (match(I->getOperand(1), m_APInt(SA))) { 604 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 605 606 // Signed shift right. 607 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 608 // If any of the high bits are demanded, we should set the sign bit as 609 // demanded. 610 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 611 DemandedMaskIn.setSignBit(); 612 613 // If the shift is exact, then it does demand the low bits (and knows that 614 // they are zero). 615 if (cast<AShrOperator>(I)->isExact()) 616 DemandedMaskIn.setLowBits(ShiftAmt); 617 618 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 619 return I; 620 621 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 622 623 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 624 // Compute the new bits that are at the top now plus sign bits. 625 APInt HighBits(APInt::getHighBitsSet( 626 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 627 Known.Zero.lshrInPlace(ShiftAmt); 628 Known.One.lshrInPlace(ShiftAmt); 629 630 // If the input sign bit is known to be zero, or if none of the top bits 631 // are demanded, turn this into an unsigned shift right. 632 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 633 if (Known.Zero[BitWidth-ShiftAmt-1] || 634 !DemandedMask.intersects(HighBits)) { 635 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 636 I->getOperand(1)); 637 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 638 return InsertNewInstWith(LShr, *I); 639 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 640 Known.One |= HighBits; 641 } 642 } else { 643 computeKnownBits(I, Known, Depth, CxtI); 644 } 645 break; 646 } 647 case Instruction::UDiv: { 648 // UDiv doesn't demand low bits that are zero in the divisor. 649 const APInt *SA; 650 if (match(I->getOperand(1), m_APInt(SA))) { 651 // If the shift is exact, then it does demand the low bits. 652 if (cast<UDivOperator>(I)->isExact()) 653 break; 654 655 // FIXME: Take the demanded mask of the result into account. 656 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 657 APInt DemandedMaskIn = 658 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 659 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 660 return I; 661 662 // Propagate zero bits from the input. 663 Known.Zero.setHighBits(std::min( 664 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 665 } else { 666 computeKnownBits(I, Known, Depth, CxtI); 667 } 668 break; 669 } 670 case Instruction::SRem: 671 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 672 // X % -1 demands all the bits because we don't want to introduce 673 // INT_MIN % -1 (== undef) by accident. 674 if (Rem->isMinusOne()) 675 break; 676 APInt RA = Rem->getValue().abs(); 677 if (RA.isPowerOf2()) { 678 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 679 return I->getOperand(0); 680 681 APInt LowBits = RA - 1; 682 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 683 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 684 return I; 685 686 // The low bits of LHS are unchanged by the srem. 687 Known.Zero = LHSKnown.Zero & LowBits; 688 Known.One = LHSKnown.One & LowBits; 689 690 // If LHS is non-negative or has all low bits zero, then the upper bits 691 // are all zero. 692 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 693 Known.Zero |= ~LowBits; 694 695 // If LHS is negative and not all low bits are zero, then the upper bits 696 // are all one. 697 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 698 Known.One |= ~LowBits; 699 700 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 701 break; 702 } 703 } 704 705 // The sign bit is the LHS's sign bit, except when the result of the 706 // remainder is zero. 707 if (DemandedMask.isSignBitSet()) { 708 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 709 // If it's known zero, our sign bit is also zero. 710 if (LHSKnown.isNonNegative()) 711 Known.makeNonNegative(); 712 } 713 break; 714 case Instruction::URem: { 715 KnownBits Known2(BitWidth); 716 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 717 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 718 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 719 return I; 720 721 unsigned Leaders = Known2.countMinLeadingZeros(); 722 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 723 break; 724 } 725 case Instruction::Call: { 726 bool KnownBitsComputed = false; 727 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 728 switch (II->getIntrinsicID()) { 729 case Intrinsic::bswap: { 730 // If the only bits demanded come from one byte of the bswap result, 731 // just shift the input byte into position to eliminate the bswap. 732 unsigned NLZ = DemandedMask.countLeadingZeros(); 733 unsigned NTZ = DemandedMask.countTrailingZeros(); 734 735 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 736 // we need all the bits down to bit 8. Likewise, round NLZ. If we 737 // have 14 leading zeros, round to 8. 738 NLZ &= ~7; 739 NTZ &= ~7; 740 // If we need exactly one byte, we can do this transformation. 741 if (BitWidth-NLZ-NTZ == 8) { 742 unsigned ResultBit = NTZ; 743 unsigned InputBit = BitWidth-NTZ-8; 744 745 // Replace this with either a left or right shift to get the byte into 746 // the right place. 747 Instruction *NewVal; 748 if (InputBit > ResultBit) 749 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 750 ConstantInt::get(I->getType(), InputBit-ResultBit)); 751 else 752 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 753 ConstantInt::get(I->getType(), ResultBit-InputBit)); 754 NewVal->takeName(I); 755 return InsertNewInstWith(NewVal, *I); 756 } 757 break; 758 } 759 case Intrinsic::fshr: 760 case Intrinsic::fshl: { 761 const APInt *SA; 762 if (!match(I->getOperand(2), m_APInt(SA))) 763 break; 764 765 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 766 // defined, so no need to special-case zero shifts here. 767 uint64_t ShiftAmt = SA->urem(BitWidth); 768 if (II->getIntrinsicID() == Intrinsic::fshr) 769 ShiftAmt = BitWidth - ShiftAmt; 770 771 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 772 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 773 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 774 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 775 return I; 776 777 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 778 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 779 Known.One = LHSKnown.One.shl(ShiftAmt) | 780 RHSKnown.One.lshr(BitWidth - ShiftAmt); 781 KnownBitsComputed = true; 782 break; 783 } 784 default: { 785 // Handle target specific intrinsics 786 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 787 *II, DemandedMask, Known, KnownBitsComputed); 788 if (V.hasValue()) 789 return V.getValue(); 790 break; 791 } 792 } 793 } 794 795 if (!KnownBitsComputed) 796 computeKnownBits(V, Known, Depth, CxtI); 797 break; 798 } 799 } 800 801 // If the client is only demanding bits that we know, return the known 802 // constant. 803 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 804 return Constant::getIntegerValue(VTy, Known.One); 805 return nullptr; 806 } 807 808 /// Helper routine of SimplifyDemandedUseBits. It computes Known 809 /// bits. It also tries to handle simplifications that can be done based on 810 /// DemandedMask, but without modifying the Instruction. 811 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 812 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 813 Instruction *CxtI) { 814 unsigned BitWidth = DemandedMask.getBitWidth(); 815 Type *ITy = I->getType(); 816 817 KnownBits LHSKnown(BitWidth); 818 KnownBits RHSKnown(BitWidth); 819 820 // Despite the fact that we can't simplify this instruction in all User's 821 // context, we can at least compute the known bits, and we can 822 // do simplifications that apply to *just* the one user if we know that 823 // this instruction has a simpler value in that context. 824 switch (I->getOpcode()) { 825 case Instruction::And: { 826 // If either the LHS or the RHS are Zero, the result is zero. 827 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 828 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 829 CxtI); 830 831 Known = LHSKnown & RHSKnown; 832 833 // If the client is only demanding bits that we know, return the known 834 // constant. 835 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 836 return Constant::getIntegerValue(ITy, Known.One); 837 838 // If all of the demanded bits are known 1 on one side, return the other. 839 // These bits cannot contribute to the result of the 'and' in this 840 // context. 841 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 842 return I->getOperand(0); 843 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 844 return I->getOperand(1); 845 846 break; 847 } 848 case Instruction::Or: { 849 // We can simplify (X|Y) -> X or Y in the user's context if we know that 850 // only bits from X or Y are demanded. 851 852 // If either the LHS or the RHS are One, the result is One. 853 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 854 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 855 CxtI); 856 857 Known = LHSKnown | RHSKnown; 858 859 // If the client is only demanding bits that we know, return the known 860 // constant. 861 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 862 return Constant::getIntegerValue(ITy, Known.One); 863 864 // If all of the demanded bits are known zero on one side, return the 865 // other. These bits cannot contribute to the result of the 'or' in this 866 // context. 867 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 868 return I->getOperand(0); 869 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 870 return I->getOperand(1); 871 872 break; 873 } 874 case Instruction::Xor: { 875 // We can simplify (X^Y) -> X or Y in the user's context if we know that 876 // only bits from X or Y are demanded. 877 878 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 879 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 880 CxtI); 881 882 Known = LHSKnown ^ RHSKnown; 883 884 // If the client is only demanding bits that we know, return the known 885 // constant. 886 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 887 return Constant::getIntegerValue(ITy, Known.One); 888 889 // If all of the demanded bits are known zero on one side, return the 890 // other. 891 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 892 return I->getOperand(0); 893 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 894 return I->getOperand(1); 895 896 break; 897 } 898 default: 899 // Compute the Known bits to simplify things downstream. 900 computeKnownBits(I, Known, Depth, CxtI); 901 902 // If this user is only demanding bits that we know, return the known 903 // constant. 904 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 905 return Constant::getIntegerValue(ITy, Known.One); 906 907 break; 908 } 909 910 return nullptr; 911 } 912 913 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 914 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 915 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 916 /// of "C2-C1". 917 /// 918 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 919 /// ..., bn}, without considering the specific value X is holding. 920 /// This transformation is legal iff one of following conditions is hold: 921 /// 1) All the bit in S are 0, in this case E1 == E2. 922 /// 2) We don't care those bits in S, per the input DemandedMask. 923 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 924 /// rest bits. 925 /// 926 /// Currently we only test condition 2). 927 /// 928 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 929 /// not successful. 930 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 931 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 932 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 933 if (!ShlOp1 || !ShrOp1) 934 return nullptr; // No-op. 935 936 Value *VarX = Shr->getOperand(0); 937 Type *Ty = VarX->getType(); 938 unsigned BitWidth = Ty->getScalarSizeInBits(); 939 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 940 return nullptr; // Undef. 941 942 unsigned ShlAmt = ShlOp1.getZExtValue(); 943 unsigned ShrAmt = ShrOp1.getZExtValue(); 944 945 Known.One.clearAllBits(); 946 Known.Zero.setLowBits(ShlAmt - 1); 947 Known.Zero &= DemandedMask; 948 949 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 950 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 951 952 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 953 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 954 (BitMask1.ashr(ShrAmt) << ShlAmt); 955 956 if (ShrAmt <= ShlAmt) { 957 BitMask2 <<= (ShlAmt - ShrAmt); 958 } else { 959 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 960 BitMask2.ashr(ShrAmt - ShlAmt); 961 } 962 963 // Check if condition-2 (see the comment to this function) is satified. 964 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 965 if (ShrAmt == ShlAmt) 966 return VarX; 967 968 if (!Shr->hasOneUse()) 969 return nullptr; 970 971 BinaryOperator *New; 972 if (ShrAmt < ShlAmt) { 973 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 974 New = BinaryOperator::CreateShl(VarX, Amt); 975 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 976 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 977 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 978 } else { 979 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 980 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 981 BinaryOperator::CreateAShr(VarX, Amt); 982 if (cast<BinaryOperator>(Shr)->isExact()) 983 New->setIsExact(true); 984 } 985 986 return InsertNewInstWith(New, *Shl); 987 } 988 989 return nullptr; 990 } 991 992 /// The specified value produces a vector with any number of elements. 993 /// This method analyzes which elements of the operand are undef and returns 994 /// that information in UndefElts. 995 /// 996 /// DemandedElts contains the set of elements that are actually used by the 997 /// caller, and by default (AllowMultipleUsers equals false) the value is 998 /// simplified only if it has a single caller. If AllowMultipleUsers is set 999 /// to true, DemandedElts refers to the union of sets of elements that are 1000 /// used by all callers. 1001 /// 1002 /// If the information about demanded elements can be used to simplify the 1003 /// operation, the operation is simplified, then the resultant value is 1004 /// returned. This returns null if no change was made. 1005 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1006 APInt DemandedElts, 1007 APInt &UndefElts, 1008 unsigned Depth, 1009 bool AllowMultipleUsers) { 1010 // Cannot analyze scalable type. The number of vector elements is not a 1011 // compile-time constant. 1012 if (isa<ScalableVectorType>(V->getType())) 1013 return nullptr; 1014 1015 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1016 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1017 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1018 1019 if (isa<UndefValue>(V)) { 1020 // If the entire vector is undefined, just return this info. 1021 UndefElts = EltMask; 1022 return nullptr; 1023 } 1024 1025 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 1026 UndefElts = EltMask; 1027 return UndefValue::get(V->getType()); 1028 } 1029 1030 UndefElts = 0; 1031 1032 if (auto *C = dyn_cast<Constant>(V)) { 1033 // Check if this is identity. If so, return 0 since we are not simplifying 1034 // anything. 1035 if (DemandedElts.isAllOnesValue()) 1036 return nullptr; 1037 1038 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1039 Constant *Undef = UndefValue::get(EltTy); 1040 SmallVector<Constant*, 16> Elts; 1041 for (unsigned i = 0; i != VWidth; ++i) { 1042 if (!DemandedElts[i]) { // If not demanded, set to undef. 1043 Elts.push_back(Undef); 1044 UndefElts.setBit(i); 1045 continue; 1046 } 1047 1048 Constant *Elt = C->getAggregateElement(i); 1049 if (!Elt) return nullptr; 1050 1051 if (isa<UndefValue>(Elt)) { // Already undef. 1052 Elts.push_back(Undef); 1053 UndefElts.setBit(i); 1054 } else { // Otherwise, defined. 1055 Elts.push_back(Elt); 1056 } 1057 } 1058 1059 // If we changed the constant, return it. 1060 Constant *NewCV = ConstantVector::get(Elts); 1061 return NewCV != C ? NewCV : nullptr; 1062 } 1063 1064 // Limit search depth. 1065 if (Depth == 10) 1066 return nullptr; 1067 1068 if (!AllowMultipleUsers) { 1069 // If multiple users are using the root value, proceed with 1070 // simplification conservatively assuming that all elements 1071 // are needed. 1072 if (!V->hasOneUse()) { 1073 // Quit if we find multiple users of a non-root value though. 1074 // They'll be handled when it's their turn to be visited by 1075 // the main instcombine process. 1076 if (Depth != 0) 1077 // TODO: Just compute the UndefElts information recursively. 1078 return nullptr; 1079 1080 // Conservatively assume that all elements are needed. 1081 DemandedElts = EltMask; 1082 } 1083 } 1084 1085 Instruction *I = dyn_cast<Instruction>(V); 1086 if (!I) return nullptr; // Only analyze instructions. 1087 1088 bool MadeChange = false; 1089 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1090 APInt Demanded, APInt &Undef) { 1091 auto *II = dyn_cast<IntrinsicInst>(Inst); 1092 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1093 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1094 replaceOperand(*Inst, OpNum, V); 1095 MadeChange = true; 1096 } 1097 }; 1098 1099 APInt UndefElts2(VWidth, 0); 1100 APInt UndefElts3(VWidth, 0); 1101 switch (I->getOpcode()) { 1102 default: break; 1103 1104 case Instruction::GetElementPtr: { 1105 // The LangRef requires that struct geps have all constant indices. As 1106 // such, we can't convert any operand to partial undef. 1107 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1108 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1109 I != E; I++) 1110 if (I.isStruct()) 1111 return true;; 1112 return false; 1113 }; 1114 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1115 break; 1116 1117 // Conservatively track the demanded elements back through any vector 1118 // operands we may have. We know there must be at least one, or we 1119 // wouldn't have a vector result to get here. Note that we intentionally 1120 // merge the undef bits here since gepping with either an undef base or 1121 // index results in undef. 1122 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1123 if (isa<UndefValue>(I->getOperand(i))) { 1124 // If the entire vector is undefined, just return this info. 1125 UndefElts = EltMask; 1126 return nullptr; 1127 } 1128 if (I->getOperand(i)->getType()->isVectorTy()) { 1129 APInt UndefEltsOp(VWidth, 0); 1130 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1131 UndefElts |= UndefEltsOp; 1132 } 1133 } 1134 1135 break; 1136 } 1137 case Instruction::InsertElement: { 1138 // If this is a variable index, we don't know which element it overwrites. 1139 // demand exactly the same input as we produce. 1140 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1141 if (!Idx) { 1142 // Note that we can't propagate undef elt info, because we don't know 1143 // which elt is getting updated. 1144 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1145 break; 1146 } 1147 1148 // The element inserted overwrites whatever was there, so the input demanded 1149 // set is simpler than the output set. 1150 unsigned IdxNo = Idx->getZExtValue(); 1151 APInt PreInsertDemandedElts = DemandedElts; 1152 if (IdxNo < VWidth) 1153 PreInsertDemandedElts.clearBit(IdxNo); 1154 1155 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1156 1157 // If this is inserting an element that isn't demanded, remove this 1158 // insertelement. 1159 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1160 Worklist.push(I); 1161 return I->getOperand(0); 1162 } 1163 1164 // The inserted element is defined. 1165 UndefElts.clearBit(IdxNo); 1166 break; 1167 } 1168 case Instruction::ShuffleVector: { 1169 auto *Shuffle = cast<ShuffleVectorInst>(I); 1170 assert(Shuffle->getOperand(0)->getType() == 1171 Shuffle->getOperand(1)->getType() && 1172 "Expected shuffle operands to have same type"); 1173 unsigned OpWidth = 1174 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements(); 1175 // Handle trivial case of a splat. Only check the first element of LHS 1176 // operand. 1177 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1178 DemandedElts.isAllOnesValue()) { 1179 if (!isa<UndefValue>(I->getOperand(1))) { 1180 I->setOperand(1, UndefValue::get(I->getOperand(1)->getType())); 1181 MadeChange = true; 1182 } 1183 APInt LeftDemanded(OpWidth, 1); 1184 APInt LHSUndefElts(OpWidth, 0); 1185 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1186 if (LHSUndefElts[0]) 1187 UndefElts = EltMask; 1188 else 1189 UndefElts.clearAllBits(); 1190 break; 1191 } 1192 1193 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1194 for (unsigned i = 0; i < VWidth; i++) { 1195 if (DemandedElts[i]) { 1196 unsigned MaskVal = Shuffle->getMaskValue(i); 1197 if (MaskVal != -1u) { 1198 assert(MaskVal < OpWidth * 2 && 1199 "shufflevector mask index out of range!"); 1200 if (MaskVal < OpWidth) 1201 LeftDemanded.setBit(MaskVal); 1202 else 1203 RightDemanded.setBit(MaskVal - OpWidth); 1204 } 1205 } 1206 } 1207 1208 APInt LHSUndefElts(OpWidth, 0); 1209 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1210 1211 APInt RHSUndefElts(OpWidth, 0); 1212 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1213 1214 // If this shuffle does not change the vector length and the elements 1215 // demanded by this shuffle are an identity mask, then this shuffle is 1216 // unnecessary. 1217 // 1218 // We are assuming canonical form for the mask, so the source vector is 1219 // operand 0 and operand 1 is not used. 1220 // 1221 // Note that if an element is demanded and this shuffle mask is undefined 1222 // for that element, then the shuffle is not considered an identity 1223 // operation. The shuffle prevents poison from the operand vector from 1224 // leaking to the result by replacing poison with an undefined value. 1225 if (VWidth == OpWidth) { 1226 bool IsIdentityShuffle = true; 1227 for (unsigned i = 0; i < VWidth; i++) { 1228 unsigned MaskVal = Shuffle->getMaskValue(i); 1229 if (DemandedElts[i] && i != MaskVal) { 1230 IsIdentityShuffle = false; 1231 break; 1232 } 1233 } 1234 if (IsIdentityShuffle) 1235 return Shuffle->getOperand(0); 1236 } 1237 1238 bool NewUndefElts = false; 1239 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1240 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1241 bool LHSUniform = true; 1242 bool RHSUniform = true; 1243 for (unsigned i = 0; i < VWidth; i++) { 1244 unsigned MaskVal = Shuffle->getMaskValue(i); 1245 if (MaskVal == -1u) { 1246 UndefElts.setBit(i); 1247 } else if (!DemandedElts[i]) { 1248 NewUndefElts = true; 1249 UndefElts.setBit(i); 1250 } else if (MaskVal < OpWidth) { 1251 if (LHSUndefElts[MaskVal]) { 1252 NewUndefElts = true; 1253 UndefElts.setBit(i); 1254 } else { 1255 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1256 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1257 LHSUniform = LHSUniform && (MaskVal == i); 1258 } 1259 } else { 1260 if (RHSUndefElts[MaskVal - OpWidth]) { 1261 NewUndefElts = true; 1262 UndefElts.setBit(i); 1263 } else { 1264 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1265 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1266 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1267 } 1268 } 1269 } 1270 1271 // Try to transform shuffle with constant vector and single element from 1272 // this constant vector to single insertelement instruction. 1273 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1274 // insertelement V, C[ci], ci-n 1275 if (OpWidth == Shuffle->getType()->getNumElements()) { 1276 Value *Op = nullptr; 1277 Constant *Value = nullptr; 1278 unsigned Idx = -1u; 1279 1280 // Find constant vector with the single element in shuffle (LHS or RHS). 1281 if (LHSIdx < OpWidth && RHSUniform) { 1282 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1283 Op = Shuffle->getOperand(1); 1284 Value = CV->getOperand(LHSValIdx); 1285 Idx = LHSIdx; 1286 } 1287 } 1288 if (RHSIdx < OpWidth && LHSUniform) { 1289 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1290 Op = Shuffle->getOperand(0); 1291 Value = CV->getOperand(RHSValIdx); 1292 Idx = RHSIdx; 1293 } 1294 } 1295 // Found constant vector with single element - convert to insertelement. 1296 if (Op && Value) { 1297 Instruction *New = InsertElementInst::Create( 1298 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1299 Shuffle->getName()); 1300 InsertNewInstWith(New, *Shuffle); 1301 return New; 1302 } 1303 } 1304 if (NewUndefElts) { 1305 // Add additional discovered undefs. 1306 SmallVector<int, 16> Elts; 1307 for (unsigned i = 0; i < VWidth; ++i) { 1308 if (UndefElts[i]) 1309 Elts.push_back(UndefMaskElem); 1310 else 1311 Elts.push_back(Shuffle->getMaskValue(i)); 1312 } 1313 Shuffle->setShuffleMask(Elts); 1314 MadeChange = true; 1315 } 1316 break; 1317 } 1318 case Instruction::Select: { 1319 // If this is a vector select, try to transform the select condition based 1320 // on the current demanded elements. 1321 SelectInst *Sel = cast<SelectInst>(I); 1322 if (Sel->getCondition()->getType()->isVectorTy()) { 1323 // TODO: We are not doing anything with UndefElts based on this call. 1324 // It is overwritten below based on the other select operands. If an 1325 // element of the select condition is known undef, then we are free to 1326 // choose the output value from either arm of the select. If we know that 1327 // one of those values is undef, then the output can be undef. 1328 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1329 } 1330 1331 // Next, see if we can transform the arms of the select. 1332 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1333 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1334 for (unsigned i = 0; i < VWidth; i++) { 1335 // isNullValue() always returns false when called on a ConstantExpr. 1336 // Skip constant expressions to avoid propagating incorrect information. 1337 Constant *CElt = CV->getAggregateElement(i); 1338 if (isa<ConstantExpr>(CElt)) 1339 continue; 1340 // TODO: If a select condition element is undef, we can demand from 1341 // either side. If one side is known undef, choosing that side would 1342 // propagate undef. 1343 if (CElt->isNullValue()) 1344 DemandedLHS.clearBit(i); 1345 else 1346 DemandedRHS.clearBit(i); 1347 } 1348 } 1349 1350 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1351 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1352 1353 // Output elements are undefined if the element from each arm is undefined. 1354 // TODO: This can be improved. See comment in select condition handling. 1355 UndefElts = UndefElts2 & UndefElts3; 1356 break; 1357 } 1358 case Instruction::BitCast: { 1359 // Vector->vector casts only. 1360 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1361 if (!VTy) break; 1362 unsigned InVWidth = VTy->getNumElements(); 1363 APInt InputDemandedElts(InVWidth, 0); 1364 UndefElts2 = APInt(InVWidth, 0); 1365 unsigned Ratio; 1366 1367 if (VWidth == InVWidth) { 1368 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1369 // elements as are demanded of us. 1370 Ratio = 1; 1371 InputDemandedElts = DemandedElts; 1372 } else if ((VWidth % InVWidth) == 0) { 1373 // If the number of elements in the output is a multiple of the number of 1374 // elements in the input then an input element is live if any of the 1375 // corresponding output elements are live. 1376 Ratio = VWidth / InVWidth; 1377 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1378 if (DemandedElts[OutIdx]) 1379 InputDemandedElts.setBit(OutIdx / Ratio); 1380 } else if ((InVWidth % VWidth) == 0) { 1381 // If the number of elements in the input is a multiple of the number of 1382 // elements in the output then an input element is live if the 1383 // corresponding output element is live. 1384 Ratio = InVWidth / VWidth; 1385 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1386 if (DemandedElts[InIdx / Ratio]) 1387 InputDemandedElts.setBit(InIdx); 1388 } else { 1389 // Unsupported so far. 1390 break; 1391 } 1392 1393 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1394 1395 if (VWidth == InVWidth) { 1396 UndefElts = UndefElts2; 1397 } else if ((VWidth % InVWidth) == 0) { 1398 // If the number of elements in the output is a multiple of the number of 1399 // elements in the input then an output element is undef if the 1400 // corresponding input element is undef. 1401 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1402 if (UndefElts2[OutIdx / Ratio]) 1403 UndefElts.setBit(OutIdx); 1404 } else if ((InVWidth % VWidth) == 0) { 1405 // If the number of elements in the input is a multiple of the number of 1406 // elements in the output then an output element is undef if all of the 1407 // corresponding input elements are undef. 1408 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1409 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1410 if (SubUndef.countPopulation() == Ratio) 1411 UndefElts.setBit(OutIdx); 1412 } 1413 } else { 1414 llvm_unreachable("Unimp"); 1415 } 1416 break; 1417 } 1418 case Instruction::FPTrunc: 1419 case Instruction::FPExt: 1420 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1421 break; 1422 1423 case Instruction::Call: { 1424 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1425 if (!II) break; 1426 switch (II->getIntrinsicID()) { 1427 case Intrinsic::masked_gather: // fallthrough 1428 case Intrinsic::masked_load: { 1429 // Subtlety: If we load from a pointer, the pointer must be valid 1430 // regardless of whether the element is demanded. Doing otherwise risks 1431 // segfaults which didn't exist in the original program. 1432 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1433 DemandedPassThrough(DemandedElts); 1434 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1435 for (unsigned i = 0; i < VWidth; i++) { 1436 Constant *CElt = CV->getAggregateElement(i); 1437 if (CElt->isNullValue()) 1438 DemandedPtrs.clearBit(i); 1439 else if (CElt->isAllOnesValue()) 1440 DemandedPassThrough.clearBit(i); 1441 } 1442 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1443 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1444 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1445 1446 // Output elements are undefined if the element from both sources are. 1447 // TODO: can strengthen via mask as well. 1448 UndefElts = UndefElts2 & UndefElts3; 1449 break; 1450 } 1451 default: { 1452 // Handle target specific intrinsics 1453 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1454 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1455 simplifyAndSetOp); 1456 if (V.hasValue()) 1457 return V.getValue(); 1458 break; 1459 } 1460 } // switch on IntrinsicID 1461 break; 1462 } // case Call 1463 } // switch on Opcode 1464 1465 // TODO: We bail completely on integer div/rem and shifts because they have 1466 // UB/poison potential, but that should be refined. 1467 BinaryOperator *BO; 1468 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1469 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1470 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1471 1472 // Any change to an instruction with potential poison must clear those flags 1473 // because we can not guarantee those constraints now. Other analysis may 1474 // determine that it is safe to re-apply the flags. 1475 if (MadeChange) 1476 BO->dropPoisonGeneratingFlags(); 1477 1478 // Output elements are undefined if both are undefined. Consider things 1479 // like undef & 0. The result is known zero, not undef. 1480 UndefElts &= UndefElts2; 1481 } 1482 1483 // If we've proven all of the lanes undef, return an undef value. 1484 // TODO: Intersect w/demanded lanes 1485 if (UndefElts.isAllOnesValue()) 1486 return UndefValue::get(I->getType());; 1487 1488 return MadeChange ? I : nullptr; 1489 } 1490