1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains logic for simplifying instructions based on information 11 // about how they are used. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombineInternal.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 21 using namespace llvm; 22 using namespace llvm::PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 /// Check to see if the specified operand of the specified instruction is a 27 /// constant integer. If so, check to see if there are any bits set in the 28 /// constant that are not demanded. If so, shrink the constant and return true. 29 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 30 const APInt &Demanded) { 31 assert(I && "No instruction?"); 32 assert(OpNo < I->getNumOperands() && "Operand index too large"); 33 34 // The operand must be a constant integer or splat integer. 35 Value *Op = I->getOperand(OpNo); 36 const APInt *C; 37 if (!match(Op, m_APInt(C))) 38 return false; 39 40 // If there are no bits set that aren't demanded, nothing to do. 41 if (C->isSubsetOf(Demanded)) 42 return false; 43 44 // This instruction is producing bits that are not demanded. Shrink the RHS. 45 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 46 47 return true; 48 } 49 50 51 52 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 53 /// the instruction has any properties that allow us to simplify its operands. 54 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 55 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 56 KnownBits Known(BitWidth); 57 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 58 59 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 60 0, &Inst); 61 if (!V) return false; 62 if (V == &Inst) return true; 63 replaceInstUsesWith(Inst, V); 64 return true; 65 } 66 67 /// This form of SimplifyDemandedBits simplifies the specified instruction 68 /// operand if possible, updating it in place. It returns true if it made any 69 /// change and false otherwise. 70 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 71 const APInt &DemandedMask, 72 KnownBits &Known, 73 unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 U = NewVal; 79 return true; 80 } 81 82 83 /// This function attempts to replace V with a simpler value based on the 84 /// demanded bits. When this function is called, it is known that only the bits 85 /// set in DemandedMask of the result of V are ever used downstream. 86 /// Consequently, depending on the mask and V, it may be possible to replace V 87 /// with a constant or one of its operands. In such cases, this function does 88 /// the replacement and returns true. In all other cases, it returns false after 89 /// analyzing the expression and setting KnownOne and known to be one in the 90 /// expression. Known.Zero contains all the bits that are known to be zero in 91 /// the expression. These are provided to potentially allow the caller (which 92 /// might recursively be SimplifyDemandedBits itself) to simplify the 93 /// expression. 94 /// Known.One and Known.Zero always follow the invariant that: 95 /// Known.One & Known.Zero == 0. 96 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 97 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 98 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 99 /// be the same. 100 /// 101 /// This returns null if it did not change anything and it permits no 102 /// simplification. This returns V itself if it did some simplification of V's 103 /// operands based on the information about what bits are demanded. This returns 104 /// some other non-null value if it found out that V is equal to another value 105 /// in the context where the specified bits are demanded, but not for all users. 106 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 107 KnownBits &Known, unsigned Depth, 108 Instruction *CxtI) { 109 assert(V != nullptr && "Null pointer of Value???"); 110 assert(Depth <= 6 && "Limit Search Depth"); 111 uint32_t BitWidth = DemandedMask.getBitWidth(); 112 Type *VTy = V->getType(); 113 assert( 114 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 115 Known.getBitWidth() == BitWidth && 116 "Value *V, DemandedMask and Known must have same BitWidth"); 117 118 if (isa<Constant>(V)) { 119 computeKnownBits(V, Known, Depth, CxtI); 120 return nullptr; 121 } 122 123 Known.resetAll(); 124 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 125 return UndefValue::get(VTy); 126 127 if (Depth == 6) // Limit search depth. 128 return nullptr; 129 130 Instruction *I = dyn_cast<Instruction>(V); 131 if (!I) { 132 computeKnownBits(V, Known, Depth, CxtI); 133 return nullptr; // Only analyze instructions. 134 } 135 136 // If there are multiple uses of this value and we aren't at the root, then 137 // we can't do any simplifications of the operands, because DemandedMask 138 // only reflects the bits demanded by *one* of the users. 139 if (Depth != 0 && !I->hasOneUse()) 140 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 141 142 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 143 144 // If this is the root being simplified, allow it to have multiple uses, 145 // just set the DemandedMask to all bits so that we can try to simplify the 146 // operands. This allows visitTruncInst (for example) to simplify the 147 // operand of a trunc without duplicating all the logic below. 148 if (Depth == 0 && !V->hasOneUse()) 149 DemandedMask.setAllBits(); 150 151 switch (I->getOpcode()) { 152 default: 153 computeKnownBits(I, Known, Depth, CxtI); 154 break; 155 case Instruction::And: { 156 // If either the LHS or the RHS are Zero, the result is zero. 157 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 158 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 159 Depth + 1)) 160 return I; 161 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 162 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 163 164 // Output known-0 are known to be clear if zero in either the LHS | RHS. 165 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 166 // Output known-1 bits are only known if set in both the LHS & RHS. 167 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 168 169 // If the client is only demanding bits that we know, return the known 170 // constant. 171 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 172 return Constant::getIntegerValue(VTy, IKnownOne); 173 174 // If all of the demanded bits are known 1 on one side, return the other. 175 // These bits cannot contribute to the result of the 'and'. 176 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 177 return I->getOperand(0); 178 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 179 return I->getOperand(1); 180 181 // If the RHS is a constant, see if we can simplify it. 182 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 183 return I; 184 185 Known.Zero = std::move(IKnownZero); 186 Known.One = std::move(IKnownOne); 187 break; 188 } 189 case Instruction::Or: { 190 // If either the LHS or the RHS are One, the result is One. 191 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 192 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 193 Depth + 1)) 194 return I; 195 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 196 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 197 198 // Output known-0 bits are only known if clear in both the LHS & RHS. 199 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 200 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 201 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 202 203 // If the client is only demanding bits that we know, return the known 204 // constant. 205 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 206 return Constant::getIntegerValue(VTy, IKnownOne); 207 208 // If all of the demanded bits are known zero on one side, return the other. 209 // These bits cannot contribute to the result of the 'or'. 210 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 211 return I->getOperand(0); 212 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 213 return I->getOperand(1); 214 215 // If the RHS is a constant, see if we can simplify it. 216 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 217 return I; 218 219 Known.Zero = std::move(IKnownZero); 220 Known.One = std::move(IKnownOne); 221 break; 222 } 223 case Instruction::Xor: { 224 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 225 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 226 return I; 227 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 228 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 229 230 // Output known-0 bits are known if clear or set in both the LHS & RHS. 231 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 232 (RHSKnown.One & LHSKnown.One); 233 // Output known-1 are known to be set if set in only one of the LHS, RHS. 234 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 235 (RHSKnown.One & LHSKnown.Zero); 236 237 // If the client is only demanding bits that we know, return the known 238 // constant. 239 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 240 return Constant::getIntegerValue(VTy, IKnownOne); 241 242 // If all of the demanded bits are known zero on one side, return the other. 243 // These bits cannot contribute to the result of the 'xor'. 244 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 245 return I->getOperand(0); 246 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 247 return I->getOperand(1); 248 249 // If all of the demanded bits are known to be zero on one side or the 250 // other, turn this into an *inclusive* or. 251 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 252 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 253 Instruction *Or = 254 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 255 I->getName()); 256 return InsertNewInstWith(Or, *I); 257 } 258 259 // If all of the demanded bits on one side are known, and all of the set 260 // bits on that side are also known to be set on the other side, turn this 261 // into an AND, as we know the bits will be cleared. 262 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 263 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 264 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 265 Constant *AndC = Constant::getIntegerValue(VTy, 266 ~RHSKnown.One & DemandedMask); 267 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 268 return InsertNewInstWith(And, *I); 269 } 270 271 // If the RHS is a constant, see if we can simplify it. 272 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 273 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 274 return I; 275 276 // If our LHS is an 'and' and if it has one use, and if any of the bits we 277 // are flipping are known to be set, then the xor is just resetting those 278 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 279 // simplifying both of them. 280 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 281 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 282 isa<ConstantInt>(I->getOperand(1)) && 283 isa<ConstantInt>(LHSInst->getOperand(1)) && 284 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 285 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 286 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 287 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 288 289 Constant *AndC = 290 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 291 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 292 InsertNewInstWith(NewAnd, *I); 293 294 Constant *XorC = 295 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 296 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 297 return InsertNewInstWith(NewXor, *I); 298 } 299 300 // Output known-0 bits are known if clear or set in both the LHS & RHS. 301 Known.Zero = std::move(IKnownZero); 302 // Output known-1 are known to be set if set in only one of the LHS, RHS. 303 Known.One = std::move(IKnownOne); 304 break; 305 } 306 case Instruction::Select: 307 // If this is a select as part of a min/max pattern, don't simplify any 308 // further in case we break the structure. 309 Value *LHS, *RHS; 310 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN) 311 return nullptr; 312 313 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 314 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 315 return I; 316 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 317 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 318 319 // If the operands are constants, see if we can simplify them. 320 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 321 ShrinkDemandedConstant(I, 2, DemandedMask)) 322 return I; 323 324 // Only known if known in both the LHS and RHS. 325 Known.One = RHSKnown.One & LHSKnown.One; 326 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 327 break; 328 case Instruction::ZExt: 329 case Instruction::Trunc: { 330 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 331 332 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 333 KnownBits InputKnown(SrcBitWidth); 334 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 335 return I; 336 Known = Known.zextOrTrunc(BitWidth); 337 // Any top bits are known to be zero. 338 if (BitWidth > SrcBitWidth) 339 Known.Zero.setBitsFrom(SrcBitWidth); 340 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 341 break; 342 } 343 case Instruction::BitCast: 344 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 345 return nullptr; // vector->int or fp->int? 346 347 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 348 if (VectorType *SrcVTy = 349 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 350 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 351 // Don't touch a bitcast between vectors of different element counts. 352 return nullptr; 353 } else 354 // Don't touch a scalar-to-vector bitcast. 355 return nullptr; 356 } else if (I->getOperand(0)->getType()->isVectorTy()) 357 // Don't touch a vector-to-scalar bitcast. 358 return nullptr; 359 360 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 361 return I; 362 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 363 break; 364 case Instruction::SExt: { 365 // Compute the bits in the result that are not present in the input. 366 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 367 368 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 369 370 // If any of the sign extended bits are demanded, we know that the sign 371 // bit is demanded. 372 if (DemandedMask.getActiveBits() > SrcBitWidth) 373 InputDemandedBits.setBit(SrcBitWidth-1); 374 375 KnownBits InputKnown(SrcBitWidth); 376 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 377 return I; 378 379 // If the input sign bit is known zero, or if the NewBits are not demanded 380 // convert this into a zero extension. 381 if (InputKnown.isNonNegative() || 382 DemandedMask.getActiveBits() <= SrcBitWidth) { 383 // Convert to ZExt cast. 384 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 385 return InsertNewInstWith(NewCast, *I); 386 } 387 388 // If the sign bit of the input is known set or clear, then we know the 389 // top bits of the result. 390 Known = InputKnown.sext(BitWidth); 391 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 392 break; 393 } 394 case Instruction::Add: 395 case Instruction::Sub: { 396 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 397 /// about the high bits of the operands. 398 unsigned NLZ = DemandedMask.countLeadingZeros(); 399 if (NLZ > 0) { 400 // Right fill the mask of bits for this ADD/SUB to demand the most 401 // significant bit and all those below it. 402 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 403 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 404 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 405 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 406 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 407 // Disable the nsw and nuw flags here: We can no longer guarantee that 408 // we won't wrap after simplification. Removing the nsw/nuw flags is 409 // legal here because the top bit is not demanded. 410 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 411 BinOP.setHasNoSignedWrap(false); 412 BinOP.setHasNoUnsignedWrap(false); 413 return I; 414 } 415 416 // If we are known to be adding/subtracting zeros to every bit below 417 // the highest demanded bit, we just return the other side. 418 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 419 return I->getOperand(0); 420 // We can't do this with the LHS for subtraction. 421 if (I->getOpcode() == Instruction::Add && 422 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 423 return I->getOperand(1); 424 } 425 426 // Otherwise just hand the add/sub off to computeKnownBits to fill in 427 // the known zeros and ones. 428 computeKnownBits(V, Known, Depth, CxtI); 429 break; 430 } 431 case Instruction::Shl: { 432 const APInt *SA; 433 if (match(I->getOperand(1), m_APInt(SA))) { 434 const APInt *ShrAmt; 435 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) { 436 Instruction *Shr = cast<Instruction>(I->getOperand(0)); 437 if (Value *R = simplifyShrShlDemandedBits( 438 Shr, *ShrAmt, I, *SA, DemandedMask, Known)) 439 return R; 440 } 441 442 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 443 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 444 445 // If the shift is NUW/NSW, then it does demand the high bits. 446 ShlOperator *IOp = cast<ShlOperator>(I); 447 if (IOp->hasNoSignedWrap()) 448 DemandedMaskIn.setHighBits(ShiftAmt+1); 449 else if (IOp->hasNoUnsignedWrap()) 450 DemandedMaskIn.setHighBits(ShiftAmt); 451 452 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 453 return I; 454 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 455 Known.Zero <<= ShiftAmt; 456 Known.One <<= ShiftAmt; 457 // low bits known zero. 458 if (ShiftAmt) 459 Known.Zero.setLowBits(ShiftAmt); 460 } 461 break; 462 } 463 case Instruction::LShr: { 464 const APInt *SA; 465 if (match(I->getOperand(1), m_APInt(SA))) { 466 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 467 468 // Unsigned shift right. 469 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 470 471 // If the shift is exact, then it does demand the low bits (and knows that 472 // they are zero). 473 if (cast<LShrOperator>(I)->isExact()) 474 DemandedMaskIn.setLowBits(ShiftAmt); 475 476 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 477 return I; 478 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 479 Known.Zero.lshrInPlace(ShiftAmt); 480 Known.One.lshrInPlace(ShiftAmt); 481 if (ShiftAmt) 482 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 483 } 484 break; 485 } 486 case Instruction::AShr: { 487 // If this is an arithmetic shift right and only the low-bit is set, we can 488 // always convert this into a logical shr, even if the shift amount is 489 // variable. The low bit of the shift cannot be an input sign bit unless 490 // the shift amount is >= the size of the datatype, which is undefined. 491 if (DemandedMask.isOneValue()) { 492 // Perform the logical shift right. 493 Instruction *NewVal = BinaryOperator::CreateLShr( 494 I->getOperand(0), I->getOperand(1), I->getName()); 495 return InsertNewInstWith(NewVal, *I); 496 } 497 498 // If the sign bit is the only bit demanded by this ashr, then there is no 499 // need to do it, the shift doesn't change the high bit. 500 if (DemandedMask.isSignMask()) 501 return I->getOperand(0); 502 503 const APInt *SA; 504 if (match(I->getOperand(1), m_APInt(SA))) { 505 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 506 507 // Signed shift right. 508 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 509 // If any of the high bits are demanded, we should set the sign bit as 510 // demanded. 511 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 512 DemandedMaskIn.setSignBit(); 513 514 // If the shift is exact, then it does demand the low bits (and knows that 515 // they are zero). 516 if (cast<AShrOperator>(I)->isExact()) 517 DemandedMaskIn.setLowBits(ShiftAmt); 518 519 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 520 return I; 521 522 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 523 // Compute the new bits that are at the top now. 524 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 525 Known.Zero.lshrInPlace(ShiftAmt); 526 Known.One.lshrInPlace(ShiftAmt); 527 528 // Handle the sign bits. 529 APInt SignMask(APInt::getSignMask(BitWidth)); 530 // Adjust to where it is now in the mask. 531 SignMask.lshrInPlace(ShiftAmt); 532 533 // If the input sign bit is known to be zero, or if none of the top bits 534 // are demanded, turn this into an unsigned shift right. 535 if (BitWidth <= ShiftAmt || Known.Zero[BitWidth-ShiftAmt-1] || 536 !DemandedMask.intersects(HighBits)) { 537 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 538 I->getOperand(1)); 539 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 540 return InsertNewInstWith(LShr, *I); 541 } else if (Known.One.intersects(SignMask)) { // New bits are known one. 542 Known.One |= HighBits; 543 } 544 } 545 break; 546 } 547 case Instruction::SRem: 548 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 549 // X % -1 demands all the bits because we don't want to introduce 550 // INT_MIN % -1 (== undef) by accident. 551 if (Rem->isAllOnesValue()) 552 break; 553 APInt RA = Rem->getValue().abs(); 554 if (RA.isPowerOf2()) { 555 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 556 return I->getOperand(0); 557 558 APInt LowBits = RA - 1; 559 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 560 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 561 return I; 562 563 // The low bits of LHS are unchanged by the srem. 564 Known.Zero = LHSKnown.Zero & LowBits; 565 Known.One = LHSKnown.One & LowBits; 566 567 // If LHS is non-negative or has all low bits zero, then the upper bits 568 // are all zero. 569 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 570 Known.Zero |= ~LowBits; 571 572 // If LHS is negative and not all low bits are zero, then the upper bits 573 // are all one. 574 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 575 Known.One |= ~LowBits; 576 577 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 578 break; 579 } 580 } 581 582 // The sign bit is the LHS's sign bit, except when the result of the 583 // remainder is zero. 584 if (DemandedMask.isSignBitSet()) { 585 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 586 // If it's known zero, our sign bit is also zero. 587 if (LHSKnown.isNonNegative()) 588 Known.makeNonNegative(); 589 } 590 break; 591 case Instruction::URem: { 592 KnownBits Known2(BitWidth); 593 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 594 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 595 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 596 return I; 597 598 unsigned Leaders = Known2.countMinLeadingZeros(); 599 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 600 break; 601 } 602 case Instruction::Call: 603 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 604 switch (II->getIntrinsicID()) { 605 default: break; 606 case Intrinsic::bswap: { 607 // If the only bits demanded come from one byte of the bswap result, 608 // just shift the input byte into position to eliminate the bswap. 609 unsigned NLZ = DemandedMask.countLeadingZeros(); 610 unsigned NTZ = DemandedMask.countTrailingZeros(); 611 612 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 613 // we need all the bits down to bit 8. Likewise, round NLZ. If we 614 // have 14 leading zeros, round to 8. 615 NLZ &= ~7; 616 NTZ &= ~7; 617 // If we need exactly one byte, we can do this transformation. 618 if (BitWidth-NLZ-NTZ == 8) { 619 unsigned ResultBit = NTZ; 620 unsigned InputBit = BitWidth-NTZ-8; 621 622 // Replace this with either a left or right shift to get the byte into 623 // the right place. 624 Instruction *NewVal; 625 if (InputBit > ResultBit) 626 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 627 ConstantInt::get(I->getType(), InputBit-ResultBit)); 628 else 629 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 630 ConstantInt::get(I->getType(), ResultBit-InputBit)); 631 NewVal->takeName(I); 632 return InsertNewInstWith(NewVal, *I); 633 } 634 635 // TODO: Could compute known zero/one bits based on the input. 636 break; 637 } 638 case Intrinsic::x86_mmx_pmovmskb: 639 case Intrinsic::x86_sse_movmsk_ps: 640 case Intrinsic::x86_sse2_movmsk_pd: 641 case Intrinsic::x86_sse2_pmovmskb_128: 642 case Intrinsic::x86_avx_movmsk_ps_256: 643 case Intrinsic::x86_avx_movmsk_pd_256: 644 case Intrinsic::x86_avx2_pmovmskb: { 645 // MOVMSK copies the vector elements' sign bits to the low bits 646 // and zeros the high bits. 647 unsigned ArgWidth; 648 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 649 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 650 } else { 651 auto Arg = II->getArgOperand(0); 652 auto ArgType = cast<VectorType>(Arg->getType()); 653 ArgWidth = ArgType->getNumElements(); 654 } 655 656 // If we don't need any of low bits then return zero, 657 // we know that DemandedMask is non-zero already. 658 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 659 if (DemandedElts.isNullValue()) 660 return ConstantInt::getNullValue(VTy); 661 662 // We know that the upper bits are set to zero. 663 Known.Zero.setBitsFrom(ArgWidth); 664 return nullptr; 665 } 666 case Intrinsic::x86_sse42_crc32_64_64: 667 Known.Zero.setBitsFrom(32); 668 return nullptr; 669 } 670 } 671 computeKnownBits(V, Known, Depth, CxtI); 672 break; 673 } 674 675 // If the client is only demanding bits that we know, return the known 676 // constant. 677 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 678 return Constant::getIntegerValue(VTy, Known.One); 679 return nullptr; 680 } 681 682 /// Helper routine of SimplifyDemandedUseBits. It computes Known 683 /// bits. It also tries to handle simplifications that can be done based on 684 /// DemandedMask, but without modifying the Instruction. 685 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 686 const APInt &DemandedMask, 687 KnownBits &Known, 688 unsigned Depth, 689 Instruction *CxtI) { 690 unsigned BitWidth = DemandedMask.getBitWidth(); 691 Type *ITy = I->getType(); 692 693 KnownBits LHSKnown(BitWidth); 694 KnownBits RHSKnown(BitWidth); 695 696 // Despite the fact that we can't simplify this instruction in all User's 697 // context, we can at least compute the known bits, and we can 698 // do simplifications that apply to *just* the one user if we know that 699 // this instruction has a simpler value in that context. 700 switch (I->getOpcode()) { 701 case Instruction::And: { 702 // If either the LHS or the RHS are Zero, the result is zero. 703 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 704 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 705 CxtI); 706 707 // Output known-0 are known to be clear if zero in either the LHS | RHS. 708 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 709 // Output known-1 bits are only known if set in both the LHS & RHS. 710 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 711 712 // If the client is only demanding bits that we know, return the known 713 // constant. 714 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 715 return Constant::getIntegerValue(ITy, IKnownOne); 716 717 // If all of the demanded bits are known 1 on one side, return the other. 718 // These bits cannot contribute to the result of the 'and' in this 719 // context. 720 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 721 return I->getOperand(0); 722 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 723 return I->getOperand(1); 724 725 Known.Zero = std::move(IKnownZero); 726 Known.One = std::move(IKnownOne); 727 break; 728 } 729 case Instruction::Or: { 730 // We can simplify (X|Y) -> X or Y in the user's context if we know that 731 // only bits from X or Y are demanded. 732 733 // If either the LHS or the RHS are One, the result is One. 734 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 735 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 736 CxtI); 737 738 // Output known-0 bits are only known if clear in both the LHS & RHS. 739 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 740 // Output known-1 are known to be set if set in either the LHS | RHS. 741 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 742 743 // If the client is only demanding bits that we know, return the known 744 // constant. 745 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 746 return Constant::getIntegerValue(ITy, IKnownOne); 747 748 // If all of the demanded bits are known zero on one side, return the 749 // other. These bits cannot contribute to the result of the 'or' in this 750 // context. 751 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 752 return I->getOperand(0); 753 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 754 return I->getOperand(1); 755 756 Known.Zero = std::move(IKnownZero); 757 Known.One = std::move(IKnownOne); 758 break; 759 } 760 case Instruction::Xor: { 761 // We can simplify (X^Y) -> X or Y in the user's context if we know that 762 // only bits from X or Y are demanded. 763 764 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 765 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 766 CxtI); 767 768 // Output known-0 bits are known if clear or set in both the LHS & RHS. 769 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 770 (RHSKnown.One & LHSKnown.One); 771 // Output known-1 are known to be set if set in only one of the LHS, RHS. 772 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 773 (RHSKnown.One & LHSKnown.Zero); 774 775 // If the client is only demanding bits that we know, return the known 776 // constant. 777 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 778 return Constant::getIntegerValue(ITy, IKnownOne); 779 780 // If all of the demanded bits are known zero on one side, return the 781 // other. 782 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 783 return I->getOperand(0); 784 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 785 return I->getOperand(1); 786 787 // Output known-0 bits are known if clear or set in both the LHS & RHS. 788 Known.Zero = std::move(IKnownZero); 789 // Output known-1 are known to be set if set in only one of the LHS, RHS. 790 Known.One = std::move(IKnownOne); 791 break; 792 } 793 default: 794 // Compute the Known bits to simplify things downstream. 795 computeKnownBits(I, Known, Depth, CxtI); 796 797 // If this user is only demanding bits that we know, return the known 798 // constant. 799 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 800 return Constant::getIntegerValue(ITy, Known.One); 801 802 break; 803 } 804 805 return nullptr; 806 } 807 808 809 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 810 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 811 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 812 /// of "C2-C1". 813 /// 814 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 815 /// ..., bn}, without considering the specific value X is holding. 816 /// This transformation is legal iff one of following conditions is hold: 817 /// 1) All the bit in S are 0, in this case E1 == E2. 818 /// 2) We don't care those bits in S, per the input DemandedMask. 819 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 820 /// rest bits. 821 /// 822 /// Currently we only test condition 2). 823 /// 824 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 825 /// not successful. 826 Value * 827 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 828 Instruction *Shl, const APInt &ShlOp1, 829 const APInt &DemandedMask, 830 KnownBits &Known) { 831 if (!ShlOp1 || !ShrOp1) 832 return nullptr; // No-op. 833 834 Value *VarX = Shr->getOperand(0); 835 Type *Ty = VarX->getType(); 836 unsigned BitWidth = Ty->getScalarSizeInBits(); 837 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 838 return nullptr; // Undef. 839 840 unsigned ShlAmt = ShlOp1.getZExtValue(); 841 unsigned ShrAmt = ShrOp1.getZExtValue(); 842 843 Known.One.clearAllBits(); 844 Known.Zero.setLowBits(ShlAmt - 1); 845 Known.Zero &= DemandedMask; 846 847 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 848 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 849 850 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 851 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 852 (BitMask1.ashr(ShrAmt) << ShlAmt); 853 854 if (ShrAmt <= ShlAmt) { 855 BitMask2 <<= (ShlAmt - ShrAmt); 856 } else { 857 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 858 BitMask2.ashr(ShrAmt - ShlAmt); 859 } 860 861 // Check if condition-2 (see the comment to this function) is satified. 862 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 863 if (ShrAmt == ShlAmt) 864 return VarX; 865 866 if (!Shr->hasOneUse()) 867 return nullptr; 868 869 BinaryOperator *New; 870 if (ShrAmt < ShlAmt) { 871 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 872 New = BinaryOperator::CreateShl(VarX, Amt); 873 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 874 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 875 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 876 } else { 877 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 878 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 879 BinaryOperator::CreateAShr(VarX, Amt); 880 if (cast<BinaryOperator>(Shr)->isExact()) 881 New->setIsExact(true); 882 } 883 884 return InsertNewInstWith(New, *Shl); 885 } 886 887 return nullptr; 888 } 889 890 /// The specified value produces a vector with any number of elements. 891 /// DemandedElts contains the set of elements that are actually used by the 892 /// caller. This method analyzes which elements of the operand are undef and 893 /// returns that information in UndefElts. 894 /// 895 /// If the information about demanded elements can be used to simplify the 896 /// operation, the operation is simplified, then the resultant value is 897 /// returned. This returns null if no change was made. 898 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 899 APInt &UndefElts, 900 unsigned Depth) { 901 unsigned VWidth = V->getType()->getVectorNumElements(); 902 APInt EltMask(APInt::getAllOnesValue(VWidth)); 903 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 904 905 if (isa<UndefValue>(V)) { 906 // If the entire vector is undefined, just return this info. 907 UndefElts = EltMask; 908 return nullptr; 909 } 910 911 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 912 UndefElts = EltMask; 913 return UndefValue::get(V->getType()); 914 } 915 916 UndefElts = 0; 917 918 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. 919 if (Constant *C = dyn_cast<Constant>(V)) { 920 // Check if this is identity. If so, return 0 since we are not simplifying 921 // anything. 922 if (DemandedElts.isAllOnesValue()) 923 return nullptr; 924 925 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 926 Constant *Undef = UndefValue::get(EltTy); 927 928 SmallVector<Constant*, 16> Elts; 929 for (unsigned i = 0; i != VWidth; ++i) { 930 if (!DemandedElts[i]) { // If not demanded, set to undef. 931 Elts.push_back(Undef); 932 UndefElts.setBit(i); 933 continue; 934 } 935 936 Constant *Elt = C->getAggregateElement(i); 937 if (!Elt) return nullptr; 938 939 if (isa<UndefValue>(Elt)) { // Already undef. 940 Elts.push_back(Undef); 941 UndefElts.setBit(i); 942 } else { // Otherwise, defined. 943 Elts.push_back(Elt); 944 } 945 } 946 947 // If we changed the constant, return it. 948 Constant *NewCV = ConstantVector::get(Elts); 949 return NewCV != C ? NewCV : nullptr; 950 } 951 952 // Limit search depth. 953 if (Depth == 10) 954 return nullptr; 955 956 // If multiple users are using the root value, proceed with 957 // simplification conservatively assuming that all elements 958 // are needed. 959 if (!V->hasOneUse()) { 960 // Quit if we find multiple users of a non-root value though. 961 // They'll be handled when it's their turn to be visited by 962 // the main instcombine process. 963 if (Depth != 0) 964 // TODO: Just compute the UndefElts information recursively. 965 return nullptr; 966 967 // Conservatively assume that all elements are needed. 968 DemandedElts = EltMask; 969 } 970 971 Instruction *I = dyn_cast<Instruction>(V); 972 if (!I) return nullptr; // Only analyze instructions. 973 974 bool MadeChange = false; 975 APInt UndefElts2(VWidth, 0); 976 APInt UndefElts3(VWidth, 0); 977 Value *TmpV; 978 switch (I->getOpcode()) { 979 default: break; 980 981 case Instruction::InsertElement: { 982 // If this is a variable index, we don't know which element it overwrites. 983 // demand exactly the same input as we produce. 984 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 985 if (!Idx) { 986 // Note that we can't propagate undef elt info, because we don't know 987 // which elt is getting updated. 988 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 989 UndefElts2, Depth + 1); 990 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 991 break; 992 } 993 994 // If this is inserting an element that isn't demanded, remove this 995 // insertelement. 996 unsigned IdxNo = Idx->getZExtValue(); 997 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 998 Worklist.Add(I); 999 return I->getOperand(0); 1000 } 1001 1002 // Otherwise, the element inserted overwrites whatever was there, so the 1003 // input demanded set is simpler than the output set. 1004 APInt DemandedElts2 = DemandedElts; 1005 DemandedElts2.clearBit(IdxNo); 1006 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, 1007 UndefElts, Depth + 1); 1008 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1009 1010 // The inserted element is defined. 1011 UndefElts.clearBit(IdxNo); 1012 break; 1013 } 1014 case Instruction::ShuffleVector: { 1015 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1016 unsigned LHSVWidth = 1017 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1018 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1019 for (unsigned i = 0; i < VWidth; i++) { 1020 if (DemandedElts[i]) { 1021 unsigned MaskVal = Shuffle->getMaskValue(i); 1022 if (MaskVal != -1u) { 1023 assert(MaskVal < LHSVWidth * 2 && 1024 "shufflevector mask index out of range!"); 1025 if (MaskVal < LHSVWidth) 1026 LeftDemanded.setBit(MaskVal); 1027 else 1028 RightDemanded.setBit(MaskVal - LHSVWidth); 1029 } 1030 } 1031 } 1032 1033 APInt LHSUndefElts(LHSVWidth, 0); 1034 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, 1035 LHSUndefElts, Depth + 1); 1036 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1037 1038 APInt RHSUndefElts(LHSVWidth, 0); 1039 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, 1040 RHSUndefElts, Depth + 1); 1041 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1042 1043 bool NewUndefElts = false; 1044 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1045 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1046 bool LHSUniform = true; 1047 bool RHSUniform = true; 1048 for (unsigned i = 0; i < VWidth; i++) { 1049 unsigned MaskVal = Shuffle->getMaskValue(i); 1050 if (MaskVal == -1u) { 1051 UndefElts.setBit(i); 1052 } else if (!DemandedElts[i]) { 1053 NewUndefElts = true; 1054 UndefElts.setBit(i); 1055 } else if (MaskVal < LHSVWidth) { 1056 if (LHSUndefElts[MaskVal]) { 1057 NewUndefElts = true; 1058 UndefElts.setBit(i); 1059 } else { 1060 LHSIdx = LHSIdx == -1u ? i : LHSVWidth; 1061 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth; 1062 LHSUniform = LHSUniform && (MaskVal == i); 1063 } 1064 } else { 1065 if (RHSUndefElts[MaskVal - LHSVWidth]) { 1066 NewUndefElts = true; 1067 UndefElts.setBit(i); 1068 } else { 1069 RHSIdx = RHSIdx == -1u ? i : LHSVWidth; 1070 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth; 1071 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i); 1072 } 1073 } 1074 } 1075 1076 // Try to transform shuffle with constant vector and single element from 1077 // this constant vector to single insertelement instruction. 1078 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1079 // insertelement V, C[ci], ci-n 1080 if (LHSVWidth == Shuffle->getType()->getNumElements()) { 1081 Value *Op = nullptr; 1082 Constant *Value = nullptr; 1083 unsigned Idx = -1u; 1084 1085 // Find constant vector with the single element in shuffle (LHS or RHS). 1086 if (LHSIdx < LHSVWidth && RHSUniform) { 1087 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1088 Op = Shuffle->getOperand(1); 1089 Value = CV->getOperand(LHSValIdx); 1090 Idx = LHSIdx; 1091 } 1092 } 1093 if (RHSIdx < LHSVWidth && LHSUniform) { 1094 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1095 Op = Shuffle->getOperand(0); 1096 Value = CV->getOperand(RHSValIdx); 1097 Idx = RHSIdx; 1098 } 1099 } 1100 // Found constant vector with single element - convert to insertelement. 1101 if (Op && Value) { 1102 Instruction *New = InsertElementInst::Create( 1103 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1104 Shuffle->getName()); 1105 InsertNewInstWith(New, *Shuffle); 1106 return New; 1107 } 1108 } 1109 if (NewUndefElts) { 1110 // Add additional discovered undefs. 1111 SmallVector<Constant*, 16> Elts; 1112 for (unsigned i = 0; i < VWidth; ++i) { 1113 if (UndefElts[i]) 1114 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1115 else 1116 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1117 Shuffle->getMaskValue(i))); 1118 } 1119 I->setOperand(2, ConstantVector::get(Elts)); 1120 MadeChange = true; 1121 } 1122 break; 1123 } 1124 case Instruction::Select: { 1125 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); 1126 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) { 1127 for (unsigned i = 0; i < VWidth; i++) { 1128 Constant *CElt = CV->getAggregateElement(i); 1129 // Method isNullValue always returns false when called on a 1130 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to 1131 // to avoid propagating incorrect information. 1132 if (isa<ConstantExpr>(CElt)) 1133 continue; 1134 if (CElt->isNullValue()) 1135 LeftDemanded.clearBit(i); 1136 else 1137 RightDemanded.clearBit(i); 1138 } 1139 } 1140 1141 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts, 1142 Depth + 1); 1143 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1144 1145 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, 1146 UndefElts2, Depth + 1); 1147 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } 1148 1149 // Output elements are undefined if both are undefined. 1150 UndefElts &= UndefElts2; 1151 break; 1152 } 1153 case Instruction::BitCast: { 1154 // Vector->vector casts only. 1155 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1156 if (!VTy) break; 1157 unsigned InVWidth = VTy->getNumElements(); 1158 APInt InputDemandedElts(InVWidth, 0); 1159 UndefElts2 = APInt(InVWidth, 0); 1160 unsigned Ratio; 1161 1162 if (VWidth == InVWidth) { 1163 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1164 // elements as are demanded of us. 1165 Ratio = 1; 1166 InputDemandedElts = DemandedElts; 1167 } else if ((VWidth % InVWidth) == 0) { 1168 // If the number of elements in the output is a multiple of the number of 1169 // elements in the input then an input element is live if any of the 1170 // corresponding output elements are live. 1171 Ratio = VWidth / InVWidth; 1172 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1173 if (DemandedElts[OutIdx]) 1174 InputDemandedElts.setBit(OutIdx / Ratio); 1175 } else if ((InVWidth % VWidth) == 0) { 1176 // If the number of elements in the input is a multiple of the number of 1177 // elements in the output then an input element is live if the 1178 // corresponding output element is live. 1179 Ratio = InVWidth / VWidth; 1180 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1181 if (DemandedElts[InIdx / Ratio]) 1182 InputDemandedElts.setBit(InIdx); 1183 } else { 1184 // Unsupported so far. 1185 break; 1186 } 1187 1188 // div/rem demand all inputs, because they don't want divide by zero. 1189 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, 1190 UndefElts2, Depth + 1); 1191 if (TmpV) { 1192 I->setOperand(0, TmpV); 1193 MadeChange = true; 1194 } 1195 1196 if (VWidth == InVWidth) { 1197 UndefElts = UndefElts2; 1198 } else if ((VWidth % InVWidth) == 0) { 1199 // If the number of elements in the output is a multiple of the number of 1200 // elements in the input then an output element is undef if the 1201 // corresponding input element is undef. 1202 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1203 if (UndefElts2[OutIdx / Ratio]) 1204 UndefElts.setBit(OutIdx); 1205 } else if ((InVWidth % VWidth) == 0) { 1206 // If the number of elements in the input is a multiple of the number of 1207 // elements in the output then an output element is undef if all of the 1208 // corresponding input elements are undef. 1209 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1210 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1211 if (SubUndef.countPopulation() == Ratio) 1212 UndefElts.setBit(OutIdx); 1213 } 1214 } else { 1215 llvm_unreachable("Unimp"); 1216 } 1217 break; 1218 } 1219 case Instruction::And: 1220 case Instruction::Or: 1221 case Instruction::Xor: 1222 case Instruction::Add: 1223 case Instruction::Sub: 1224 case Instruction::Mul: 1225 // div/rem demand all inputs, because they don't want divide by zero. 1226 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1227 Depth + 1); 1228 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1229 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, 1230 UndefElts2, Depth + 1); 1231 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1232 1233 // Output elements are undefined if both are undefined. Consider things 1234 // like undef&0. The result is known zero, not undef. 1235 UndefElts &= UndefElts2; 1236 break; 1237 case Instruction::FPTrunc: 1238 case Instruction::FPExt: 1239 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, 1240 Depth + 1); 1241 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1242 break; 1243 1244 case Instruction::Call: { 1245 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1246 if (!II) break; 1247 switch (II->getIntrinsicID()) { 1248 default: break; 1249 1250 case Intrinsic::x86_xop_vfrcz_ss: 1251 case Intrinsic::x86_xop_vfrcz_sd: 1252 // The instructions for these intrinsics are speced to zero upper bits not 1253 // pass them through like other scalar intrinsics. So we shouldn't just 1254 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1255 // Instead we should return a zero vector. 1256 if (!DemandedElts[0]) { 1257 Worklist.Add(II); 1258 return ConstantAggregateZero::get(II->getType()); 1259 } 1260 1261 // Only the lower element is used. 1262 DemandedElts = 1; 1263 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1264 UndefElts, Depth + 1); 1265 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1266 1267 // Only the lower element is undefined. The high elements are zero. 1268 UndefElts = UndefElts[0]; 1269 break; 1270 1271 // Unary scalar-as-vector operations that work column-wise. 1272 case Intrinsic::x86_sse_rcp_ss: 1273 case Intrinsic::x86_sse_rsqrt_ss: 1274 case Intrinsic::x86_sse_sqrt_ss: 1275 case Intrinsic::x86_sse2_sqrt_sd: 1276 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1277 UndefElts, Depth + 1); 1278 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1279 1280 // If lowest element of a scalar op isn't used then use Arg0. 1281 if (!DemandedElts[0]) { 1282 Worklist.Add(II); 1283 return II->getArgOperand(0); 1284 } 1285 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1286 // checks). 1287 break; 1288 1289 // Binary scalar-as-vector operations that work column-wise. The high 1290 // elements come from operand 0. The low element is a function of both 1291 // operands. 1292 case Intrinsic::x86_sse_min_ss: 1293 case Intrinsic::x86_sse_max_ss: 1294 case Intrinsic::x86_sse_cmp_ss: 1295 case Intrinsic::x86_sse2_min_sd: 1296 case Intrinsic::x86_sse2_max_sd: 1297 case Intrinsic::x86_sse2_cmp_sd: { 1298 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1299 UndefElts, Depth + 1); 1300 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1301 1302 // If lowest element of a scalar op isn't used then use Arg0. 1303 if (!DemandedElts[0]) { 1304 Worklist.Add(II); 1305 return II->getArgOperand(0); 1306 } 1307 1308 // Only lower element is used for operand 1. 1309 DemandedElts = 1; 1310 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1311 UndefElts2, Depth + 1); 1312 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1313 1314 // Lower element is undefined if both lower elements are undefined. 1315 // Consider things like undef&0. The result is known zero, not undef. 1316 if (!UndefElts2[0]) 1317 UndefElts.clearBit(0); 1318 1319 break; 1320 } 1321 1322 // Binary scalar-as-vector operations that work column-wise. The high 1323 // elements come from operand 0 and the low element comes from operand 1. 1324 case Intrinsic::x86_sse41_round_ss: 1325 case Intrinsic::x86_sse41_round_sd: { 1326 // Don't use the low element of operand 0. 1327 APInt DemandedElts2 = DemandedElts; 1328 DemandedElts2.clearBit(0); 1329 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2, 1330 UndefElts, Depth + 1); 1331 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1332 1333 // If lowest element of a scalar op isn't used then use Arg0. 1334 if (!DemandedElts[0]) { 1335 Worklist.Add(II); 1336 return II->getArgOperand(0); 1337 } 1338 1339 // Only lower element is used for operand 1. 1340 DemandedElts = 1; 1341 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1342 UndefElts2, Depth + 1); 1343 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1344 1345 // Take the high undef elements from operand 0 and take the lower element 1346 // from operand 1. 1347 UndefElts.clearBit(0); 1348 UndefElts |= UndefElts2[0]; 1349 break; 1350 } 1351 1352 // Three input scalar-as-vector operations that work column-wise. The high 1353 // elements come from operand 0 and the low element is a function of all 1354 // three inputs. 1355 case Intrinsic::x86_avx512_mask_add_ss_round: 1356 case Intrinsic::x86_avx512_mask_div_ss_round: 1357 case Intrinsic::x86_avx512_mask_mul_ss_round: 1358 case Intrinsic::x86_avx512_mask_sub_ss_round: 1359 case Intrinsic::x86_avx512_mask_max_ss_round: 1360 case Intrinsic::x86_avx512_mask_min_ss_round: 1361 case Intrinsic::x86_avx512_mask_add_sd_round: 1362 case Intrinsic::x86_avx512_mask_div_sd_round: 1363 case Intrinsic::x86_avx512_mask_mul_sd_round: 1364 case Intrinsic::x86_avx512_mask_sub_sd_round: 1365 case Intrinsic::x86_avx512_mask_max_sd_round: 1366 case Intrinsic::x86_avx512_mask_min_sd_round: 1367 case Intrinsic::x86_fma_vfmadd_ss: 1368 case Intrinsic::x86_fma_vfmsub_ss: 1369 case Intrinsic::x86_fma_vfnmadd_ss: 1370 case Intrinsic::x86_fma_vfnmsub_ss: 1371 case Intrinsic::x86_fma_vfmadd_sd: 1372 case Intrinsic::x86_fma_vfmsub_sd: 1373 case Intrinsic::x86_fma_vfnmadd_sd: 1374 case Intrinsic::x86_fma_vfnmsub_sd: 1375 case Intrinsic::x86_avx512_mask_vfmadd_ss: 1376 case Intrinsic::x86_avx512_mask_vfmadd_sd: 1377 case Intrinsic::x86_avx512_maskz_vfmadd_ss: 1378 case Intrinsic::x86_avx512_maskz_vfmadd_sd: 1379 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1380 UndefElts, Depth + 1); 1381 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1382 1383 // If lowest element of a scalar op isn't used then use Arg0. 1384 if (!DemandedElts[0]) { 1385 Worklist.Add(II); 1386 return II->getArgOperand(0); 1387 } 1388 1389 // Only lower element is used for operand 1 and 2. 1390 DemandedElts = 1; 1391 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1392 UndefElts2, Depth + 1); 1393 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1394 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, 1395 UndefElts3, Depth + 1); 1396 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } 1397 1398 // Lower element is undefined if all three lower elements are undefined. 1399 // Consider things like undef&0. The result is known zero, not undef. 1400 if (!UndefElts2[0] || !UndefElts3[0]) 1401 UndefElts.clearBit(0); 1402 1403 break; 1404 1405 case Intrinsic::x86_avx512_mask3_vfmadd_ss: 1406 case Intrinsic::x86_avx512_mask3_vfmadd_sd: 1407 case Intrinsic::x86_avx512_mask3_vfmsub_ss: 1408 case Intrinsic::x86_avx512_mask3_vfmsub_sd: 1409 case Intrinsic::x86_avx512_mask3_vfnmsub_ss: 1410 case Intrinsic::x86_avx512_mask3_vfnmsub_sd: 1411 // These intrinsics get the passthru bits from operand 2. 1412 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts, 1413 UndefElts, Depth + 1); 1414 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; } 1415 1416 // If lowest element of a scalar op isn't used then use Arg2. 1417 if (!DemandedElts[0]) { 1418 Worklist.Add(II); 1419 return II->getArgOperand(2); 1420 } 1421 1422 // Only lower element is used for operand 0 and 1. 1423 DemandedElts = 1; 1424 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1425 UndefElts2, Depth + 1); 1426 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1427 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1428 UndefElts3, Depth + 1); 1429 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1430 1431 // Lower element is undefined if all three lower elements are undefined. 1432 // Consider things like undef&0. The result is known zero, not undef. 1433 if (!UndefElts2[0] || !UndefElts3[0]) 1434 UndefElts.clearBit(0); 1435 1436 break; 1437 1438 case Intrinsic::x86_sse2_pmulu_dq: 1439 case Intrinsic::x86_sse41_pmuldq: 1440 case Intrinsic::x86_avx2_pmul_dq: 1441 case Intrinsic::x86_avx2_pmulu_dq: 1442 case Intrinsic::x86_avx512_pmul_dq_512: 1443 case Intrinsic::x86_avx512_pmulu_dq_512: { 1444 Value *Op0 = II->getArgOperand(0); 1445 Value *Op1 = II->getArgOperand(1); 1446 unsigned InnerVWidth = Op0->getType()->getVectorNumElements(); 1447 assert((VWidth * 2) == InnerVWidth && "Unexpected input size"); 1448 1449 APInt InnerDemandedElts(InnerVWidth, 0); 1450 for (unsigned i = 0; i != VWidth; ++i) 1451 if (DemandedElts[i]) 1452 InnerDemandedElts.setBit(i * 2); 1453 1454 UndefElts2 = APInt(InnerVWidth, 0); 1455 TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2, 1456 Depth + 1); 1457 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1458 1459 UndefElts3 = APInt(InnerVWidth, 0); 1460 TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3, 1461 Depth + 1); 1462 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1463 1464 break; 1465 } 1466 1467 case Intrinsic::x86_sse2_packssdw_128: 1468 case Intrinsic::x86_sse2_packsswb_128: 1469 case Intrinsic::x86_sse2_packuswb_128: 1470 case Intrinsic::x86_sse41_packusdw: 1471 case Intrinsic::x86_avx2_packssdw: 1472 case Intrinsic::x86_avx2_packsswb: 1473 case Intrinsic::x86_avx2_packusdw: 1474 case Intrinsic::x86_avx2_packuswb: 1475 case Intrinsic::x86_avx512_packssdw_512: 1476 case Intrinsic::x86_avx512_packsswb_512: 1477 case Intrinsic::x86_avx512_packusdw_512: 1478 case Intrinsic::x86_avx512_packuswb_512: { 1479 auto *Ty0 = II->getArgOperand(0)->getType(); 1480 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1481 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1482 1483 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1484 unsigned VWidthPerLane = VWidth / NumLanes; 1485 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1486 1487 // Per lane, pack the elements of the first input and then the second. 1488 // e.g. 1489 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1490 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1491 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1492 APInt OpDemandedElts(InnerVWidth, 0); 1493 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1494 unsigned LaneIdx = Lane * VWidthPerLane; 1495 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1496 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1497 if (DemandedElts[Idx]) 1498 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1499 } 1500 } 1501 1502 // Demand elements from the operand. 1503 auto *Op = II->getArgOperand(OpNum); 1504 APInt OpUndefElts(InnerVWidth, 0); 1505 TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts, 1506 Depth + 1); 1507 if (TmpV) { 1508 II->setArgOperand(OpNum, TmpV); 1509 MadeChange = true; 1510 } 1511 1512 // Pack the operand's UNDEF elements, one lane at a time. 1513 OpUndefElts = OpUndefElts.zext(VWidth); 1514 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1515 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1516 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1517 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1518 UndefElts |= LaneElts; 1519 } 1520 } 1521 break; 1522 } 1523 1524 // PSHUFB 1525 case Intrinsic::x86_ssse3_pshuf_b_128: 1526 case Intrinsic::x86_avx2_pshuf_b: 1527 case Intrinsic::x86_avx512_pshuf_b_512: 1528 // PERMILVAR 1529 case Intrinsic::x86_avx_vpermilvar_ps: 1530 case Intrinsic::x86_avx_vpermilvar_ps_256: 1531 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1532 case Intrinsic::x86_avx_vpermilvar_pd: 1533 case Intrinsic::x86_avx_vpermilvar_pd_256: 1534 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1535 // PERMV 1536 case Intrinsic::x86_avx2_permd: 1537 case Intrinsic::x86_avx2_permps: { 1538 Value *Op1 = II->getArgOperand(1); 1539 TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts, 1540 Depth + 1); 1541 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1542 break; 1543 } 1544 1545 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1546 // in an undefined state. 1547 case Intrinsic::x86_sse4a_extrq: 1548 case Intrinsic::x86_sse4a_extrqi: 1549 case Intrinsic::x86_sse4a_insertq: 1550 case Intrinsic::x86_sse4a_insertqi: 1551 UndefElts.setHighBits(VWidth / 2); 1552 break; 1553 case Intrinsic::amdgcn_buffer_load: 1554 case Intrinsic::amdgcn_buffer_load_format: 1555 case Intrinsic::amdgcn_image_sample: 1556 case Intrinsic::amdgcn_image_sample_cl: 1557 case Intrinsic::amdgcn_image_sample_d: 1558 case Intrinsic::amdgcn_image_sample_d_cl: 1559 case Intrinsic::amdgcn_image_sample_l: 1560 case Intrinsic::amdgcn_image_sample_b: 1561 case Intrinsic::amdgcn_image_sample_b_cl: 1562 case Intrinsic::amdgcn_image_sample_lz: 1563 case Intrinsic::amdgcn_image_sample_cd: 1564 case Intrinsic::amdgcn_image_sample_cd_cl: 1565 1566 case Intrinsic::amdgcn_image_sample_c: 1567 case Intrinsic::amdgcn_image_sample_c_cl: 1568 case Intrinsic::amdgcn_image_sample_c_d: 1569 case Intrinsic::amdgcn_image_sample_c_d_cl: 1570 case Intrinsic::amdgcn_image_sample_c_l: 1571 case Intrinsic::amdgcn_image_sample_c_b: 1572 case Intrinsic::amdgcn_image_sample_c_b_cl: 1573 case Intrinsic::amdgcn_image_sample_c_lz: 1574 case Intrinsic::amdgcn_image_sample_c_cd: 1575 case Intrinsic::amdgcn_image_sample_c_cd_cl: 1576 1577 case Intrinsic::amdgcn_image_sample_o: 1578 case Intrinsic::amdgcn_image_sample_cl_o: 1579 case Intrinsic::amdgcn_image_sample_d_o: 1580 case Intrinsic::amdgcn_image_sample_d_cl_o: 1581 case Intrinsic::amdgcn_image_sample_l_o: 1582 case Intrinsic::amdgcn_image_sample_b_o: 1583 case Intrinsic::amdgcn_image_sample_b_cl_o: 1584 case Intrinsic::amdgcn_image_sample_lz_o: 1585 case Intrinsic::amdgcn_image_sample_cd_o: 1586 case Intrinsic::amdgcn_image_sample_cd_cl_o: 1587 1588 case Intrinsic::amdgcn_image_sample_c_o: 1589 case Intrinsic::amdgcn_image_sample_c_cl_o: 1590 case Intrinsic::amdgcn_image_sample_c_d_o: 1591 case Intrinsic::amdgcn_image_sample_c_d_cl_o: 1592 case Intrinsic::amdgcn_image_sample_c_l_o: 1593 case Intrinsic::amdgcn_image_sample_c_b_o: 1594 case Intrinsic::amdgcn_image_sample_c_b_cl_o: 1595 case Intrinsic::amdgcn_image_sample_c_lz_o: 1596 case Intrinsic::amdgcn_image_sample_c_cd_o: 1597 case Intrinsic::amdgcn_image_sample_c_cd_cl_o: 1598 1599 case Intrinsic::amdgcn_image_getlod: { 1600 if (VWidth == 1 || !DemandedElts.isMask()) 1601 return nullptr; 1602 1603 // TODO: Handle 3 vectors when supported in code gen. 1604 unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes()); 1605 if (NewNumElts == VWidth) 1606 return nullptr; 1607 1608 Module *M = II->getParent()->getParent()->getParent(); 1609 Type *EltTy = V->getType()->getVectorElementType(); 1610 1611 Type *NewTy = (NewNumElts == 1) ? EltTy : 1612 VectorType::get(EltTy, NewNumElts); 1613 1614 auto IID = II->getIntrinsicID(); 1615 1616 bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load || 1617 IID == Intrinsic::amdgcn_buffer_load_format; 1618 1619 Function *NewIntrin = IsBuffer ? 1620 Intrinsic::getDeclaration(M, IID, NewTy) : 1621 // Samplers have 3 mangled types. 1622 Intrinsic::getDeclaration(M, IID, 1623 { NewTy, II->getArgOperand(0)->getType(), 1624 II->getArgOperand(1)->getType()}); 1625 1626 SmallVector<Value *, 5> Args; 1627 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I) 1628 Args.push_back(II->getArgOperand(I)); 1629 1630 IRBuilderBase::InsertPointGuard Guard(*Builder); 1631 Builder->SetInsertPoint(II); 1632 1633 CallInst *NewCall = Builder->CreateCall(NewIntrin, Args); 1634 NewCall->takeName(II); 1635 NewCall->copyMetadata(*II); 1636 1637 if (!IsBuffer) { 1638 ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3)); 1639 if (DMask) { 1640 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1641 1642 unsigned PopCnt = 0; 1643 unsigned NewDMask = 0; 1644 for (unsigned I = 0; I < 4; ++I) { 1645 const unsigned Bit = 1 << I; 1646 if (!!(DMaskVal & Bit)) { 1647 if (++PopCnt > NewNumElts) 1648 break; 1649 1650 NewDMask |= Bit; 1651 } 1652 } 1653 1654 NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask)); 1655 } 1656 } 1657 1658 1659 if (NewNumElts == 1) { 1660 return Builder->CreateInsertElement(UndefValue::get(V->getType()), 1661 NewCall, static_cast<uint64_t>(0)); 1662 } 1663 1664 SmallVector<uint32_t, 8> EltMask; 1665 for (unsigned I = 0; I < VWidth; ++I) 1666 EltMask.push_back(I); 1667 1668 Value *Shuffle = Builder->CreateShuffleVector( 1669 NewCall, UndefValue::get(NewTy), EltMask); 1670 1671 MadeChange = true; 1672 return Shuffle; 1673 } 1674 } 1675 break; 1676 } 1677 } 1678 return MadeChange ? I : nullptr; 1679 } 1680