1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/PatternMatch.h" 18 #include "llvm/Support/KnownBits.h" 19 20 using namespace llvm; 21 using namespace llvm::PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 namespace { 26 27 struct AMDGPUImageDMaskIntrinsic { 28 unsigned Intr; 29 }; 30 31 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 32 #include "InstCombineTables.inc" 33 34 } // end anonymous namespace 35 36 /// Check to see if the specified operand of the specified instruction is a 37 /// constant integer. If so, check to see if there are any bits set in the 38 /// constant that are not demanded. If so, shrink the constant and return true. 39 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 40 const APInt &Demanded) { 41 assert(I && "No instruction?"); 42 assert(OpNo < I->getNumOperands() && "Operand index too large"); 43 44 // The operand must be a constant integer or splat integer. 45 Value *Op = I->getOperand(OpNo); 46 const APInt *C; 47 if (!match(Op, m_APInt(C))) 48 return false; 49 50 // If there are no bits set that aren't demanded, nothing to do. 51 if (C->isSubsetOf(Demanded)) 52 return false; 53 54 // This instruction is producing bits that are not demanded. Shrink the RHS. 55 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 56 57 return true; 58 } 59 60 61 62 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 63 /// the instruction has any properties that allow us to simplify its operands. 64 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 65 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 66 KnownBits Known(BitWidth); 67 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 68 69 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 70 0, &Inst); 71 if (!V) return false; 72 if (V == &Inst) return true; 73 replaceInstUsesWith(Inst, V); 74 return true; 75 } 76 77 /// This form of SimplifyDemandedBits simplifies the specified instruction 78 /// operand if possible, updating it in place. It returns true if it made any 79 /// change and false otherwise. 80 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 81 const APInt &DemandedMask, 82 KnownBits &Known, 83 unsigned Depth) { 84 Use &U = I->getOperandUse(OpNo); 85 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 86 Depth, I); 87 if (!NewVal) return false; 88 U = NewVal; 89 return true; 90 } 91 92 93 /// This function attempts to replace V with a simpler value based on the 94 /// demanded bits. When this function is called, it is known that only the bits 95 /// set in DemandedMask of the result of V are ever used downstream. 96 /// Consequently, depending on the mask and V, it may be possible to replace V 97 /// with a constant or one of its operands. In such cases, this function does 98 /// the replacement and returns true. In all other cases, it returns false after 99 /// analyzing the expression and setting KnownOne and known to be one in the 100 /// expression. Known.Zero contains all the bits that are known to be zero in 101 /// the expression. These are provided to potentially allow the caller (which 102 /// might recursively be SimplifyDemandedBits itself) to simplify the 103 /// expression. 104 /// Known.One and Known.Zero always follow the invariant that: 105 /// Known.One & Known.Zero == 0. 106 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 107 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 108 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 109 /// be the same. 110 /// 111 /// This returns null if it did not change anything and it permits no 112 /// simplification. This returns V itself if it did some simplification of V's 113 /// operands based on the information about what bits are demanded. This returns 114 /// some other non-null value if it found out that V is equal to another value 115 /// in the context where the specified bits are demanded, but not for all users. 116 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 117 KnownBits &Known, unsigned Depth, 118 Instruction *CxtI) { 119 assert(V != nullptr && "Null pointer of Value???"); 120 assert(Depth <= 6 && "Limit Search Depth"); 121 uint32_t BitWidth = DemandedMask.getBitWidth(); 122 Type *VTy = V->getType(); 123 assert( 124 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 125 Known.getBitWidth() == BitWidth && 126 "Value *V, DemandedMask and Known must have same BitWidth"); 127 128 if (isa<Constant>(V)) { 129 computeKnownBits(V, Known, Depth, CxtI); 130 return nullptr; 131 } 132 133 Known.resetAll(); 134 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 135 return UndefValue::get(VTy); 136 137 if (Depth == 6) // Limit search depth. 138 return nullptr; 139 140 Instruction *I = dyn_cast<Instruction>(V); 141 if (!I) { 142 computeKnownBits(V, Known, Depth, CxtI); 143 return nullptr; // Only analyze instructions. 144 } 145 146 // If there are multiple uses of this value and we aren't at the root, then 147 // we can't do any simplifications of the operands, because DemandedMask 148 // only reflects the bits demanded by *one* of the users. 149 if (Depth != 0 && !I->hasOneUse()) 150 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 151 152 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 153 154 // If this is the root being simplified, allow it to have multiple uses, 155 // just set the DemandedMask to all bits so that we can try to simplify the 156 // operands. This allows visitTruncInst (for example) to simplify the 157 // operand of a trunc without duplicating all the logic below. 158 if (Depth == 0 && !V->hasOneUse()) 159 DemandedMask.setAllBits(); 160 161 switch (I->getOpcode()) { 162 default: 163 computeKnownBits(I, Known, Depth, CxtI); 164 break; 165 case Instruction::And: { 166 // If either the LHS or the RHS are Zero, the result is zero. 167 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 168 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 169 Depth + 1)) 170 return I; 171 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 172 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 173 174 // Output known-0 are known to be clear if zero in either the LHS | RHS. 175 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 176 // Output known-1 bits are only known if set in both the LHS & RHS. 177 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 178 179 // If the client is only demanding bits that we know, return the known 180 // constant. 181 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 182 return Constant::getIntegerValue(VTy, IKnownOne); 183 184 // If all of the demanded bits are known 1 on one side, return the other. 185 // These bits cannot contribute to the result of the 'and'. 186 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 187 return I->getOperand(0); 188 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 189 return I->getOperand(1); 190 191 // If the RHS is a constant, see if we can simplify it. 192 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 193 return I; 194 195 Known.Zero = std::move(IKnownZero); 196 Known.One = std::move(IKnownOne); 197 break; 198 } 199 case Instruction::Or: { 200 // If either the LHS or the RHS are One, the result is One. 201 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 202 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 203 Depth + 1)) 204 return I; 205 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 206 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 207 208 // Output known-0 bits are only known if clear in both the LHS & RHS. 209 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 210 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 211 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 212 213 // If the client is only demanding bits that we know, return the known 214 // constant. 215 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 216 return Constant::getIntegerValue(VTy, IKnownOne); 217 218 // If all of the demanded bits are known zero on one side, return the other. 219 // These bits cannot contribute to the result of the 'or'. 220 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 221 return I->getOperand(0); 222 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 223 return I->getOperand(1); 224 225 // If the RHS is a constant, see if we can simplify it. 226 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 227 return I; 228 229 Known.Zero = std::move(IKnownZero); 230 Known.One = std::move(IKnownOne); 231 break; 232 } 233 case Instruction::Xor: { 234 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 235 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 236 return I; 237 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 238 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 239 240 // Output known-0 bits are known if clear or set in both the LHS & RHS. 241 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 242 (RHSKnown.One & LHSKnown.One); 243 // Output known-1 are known to be set if set in only one of the LHS, RHS. 244 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 245 (RHSKnown.One & LHSKnown.Zero); 246 247 // If the client is only demanding bits that we know, return the known 248 // constant. 249 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 250 return Constant::getIntegerValue(VTy, IKnownOne); 251 252 // If all of the demanded bits are known zero on one side, return the other. 253 // These bits cannot contribute to the result of the 'xor'. 254 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 255 return I->getOperand(0); 256 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 257 return I->getOperand(1); 258 259 // If all of the demanded bits are known to be zero on one side or the 260 // other, turn this into an *inclusive* or. 261 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 262 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 263 Instruction *Or = 264 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 265 I->getName()); 266 return InsertNewInstWith(Or, *I); 267 } 268 269 // If all of the demanded bits on one side are known, and all of the set 270 // bits on that side are also known to be set on the other side, turn this 271 // into an AND, as we know the bits will be cleared. 272 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 273 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 274 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 275 Constant *AndC = Constant::getIntegerValue(VTy, 276 ~RHSKnown.One & DemandedMask); 277 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 278 return InsertNewInstWith(And, *I); 279 } 280 281 // If the RHS is a constant, see if we can simplify it. 282 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 283 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 284 return I; 285 286 // If our LHS is an 'and' and if it has one use, and if any of the bits we 287 // are flipping are known to be set, then the xor is just resetting those 288 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 289 // simplifying both of them. 290 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 291 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 292 isa<ConstantInt>(I->getOperand(1)) && 293 isa<ConstantInt>(LHSInst->getOperand(1)) && 294 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 295 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 296 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 297 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 298 299 Constant *AndC = 300 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 301 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 302 InsertNewInstWith(NewAnd, *I); 303 304 Constant *XorC = 305 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 306 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 307 return InsertNewInstWith(NewXor, *I); 308 } 309 310 // Output known-0 bits are known if clear or set in both the LHS & RHS. 311 Known.Zero = std::move(IKnownZero); 312 // Output known-1 are known to be set if set in only one of the LHS, RHS. 313 Known.One = std::move(IKnownOne); 314 break; 315 } 316 case Instruction::Select: { 317 Value *LHS, *RHS; 318 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 319 if (SPF == SPF_UMAX) { 320 // UMax(A, C) == A if ... 321 // The lowest non-zero bit of DemandMask is higher than the highest 322 // non-zero bit of C. 323 const APInt *C; 324 unsigned CTZ = DemandedMask.countTrailingZeros(); 325 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 326 return LHS; 327 } else if (SPF == SPF_UMIN) { 328 // UMin(A, C) == A if ... 329 // The lowest non-zero bit of DemandMask is higher than the highest 330 // non-one bit of C. 331 // This comes from using DeMorgans on the above umax example. 332 const APInt *C; 333 unsigned CTZ = DemandedMask.countTrailingZeros(); 334 if (match(RHS, m_APInt(C)) && 335 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 336 return LHS; 337 } 338 339 // If this is a select as part of any other min/max pattern, don't simplify 340 // any further in case we break the structure. 341 if (SPF != SPF_UNKNOWN) 342 return nullptr; 343 344 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 345 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 346 return I; 347 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 348 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 349 350 // If the operands are constants, see if we can simplify them. 351 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 352 ShrinkDemandedConstant(I, 2, DemandedMask)) 353 return I; 354 355 // Only known if known in both the LHS and RHS. 356 Known.One = RHSKnown.One & LHSKnown.One; 357 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 358 break; 359 } 360 case Instruction::ZExt: 361 case Instruction::Trunc: { 362 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 363 364 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 365 KnownBits InputKnown(SrcBitWidth); 366 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 367 return I; 368 Known = InputKnown.zextOrTrunc(BitWidth); 369 // Any top bits are known to be zero. 370 if (BitWidth > SrcBitWidth) 371 Known.Zero.setBitsFrom(SrcBitWidth); 372 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 373 break; 374 } 375 case Instruction::BitCast: 376 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 377 return nullptr; // vector->int or fp->int? 378 379 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 380 if (VectorType *SrcVTy = 381 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 382 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 383 // Don't touch a bitcast between vectors of different element counts. 384 return nullptr; 385 } else 386 // Don't touch a scalar-to-vector bitcast. 387 return nullptr; 388 } else if (I->getOperand(0)->getType()->isVectorTy()) 389 // Don't touch a vector-to-scalar bitcast. 390 return nullptr; 391 392 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 393 return I; 394 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 395 break; 396 case Instruction::SExt: { 397 // Compute the bits in the result that are not present in the input. 398 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 399 400 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 401 402 // If any of the sign extended bits are demanded, we know that the sign 403 // bit is demanded. 404 if (DemandedMask.getActiveBits() > SrcBitWidth) 405 InputDemandedBits.setBit(SrcBitWidth-1); 406 407 KnownBits InputKnown(SrcBitWidth); 408 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 409 return I; 410 411 // If the input sign bit is known zero, or if the NewBits are not demanded 412 // convert this into a zero extension. 413 if (InputKnown.isNonNegative() || 414 DemandedMask.getActiveBits() <= SrcBitWidth) { 415 // Convert to ZExt cast. 416 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 417 return InsertNewInstWith(NewCast, *I); 418 } 419 420 // If the sign bit of the input is known set or clear, then we know the 421 // top bits of the result. 422 Known = InputKnown.sext(BitWidth); 423 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 424 break; 425 } 426 case Instruction::Add: 427 case Instruction::Sub: { 428 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 429 /// about the high bits of the operands. 430 unsigned NLZ = DemandedMask.countLeadingZeros(); 431 // Right fill the mask of bits for this ADD/SUB to demand the most 432 // significant bit and all those below it. 433 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 434 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 435 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 436 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 437 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 438 if (NLZ > 0) { 439 // Disable the nsw and nuw flags here: We can no longer guarantee that 440 // we won't wrap after simplification. Removing the nsw/nuw flags is 441 // legal here because the top bit is not demanded. 442 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 443 BinOP.setHasNoSignedWrap(false); 444 BinOP.setHasNoUnsignedWrap(false); 445 } 446 return I; 447 } 448 449 // If we are known to be adding/subtracting zeros to every bit below 450 // the highest demanded bit, we just return the other side. 451 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 452 return I->getOperand(0); 453 // We can't do this with the LHS for subtraction, unless we are only 454 // demanding the LSB. 455 if ((I->getOpcode() == Instruction::Add || 456 DemandedFromOps.isOneValue()) && 457 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 458 return I->getOperand(1); 459 460 // Otherwise just compute the known bits of the result. 461 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 462 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 463 NSW, LHSKnown, RHSKnown); 464 break; 465 } 466 case Instruction::Shl: { 467 const APInt *SA; 468 if (match(I->getOperand(1), m_APInt(SA))) { 469 const APInt *ShrAmt; 470 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 471 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 472 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 473 DemandedMask, Known)) 474 return R; 475 476 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 477 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 478 479 // If the shift is NUW/NSW, then it does demand the high bits. 480 ShlOperator *IOp = cast<ShlOperator>(I); 481 if (IOp->hasNoSignedWrap()) 482 DemandedMaskIn.setHighBits(ShiftAmt+1); 483 else if (IOp->hasNoUnsignedWrap()) 484 DemandedMaskIn.setHighBits(ShiftAmt); 485 486 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 487 return I; 488 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 489 Known.Zero <<= ShiftAmt; 490 Known.One <<= ShiftAmt; 491 // low bits known zero. 492 if (ShiftAmt) 493 Known.Zero.setLowBits(ShiftAmt); 494 } 495 break; 496 } 497 case Instruction::LShr: { 498 const APInt *SA; 499 if (match(I->getOperand(1), m_APInt(SA))) { 500 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 501 502 // Unsigned shift right. 503 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 504 505 // If the shift is exact, then it does demand the low bits (and knows that 506 // they are zero). 507 if (cast<LShrOperator>(I)->isExact()) 508 DemandedMaskIn.setLowBits(ShiftAmt); 509 510 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 511 return I; 512 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 513 Known.Zero.lshrInPlace(ShiftAmt); 514 Known.One.lshrInPlace(ShiftAmt); 515 if (ShiftAmt) 516 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 517 } 518 break; 519 } 520 case Instruction::AShr: { 521 // If this is an arithmetic shift right and only the low-bit is set, we can 522 // always convert this into a logical shr, even if the shift amount is 523 // variable. The low bit of the shift cannot be an input sign bit unless 524 // the shift amount is >= the size of the datatype, which is undefined. 525 if (DemandedMask.isOneValue()) { 526 // Perform the logical shift right. 527 Instruction *NewVal = BinaryOperator::CreateLShr( 528 I->getOperand(0), I->getOperand(1), I->getName()); 529 return InsertNewInstWith(NewVal, *I); 530 } 531 532 // If the sign bit is the only bit demanded by this ashr, then there is no 533 // need to do it, the shift doesn't change the high bit. 534 if (DemandedMask.isSignMask()) 535 return I->getOperand(0); 536 537 const APInt *SA; 538 if (match(I->getOperand(1), m_APInt(SA))) { 539 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 540 541 // Signed shift right. 542 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 543 // If any of the high bits are demanded, we should set the sign bit as 544 // demanded. 545 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 546 DemandedMaskIn.setSignBit(); 547 548 // If the shift is exact, then it does demand the low bits (and knows that 549 // they are zero). 550 if (cast<AShrOperator>(I)->isExact()) 551 DemandedMaskIn.setLowBits(ShiftAmt); 552 553 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 554 return I; 555 556 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 557 558 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 559 // Compute the new bits that are at the top now plus sign bits. 560 APInt HighBits(APInt::getHighBitsSet( 561 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 562 Known.Zero.lshrInPlace(ShiftAmt); 563 Known.One.lshrInPlace(ShiftAmt); 564 565 // If the input sign bit is known to be zero, or if none of the top bits 566 // are demanded, turn this into an unsigned shift right. 567 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 568 if (Known.Zero[BitWidth-ShiftAmt-1] || 569 !DemandedMask.intersects(HighBits)) { 570 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 571 I->getOperand(1)); 572 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 573 return InsertNewInstWith(LShr, *I); 574 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 575 Known.One |= HighBits; 576 } 577 } 578 break; 579 } 580 case Instruction::UDiv: { 581 // UDiv doesn't demand low bits that are zero in the divisor. 582 const APInt *SA; 583 if (match(I->getOperand(1), m_APInt(SA))) { 584 // If the shift is exact, then it does demand the low bits. 585 if (cast<UDivOperator>(I)->isExact()) 586 break; 587 588 // FIXME: Take the demanded mask of the result into account. 589 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 590 APInt DemandedMaskIn = 591 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 592 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 593 return I; 594 595 // Propagate zero bits from the input. 596 Known.Zero.setHighBits(std::min( 597 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 598 } 599 break; 600 } 601 case Instruction::SRem: 602 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 603 // X % -1 demands all the bits because we don't want to introduce 604 // INT_MIN % -1 (== undef) by accident. 605 if (Rem->isMinusOne()) 606 break; 607 APInt RA = Rem->getValue().abs(); 608 if (RA.isPowerOf2()) { 609 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 610 return I->getOperand(0); 611 612 APInt LowBits = RA - 1; 613 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 614 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 615 return I; 616 617 // The low bits of LHS are unchanged by the srem. 618 Known.Zero = LHSKnown.Zero & LowBits; 619 Known.One = LHSKnown.One & LowBits; 620 621 // If LHS is non-negative or has all low bits zero, then the upper bits 622 // are all zero. 623 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 624 Known.Zero |= ~LowBits; 625 626 // If LHS is negative and not all low bits are zero, then the upper bits 627 // are all one. 628 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 629 Known.One |= ~LowBits; 630 631 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 632 break; 633 } 634 } 635 636 // The sign bit is the LHS's sign bit, except when the result of the 637 // remainder is zero. 638 if (DemandedMask.isSignBitSet()) { 639 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 640 // If it's known zero, our sign bit is also zero. 641 if (LHSKnown.isNonNegative()) 642 Known.makeNonNegative(); 643 } 644 break; 645 case Instruction::URem: { 646 KnownBits Known2(BitWidth); 647 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 648 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 649 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 650 return I; 651 652 unsigned Leaders = Known2.countMinLeadingZeros(); 653 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 654 break; 655 } 656 case Instruction::Call: 657 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 658 switch (II->getIntrinsicID()) { 659 default: break; 660 case Intrinsic::bswap: { 661 // If the only bits demanded come from one byte of the bswap result, 662 // just shift the input byte into position to eliminate the bswap. 663 unsigned NLZ = DemandedMask.countLeadingZeros(); 664 unsigned NTZ = DemandedMask.countTrailingZeros(); 665 666 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 667 // we need all the bits down to bit 8. Likewise, round NLZ. If we 668 // have 14 leading zeros, round to 8. 669 NLZ &= ~7; 670 NTZ &= ~7; 671 // If we need exactly one byte, we can do this transformation. 672 if (BitWidth-NLZ-NTZ == 8) { 673 unsigned ResultBit = NTZ; 674 unsigned InputBit = BitWidth-NTZ-8; 675 676 // Replace this with either a left or right shift to get the byte into 677 // the right place. 678 Instruction *NewVal; 679 if (InputBit > ResultBit) 680 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 681 ConstantInt::get(I->getType(), InputBit-ResultBit)); 682 else 683 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 684 ConstantInt::get(I->getType(), ResultBit-InputBit)); 685 NewVal->takeName(I); 686 return InsertNewInstWith(NewVal, *I); 687 } 688 689 // TODO: Could compute known zero/one bits based on the input. 690 break; 691 } 692 case Intrinsic::fshr: 693 case Intrinsic::fshl: { 694 const APInt *SA; 695 if (!match(I->getOperand(2), m_APInt(SA))) 696 break; 697 698 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 699 // defined, so no need to special-case zero shifts here. 700 uint64_t ShiftAmt = SA->urem(BitWidth); 701 if (II->getIntrinsicID() == Intrinsic::fshr) 702 ShiftAmt = BitWidth - ShiftAmt; 703 704 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 705 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 706 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 707 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 708 return I; 709 710 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 711 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 712 Known.One = LHSKnown.One.shl(ShiftAmt) | 713 RHSKnown.One.lshr(BitWidth - ShiftAmt); 714 break; 715 } 716 case Intrinsic::x86_mmx_pmovmskb: 717 case Intrinsic::x86_sse_movmsk_ps: 718 case Intrinsic::x86_sse2_movmsk_pd: 719 case Intrinsic::x86_sse2_pmovmskb_128: 720 case Intrinsic::x86_avx_movmsk_ps_256: 721 case Intrinsic::x86_avx_movmsk_pd_256: 722 case Intrinsic::x86_avx2_pmovmskb: { 723 // MOVMSK copies the vector elements' sign bits to the low bits 724 // and zeros the high bits. 725 unsigned ArgWidth; 726 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 727 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 728 } else { 729 auto Arg = II->getArgOperand(0); 730 auto ArgType = cast<VectorType>(Arg->getType()); 731 ArgWidth = ArgType->getNumElements(); 732 } 733 734 // If we don't need any of low bits then return zero, 735 // we know that DemandedMask is non-zero already. 736 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 737 if (DemandedElts.isNullValue()) 738 return ConstantInt::getNullValue(VTy); 739 740 // We know that the upper bits are set to zero. 741 Known.Zero.setBitsFrom(ArgWidth); 742 return nullptr; 743 } 744 case Intrinsic::x86_sse42_crc32_64_64: 745 Known.Zero.setBitsFrom(32); 746 return nullptr; 747 } 748 } 749 computeKnownBits(V, Known, Depth, CxtI); 750 break; 751 } 752 753 // If the client is only demanding bits that we know, return the known 754 // constant. 755 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 756 return Constant::getIntegerValue(VTy, Known.One); 757 return nullptr; 758 } 759 760 /// Helper routine of SimplifyDemandedUseBits. It computes Known 761 /// bits. It also tries to handle simplifications that can be done based on 762 /// DemandedMask, but without modifying the Instruction. 763 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 764 const APInt &DemandedMask, 765 KnownBits &Known, 766 unsigned Depth, 767 Instruction *CxtI) { 768 unsigned BitWidth = DemandedMask.getBitWidth(); 769 Type *ITy = I->getType(); 770 771 KnownBits LHSKnown(BitWidth); 772 KnownBits RHSKnown(BitWidth); 773 774 // Despite the fact that we can't simplify this instruction in all User's 775 // context, we can at least compute the known bits, and we can 776 // do simplifications that apply to *just* the one user if we know that 777 // this instruction has a simpler value in that context. 778 switch (I->getOpcode()) { 779 case Instruction::And: { 780 // If either the LHS or the RHS are Zero, the result is zero. 781 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 782 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 783 CxtI); 784 785 // Output known-0 are known to be clear if zero in either the LHS | RHS. 786 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 787 // Output known-1 bits are only known if set in both the LHS & RHS. 788 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 789 790 // If the client is only demanding bits that we know, return the known 791 // constant. 792 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 793 return Constant::getIntegerValue(ITy, IKnownOne); 794 795 // If all of the demanded bits are known 1 on one side, return the other. 796 // These bits cannot contribute to the result of the 'and' in this 797 // context. 798 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 799 return I->getOperand(0); 800 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 801 return I->getOperand(1); 802 803 Known.Zero = std::move(IKnownZero); 804 Known.One = std::move(IKnownOne); 805 break; 806 } 807 case Instruction::Or: { 808 // We can simplify (X|Y) -> X or Y in the user's context if we know that 809 // only bits from X or Y are demanded. 810 811 // If either the LHS or the RHS are One, the result is One. 812 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 813 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 814 CxtI); 815 816 // Output known-0 bits are only known if clear in both the LHS & RHS. 817 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 818 // Output known-1 are known to be set if set in either the LHS | RHS. 819 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 820 821 // If the client is only demanding bits that we know, return the known 822 // constant. 823 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 824 return Constant::getIntegerValue(ITy, IKnownOne); 825 826 // If all of the demanded bits are known zero on one side, return the 827 // other. These bits cannot contribute to the result of the 'or' in this 828 // context. 829 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 830 return I->getOperand(0); 831 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 832 return I->getOperand(1); 833 834 Known.Zero = std::move(IKnownZero); 835 Known.One = std::move(IKnownOne); 836 break; 837 } 838 case Instruction::Xor: { 839 // We can simplify (X^Y) -> X or Y in the user's context if we know that 840 // only bits from X or Y are demanded. 841 842 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 843 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 844 CxtI); 845 846 // Output known-0 bits are known if clear or set in both the LHS & RHS. 847 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 848 (RHSKnown.One & LHSKnown.One); 849 // Output known-1 are known to be set if set in only one of the LHS, RHS. 850 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 851 (RHSKnown.One & LHSKnown.Zero); 852 853 // If the client is only demanding bits that we know, return the known 854 // constant. 855 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 856 return Constant::getIntegerValue(ITy, IKnownOne); 857 858 // If all of the demanded bits are known zero on one side, return the 859 // other. 860 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 861 return I->getOperand(0); 862 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 863 return I->getOperand(1); 864 865 // Output known-0 bits are known if clear or set in both the LHS & RHS. 866 Known.Zero = std::move(IKnownZero); 867 // Output known-1 are known to be set if set in only one of the LHS, RHS. 868 Known.One = std::move(IKnownOne); 869 break; 870 } 871 default: 872 // Compute the Known bits to simplify things downstream. 873 computeKnownBits(I, Known, Depth, CxtI); 874 875 // If this user is only demanding bits that we know, return the known 876 // constant. 877 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 878 return Constant::getIntegerValue(ITy, Known.One); 879 880 break; 881 } 882 883 return nullptr; 884 } 885 886 887 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 888 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 889 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 890 /// of "C2-C1". 891 /// 892 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 893 /// ..., bn}, without considering the specific value X is holding. 894 /// This transformation is legal iff one of following conditions is hold: 895 /// 1) All the bit in S are 0, in this case E1 == E2. 896 /// 2) We don't care those bits in S, per the input DemandedMask. 897 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 898 /// rest bits. 899 /// 900 /// Currently we only test condition 2). 901 /// 902 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 903 /// not successful. 904 Value * 905 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 906 Instruction *Shl, const APInt &ShlOp1, 907 const APInt &DemandedMask, 908 KnownBits &Known) { 909 if (!ShlOp1 || !ShrOp1) 910 return nullptr; // No-op. 911 912 Value *VarX = Shr->getOperand(0); 913 Type *Ty = VarX->getType(); 914 unsigned BitWidth = Ty->getScalarSizeInBits(); 915 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 916 return nullptr; // Undef. 917 918 unsigned ShlAmt = ShlOp1.getZExtValue(); 919 unsigned ShrAmt = ShrOp1.getZExtValue(); 920 921 Known.One.clearAllBits(); 922 Known.Zero.setLowBits(ShlAmt - 1); 923 Known.Zero &= DemandedMask; 924 925 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 926 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 927 928 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 929 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 930 (BitMask1.ashr(ShrAmt) << ShlAmt); 931 932 if (ShrAmt <= ShlAmt) { 933 BitMask2 <<= (ShlAmt - ShrAmt); 934 } else { 935 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 936 BitMask2.ashr(ShrAmt - ShlAmt); 937 } 938 939 // Check if condition-2 (see the comment to this function) is satified. 940 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 941 if (ShrAmt == ShlAmt) 942 return VarX; 943 944 if (!Shr->hasOneUse()) 945 return nullptr; 946 947 BinaryOperator *New; 948 if (ShrAmt < ShlAmt) { 949 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 950 New = BinaryOperator::CreateShl(VarX, Amt); 951 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 952 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 953 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 954 } else { 955 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 956 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 957 BinaryOperator::CreateAShr(VarX, Amt); 958 if (cast<BinaryOperator>(Shr)->isExact()) 959 New->setIsExact(true); 960 } 961 962 return InsertNewInstWith(New, *Shl); 963 } 964 965 return nullptr; 966 } 967 968 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 969 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, 970 APInt DemandedElts, 971 int DMaskIdx, 972 int TFCIdx) { 973 unsigned VWidth = II->getType()->getVectorNumElements(); 974 if (VWidth == 1) 975 return nullptr; 976 977 // Need to change to new instruction format 978 ConstantInt *TFC = nullptr; 979 bool TFELWEEnabled = false; 980 if (TFCIdx > 0) { 981 TFC = dyn_cast<ConstantInt>(II->getArgOperand(TFCIdx)); 982 TFELWEEnabled = TFC->getZExtValue() & 0x1 // TFE 983 || TFC->getZExtValue() & 0x2; // LWE 984 } 985 986 if (TFELWEEnabled) 987 return nullptr; // TFE not yet supported 988 989 ConstantInt *NewDMask = nullptr; 990 991 if (DMaskIdx < 0) { 992 // Pretend that a prefix of elements is demanded to simplify the code 993 // below. 994 DemandedElts = (1 << DemandedElts.getActiveBits()) - 1; 995 } else { 996 ConstantInt *DMask = dyn_cast<ConstantInt>(II->getArgOperand(DMaskIdx)); 997 if (!DMask) 998 return nullptr; // non-constant dmask is not supported by codegen 999 1000 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1001 1002 // Mask off values that are undefined because the dmask doesn't cover them 1003 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; 1004 1005 unsigned NewDMaskVal = 0; 1006 unsigned OrigLoadIdx = 0; 1007 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1008 const unsigned Bit = 1 << SrcIdx; 1009 if (!!(DMaskVal & Bit)) { 1010 if (!!DemandedElts[OrigLoadIdx]) 1011 NewDMaskVal |= Bit; 1012 OrigLoadIdx++; 1013 } 1014 } 1015 1016 if (DMaskVal != NewDMaskVal) 1017 NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal); 1018 } 1019 1020 // TODO: Handle 3 vectors when supported in code gen. 1021 unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countPopulation()); 1022 if (!NewNumElts) 1023 return UndefValue::get(II->getType()); 1024 1025 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1026 if (NewDMask) 1027 II->setArgOperand(DMaskIdx, NewDMask); 1028 return nullptr; 1029 } 1030 1031 // Determine the overload types of the original intrinsic. 1032 auto IID = II->getIntrinsicID(); 1033 SmallVector<Intrinsic::IITDescriptor, 16> Table; 1034 getIntrinsicInfoTableEntries(IID, Table); 1035 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1036 1037 FunctionType *FTy = II->getCalledFunction()->getFunctionType(); 1038 SmallVector<Type *, 6> OverloadTys; 1039 Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, OverloadTys); 1040 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1041 Intrinsic::matchIntrinsicType(FTy->getParamType(i), TableRef, OverloadTys); 1042 1043 // Get the new return type overload of the intrinsic. 1044 Module *M = II->getParent()->getParent()->getParent(); 1045 Type *EltTy = II->getType()->getVectorElementType(); 1046 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts); 1047 1048 OverloadTys[0] = NewTy; 1049 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys); 1050 1051 SmallVector<Value *, 16> Args; 1052 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I) 1053 Args.push_back(II->getArgOperand(I)); 1054 1055 if (NewDMask) 1056 Args[DMaskIdx] = NewDMask; 1057 1058 IRBuilderBase::InsertPointGuard Guard(Builder); 1059 Builder.SetInsertPoint(II); 1060 1061 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); 1062 NewCall->takeName(II); 1063 NewCall->copyMetadata(*II); 1064 1065 if (NewNumElts == 1) { 1066 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall, 1067 DemandedElts.countTrailingZeros()); 1068 } 1069 1070 SmallVector<uint32_t, 8> EltMask; 1071 unsigned NewLoadIdx = 0; 1072 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1073 if (!!DemandedElts[OrigLoadIdx]) 1074 EltMask.push_back(NewLoadIdx++); 1075 else 1076 EltMask.push_back(NewNumElts); 1077 } 1078 1079 Value *Shuffle = 1080 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask); 1081 1082 return Shuffle; 1083 } 1084 1085 /// The specified value produces a vector with any number of elements. 1086 /// DemandedElts contains the set of elements that are actually used by the 1087 /// caller. This method analyzes which elements of the operand are undef and 1088 /// returns that information in UndefElts. 1089 /// 1090 /// If the information about demanded elements can be used to simplify the 1091 /// operation, the operation is simplified, then the resultant value is 1092 /// returned. This returns null if no change was made. 1093 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 1094 APInt &UndefElts, 1095 unsigned Depth) { 1096 unsigned VWidth = V->getType()->getVectorNumElements(); 1097 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1098 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1099 1100 if (isa<UndefValue>(V)) { 1101 // If the entire vector is undefined, just return this info. 1102 UndefElts = EltMask; 1103 return nullptr; 1104 } 1105 1106 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 1107 UndefElts = EltMask; 1108 return UndefValue::get(V->getType()); 1109 } 1110 1111 UndefElts = 0; 1112 1113 if (auto *C = dyn_cast<Constant>(V)) { 1114 // Check if this is identity. If so, return 0 since we are not simplifying 1115 // anything. 1116 if (DemandedElts.isAllOnesValue()) 1117 return nullptr; 1118 1119 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1120 Constant *Undef = UndefValue::get(EltTy); 1121 SmallVector<Constant*, 16> Elts; 1122 for (unsigned i = 0; i != VWidth; ++i) { 1123 if (!DemandedElts[i]) { // If not demanded, set to undef. 1124 Elts.push_back(Undef); 1125 UndefElts.setBit(i); 1126 continue; 1127 } 1128 1129 Constant *Elt = C->getAggregateElement(i); 1130 if (!Elt) return nullptr; 1131 1132 if (isa<UndefValue>(Elt)) { // Already undef. 1133 Elts.push_back(Undef); 1134 UndefElts.setBit(i); 1135 } else { // Otherwise, defined. 1136 Elts.push_back(Elt); 1137 } 1138 } 1139 1140 // If we changed the constant, return it. 1141 Constant *NewCV = ConstantVector::get(Elts); 1142 return NewCV != C ? NewCV : nullptr; 1143 } 1144 1145 // Limit search depth. 1146 if (Depth == 10) 1147 return nullptr; 1148 1149 // If multiple users are using the root value, proceed with 1150 // simplification conservatively assuming that all elements 1151 // are needed. 1152 if (!V->hasOneUse()) { 1153 // Quit if we find multiple users of a non-root value though. 1154 // They'll be handled when it's their turn to be visited by 1155 // the main instcombine process. 1156 if (Depth != 0) 1157 // TODO: Just compute the UndefElts information recursively. 1158 return nullptr; 1159 1160 // Conservatively assume that all elements are needed. 1161 DemandedElts = EltMask; 1162 } 1163 1164 Instruction *I = dyn_cast<Instruction>(V); 1165 if (!I) return nullptr; // Only analyze instructions. 1166 1167 bool MadeChange = false; 1168 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1169 APInt Demanded, APInt &Undef) { 1170 auto *II = dyn_cast<IntrinsicInst>(Inst); 1171 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1172 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1173 if (II) 1174 II->setArgOperand(OpNum, V); 1175 else 1176 Inst->setOperand(OpNum, V); 1177 MadeChange = true; 1178 } 1179 }; 1180 1181 APInt UndefElts2(VWidth, 0); 1182 APInt UndefElts3(VWidth, 0); 1183 switch (I->getOpcode()) { 1184 default: break; 1185 1186 case Instruction::InsertElement: { 1187 // If this is a variable index, we don't know which element it overwrites. 1188 // demand exactly the same input as we produce. 1189 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1190 if (!Idx) { 1191 // Note that we can't propagate undef elt info, because we don't know 1192 // which elt is getting updated. 1193 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1194 break; 1195 } 1196 1197 // The element inserted overwrites whatever was there, so the input demanded 1198 // set is simpler than the output set. 1199 unsigned IdxNo = Idx->getZExtValue(); 1200 APInt PreInsertDemandedElts = DemandedElts; 1201 if (IdxNo < VWidth) 1202 PreInsertDemandedElts.clearBit(IdxNo); 1203 1204 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1205 1206 // If this is inserting an element that isn't demanded, remove this 1207 // insertelement. 1208 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1209 Worklist.Add(I); 1210 return I->getOperand(0); 1211 } 1212 1213 // The inserted element is defined. 1214 UndefElts.clearBit(IdxNo); 1215 break; 1216 } 1217 case Instruction::ShuffleVector: { 1218 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1219 unsigned LHSVWidth = 1220 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1221 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1222 for (unsigned i = 0; i < VWidth; i++) { 1223 if (DemandedElts[i]) { 1224 unsigned MaskVal = Shuffle->getMaskValue(i); 1225 if (MaskVal != -1u) { 1226 assert(MaskVal < LHSVWidth * 2 && 1227 "shufflevector mask index out of range!"); 1228 if (MaskVal < LHSVWidth) 1229 LeftDemanded.setBit(MaskVal); 1230 else 1231 RightDemanded.setBit(MaskVal - LHSVWidth); 1232 } 1233 } 1234 } 1235 1236 APInt LHSUndefElts(LHSVWidth, 0); 1237 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1238 1239 APInt RHSUndefElts(LHSVWidth, 0); 1240 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1241 1242 bool NewUndefElts = false; 1243 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1244 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1245 bool LHSUniform = true; 1246 bool RHSUniform = true; 1247 for (unsigned i = 0; i < VWidth; i++) { 1248 unsigned MaskVal = Shuffle->getMaskValue(i); 1249 if (MaskVal == -1u) { 1250 UndefElts.setBit(i); 1251 } else if (!DemandedElts[i]) { 1252 NewUndefElts = true; 1253 UndefElts.setBit(i); 1254 } else if (MaskVal < LHSVWidth) { 1255 if (LHSUndefElts[MaskVal]) { 1256 NewUndefElts = true; 1257 UndefElts.setBit(i); 1258 } else { 1259 LHSIdx = LHSIdx == -1u ? i : LHSVWidth; 1260 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth; 1261 LHSUniform = LHSUniform && (MaskVal == i); 1262 } 1263 } else { 1264 if (RHSUndefElts[MaskVal - LHSVWidth]) { 1265 NewUndefElts = true; 1266 UndefElts.setBit(i); 1267 } else { 1268 RHSIdx = RHSIdx == -1u ? i : LHSVWidth; 1269 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth; 1270 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i); 1271 } 1272 } 1273 } 1274 1275 // Try to transform shuffle with constant vector and single element from 1276 // this constant vector to single insertelement instruction. 1277 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1278 // insertelement V, C[ci], ci-n 1279 if (LHSVWidth == Shuffle->getType()->getNumElements()) { 1280 Value *Op = nullptr; 1281 Constant *Value = nullptr; 1282 unsigned Idx = -1u; 1283 1284 // Find constant vector with the single element in shuffle (LHS or RHS). 1285 if (LHSIdx < LHSVWidth && RHSUniform) { 1286 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1287 Op = Shuffle->getOperand(1); 1288 Value = CV->getOperand(LHSValIdx); 1289 Idx = LHSIdx; 1290 } 1291 } 1292 if (RHSIdx < LHSVWidth && LHSUniform) { 1293 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1294 Op = Shuffle->getOperand(0); 1295 Value = CV->getOperand(RHSValIdx); 1296 Idx = RHSIdx; 1297 } 1298 } 1299 // Found constant vector with single element - convert to insertelement. 1300 if (Op && Value) { 1301 Instruction *New = InsertElementInst::Create( 1302 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1303 Shuffle->getName()); 1304 InsertNewInstWith(New, *Shuffle); 1305 return New; 1306 } 1307 } 1308 if (NewUndefElts) { 1309 // Add additional discovered undefs. 1310 SmallVector<Constant*, 16> Elts; 1311 for (unsigned i = 0; i < VWidth; ++i) { 1312 if (UndefElts[i]) 1313 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1314 else 1315 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1316 Shuffle->getMaskValue(i))); 1317 } 1318 I->setOperand(2, ConstantVector::get(Elts)); 1319 MadeChange = true; 1320 } 1321 break; 1322 } 1323 case Instruction::Select: { 1324 // If this is a vector select, try to transform the select condition based 1325 // on the current demanded elements. 1326 SelectInst *Sel = cast<SelectInst>(I); 1327 if (Sel->getCondition()->getType()->isVectorTy()) { 1328 // TODO: We are not doing anything with UndefElts based on this call. 1329 // It is overwritten below based on the other select operands. If an 1330 // element of the select condition is known undef, then we are free to 1331 // choose the output value from either arm of the select. If we know that 1332 // one of those values is undef, then the output can be undef. 1333 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1334 } 1335 1336 // Next, see if we can transform the arms of the select. 1337 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1338 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1339 for (unsigned i = 0; i < VWidth; i++) { 1340 // isNullValue() always returns false when called on a ConstantExpr. 1341 // Skip constant expressions to avoid propagating incorrect information. 1342 Constant *CElt = CV->getAggregateElement(i); 1343 if (isa<ConstantExpr>(CElt)) 1344 continue; 1345 // TODO: If a select condition element is undef, we can demand from 1346 // either side. If one side is known undef, choosing that side would 1347 // propagate undef. 1348 if (CElt->isNullValue()) 1349 DemandedLHS.clearBit(i); 1350 else 1351 DemandedRHS.clearBit(i); 1352 } 1353 } 1354 1355 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1356 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1357 1358 // Output elements are undefined if the element from each arm is undefined. 1359 // TODO: This can be improved. See comment in select condition handling. 1360 UndefElts = UndefElts2 & UndefElts3; 1361 break; 1362 } 1363 case Instruction::BitCast: { 1364 // Vector->vector casts only. 1365 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1366 if (!VTy) break; 1367 unsigned InVWidth = VTy->getNumElements(); 1368 APInt InputDemandedElts(InVWidth, 0); 1369 UndefElts2 = APInt(InVWidth, 0); 1370 unsigned Ratio; 1371 1372 if (VWidth == InVWidth) { 1373 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1374 // elements as are demanded of us. 1375 Ratio = 1; 1376 InputDemandedElts = DemandedElts; 1377 } else if ((VWidth % InVWidth) == 0) { 1378 // If the number of elements in the output is a multiple of the number of 1379 // elements in the input then an input element is live if any of the 1380 // corresponding output elements are live. 1381 Ratio = VWidth / InVWidth; 1382 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1383 if (DemandedElts[OutIdx]) 1384 InputDemandedElts.setBit(OutIdx / Ratio); 1385 } else if ((InVWidth % VWidth) == 0) { 1386 // If the number of elements in the input is a multiple of the number of 1387 // elements in the output then an input element is live if the 1388 // corresponding output element is live. 1389 Ratio = InVWidth / VWidth; 1390 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1391 if (DemandedElts[InIdx / Ratio]) 1392 InputDemandedElts.setBit(InIdx); 1393 } else { 1394 // Unsupported so far. 1395 break; 1396 } 1397 1398 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1399 1400 if (VWidth == InVWidth) { 1401 UndefElts = UndefElts2; 1402 } else if ((VWidth % InVWidth) == 0) { 1403 // If the number of elements in the output is a multiple of the number of 1404 // elements in the input then an output element is undef if the 1405 // corresponding input element is undef. 1406 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1407 if (UndefElts2[OutIdx / Ratio]) 1408 UndefElts.setBit(OutIdx); 1409 } else if ((InVWidth % VWidth) == 0) { 1410 // If the number of elements in the input is a multiple of the number of 1411 // elements in the output then an output element is undef if all of the 1412 // corresponding input elements are undef. 1413 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1414 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1415 if (SubUndef.countPopulation() == Ratio) 1416 UndefElts.setBit(OutIdx); 1417 } 1418 } else { 1419 llvm_unreachable("Unimp"); 1420 } 1421 break; 1422 } 1423 case Instruction::FPTrunc: 1424 case Instruction::FPExt: 1425 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1426 break; 1427 1428 case Instruction::Call: { 1429 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1430 if (!II) break; 1431 switch (II->getIntrinsicID()) { 1432 case Intrinsic::x86_xop_vfrcz_ss: 1433 case Intrinsic::x86_xop_vfrcz_sd: 1434 // The instructions for these intrinsics are speced to zero upper bits not 1435 // pass them through like other scalar intrinsics. So we shouldn't just 1436 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1437 // Instead we should return a zero vector. 1438 if (!DemandedElts[0]) { 1439 Worklist.Add(II); 1440 return ConstantAggregateZero::get(II->getType()); 1441 } 1442 1443 // Only the lower element is used. 1444 DemandedElts = 1; 1445 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1446 1447 // Only the lower element is undefined. The high elements are zero. 1448 UndefElts = UndefElts[0]; 1449 break; 1450 1451 // Unary scalar-as-vector operations that work column-wise. 1452 case Intrinsic::x86_sse_rcp_ss: 1453 case Intrinsic::x86_sse_rsqrt_ss: 1454 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1455 1456 // If lowest element of a scalar op isn't used then use Arg0. 1457 if (!DemandedElts[0]) { 1458 Worklist.Add(II); 1459 return II->getArgOperand(0); 1460 } 1461 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1462 // checks). 1463 break; 1464 1465 // Binary scalar-as-vector operations that work column-wise. The high 1466 // elements come from operand 0. The low element is a function of both 1467 // operands. 1468 case Intrinsic::x86_sse_min_ss: 1469 case Intrinsic::x86_sse_max_ss: 1470 case Intrinsic::x86_sse_cmp_ss: 1471 case Intrinsic::x86_sse2_min_sd: 1472 case Intrinsic::x86_sse2_max_sd: 1473 case Intrinsic::x86_sse2_cmp_sd: { 1474 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1475 1476 // If lowest element of a scalar op isn't used then use Arg0. 1477 if (!DemandedElts[0]) { 1478 Worklist.Add(II); 1479 return II->getArgOperand(0); 1480 } 1481 1482 // Only lower element is used for operand 1. 1483 DemandedElts = 1; 1484 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1485 1486 // Lower element is undefined if both lower elements are undefined. 1487 // Consider things like undef&0. The result is known zero, not undef. 1488 if (!UndefElts2[0]) 1489 UndefElts.clearBit(0); 1490 1491 break; 1492 } 1493 1494 // Binary scalar-as-vector operations that work column-wise. The high 1495 // elements come from operand 0 and the low element comes from operand 1. 1496 case Intrinsic::x86_sse41_round_ss: 1497 case Intrinsic::x86_sse41_round_sd: { 1498 // Don't use the low element of operand 0. 1499 APInt DemandedElts2 = DemandedElts; 1500 DemandedElts2.clearBit(0); 1501 simplifyAndSetOp(II, 0, DemandedElts2, UndefElts); 1502 1503 // If lowest element of a scalar op isn't used then use Arg0. 1504 if (!DemandedElts[0]) { 1505 Worklist.Add(II); 1506 return II->getArgOperand(0); 1507 } 1508 1509 // Only lower element is used for operand 1. 1510 DemandedElts = 1; 1511 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1512 1513 // Take the high undef elements from operand 0 and take the lower element 1514 // from operand 1. 1515 UndefElts.clearBit(0); 1516 UndefElts |= UndefElts2[0]; 1517 break; 1518 } 1519 1520 // Three input scalar-as-vector operations that work column-wise. The high 1521 // elements come from operand 0 and the low element is a function of all 1522 // three inputs. 1523 case Intrinsic::x86_avx512_mask_add_ss_round: 1524 case Intrinsic::x86_avx512_mask_div_ss_round: 1525 case Intrinsic::x86_avx512_mask_mul_ss_round: 1526 case Intrinsic::x86_avx512_mask_sub_ss_round: 1527 case Intrinsic::x86_avx512_mask_max_ss_round: 1528 case Intrinsic::x86_avx512_mask_min_ss_round: 1529 case Intrinsic::x86_avx512_mask_add_sd_round: 1530 case Intrinsic::x86_avx512_mask_div_sd_round: 1531 case Intrinsic::x86_avx512_mask_mul_sd_round: 1532 case Intrinsic::x86_avx512_mask_sub_sd_round: 1533 case Intrinsic::x86_avx512_mask_max_sd_round: 1534 case Intrinsic::x86_avx512_mask_min_sd_round: 1535 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1536 1537 // If lowest element of a scalar op isn't used then use Arg0. 1538 if (!DemandedElts[0]) { 1539 Worklist.Add(II); 1540 return II->getArgOperand(0); 1541 } 1542 1543 // Only lower element is used for operand 1 and 2. 1544 DemandedElts = 1; 1545 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1546 simplifyAndSetOp(II, 2, DemandedElts, UndefElts3); 1547 1548 // Lower element is undefined if all three lower elements are undefined. 1549 // Consider things like undef&0. The result is known zero, not undef. 1550 if (!UndefElts2[0] || !UndefElts3[0]) 1551 UndefElts.clearBit(0); 1552 1553 break; 1554 1555 case Intrinsic::x86_sse2_packssdw_128: 1556 case Intrinsic::x86_sse2_packsswb_128: 1557 case Intrinsic::x86_sse2_packuswb_128: 1558 case Intrinsic::x86_sse41_packusdw: 1559 case Intrinsic::x86_avx2_packssdw: 1560 case Intrinsic::x86_avx2_packsswb: 1561 case Intrinsic::x86_avx2_packusdw: 1562 case Intrinsic::x86_avx2_packuswb: 1563 case Intrinsic::x86_avx512_packssdw_512: 1564 case Intrinsic::x86_avx512_packsswb_512: 1565 case Intrinsic::x86_avx512_packusdw_512: 1566 case Intrinsic::x86_avx512_packuswb_512: { 1567 auto *Ty0 = II->getArgOperand(0)->getType(); 1568 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1569 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1570 1571 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1572 unsigned VWidthPerLane = VWidth / NumLanes; 1573 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1574 1575 // Per lane, pack the elements of the first input and then the second. 1576 // e.g. 1577 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1578 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1579 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1580 APInt OpDemandedElts(InnerVWidth, 0); 1581 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1582 unsigned LaneIdx = Lane * VWidthPerLane; 1583 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1584 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1585 if (DemandedElts[Idx]) 1586 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1587 } 1588 } 1589 1590 // Demand elements from the operand. 1591 APInt OpUndefElts(InnerVWidth, 0); 1592 simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts); 1593 1594 // Pack the operand's UNDEF elements, one lane at a time. 1595 OpUndefElts = OpUndefElts.zext(VWidth); 1596 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1597 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1598 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1599 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1600 UndefElts |= LaneElts; 1601 } 1602 } 1603 break; 1604 } 1605 1606 // PSHUFB 1607 case Intrinsic::x86_ssse3_pshuf_b_128: 1608 case Intrinsic::x86_avx2_pshuf_b: 1609 case Intrinsic::x86_avx512_pshuf_b_512: 1610 // PERMILVAR 1611 case Intrinsic::x86_avx_vpermilvar_ps: 1612 case Intrinsic::x86_avx_vpermilvar_ps_256: 1613 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1614 case Intrinsic::x86_avx_vpermilvar_pd: 1615 case Intrinsic::x86_avx_vpermilvar_pd_256: 1616 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1617 // PERMV 1618 case Intrinsic::x86_avx2_permd: 1619 case Intrinsic::x86_avx2_permps: { 1620 simplifyAndSetOp(II, 1, DemandedElts, UndefElts); 1621 break; 1622 } 1623 1624 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1625 // in an undefined state. 1626 case Intrinsic::x86_sse4a_extrq: 1627 case Intrinsic::x86_sse4a_extrqi: 1628 case Intrinsic::x86_sse4a_insertq: 1629 case Intrinsic::x86_sse4a_insertqi: 1630 UndefElts.setHighBits(VWidth / 2); 1631 break; 1632 case Intrinsic::amdgcn_buffer_load: 1633 case Intrinsic::amdgcn_buffer_load_format: 1634 case Intrinsic::amdgcn_raw_buffer_load: 1635 case Intrinsic::amdgcn_raw_buffer_load_format: 1636 case Intrinsic::amdgcn_struct_buffer_load: 1637 case Intrinsic::amdgcn_struct_buffer_load_format: 1638 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts); 1639 default: { 1640 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) 1641 return simplifyAMDGCNMemoryIntrinsicDemanded( 1642 II, DemandedElts, 0, II->getNumArgOperands() - 2); 1643 1644 break; 1645 } 1646 } // switch on IntrinsicID 1647 break; 1648 } // case Call 1649 } // switch on Opcode 1650 1651 // TODO: We bail completely on integer div/rem and shifts because they have 1652 // UB/poison potential, but that should be refined. 1653 BinaryOperator *BO; 1654 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1655 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1656 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1657 1658 // Any change to an instruction with potential poison must clear those flags 1659 // because we can not guarantee those constraints now. Other analysis may 1660 // determine that it is safe to re-apply the flags. 1661 if (MadeChange) 1662 BO->dropPoisonGeneratingFlags(); 1663 1664 // Output elements are undefined if both are undefined. Consider things 1665 // like undef & 0. The result is known zero, not undef. 1666 UndefElts &= UndefElts2; 1667 } 1668 1669 return MadeChange ? I : nullptr; 1670 } 1671