1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Support/KnownBits.h"
19 
20 using namespace llvm;
21 using namespace llvm::PatternMatch;
22 
23 #define DEBUG_TYPE "instcombine"
24 
25 namespace {
26 
27 struct AMDGPUImageDMaskIntrinsic {
28   unsigned Intr;
29 };
30 
31 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
32 #include "InstCombineTables.inc"
33 
34 } // end anonymous namespace
35 
36 /// Check to see if the specified operand of the specified instruction is a
37 /// constant integer. If so, check to see if there are any bits set in the
38 /// constant that are not demanded. If so, shrink the constant and return true.
39 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
40                                    const APInt &Demanded) {
41   assert(I && "No instruction?");
42   assert(OpNo < I->getNumOperands() && "Operand index too large");
43 
44   // The operand must be a constant integer or splat integer.
45   Value *Op = I->getOperand(OpNo);
46   const APInt *C;
47   if (!match(Op, m_APInt(C)))
48     return false;
49 
50   // If there are no bits set that aren't demanded, nothing to do.
51   if (C->isSubsetOf(Demanded))
52     return false;
53 
54   // This instruction is producing bits that are not demanded. Shrink the RHS.
55   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
56 
57   return true;
58 }
59 
60 
61 
62 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
63 /// the instruction has any properties that allow us to simplify its operands.
64 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
65   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
66   KnownBits Known(BitWidth);
67   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
68 
69   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
70                                      0, &Inst);
71   if (!V) return false;
72   if (V == &Inst) return true;
73   replaceInstUsesWith(Inst, V);
74   return true;
75 }
76 
77 /// This form of SimplifyDemandedBits simplifies the specified instruction
78 /// operand if possible, updating it in place. It returns true if it made any
79 /// change and false otherwise.
80 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
81                                         const APInt &DemandedMask,
82                                         KnownBits &Known,
83                                         unsigned Depth) {
84   Use &U = I->getOperandUse(OpNo);
85   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
86                                           Depth, I);
87   if (!NewVal) return false;
88   U = NewVal;
89   return true;
90 }
91 
92 
93 /// This function attempts to replace V with a simpler value based on the
94 /// demanded bits. When this function is called, it is known that only the bits
95 /// set in DemandedMask of the result of V are ever used downstream.
96 /// Consequently, depending on the mask and V, it may be possible to replace V
97 /// with a constant or one of its operands. In such cases, this function does
98 /// the replacement and returns true. In all other cases, it returns false after
99 /// analyzing the expression and setting KnownOne and known to be one in the
100 /// expression. Known.Zero contains all the bits that are known to be zero in
101 /// the expression. These are provided to potentially allow the caller (which
102 /// might recursively be SimplifyDemandedBits itself) to simplify the
103 /// expression.
104 /// Known.One and Known.Zero always follow the invariant that:
105 ///   Known.One & Known.Zero == 0.
106 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
107 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
108 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
109 /// be the same.
110 ///
111 /// This returns null if it did not change anything and it permits no
112 /// simplification.  This returns V itself if it did some simplification of V's
113 /// operands based on the information about what bits are demanded. This returns
114 /// some other non-null value if it found out that V is equal to another value
115 /// in the context where the specified bits are demanded, but not for all users.
116 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
117                                              KnownBits &Known, unsigned Depth,
118                                              Instruction *CxtI) {
119   assert(V != nullptr && "Null pointer of Value???");
120   assert(Depth <= 6 && "Limit Search Depth");
121   uint32_t BitWidth = DemandedMask.getBitWidth();
122   Type *VTy = V->getType();
123   assert(
124       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
125       Known.getBitWidth() == BitWidth &&
126       "Value *V, DemandedMask and Known must have same BitWidth");
127 
128   if (isa<Constant>(V)) {
129     computeKnownBits(V, Known, Depth, CxtI);
130     return nullptr;
131   }
132 
133   Known.resetAll();
134   if (DemandedMask.isNullValue())     // Not demanding any bits from V.
135     return UndefValue::get(VTy);
136 
137   if (Depth == 6)        // Limit search depth.
138     return nullptr;
139 
140   Instruction *I = dyn_cast<Instruction>(V);
141   if (!I) {
142     computeKnownBits(V, Known, Depth, CxtI);
143     return nullptr;        // Only analyze instructions.
144   }
145 
146   // If there are multiple uses of this value and we aren't at the root, then
147   // we can't do any simplifications of the operands, because DemandedMask
148   // only reflects the bits demanded by *one* of the users.
149   if (Depth != 0 && !I->hasOneUse())
150     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
151 
152   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
153 
154   // If this is the root being simplified, allow it to have multiple uses,
155   // just set the DemandedMask to all bits so that we can try to simplify the
156   // operands.  This allows visitTruncInst (for example) to simplify the
157   // operand of a trunc without duplicating all the logic below.
158   if (Depth == 0 && !V->hasOneUse())
159     DemandedMask.setAllBits();
160 
161   switch (I->getOpcode()) {
162   default:
163     computeKnownBits(I, Known, Depth, CxtI);
164     break;
165   case Instruction::And: {
166     // If either the LHS or the RHS are Zero, the result is zero.
167     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
168         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
169                              Depth + 1))
170       return I;
171     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
172     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
173 
174     // Output known-0 are known to be clear if zero in either the LHS | RHS.
175     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
176     // Output known-1 bits are only known if set in both the LHS & RHS.
177     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
178 
179     // If the client is only demanding bits that we know, return the known
180     // constant.
181     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
182       return Constant::getIntegerValue(VTy, IKnownOne);
183 
184     // If all of the demanded bits are known 1 on one side, return the other.
185     // These bits cannot contribute to the result of the 'and'.
186     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
187       return I->getOperand(0);
188     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
189       return I->getOperand(1);
190 
191     // If the RHS is a constant, see if we can simplify it.
192     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
193       return I;
194 
195     Known.Zero = std::move(IKnownZero);
196     Known.One  = std::move(IKnownOne);
197     break;
198   }
199   case Instruction::Or: {
200     // If either the LHS or the RHS are One, the result is One.
201     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
202         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
203                              Depth + 1))
204       return I;
205     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
206     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
207 
208     // Output known-0 bits are only known if clear in both the LHS & RHS.
209     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
210     // Output known-1 are known. to be set if s.et in either the LHS | RHS.
211     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
212 
213     // If the client is only demanding bits that we know, return the known
214     // constant.
215     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
216       return Constant::getIntegerValue(VTy, IKnownOne);
217 
218     // If all of the demanded bits are known zero on one side, return the other.
219     // These bits cannot contribute to the result of the 'or'.
220     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
221       return I->getOperand(0);
222     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
223       return I->getOperand(1);
224 
225     // If the RHS is a constant, see if we can simplify it.
226     if (ShrinkDemandedConstant(I, 1, DemandedMask))
227       return I;
228 
229     Known.Zero = std::move(IKnownZero);
230     Known.One  = std::move(IKnownOne);
231     break;
232   }
233   case Instruction::Xor: {
234     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
235         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
236       return I;
237     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
238     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
239 
240     // Output known-0 bits are known if clear or set in both the LHS & RHS.
241     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
242                        (RHSKnown.One & LHSKnown.One);
243     // Output known-1 are known to be set if set in only one of the LHS, RHS.
244     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
245                        (RHSKnown.One & LHSKnown.Zero);
246 
247     // If the client is only demanding bits that we know, return the known
248     // constant.
249     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
250       return Constant::getIntegerValue(VTy, IKnownOne);
251 
252     // If all of the demanded bits are known zero on one side, return the other.
253     // These bits cannot contribute to the result of the 'xor'.
254     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
255       return I->getOperand(0);
256     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
257       return I->getOperand(1);
258 
259     // If all of the demanded bits are known to be zero on one side or the
260     // other, turn this into an *inclusive* or.
261     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
262     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
263       Instruction *Or =
264         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
265                                  I->getName());
266       return InsertNewInstWith(Or, *I);
267     }
268 
269     // If all of the demanded bits on one side are known, and all of the set
270     // bits on that side are also known to be set on the other side, turn this
271     // into an AND, as we know the bits will be cleared.
272     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
273     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
274         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
275       Constant *AndC = Constant::getIntegerValue(VTy,
276                                                  ~RHSKnown.One & DemandedMask);
277       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
278       return InsertNewInstWith(And, *I);
279     }
280 
281     // If the RHS is a constant, see if we can simplify it.
282     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
283     if (ShrinkDemandedConstant(I, 1, DemandedMask))
284       return I;
285 
286     // If our LHS is an 'and' and if it has one use, and if any of the bits we
287     // are flipping are known to be set, then the xor is just resetting those
288     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
289     // simplifying both of them.
290     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
291       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
292           isa<ConstantInt>(I->getOperand(1)) &&
293           isa<ConstantInt>(LHSInst->getOperand(1)) &&
294           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
295         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
296         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
297         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
298 
299         Constant *AndC =
300           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
301         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
302         InsertNewInstWith(NewAnd, *I);
303 
304         Constant *XorC =
305           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
306         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
307         return InsertNewInstWith(NewXor, *I);
308       }
309 
310     // Output known-0 bits are known if clear or set in both the LHS & RHS.
311     Known.Zero = std::move(IKnownZero);
312     // Output known-1 are known to be set if set in only one of the LHS, RHS.
313     Known.One  = std::move(IKnownOne);
314     break;
315   }
316   case Instruction::Select: {
317     Value *LHS, *RHS;
318     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
319     if (SPF == SPF_UMAX) {
320       // UMax(A, C) == A if ...
321       // The lowest non-zero bit of DemandMask is higher than the highest
322       // non-zero bit of C.
323       const APInt *C;
324       unsigned CTZ = DemandedMask.countTrailingZeros();
325       if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
326         return LHS;
327     } else if (SPF == SPF_UMIN) {
328       // UMin(A, C) == A if ...
329       // The lowest non-zero bit of DemandMask is higher than the highest
330       // non-one bit of C.
331       // This comes from using DeMorgans on the above umax example.
332       const APInt *C;
333       unsigned CTZ = DemandedMask.countTrailingZeros();
334       if (match(RHS, m_APInt(C)) &&
335           CTZ >= C->getBitWidth() - C->countLeadingOnes())
336         return LHS;
337     }
338 
339     // If this is a select as part of any other min/max pattern, don't simplify
340     // any further in case we break the structure.
341     if (SPF != SPF_UNKNOWN)
342       return nullptr;
343 
344     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
345         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
346       return I;
347     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
348     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
349 
350     // If the operands are constants, see if we can simplify them.
351     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
352         ShrinkDemandedConstant(I, 2, DemandedMask))
353       return I;
354 
355     // Only known if known in both the LHS and RHS.
356     Known.One = RHSKnown.One & LHSKnown.One;
357     Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
358     break;
359   }
360   case Instruction::ZExt:
361   case Instruction::Trunc: {
362     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
363 
364     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
365     KnownBits InputKnown(SrcBitWidth);
366     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
367       return I;
368     assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
369     Known = InputKnown.zextOrTrunc(BitWidth,
370                                    true /* ExtendedBitsAreKnownZero */);
371     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
372     break;
373   }
374   case Instruction::BitCast:
375     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
376       return nullptr;  // vector->int or fp->int?
377 
378     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
379       if (VectorType *SrcVTy =
380             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
381         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
382           // Don't touch a bitcast between vectors of different element counts.
383           return nullptr;
384       } else
385         // Don't touch a scalar-to-vector bitcast.
386         return nullptr;
387     } else if (I->getOperand(0)->getType()->isVectorTy())
388       // Don't touch a vector-to-scalar bitcast.
389       return nullptr;
390 
391     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
392       return I;
393     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
394     break;
395   case Instruction::SExt: {
396     // Compute the bits in the result that are not present in the input.
397     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
398 
399     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
400 
401     // If any of the sign extended bits are demanded, we know that the sign
402     // bit is demanded.
403     if (DemandedMask.getActiveBits() > SrcBitWidth)
404       InputDemandedBits.setBit(SrcBitWidth-1);
405 
406     KnownBits InputKnown(SrcBitWidth);
407     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
408       return I;
409 
410     // If the input sign bit is known zero, or if the NewBits are not demanded
411     // convert this into a zero extension.
412     if (InputKnown.isNonNegative() ||
413         DemandedMask.getActiveBits() <= SrcBitWidth) {
414       // Convert to ZExt cast.
415       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
416       return InsertNewInstWith(NewCast, *I);
417      }
418 
419     // If the sign bit of the input is known set or clear, then we know the
420     // top bits of the result.
421     Known = InputKnown.sext(BitWidth);
422     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
423     break;
424   }
425   case Instruction::Add:
426   case Instruction::Sub: {
427     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
428     /// about the high bits of the operands.
429     unsigned NLZ = DemandedMask.countLeadingZeros();
430     // Right fill the mask of bits for this ADD/SUB to demand the most
431     // significant bit and all those below it.
432     APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
433     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
434         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
435         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
436         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
437       if (NLZ > 0) {
438         // Disable the nsw and nuw flags here: We can no longer guarantee that
439         // we won't wrap after simplification. Removing the nsw/nuw flags is
440         // legal here because the top bit is not demanded.
441         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
442         BinOP.setHasNoSignedWrap(false);
443         BinOP.setHasNoUnsignedWrap(false);
444       }
445       return I;
446     }
447 
448     // If we are known to be adding/subtracting zeros to every bit below
449     // the highest demanded bit, we just return the other side.
450     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
451       return I->getOperand(0);
452     // We can't do this with the LHS for subtraction, unless we are only
453     // demanding the LSB.
454     if ((I->getOpcode() == Instruction::Add ||
455          DemandedFromOps.isOneValue()) &&
456         DemandedFromOps.isSubsetOf(LHSKnown.Zero))
457       return I->getOperand(1);
458 
459     // Otherwise just compute the known bits of the result.
460     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
461     Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
462                                         NSW, LHSKnown, RHSKnown);
463     break;
464   }
465   case Instruction::Shl: {
466     const APInt *SA;
467     if (match(I->getOperand(1), m_APInt(SA))) {
468       const APInt *ShrAmt;
469       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
470         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
471           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
472                                                     DemandedMask, Known))
473             return R;
474 
475       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
476       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
477 
478       // If the shift is NUW/NSW, then it does demand the high bits.
479       ShlOperator *IOp = cast<ShlOperator>(I);
480       if (IOp->hasNoSignedWrap())
481         DemandedMaskIn.setHighBits(ShiftAmt+1);
482       else if (IOp->hasNoUnsignedWrap())
483         DemandedMaskIn.setHighBits(ShiftAmt);
484 
485       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
486         return I;
487       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
488       Known.Zero <<= ShiftAmt;
489       Known.One  <<= ShiftAmt;
490       // low bits known zero.
491       if (ShiftAmt)
492         Known.Zero.setLowBits(ShiftAmt);
493     }
494     break;
495   }
496   case Instruction::LShr: {
497     const APInt *SA;
498     if (match(I->getOperand(1), m_APInt(SA))) {
499       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
500 
501       // Unsigned shift right.
502       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
503 
504       // If the shift is exact, then it does demand the low bits (and knows that
505       // they are zero).
506       if (cast<LShrOperator>(I)->isExact())
507         DemandedMaskIn.setLowBits(ShiftAmt);
508 
509       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
510         return I;
511       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
512       Known.Zero.lshrInPlace(ShiftAmt);
513       Known.One.lshrInPlace(ShiftAmt);
514       if (ShiftAmt)
515         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
516     }
517     break;
518   }
519   case Instruction::AShr: {
520     // If this is an arithmetic shift right and only the low-bit is set, we can
521     // always convert this into a logical shr, even if the shift amount is
522     // variable.  The low bit of the shift cannot be an input sign bit unless
523     // the shift amount is >= the size of the datatype, which is undefined.
524     if (DemandedMask.isOneValue()) {
525       // Perform the logical shift right.
526       Instruction *NewVal = BinaryOperator::CreateLShr(
527                         I->getOperand(0), I->getOperand(1), I->getName());
528       return InsertNewInstWith(NewVal, *I);
529     }
530 
531     // If the sign bit is the only bit demanded by this ashr, then there is no
532     // need to do it, the shift doesn't change the high bit.
533     if (DemandedMask.isSignMask())
534       return I->getOperand(0);
535 
536     const APInt *SA;
537     if (match(I->getOperand(1), m_APInt(SA))) {
538       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
539 
540       // Signed shift right.
541       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
542       // If any of the high bits are demanded, we should set the sign bit as
543       // demanded.
544       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
545         DemandedMaskIn.setSignBit();
546 
547       // If the shift is exact, then it does demand the low bits (and knows that
548       // they are zero).
549       if (cast<AShrOperator>(I)->isExact())
550         DemandedMaskIn.setLowBits(ShiftAmt);
551 
552       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
553         return I;
554 
555       unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
556 
557       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
558       // Compute the new bits that are at the top now plus sign bits.
559       APInt HighBits(APInt::getHighBitsSet(
560           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
561       Known.Zero.lshrInPlace(ShiftAmt);
562       Known.One.lshrInPlace(ShiftAmt);
563 
564       // If the input sign bit is known to be zero, or if none of the top bits
565       // are demanded, turn this into an unsigned shift right.
566       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
567       if (Known.Zero[BitWidth-ShiftAmt-1] ||
568           !DemandedMask.intersects(HighBits)) {
569         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
570                                                           I->getOperand(1));
571         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
572         return InsertNewInstWith(LShr, *I);
573       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
574         Known.One |= HighBits;
575       }
576     }
577     break;
578   }
579   case Instruction::UDiv: {
580     // UDiv doesn't demand low bits that are zero in the divisor.
581     const APInt *SA;
582     if (match(I->getOperand(1), m_APInt(SA))) {
583       // If the shift is exact, then it does demand the low bits.
584       if (cast<UDivOperator>(I)->isExact())
585         break;
586 
587       // FIXME: Take the demanded mask of the result into account.
588       unsigned RHSTrailingZeros = SA->countTrailingZeros();
589       APInt DemandedMaskIn =
590           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
591       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
592         return I;
593 
594       // Propagate zero bits from the input.
595       Known.Zero.setHighBits(std::min(
596           BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
597     }
598     break;
599   }
600   case Instruction::SRem:
601     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
602       // X % -1 demands all the bits because we don't want to introduce
603       // INT_MIN % -1 (== undef) by accident.
604       if (Rem->isMinusOne())
605         break;
606       APInt RA = Rem->getValue().abs();
607       if (RA.isPowerOf2()) {
608         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
609           return I->getOperand(0);
610 
611         APInt LowBits = RA - 1;
612         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
613         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
614           return I;
615 
616         // The low bits of LHS are unchanged by the srem.
617         Known.Zero = LHSKnown.Zero & LowBits;
618         Known.One = LHSKnown.One & LowBits;
619 
620         // If LHS is non-negative or has all low bits zero, then the upper bits
621         // are all zero.
622         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
623           Known.Zero |= ~LowBits;
624 
625         // If LHS is negative and not all low bits are zero, then the upper bits
626         // are all one.
627         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
628           Known.One |= ~LowBits;
629 
630         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
631         break;
632       }
633     }
634 
635     // The sign bit is the LHS's sign bit, except when the result of the
636     // remainder is zero.
637     if (DemandedMask.isSignBitSet()) {
638       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
639       // If it's known zero, our sign bit is also zero.
640       if (LHSKnown.isNonNegative())
641         Known.makeNonNegative();
642     }
643     break;
644   case Instruction::URem: {
645     KnownBits Known2(BitWidth);
646     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
647     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
648         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
649       return I;
650 
651     unsigned Leaders = Known2.countMinLeadingZeros();
652     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
653     break;
654   }
655   case Instruction::Call:
656     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
657       switch (II->getIntrinsicID()) {
658       default: break;
659       case Intrinsic::bswap: {
660         // If the only bits demanded come from one byte of the bswap result,
661         // just shift the input byte into position to eliminate the bswap.
662         unsigned NLZ = DemandedMask.countLeadingZeros();
663         unsigned NTZ = DemandedMask.countTrailingZeros();
664 
665         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
666         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
667         // have 14 leading zeros, round to 8.
668         NLZ &= ~7;
669         NTZ &= ~7;
670         // If we need exactly one byte, we can do this transformation.
671         if (BitWidth-NLZ-NTZ == 8) {
672           unsigned ResultBit = NTZ;
673           unsigned InputBit = BitWidth-NTZ-8;
674 
675           // Replace this with either a left or right shift to get the byte into
676           // the right place.
677           Instruction *NewVal;
678           if (InputBit > ResultBit)
679             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
680                     ConstantInt::get(I->getType(), InputBit-ResultBit));
681           else
682             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
683                     ConstantInt::get(I->getType(), ResultBit-InputBit));
684           NewVal->takeName(I);
685           return InsertNewInstWith(NewVal, *I);
686         }
687 
688         // TODO: Could compute known zero/one bits based on the input.
689         break;
690       }
691       case Intrinsic::fshr:
692       case Intrinsic::fshl: {
693         const APInt *SA;
694         if (!match(I->getOperand(2), m_APInt(SA)))
695           break;
696 
697         // Normalize to funnel shift left. APInt shifts of BitWidth are well-
698         // defined, so no need to special-case zero shifts here.
699         uint64_t ShiftAmt = SA->urem(BitWidth);
700         if (II->getIntrinsicID() == Intrinsic::fshr)
701           ShiftAmt = BitWidth - ShiftAmt;
702 
703         APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
704         APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
705         if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
706             SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
707           return I;
708 
709         Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
710                      RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
711         Known.One = LHSKnown.One.shl(ShiftAmt) |
712                     RHSKnown.One.lshr(BitWidth - ShiftAmt);
713         break;
714       }
715       case Intrinsic::x86_mmx_pmovmskb:
716       case Intrinsic::x86_sse_movmsk_ps:
717       case Intrinsic::x86_sse2_movmsk_pd:
718       case Intrinsic::x86_sse2_pmovmskb_128:
719       case Intrinsic::x86_avx_movmsk_ps_256:
720       case Intrinsic::x86_avx_movmsk_pd_256:
721       case Intrinsic::x86_avx2_pmovmskb: {
722         // MOVMSK copies the vector elements' sign bits to the low bits
723         // and zeros the high bits.
724         unsigned ArgWidth;
725         if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
726           ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
727         } else {
728           auto Arg = II->getArgOperand(0);
729           auto ArgType = cast<VectorType>(Arg->getType());
730           ArgWidth = ArgType->getNumElements();
731         }
732 
733         // If we don't need any of low bits then return zero,
734         // we know that DemandedMask is non-zero already.
735         APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
736         if (DemandedElts.isNullValue())
737           return ConstantInt::getNullValue(VTy);
738 
739         // We know that the upper bits are set to zero.
740         Known.Zero.setBitsFrom(ArgWidth);
741         return nullptr;
742       }
743       case Intrinsic::x86_sse42_crc32_64_64:
744         Known.Zero.setBitsFrom(32);
745         return nullptr;
746       }
747     }
748     computeKnownBits(V, Known, Depth, CxtI);
749     break;
750   }
751 
752   // If the client is only demanding bits that we know, return the known
753   // constant.
754   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
755     return Constant::getIntegerValue(VTy, Known.One);
756   return nullptr;
757 }
758 
759 /// Helper routine of SimplifyDemandedUseBits. It computes Known
760 /// bits. It also tries to handle simplifications that can be done based on
761 /// DemandedMask, but without modifying the Instruction.
762 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
763                                                      const APInt &DemandedMask,
764                                                      KnownBits &Known,
765                                                      unsigned Depth,
766                                                      Instruction *CxtI) {
767   unsigned BitWidth = DemandedMask.getBitWidth();
768   Type *ITy = I->getType();
769 
770   KnownBits LHSKnown(BitWidth);
771   KnownBits RHSKnown(BitWidth);
772 
773   // Despite the fact that we can't simplify this instruction in all User's
774   // context, we can at least compute the known bits, and we can
775   // do simplifications that apply to *just* the one user if we know that
776   // this instruction has a simpler value in that context.
777   switch (I->getOpcode()) {
778   case Instruction::And: {
779     // If either the LHS or the RHS are Zero, the result is zero.
780     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
781     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
782                      CxtI);
783 
784     // Output known-0 are known to be clear if zero in either the LHS | RHS.
785     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
786     // Output known-1 bits are only known if set in both the LHS & RHS.
787     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
788 
789     // If the client is only demanding bits that we know, return the known
790     // constant.
791     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
792       return Constant::getIntegerValue(ITy, IKnownOne);
793 
794     // If all of the demanded bits are known 1 on one side, return the other.
795     // These bits cannot contribute to the result of the 'and' in this
796     // context.
797     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
798       return I->getOperand(0);
799     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
800       return I->getOperand(1);
801 
802     Known.Zero = std::move(IKnownZero);
803     Known.One  = std::move(IKnownOne);
804     break;
805   }
806   case Instruction::Or: {
807     // We can simplify (X|Y) -> X or Y in the user's context if we know that
808     // only bits from X or Y are demanded.
809 
810     // If either the LHS or the RHS are One, the result is One.
811     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
812     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
813                      CxtI);
814 
815     // Output known-0 bits are only known if clear in both the LHS & RHS.
816     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
817     // Output known-1 are known to be set if set in either the LHS | RHS.
818     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
819 
820     // If the client is only demanding bits that we know, return the known
821     // constant.
822     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
823       return Constant::getIntegerValue(ITy, IKnownOne);
824 
825     // If all of the demanded bits are known zero on one side, return the
826     // other.  These bits cannot contribute to the result of the 'or' in this
827     // context.
828     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
829       return I->getOperand(0);
830     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
831       return I->getOperand(1);
832 
833     Known.Zero = std::move(IKnownZero);
834     Known.One  = std::move(IKnownOne);
835     break;
836   }
837   case Instruction::Xor: {
838     // We can simplify (X^Y) -> X or Y in the user's context if we know that
839     // only bits from X or Y are demanded.
840 
841     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
842     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
843                      CxtI);
844 
845     // Output known-0 bits are known if clear or set in both the LHS & RHS.
846     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
847                        (RHSKnown.One & LHSKnown.One);
848     // Output known-1 are known to be set if set in only one of the LHS, RHS.
849     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
850                        (RHSKnown.One & LHSKnown.Zero);
851 
852     // If the client is only demanding bits that we know, return the known
853     // constant.
854     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
855       return Constant::getIntegerValue(ITy, IKnownOne);
856 
857     // If all of the demanded bits are known zero on one side, return the
858     // other.
859     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
860       return I->getOperand(0);
861     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
862       return I->getOperand(1);
863 
864     // Output known-0 bits are known if clear or set in both the LHS & RHS.
865     Known.Zero = std::move(IKnownZero);
866     // Output known-1 are known to be set if set in only one of the LHS, RHS.
867     Known.One  = std::move(IKnownOne);
868     break;
869   }
870   default:
871     // Compute the Known bits to simplify things downstream.
872     computeKnownBits(I, Known, Depth, CxtI);
873 
874     // If this user is only demanding bits that we know, return the known
875     // constant.
876     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
877       return Constant::getIntegerValue(ITy, Known.One);
878 
879     break;
880   }
881 
882   return nullptr;
883 }
884 
885 
886 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
887 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
888 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
889 /// of "C2-C1".
890 ///
891 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
892 /// ..., bn}, without considering the specific value X is holding.
893 /// This transformation is legal iff one of following conditions is hold:
894 ///  1) All the bit in S are 0, in this case E1 == E2.
895 ///  2) We don't care those bits in S, per the input DemandedMask.
896 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
897 ///     rest bits.
898 ///
899 /// Currently we only test condition 2).
900 ///
901 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
902 /// not successful.
903 Value *
904 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
905                                          Instruction *Shl, const APInt &ShlOp1,
906                                          const APInt &DemandedMask,
907                                          KnownBits &Known) {
908   if (!ShlOp1 || !ShrOp1)
909     return nullptr; // No-op.
910 
911   Value *VarX = Shr->getOperand(0);
912   Type *Ty = VarX->getType();
913   unsigned BitWidth = Ty->getScalarSizeInBits();
914   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
915     return nullptr; // Undef.
916 
917   unsigned ShlAmt = ShlOp1.getZExtValue();
918   unsigned ShrAmt = ShrOp1.getZExtValue();
919 
920   Known.One.clearAllBits();
921   Known.Zero.setLowBits(ShlAmt - 1);
922   Known.Zero &= DemandedMask;
923 
924   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
925   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
926 
927   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
928   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
929                       (BitMask1.ashr(ShrAmt) << ShlAmt);
930 
931   if (ShrAmt <= ShlAmt) {
932     BitMask2 <<= (ShlAmt - ShrAmt);
933   } else {
934     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
935                         BitMask2.ashr(ShrAmt - ShlAmt);
936   }
937 
938   // Check if condition-2 (see the comment to this function) is satified.
939   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
940     if (ShrAmt == ShlAmt)
941       return VarX;
942 
943     if (!Shr->hasOneUse())
944       return nullptr;
945 
946     BinaryOperator *New;
947     if (ShrAmt < ShlAmt) {
948       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
949       New = BinaryOperator::CreateShl(VarX, Amt);
950       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
951       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
952       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
953     } else {
954       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
955       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
956                      BinaryOperator::CreateAShr(VarX, Amt);
957       if (cast<BinaryOperator>(Shr)->isExact())
958         New->setIsExact(true);
959     }
960 
961     return InsertNewInstWith(New, *Shl);
962   }
963 
964   return nullptr;
965 }
966 
967 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
968 ///
969 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have
970 ///       struct returns.
971 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
972                                                            APInt DemandedElts,
973                                                            int DMaskIdx) {
974   unsigned VWidth = II->getType()->getVectorNumElements();
975   if (VWidth == 1)
976     return nullptr;
977 
978   ConstantInt *NewDMask = nullptr;
979 
980   if (DMaskIdx < 0) {
981     // Pretend that a prefix of elements is demanded to simplify the code
982     // below.
983     DemandedElts = (1 << DemandedElts.getActiveBits()) - 1;
984   } else {
985     ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx));
986     unsigned DMaskVal = DMask->getZExtValue() & 0xf;
987 
988     // Mask off values that are undefined because the dmask doesn't cover them
989     DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
990 
991     unsigned NewDMaskVal = 0;
992     unsigned OrigLoadIdx = 0;
993     for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
994       const unsigned Bit = 1 << SrcIdx;
995       if (!!(DMaskVal & Bit)) {
996         if (!!DemandedElts[OrigLoadIdx])
997           NewDMaskVal |= Bit;
998         OrigLoadIdx++;
999       }
1000     }
1001 
1002     if (DMaskVal != NewDMaskVal)
1003       NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal);
1004   }
1005 
1006   // TODO: Handle 3 vectors when supported in code gen.
1007   unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countPopulation());
1008   if (!NewNumElts)
1009     return UndefValue::get(II->getType());
1010 
1011   if (NewNumElts >= VWidth && DemandedElts.isMask()) {
1012     if (NewDMask)
1013       II->setArgOperand(DMaskIdx, NewDMask);
1014     return nullptr;
1015   }
1016 
1017   // Determine the overload types of the original intrinsic.
1018   auto IID = II->getIntrinsicID();
1019   SmallVector<Intrinsic::IITDescriptor, 16> Table;
1020   getIntrinsicInfoTableEntries(IID, Table);
1021   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1022 
1023   FunctionType *FTy = II->getCalledFunction()->getFunctionType();
1024   SmallVector<Type *, 6> OverloadTys;
1025   Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, OverloadTys);
1026   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1027     Intrinsic::matchIntrinsicType(FTy->getParamType(i), TableRef, OverloadTys);
1028 
1029   // Get the new return type overload of the intrinsic.
1030   Module *M = II->getParent()->getParent()->getParent();
1031   Type *EltTy = II->getType()->getVectorElementType();
1032   Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
1033 
1034   OverloadTys[0] = NewTy;
1035   Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
1036 
1037   SmallVector<Value *, 16> Args;
1038   for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1039     Args.push_back(II->getArgOperand(I));
1040 
1041   if (NewDMask)
1042     Args[DMaskIdx] = NewDMask;
1043 
1044   IRBuilderBase::InsertPointGuard Guard(Builder);
1045   Builder.SetInsertPoint(II);
1046 
1047   CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
1048   NewCall->takeName(II);
1049   NewCall->copyMetadata(*II);
1050 
1051   if (NewNumElts == 1) {
1052     return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
1053                                        DemandedElts.countTrailingZeros());
1054   }
1055 
1056   SmallVector<uint32_t, 8> EltMask;
1057   unsigned NewLoadIdx = 0;
1058   for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
1059     if (!!DemandedElts[OrigLoadIdx])
1060       EltMask.push_back(NewLoadIdx++);
1061     else
1062       EltMask.push_back(NewNumElts);
1063   }
1064 
1065   Value *Shuffle =
1066       Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
1067 
1068   return Shuffle;
1069 }
1070 
1071 /// The specified value produces a vector with any number of elements.
1072 /// DemandedElts contains the set of elements that are actually used by the
1073 /// caller. This method analyzes which elements of the operand are undef and
1074 /// returns that information in UndefElts.
1075 ///
1076 /// If the information about demanded elements can be used to simplify the
1077 /// operation, the operation is simplified, then the resultant value is
1078 /// returned.  This returns null if no change was made.
1079 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
1080                                                 APInt &UndefElts,
1081                                                 unsigned Depth) {
1082   unsigned VWidth = V->getType()->getVectorNumElements();
1083   APInt EltMask(APInt::getAllOnesValue(VWidth));
1084   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1085 
1086   if (isa<UndefValue>(V)) {
1087     // If the entire vector is undefined, just return this info.
1088     UndefElts = EltMask;
1089     return nullptr;
1090   }
1091 
1092   if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
1093     UndefElts = EltMask;
1094     return UndefValue::get(V->getType());
1095   }
1096 
1097   UndefElts = 0;
1098 
1099   if (auto *C = dyn_cast<Constant>(V)) {
1100     // Check if this is identity. If so, return 0 since we are not simplifying
1101     // anything.
1102     if (DemandedElts.isAllOnesValue())
1103       return nullptr;
1104 
1105     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1106     Constant *Undef = UndefValue::get(EltTy);
1107     SmallVector<Constant*, 16> Elts;
1108     for (unsigned i = 0; i != VWidth; ++i) {
1109       if (!DemandedElts[i]) {   // If not demanded, set to undef.
1110         Elts.push_back(Undef);
1111         UndefElts.setBit(i);
1112         continue;
1113       }
1114 
1115       Constant *Elt = C->getAggregateElement(i);
1116       if (!Elt) return nullptr;
1117 
1118       if (isa<UndefValue>(Elt)) {   // Already undef.
1119         Elts.push_back(Undef);
1120         UndefElts.setBit(i);
1121       } else {                               // Otherwise, defined.
1122         Elts.push_back(Elt);
1123       }
1124     }
1125 
1126     // If we changed the constant, return it.
1127     Constant *NewCV = ConstantVector::get(Elts);
1128     return NewCV != C ? NewCV : nullptr;
1129   }
1130 
1131   // Limit search depth.
1132   if (Depth == 10)
1133     return nullptr;
1134 
1135   // If multiple users are using the root value, proceed with
1136   // simplification conservatively assuming that all elements
1137   // are needed.
1138   if (!V->hasOneUse()) {
1139     // Quit if we find multiple users of a non-root value though.
1140     // They'll be handled when it's their turn to be visited by
1141     // the main instcombine process.
1142     if (Depth != 0)
1143       // TODO: Just compute the UndefElts information recursively.
1144       return nullptr;
1145 
1146     // Conservatively assume that all elements are needed.
1147     DemandedElts = EltMask;
1148   }
1149 
1150   Instruction *I = dyn_cast<Instruction>(V);
1151   if (!I) return nullptr;        // Only analyze instructions.
1152 
1153   bool MadeChange = false;
1154   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1155                               APInt Demanded, APInt &Undef) {
1156     auto *II = dyn_cast<IntrinsicInst>(Inst);
1157     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1158     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1159       if (II)
1160         II->setArgOperand(OpNum, V);
1161       else
1162         Inst->setOperand(OpNum, V);
1163       MadeChange = true;
1164     }
1165   };
1166 
1167   APInt UndefElts2(VWidth, 0);
1168   APInt UndefElts3(VWidth, 0);
1169   switch (I->getOpcode()) {
1170   default: break;
1171 
1172   case Instruction::GetElementPtr: {
1173     // Conservatively track the demanded elements back through any vector
1174     // operands we may have.  We know there must be at least one, or we
1175     // wouldn't have a vector result to get here. Note that we intentionally
1176     // merge the undef bits here since gepping with either an undef base or
1177     // index results in undef.
1178     for (unsigned i = 0; i < I->getNumOperands(); i++)
1179       if (I->getOperand(i)->getType()->isVectorTy())
1180         simplifyAndSetOp(I, i, DemandedElts, UndefElts);
1181 
1182     break;
1183   }
1184   case Instruction::InsertElement: {
1185     // If this is a variable index, we don't know which element it overwrites.
1186     // demand exactly the same input as we produce.
1187     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1188     if (!Idx) {
1189       // Note that we can't propagate undef elt info, because we don't know
1190       // which elt is getting updated.
1191       simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1192       break;
1193     }
1194 
1195     // The element inserted overwrites whatever was there, so the input demanded
1196     // set is simpler than the output set.
1197     unsigned IdxNo = Idx->getZExtValue();
1198     APInt PreInsertDemandedElts = DemandedElts;
1199     if (IdxNo < VWidth)
1200       PreInsertDemandedElts.clearBit(IdxNo);
1201 
1202     simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1203 
1204     // If this is inserting an element that isn't demanded, remove this
1205     // insertelement.
1206     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1207       Worklist.Add(I);
1208       return I->getOperand(0);
1209     }
1210 
1211     // The inserted element is defined.
1212     UndefElts.clearBit(IdxNo);
1213     break;
1214   }
1215   case Instruction::ShuffleVector: {
1216     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1217     unsigned LHSVWidth =
1218       Shuffle->getOperand(0)->getType()->getVectorNumElements();
1219     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1220     for (unsigned i = 0; i < VWidth; i++) {
1221       if (DemandedElts[i]) {
1222         unsigned MaskVal = Shuffle->getMaskValue(i);
1223         if (MaskVal != -1u) {
1224           assert(MaskVal < LHSVWidth * 2 &&
1225                  "shufflevector mask index out of range!");
1226           if (MaskVal < LHSVWidth)
1227             LeftDemanded.setBit(MaskVal);
1228           else
1229             RightDemanded.setBit(MaskVal - LHSVWidth);
1230         }
1231       }
1232     }
1233 
1234     APInt LHSUndefElts(LHSVWidth, 0);
1235     simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1236 
1237     APInt RHSUndefElts(LHSVWidth, 0);
1238     simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1239 
1240     bool NewUndefElts = false;
1241     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1242     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1243     bool LHSUniform = true;
1244     bool RHSUniform = true;
1245     for (unsigned i = 0; i < VWidth; i++) {
1246       unsigned MaskVal = Shuffle->getMaskValue(i);
1247       if (MaskVal == -1u) {
1248         UndefElts.setBit(i);
1249       } else if (!DemandedElts[i]) {
1250         NewUndefElts = true;
1251         UndefElts.setBit(i);
1252       } else if (MaskVal < LHSVWidth) {
1253         if (LHSUndefElts[MaskVal]) {
1254           NewUndefElts = true;
1255           UndefElts.setBit(i);
1256         } else {
1257           LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1258           LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
1259           LHSUniform = LHSUniform && (MaskVal == i);
1260         }
1261       } else {
1262         if (RHSUndefElts[MaskVal - LHSVWidth]) {
1263           NewUndefElts = true;
1264           UndefElts.setBit(i);
1265         } else {
1266           RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1267           RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
1268           RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
1269         }
1270       }
1271     }
1272 
1273     // Try to transform shuffle with constant vector and single element from
1274     // this constant vector to single insertelement instruction.
1275     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1276     // insertelement V, C[ci], ci-n
1277     if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1278       Value *Op = nullptr;
1279       Constant *Value = nullptr;
1280       unsigned Idx = -1u;
1281 
1282       // Find constant vector with the single element in shuffle (LHS or RHS).
1283       if (LHSIdx < LHSVWidth && RHSUniform) {
1284         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1285           Op = Shuffle->getOperand(1);
1286           Value = CV->getOperand(LHSValIdx);
1287           Idx = LHSIdx;
1288         }
1289       }
1290       if (RHSIdx < LHSVWidth && LHSUniform) {
1291         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1292           Op = Shuffle->getOperand(0);
1293           Value = CV->getOperand(RHSValIdx);
1294           Idx = RHSIdx;
1295         }
1296       }
1297       // Found constant vector with single element - convert to insertelement.
1298       if (Op && Value) {
1299         Instruction *New = InsertElementInst::Create(
1300             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1301             Shuffle->getName());
1302         InsertNewInstWith(New, *Shuffle);
1303         return New;
1304       }
1305     }
1306     if (NewUndefElts) {
1307       // Add additional discovered undefs.
1308       SmallVector<Constant*, 16> Elts;
1309       for (unsigned i = 0; i < VWidth; ++i) {
1310         if (UndefElts[i])
1311           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1312         else
1313           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1314                                           Shuffle->getMaskValue(i)));
1315       }
1316       I->setOperand(2, ConstantVector::get(Elts));
1317       MadeChange = true;
1318     }
1319     break;
1320   }
1321   case Instruction::Select: {
1322     // If this is a vector select, try to transform the select condition based
1323     // on the current demanded elements.
1324     SelectInst *Sel = cast<SelectInst>(I);
1325     if (Sel->getCondition()->getType()->isVectorTy()) {
1326       // TODO: We are not doing anything with UndefElts based on this call.
1327       // It is overwritten below based on the other select operands. If an
1328       // element of the select condition is known undef, then we are free to
1329       // choose the output value from either arm of the select. If we know that
1330       // one of those values is undef, then the output can be undef.
1331       simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1332     }
1333 
1334     // Next, see if we can transform the arms of the select.
1335     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1336     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1337       for (unsigned i = 0; i < VWidth; i++) {
1338         // isNullValue() always returns false when called on a ConstantExpr.
1339         // Skip constant expressions to avoid propagating incorrect information.
1340         Constant *CElt = CV->getAggregateElement(i);
1341         if (isa<ConstantExpr>(CElt))
1342           continue;
1343         // TODO: If a select condition element is undef, we can demand from
1344         // either side. If one side is known undef, choosing that side would
1345         // propagate undef.
1346         if (CElt->isNullValue())
1347           DemandedLHS.clearBit(i);
1348         else
1349           DemandedRHS.clearBit(i);
1350       }
1351     }
1352 
1353     simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1354     simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1355 
1356     // Output elements are undefined if the element from each arm is undefined.
1357     // TODO: This can be improved. See comment in select condition handling.
1358     UndefElts = UndefElts2 & UndefElts3;
1359     break;
1360   }
1361   case Instruction::BitCast: {
1362     // Vector->vector casts only.
1363     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1364     if (!VTy) break;
1365     unsigned InVWidth = VTy->getNumElements();
1366     APInt InputDemandedElts(InVWidth, 0);
1367     UndefElts2 = APInt(InVWidth, 0);
1368     unsigned Ratio;
1369 
1370     if (VWidth == InVWidth) {
1371       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1372       // elements as are demanded of us.
1373       Ratio = 1;
1374       InputDemandedElts = DemandedElts;
1375     } else if ((VWidth % InVWidth) == 0) {
1376       // If the number of elements in the output is a multiple of the number of
1377       // elements in the input then an input element is live if any of the
1378       // corresponding output elements are live.
1379       Ratio = VWidth / InVWidth;
1380       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1381         if (DemandedElts[OutIdx])
1382           InputDemandedElts.setBit(OutIdx / Ratio);
1383     } else if ((InVWidth % VWidth) == 0) {
1384       // If the number of elements in the input is a multiple of the number of
1385       // elements in the output then an input element is live if the
1386       // corresponding output element is live.
1387       Ratio = InVWidth / VWidth;
1388       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1389         if (DemandedElts[InIdx / Ratio])
1390           InputDemandedElts.setBit(InIdx);
1391     } else {
1392       // Unsupported so far.
1393       break;
1394     }
1395 
1396     simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1397 
1398     if (VWidth == InVWidth) {
1399       UndefElts = UndefElts2;
1400     } else if ((VWidth % InVWidth) == 0) {
1401       // If the number of elements in the output is a multiple of the number of
1402       // elements in the input then an output element is undef if the
1403       // corresponding input element is undef.
1404       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1405         if (UndefElts2[OutIdx / Ratio])
1406           UndefElts.setBit(OutIdx);
1407     } else if ((InVWidth % VWidth) == 0) {
1408       // If the number of elements in the input is a multiple of the number of
1409       // elements in the output then an output element is undef if all of the
1410       // corresponding input elements are undef.
1411       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1412         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1413         if (SubUndef.countPopulation() == Ratio)
1414           UndefElts.setBit(OutIdx);
1415       }
1416     } else {
1417       llvm_unreachable("Unimp");
1418     }
1419     break;
1420   }
1421   case Instruction::FPTrunc:
1422   case Instruction::FPExt:
1423     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1424     break;
1425 
1426   case Instruction::Call: {
1427     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1428     if (!II) break;
1429     switch (II->getIntrinsicID()) {
1430     case Intrinsic::x86_xop_vfrcz_ss:
1431     case Intrinsic::x86_xop_vfrcz_sd:
1432       // The instructions for these intrinsics are speced to zero upper bits not
1433       // pass them through like other scalar intrinsics. So we shouldn't just
1434       // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1435       // Instead we should return a zero vector.
1436       if (!DemandedElts[0]) {
1437         Worklist.Add(II);
1438         return ConstantAggregateZero::get(II->getType());
1439       }
1440 
1441       // Only the lower element is used.
1442       DemandedElts = 1;
1443       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1444 
1445       // Only the lower element is undefined. The high elements are zero.
1446       UndefElts = UndefElts[0];
1447       break;
1448 
1449     // Unary scalar-as-vector operations that work column-wise.
1450     case Intrinsic::x86_sse_rcp_ss:
1451     case Intrinsic::x86_sse_rsqrt_ss:
1452       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1453 
1454       // If lowest element of a scalar op isn't used then use Arg0.
1455       if (!DemandedElts[0]) {
1456         Worklist.Add(II);
1457         return II->getArgOperand(0);
1458       }
1459       // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1460       // checks).
1461       break;
1462 
1463     // Binary scalar-as-vector operations that work column-wise. The high
1464     // elements come from operand 0. The low element is a function of both
1465     // operands.
1466     case Intrinsic::x86_sse_min_ss:
1467     case Intrinsic::x86_sse_max_ss:
1468     case Intrinsic::x86_sse_cmp_ss:
1469     case Intrinsic::x86_sse2_min_sd:
1470     case Intrinsic::x86_sse2_max_sd:
1471     case Intrinsic::x86_sse2_cmp_sd: {
1472       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1473 
1474       // If lowest element of a scalar op isn't used then use Arg0.
1475       if (!DemandedElts[0]) {
1476         Worklist.Add(II);
1477         return II->getArgOperand(0);
1478       }
1479 
1480       // Only lower element is used for operand 1.
1481       DemandedElts = 1;
1482       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1483 
1484       // Lower element is undefined if both lower elements are undefined.
1485       // Consider things like undef&0.  The result is known zero, not undef.
1486       if (!UndefElts2[0])
1487         UndefElts.clearBit(0);
1488 
1489       break;
1490     }
1491 
1492     // Binary scalar-as-vector operations that work column-wise. The high
1493     // elements come from operand 0 and the low element comes from operand 1.
1494     case Intrinsic::x86_sse41_round_ss:
1495     case Intrinsic::x86_sse41_round_sd: {
1496       // Don't use the low element of operand 0.
1497       APInt DemandedElts2 = DemandedElts;
1498       DemandedElts2.clearBit(0);
1499       simplifyAndSetOp(II, 0, DemandedElts2, UndefElts);
1500 
1501       // If lowest element of a scalar op isn't used then use Arg0.
1502       if (!DemandedElts[0]) {
1503         Worklist.Add(II);
1504         return II->getArgOperand(0);
1505       }
1506 
1507       // Only lower element is used for operand 1.
1508       DemandedElts = 1;
1509       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1510 
1511       // Take the high undef elements from operand 0 and take the lower element
1512       // from operand 1.
1513       UndefElts.clearBit(0);
1514       UndefElts |= UndefElts2[0];
1515       break;
1516     }
1517 
1518     // Three input scalar-as-vector operations that work column-wise. The high
1519     // elements come from operand 0 and the low element is a function of all
1520     // three inputs.
1521     case Intrinsic::x86_avx512_mask_add_ss_round:
1522     case Intrinsic::x86_avx512_mask_div_ss_round:
1523     case Intrinsic::x86_avx512_mask_mul_ss_round:
1524     case Intrinsic::x86_avx512_mask_sub_ss_round:
1525     case Intrinsic::x86_avx512_mask_max_ss_round:
1526     case Intrinsic::x86_avx512_mask_min_ss_round:
1527     case Intrinsic::x86_avx512_mask_add_sd_round:
1528     case Intrinsic::x86_avx512_mask_div_sd_round:
1529     case Intrinsic::x86_avx512_mask_mul_sd_round:
1530     case Intrinsic::x86_avx512_mask_sub_sd_round:
1531     case Intrinsic::x86_avx512_mask_max_sd_round:
1532     case Intrinsic::x86_avx512_mask_min_sd_round:
1533       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1534 
1535       // If lowest element of a scalar op isn't used then use Arg0.
1536       if (!DemandedElts[0]) {
1537         Worklist.Add(II);
1538         return II->getArgOperand(0);
1539       }
1540 
1541       // Only lower element is used for operand 1 and 2.
1542       DemandedElts = 1;
1543       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1544       simplifyAndSetOp(II, 2, DemandedElts, UndefElts3);
1545 
1546       // Lower element is undefined if all three lower elements are undefined.
1547       // Consider things like undef&0.  The result is known zero, not undef.
1548       if (!UndefElts2[0] || !UndefElts3[0])
1549         UndefElts.clearBit(0);
1550 
1551       break;
1552 
1553     case Intrinsic::x86_sse2_packssdw_128:
1554     case Intrinsic::x86_sse2_packsswb_128:
1555     case Intrinsic::x86_sse2_packuswb_128:
1556     case Intrinsic::x86_sse41_packusdw:
1557     case Intrinsic::x86_avx2_packssdw:
1558     case Intrinsic::x86_avx2_packsswb:
1559     case Intrinsic::x86_avx2_packusdw:
1560     case Intrinsic::x86_avx2_packuswb:
1561     case Intrinsic::x86_avx512_packssdw_512:
1562     case Intrinsic::x86_avx512_packsswb_512:
1563     case Intrinsic::x86_avx512_packusdw_512:
1564     case Intrinsic::x86_avx512_packuswb_512: {
1565       auto *Ty0 = II->getArgOperand(0)->getType();
1566       unsigned InnerVWidth = Ty0->getVectorNumElements();
1567       assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1568 
1569       unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1570       unsigned VWidthPerLane = VWidth / NumLanes;
1571       unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1572 
1573       // Per lane, pack the elements of the first input and then the second.
1574       // e.g.
1575       // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1576       // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1577       for (int OpNum = 0; OpNum != 2; ++OpNum) {
1578         APInt OpDemandedElts(InnerVWidth, 0);
1579         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1580           unsigned LaneIdx = Lane * VWidthPerLane;
1581           for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1582             unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1583             if (DemandedElts[Idx])
1584               OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1585           }
1586         }
1587 
1588         // Demand elements from the operand.
1589         APInt OpUndefElts(InnerVWidth, 0);
1590         simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts);
1591 
1592         // Pack the operand's UNDEF elements, one lane at a time.
1593         OpUndefElts = OpUndefElts.zext(VWidth);
1594         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1595           APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1596           LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1597           LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
1598           UndefElts |= LaneElts;
1599         }
1600       }
1601       break;
1602     }
1603 
1604     // PSHUFB
1605     case Intrinsic::x86_ssse3_pshuf_b_128:
1606     case Intrinsic::x86_avx2_pshuf_b:
1607     case Intrinsic::x86_avx512_pshuf_b_512:
1608     // PERMILVAR
1609     case Intrinsic::x86_avx_vpermilvar_ps:
1610     case Intrinsic::x86_avx_vpermilvar_ps_256:
1611     case Intrinsic::x86_avx512_vpermilvar_ps_512:
1612     case Intrinsic::x86_avx_vpermilvar_pd:
1613     case Intrinsic::x86_avx_vpermilvar_pd_256:
1614     case Intrinsic::x86_avx512_vpermilvar_pd_512:
1615     // PERMV
1616     case Intrinsic::x86_avx2_permd:
1617     case Intrinsic::x86_avx2_permps: {
1618       simplifyAndSetOp(II, 1, DemandedElts, UndefElts);
1619       break;
1620     }
1621 
1622     // SSE4A instructions leave the upper 64-bits of the 128-bit result
1623     // in an undefined state.
1624     case Intrinsic::x86_sse4a_extrq:
1625     case Intrinsic::x86_sse4a_extrqi:
1626     case Intrinsic::x86_sse4a_insertq:
1627     case Intrinsic::x86_sse4a_insertqi:
1628       UndefElts.setHighBits(VWidth / 2);
1629       break;
1630     case Intrinsic::amdgcn_buffer_load:
1631     case Intrinsic::amdgcn_buffer_load_format:
1632     case Intrinsic::amdgcn_raw_buffer_load:
1633     case Intrinsic::amdgcn_raw_buffer_load_format:
1634     case Intrinsic::amdgcn_struct_buffer_load:
1635     case Intrinsic::amdgcn_struct_buffer_load_format:
1636       return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
1637     default: {
1638       if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) {
1639         assert(cast<ConstantInt>(
1640                  II->getArgOperand(
1641                    II->getNumOperands() - 2))->getZExtValue() == 0);
1642         return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);
1643       }
1644 
1645       break;
1646     }
1647     } // switch on IntrinsicID
1648     break;
1649   } // case Call
1650   } // switch on Opcode
1651 
1652   // TODO: We bail completely on integer div/rem and shifts because they have
1653   // UB/poison potential, but that should be refined.
1654   BinaryOperator *BO;
1655   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1656     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1657     simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1658 
1659     // Any change to an instruction with potential poison must clear those flags
1660     // because we can not guarantee those constraints now. Other analysis may
1661     // determine that it is safe to re-apply the flags.
1662     if (MadeChange)
1663       BO->dropPoisonGeneratingFlags();
1664 
1665     // Output elements are undefined if both are undefined. Consider things
1666     // like undef & 0. The result is known zero, not undef.
1667     UndefElts &= UndefElts2;
1668   }
1669 
1670   return MadeChange ? I : nullptr;
1671 }
1672