1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Support/KnownBits.h"
19 
20 using namespace llvm;
21 using namespace llvm::PatternMatch;
22 
23 #define DEBUG_TYPE "instcombine"
24 
25 namespace {
26 
27 struct AMDGPUImageDMaskIntrinsic {
28   unsigned Intr;
29 };
30 
31 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
32 #include "InstCombineTables.inc"
33 
34 } // end anonymous namespace
35 
36 /// Check to see if the specified operand of the specified instruction is a
37 /// constant integer. If so, check to see if there are any bits set in the
38 /// constant that are not demanded. If so, shrink the constant and return true.
39 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
40                                    const APInt &Demanded) {
41   assert(I && "No instruction?");
42   assert(OpNo < I->getNumOperands() && "Operand index too large");
43 
44   // The operand must be a constant integer or splat integer.
45   Value *Op = I->getOperand(OpNo);
46   const APInt *C;
47   if (!match(Op, m_APInt(C)))
48     return false;
49 
50   // If there are no bits set that aren't demanded, nothing to do.
51   if (C->isSubsetOf(Demanded))
52     return false;
53 
54   // This instruction is producing bits that are not demanded. Shrink the RHS.
55   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
56 
57   return true;
58 }
59 
60 
61 
62 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
63 /// the instruction has any properties that allow us to simplify its operands.
64 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
65   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
66   KnownBits Known(BitWidth);
67   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
68 
69   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
70                                      0, &Inst);
71   if (!V) return false;
72   if (V == &Inst) return true;
73   replaceInstUsesWith(Inst, V);
74   return true;
75 }
76 
77 /// This form of SimplifyDemandedBits simplifies the specified instruction
78 /// operand if possible, updating it in place. It returns true if it made any
79 /// change and false otherwise.
80 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
81                                         const APInt &DemandedMask,
82                                         KnownBits &Known,
83                                         unsigned Depth) {
84   Use &U = I->getOperandUse(OpNo);
85   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
86                                           Depth, I);
87   if (!NewVal) return false;
88   U = NewVal;
89   return true;
90 }
91 
92 
93 /// This function attempts to replace V with a simpler value based on the
94 /// demanded bits. When this function is called, it is known that only the bits
95 /// set in DemandedMask of the result of V are ever used downstream.
96 /// Consequently, depending on the mask and V, it may be possible to replace V
97 /// with a constant or one of its operands. In such cases, this function does
98 /// the replacement and returns true. In all other cases, it returns false after
99 /// analyzing the expression and setting KnownOne and known to be one in the
100 /// expression. Known.Zero contains all the bits that are known to be zero in
101 /// the expression. These are provided to potentially allow the caller (which
102 /// might recursively be SimplifyDemandedBits itself) to simplify the
103 /// expression.
104 /// Known.One and Known.Zero always follow the invariant that:
105 ///   Known.One & Known.Zero == 0.
106 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
107 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
108 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
109 /// be the same.
110 ///
111 /// This returns null if it did not change anything and it permits no
112 /// simplification.  This returns V itself if it did some simplification of V's
113 /// operands based on the information about what bits are demanded. This returns
114 /// some other non-null value if it found out that V is equal to another value
115 /// in the context where the specified bits are demanded, but not for all users.
116 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
117                                              KnownBits &Known, unsigned Depth,
118                                              Instruction *CxtI) {
119   assert(V != nullptr && "Null pointer of Value???");
120   assert(Depth <= 6 && "Limit Search Depth");
121   uint32_t BitWidth = DemandedMask.getBitWidth();
122   Type *VTy = V->getType();
123   assert(
124       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
125       Known.getBitWidth() == BitWidth &&
126       "Value *V, DemandedMask and Known must have same BitWidth");
127 
128   if (isa<Constant>(V)) {
129     computeKnownBits(V, Known, Depth, CxtI);
130     return nullptr;
131   }
132 
133   Known.resetAll();
134   if (DemandedMask.isNullValue())     // Not demanding any bits from V.
135     return UndefValue::get(VTy);
136 
137   if (Depth == 6)        // Limit search depth.
138     return nullptr;
139 
140   Instruction *I = dyn_cast<Instruction>(V);
141   if (!I) {
142     computeKnownBits(V, Known, Depth, CxtI);
143     return nullptr;        // Only analyze instructions.
144   }
145 
146   // If there are multiple uses of this value and we aren't at the root, then
147   // we can't do any simplifications of the operands, because DemandedMask
148   // only reflects the bits demanded by *one* of the users.
149   if (Depth != 0 && !I->hasOneUse())
150     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
151 
152   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
153 
154   // If this is the root being simplified, allow it to have multiple uses,
155   // just set the DemandedMask to all bits so that we can try to simplify the
156   // operands.  This allows visitTruncInst (for example) to simplify the
157   // operand of a trunc without duplicating all the logic below.
158   if (Depth == 0 && !V->hasOneUse())
159     DemandedMask.setAllBits();
160 
161   switch (I->getOpcode()) {
162   default:
163     computeKnownBits(I, Known, Depth, CxtI);
164     break;
165   case Instruction::And: {
166     // If either the LHS or the RHS are Zero, the result is zero.
167     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
168         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
169                              Depth + 1))
170       return I;
171     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
172     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
173 
174     // Output known-0 are known to be clear if zero in either the LHS | RHS.
175     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
176     // Output known-1 bits are only known if set in both the LHS & RHS.
177     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
178 
179     // If the client is only demanding bits that we know, return the known
180     // constant.
181     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
182       return Constant::getIntegerValue(VTy, IKnownOne);
183 
184     // If all of the demanded bits are known 1 on one side, return the other.
185     // These bits cannot contribute to the result of the 'and'.
186     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
187       return I->getOperand(0);
188     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
189       return I->getOperand(1);
190 
191     // If the RHS is a constant, see if we can simplify it.
192     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
193       return I;
194 
195     Known.Zero = std::move(IKnownZero);
196     Known.One  = std::move(IKnownOne);
197     break;
198   }
199   case Instruction::Or: {
200     // If either the LHS or the RHS are One, the result is One.
201     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
202         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
203                              Depth + 1))
204       return I;
205     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
206     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
207 
208     // Output known-0 bits are only known if clear in both the LHS & RHS.
209     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
210     // Output known-1 are known. to be set if s.et in either the LHS | RHS.
211     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
212 
213     // If the client is only demanding bits that we know, return the known
214     // constant.
215     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
216       return Constant::getIntegerValue(VTy, IKnownOne);
217 
218     // If all of the demanded bits are known zero on one side, return the other.
219     // These bits cannot contribute to the result of the 'or'.
220     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
221       return I->getOperand(0);
222     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
223       return I->getOperand(1);
224 
225     // If the RHS is a constant, see if we can simplify it.
226     if (ShrinkDemandedConstant(I, 1, DemandedMask))
227       return I;
228 
229     Known.Zero = std::move(IKnownZero);
230     Known.One  = std::move(IKnownOne);
231     break;
232   }
233   case Instruction::Xor: {
234     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
235         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
236       return I;
237     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
238     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
239 
240     // Output known-0 bits are known if clear or set in both the LHS & RHS.
241     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
242                        (RHSKnown.One & LHSKnown.One);
243     // Output known-1 are known to be set if set in only one of the LHS, RHS.
244     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
245                        (RHSKnown.One & LHSKnown.Zero);
246 
247     // If the client is only demanding bits that we know, return the known
248     // constant.
249     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
250       return Constant::getIntegerValue(VTy, IKnownOne);
251 
252     // If all of the demanded bits are known zero on one side, return the other.
253     // These bits cannot contribute to the result of the 'xor'.
254     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
255       return I->getOperand(0);
256     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
257       return I->getOperand(1);
258 
259     // If all of the demanded bits are known to be zero on one side or the
260     // other, turn this into an *inclusive* or.
261     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
262     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
263       Instruction *Or =
264         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
265                                  I->getName());
266       return InsertNewInstWith(Or, *I);
267     }
268 
269     // If all of the demanded bits on one side are known, and all of the set
270     // bits on that side are also known to be set on the other side, turn this
271     // into an AND, as we know the bits will be cleared.
272     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
273     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
274         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
275       Constant *AndC = Constant::getIntegerValue(VTy,
276                                                  ~RHSKnown.One & DemandedMask);
277       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
278       return InsertNewInstWith(And, *I);
279     }
280 
281     // If the RHS is a constant, see if we can simplify it.
282     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
283     if (ShrinkDemandedConstant(I, 1, DemandedMask))
284       return I;
285 
286     // If our LHS is an 'and' and if it has one use, and if any of the bits we
287     // are flipping are known to be set, then the xor is just resetting those
288     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
289     // simplifying both of them.
290     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
291       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
292           isa<ConstantInt>(I->getOperand(1)) &&
293           isa<ConstantInt>(LHSInst->getOperand(1)) &&
294           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
295         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
296         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
297         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
298 
299         Constant *AndC =
300           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
301         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
302         InsertNewInstWith(NewAnd, *I);
303 
304         Constant *XorC =
305           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
306         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
307         return InsertNewInstWith(NewXor, *I);
308       }
309 
310     // Output known-0 bits are known if clear or set in both the LHS & RHS.
311     Known.Zero = std::move(IKnownZero);
312     // Output known-1 are known to be set if set in only one of the LHS, RHS.
313     Known.One  = std::move(IKnownOne);
314     break;
315   }
316   case Instruction::Select: {
317     Value *LHS, *RHS;
318     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
319     if (SPF == SPF_UMAX) {
320       // UMax(A, C) == A if ...
321       // The lowest non-zero bit of DemandMask is higher than the highest
322       // non-zero bit of C.
323       const APInt *C;
324       unsigned CTZ = DemandedMask.countTrailingZeros();
325       if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
326         return LHS;
327     } else if (SPF == SPF_UMIN) {
328       // UMin(A, C) == A if ...
329       // The lowest non-zero bit of DemandMask is higher than the highest
330       // non-one bit of C.
331       // This comes from using DeMorgans on the above umax example.
332       const APInt *C;
333       unsigned CTZ = DemandedMask.countTrailingZeros();
334       if (match(RHS, m_APInt(C)) &&
335           CTZ >= C->getBitWidth() - C->countLeadingOnes())
336         return LHS;
337     }
338 
339     // If this is a select as part of any other min/max pattern, don't simplify
340     // any further in case we break the structure.
341     if (SPF != SPF_UNKNOWN)
342       return nullptr;
343 
344     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
345         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
346       return I;
347     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
348     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
349 
350     // If the operands are constants, see if we can simplify them.
351     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
352         ShrinkDemandedConstant(I, 2, DemandedMask))
353       return I;
354 
355     // Only known if known in both the LHS and RHS.
356     Known.One = RHSKnown.One & LHSKnown.One;
357     Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
358     break;
359   }
360   case Instruction::ZExt:
361   case Instruction::Trunc: {
362     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
363 
364     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
365     KnownBits InputKnown(SrcBitWidth);
366     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
367       return I;
368     Known = InputKnown.zextOrTrunc(BitWidth);
369     // Any top bits are known to be zero.
370     if (BitWidth > SrcBitWidth)
371       Known.Zero.setBitsFrom(SrcBitWidth);
372     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
373     break;
374   }
375   case Instruction::BitCast:
376     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
377       return nullptr;  // vector->int or fp->int?
378 
379     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
380       if (VectorType *SrcVTy =
381             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
382         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
383           // Don't touch a bitcast between vectors of different element counts.
384           return nullptr;
385       } else
386         // Don't touch a scalar-to-vector bitcast.
387         return nullptr;
388     } else if (I->getOperand(0)->getType()->isVectorTy())
389       // Don't touch a vector-to-scalar bitcast.
390       return nullptr;
391 
392     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
393       return I;
394     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
395     break;
396   case Instruction::SExt: {
397     // Compute the bits in the result that are not present in the input.
398     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
399 
400     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
401 
402     // If any of the sign extended bits are demanded, we know that the sign
403     // bit is demanded.
404     if (DemandedMask.getActiveBits() > SrcBitWidth)
405       InputDemandedBits.setBit(SrcBitWidth-1);
406 
407     KnownBits InputKnown(SrcBitWidth);
408     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
409       return I;
410 
411     // If the input sign bit is known zero, or if the NewBits are not demanded
412     // convert this into a zero extension.
413     if (InputKnown.isNonNegative() ||
414         DemandedMask.getActiveBits() <= SrcBitWidth) {
415       // Convert to ZExt cast.
416       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
417       return InsertNewInstWith(NewCast, *I);
418      }
419 
420     // If the sign bit of the input is known set or clear, then we know the
421     // top bits of the result.
422     Known = InputKnown.sext(BitWidth);
423     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
424     break;
425   }
426   case Instruction::Add:
427   case Instruction::Sub: {
428     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
429     /// about the high bits of the operands.
430     unsigned NLZ = DemandedMask.countLeadingZeros();
431     // Right fill the mask of bits for this ADD/SUB to demand the most
432     // significant bit and all those below it.
433     APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
434     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
435         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
436         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
437         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
438       if (NLZ > 0) {
439         // Disable the nsw and nuw flags here: We can no longer guarantee that
440         // we won't wrap after simplification. Removing the nsw/nuw flags is
441         // legal here because the top bit is not demanded.
442         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
443         BinOP.setHasNoSignedWrap(false);
444         BinOP.setHasNoUnsignedWrap(false);
445       }
446       return I;
447     }
448 
449     // If we are known to be adding/subtracting zeros to every bit below
450     // the highest demanded bit, we just return the other side.
451     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
452       return I->getOperand(0);
453     // We can't do this with the LHS for subtraction, unless we are only
454     // demanding the LSB.
455     if ((I->getOpcode() == Instruction::Add ||
456          DemandedFromOps.isOneValue()) &&
457         DemandedFromOps.isSubsetOf(LHSKnown.Zero))
458       return I->getOperand(1);
459 
460     // Otherwise just compute the known bits of the result.
461     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
462     Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
463                                         NSW, LHSKnown, RHSKnown);
464     break;
465   }
466   case Instruction::Shl: {
467     const APInt *SA;
468     if (match(I->getOperand(1), m_APInt(SA))) {
469       const APInt *ShrAmt;
470       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
471         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
472           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
473                                                     DemandedMask, Known))
474             return R;
475 
476       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
477       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
478 
479       // If the shift is NUW/NSW, then it does demand the high bits.
480       ShlOperator *IOp = cast<ShlOperator>(I);
481       if (IOp->hasNoSignedWrap())
482         DemandedMaskIn.setHighBits(ShiftAmt+1);
483       else if (IOp->hasNoUnsignedWrap())
484         DemandedMaskIn.setHighBits(ShiftAmt);
485 
486       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
487         return I;
488       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
489       Known.Zero <<= ShiftAmt;
490       Known.One  <<= ShiftAmt;
491       // low bits known zero.
492       if (ShiftAmt)
493         Known.Zero.setLowBits(ShiftAmt);
494     }
495     break;
496   }
497   case Instruction::LShr: {
498     const APInt *SA;
499     if (match(I->getOperand(1), m_APInt(SA))) {
500       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
501 
502       // Unsigned shift right.
503       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
504 
505       // If the shift is exact, then it does demand the low bits (and knows that
506       // they are zero).
507       if (cast<LShrOperator>(I)->isExact())
508         DemandedMaskIn.setLowBits(ShiftAmt);
509 
510       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
511         return I;
512       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
513       Known.Zero.lshrInPlace(ShiftAmt);
514       Known.One.lshrInPlace(ShiftAmt);
515       if (ShiftAmt)
516         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
517     }
518     break;
519   }
520   case Instruction::AShr: {
521     // If this is an arithmetic shift right and only the low-bit is set, we can
522     // always convert this into a logical shr, even if the shift amount is
523     // variable.  The low bit of the shift cannot be an input sign bit unless
524     // the shift amount is >= the size of the datatype, which is undefined.
525     if (DemandedMask.isOneValue()) {
526       // Perform the logical shift right.
527       Instruction *NewVal = BinaryOperator::CreateLShr(
528                         I->getOperand(0), I->getOperand(1), I->getName());
529       return InsertNewInstWith(NewVal, *I);
530     }
531 
532     // If the sign bit is the only bit demanded by this ashr, then there is no
533     // need to do it, the shift doesn't change the high bit.
534     if (DemandedMask.isSignMask())
535       return I->getOperand(0);
536 
537     const APInt *SA;
538     if (match(I->getOperand(1), m_APInt(SA))) {
539       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
540 
541       // Signed shift right.
542       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
543       // If any of the high bits are demanded, we should set the sign bit as
544       // demanded.
545       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
546         DemandedMaskIn.setSignBit();
547 
548       // If the shift is exact, then it does demand the low bits (and knows that
549       // they are zero).
550       if (cast<AShrOperator>(I)->isExact())
551         DemandedMaskIn.setLowBits(ShiftAmt);
552 
553       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
554         return I;
555 
556       unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
557 
558       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
559       // Compute the new bits that are at the top now plus sign bits.
560       APInt HighBits(APInt::getHighBitsSet(
561           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
562       Known.Zero.lshrInPlace(ShiftAmt);
563       Known.One.lshrInPlace(ShiftAmt);
564 
565       // If the input sign bit is known to be zero, or if none of the top bits
566       // are demanded, turn this into an unsigned shift right.
567       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
568       if (Known.Zero[BitWidth-ShiftAmt-1] ||
569           !DemandedMask.intersects(HighBits)) {
570         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
571                                                           I->getOperand(1));
572         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
573         return InsertNewInstWith(LShr, *I);
574       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
575         Known.One |= HighBits;
576       }
577     }
578     break;
579   }
580   case Instruction::UDiv: {
581     // UDiv doesn't demand low bits that are zero in the divisor.
582     const APInt *SA;
583     if (match(I->getOperand(1), m_APInt(SA))) {
584       // If the shift is exact, then it does demand the low bits.
585       if (cast<UDivOperator>(I)->isExact())
586         break;
587 
588       // FIXME: Take the demanded mask of the result into account.
589       unsigned RHSTrailingZeros = SA->countTrailingZeros();
590       APInt DemandedMaskIn =
591           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
592       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
593         return I;
594 
595       // Propagate zero bits from the input.
596       Known.Zero.setHighBits(std::min(
597           BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
598     }
599     break;
600   }
601   case Instruction::SRem:
602     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
603       // X % -1 demands all the bits because we don't want to introduce
604       // INT_MIN % -1 (== undef) by accident.
605       if (Rem->isMinusOne())
606         break;
607       APInt RA = Rem->getValue().abs();
608       if (RA.isPowerOf2()) {
609         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
610           return I->getOperand(0);
611 
612         APInt LowBits = RA - 1;
613         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
614         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
615           return I;
616 
617         // The low bits of LHS are unchanged by the srem.
618         Known.Zero = LHSKnown.Zero & LowBits;
619         Known.One = LHSKnown.One & LowBits;
620 
621         // If LHS is non-negative or has all low bits zero, then the upper bits
622         // are all zero.
623         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
624           Known.Zero |= ~LowBits;
625 
626         // If LHS is negative and not all low bits are zero, then the upper bits
627         // are all one.
628         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
629           Known.One |= ~LowBits;
630 
631         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
632         break;
633       }
634     }
635 
636     // The sign bit is the LHS's sign bit, except when the result of the
637     // remainder is zero.
638     if (DemandedMask.isSignBitSet()) {
639       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
640       // If it's known zero, our sign bit is also zero.
641       if (LHSKnown.isNonNegative())
642         Known.makeNonNegative();
643     }
644     break;
645   case Instruction::URem: {
646     KnownBits Known2(BitWidth);
647     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
648     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
649         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
650       return I;
651 
652     unsigned Leaders = Known2.countMinLeadingZeros();
653     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
654     break;
655   }
656   case Instruction::Call:
657     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
658       switch (II->getIntrinsicID()) {
659       default: break;
660       case Intrinsic::bswap: {
661         // If the only bits demanded come from one byte of the bswap result,
662         // just shift the input byte into position to eliminate the bswap.
663         unsigned NLZ = DemandedMask.countLeadingZeros();
664         unsigned NTZ = DemandedMask.countTrailingZeros();
665 
666         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
667         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
668         // have 14 leading zeros, round to 8.
669         NLZ &= ~7;
670         NTZ &= ~7;
671         // If we need exactly one byte, we can do this transformation.
672         if (BitWidth-NLZ-NTZ == 8) {
673           unsigned ResultBit = NTZ;
674           unsigned InputBit = BitWidth-NTZ-8;
675 
676           // Replace this with either a left or right shift to get the byte into
677           // the right place.
678           Instruction *NewVal;
679           if (InputBit > ResultBit)
680             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
681                     ConstantInt::get(I->getType(), InputBit-ResultBit));
682           else
683             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
684                     ConstantInt::get(I->getType(), ResultBit-InputBit));
685           NewVal->takeName(I);
686           return InsertNewInstWith(NewVal, *I);
687         }
688 
689         // TODO: Could compute known zero/one bits based on the input.
690         break;
691       }
692       case Intrinsic::fshr:
693       case Intrinsic::fshl: {
694         const APInt *SA;
695         if (!match(I->getOperand(2), m_APInt(SA)))
696           break;
697 
698         // Normalize to funnel shift left. APInt shifts of BitWidth are well-
699         // defined, so no need to special-case zero shifts here.
700         uint64_t ShiftAmt = SA->urem(BitWidth);
701         if (II->getIntrinsicID() == Intrinsic::fshr)
702           ShiftAmt = BitWidth - ShiftAmt;
703 
704         APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
705         APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
706         if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
707             SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
708           return I;
709 
710         Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
711                      RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
712         Known.One = LHSKnown.One.shl(ShiftAmt) |
713                     RHSKnown.One.lshr(BitWidth - ShiftAmt);
714         break;
715       }
716       case Intrinsic::x86_mmx_pmovmskb:
717       case Intrinsic::x86_sse_movmsk_ps:
718       case Intrinsic::x86_sse2_movmsk_pd:
719       case Intrinsic::x86_sse2_pmovmskb_128:
720       case Intrinsic::x86_avx_movmsk_ps_256:
721       case Intrinsic::x86_avx_movmsk_pd_256:
722       case Intrinsic::x86_avx2_pmovmskb: {
723         // MOVMSK copies the vector elements' sign bits to the low bits
724         // and zeros the high bits.
725         unsigned ArgWidth;
726         if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
727           ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
728         } else {
729           auto Arg = II->getArgOperand(0);
730           auto ArgType = cast<VectorType>(Arg->getType());
731           ArgWidth = ArgType->getNumElements();
732         }
733 
734         // If we don't need any of low bits then return zero,
735         // we know that DemandedMask is non-zero already.
736         APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
737         if (DemandedElts.isNullValue())
738           return ConstantInt::getNullValue(VTy);
739 
740         // We know that the upper bits are set to zero.
741         Known.Zero.setBitsFrom(ArgWidth);
742         return nullptr;
743       }
744       case Intrinsic::x86_sse42_crc32_64_64:
745         Known.Zero.setBitsFrom(32);
746         return nullptr;
747       }
748     }
749     computeKnownBits(V, Known, Depth, CxtI);
750     break;
751   }
752 
753   // If the client is only demanding bits that we know, return the known
754   // constant.
755   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
756     return Constant::getIntegerValue(VTy, Known.One);
757   return nullptr;
758 }
759 
760 /// Helper routine of SimplifyDemandedUseBits. It computes Known
761 /// bits. It also tries to handle simplifications that can be done based on
762 /// DemandedMask, but without modifying the Instruction.
763 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
764                                                      const APInt &DemandedMask,
765                                                      KnownBits &Known,
766                                                      unsigned Depth,
767                                                      Instruction *CxtI) {
768   unsigned BitWidth = DemandedMask.getBitWidth();
769   Type *ITy = I->getType();
770 
771   KnownBits LHSKnown(BitWidth);
772   KnownBits RHSKnown(BitWidth);
773 
774   // Despite the fact that we can't simplify this instruction in all User's
775   // context, we can at least compute the known bits, and we can
776   // do simplifications that apply to *just* the one user if we know that
777   // this instruction has a simpler value in that context.
778   switch (I->getOpcode()) {
779   case Instruction::And: {
780     // If either the LHS or the RHS are Zero, the result is zero.
781     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
782     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
783                      CxtI);
784 
785     // Output known-0 are known to be clear if zero in either the LHS | RHS.
786     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
787     // Output known-1 bits are only known if set in both the LHS & RHS.
788     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
789 
790     // If the client is only demanding bits that we know, return the known
791     // constant.
792     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
793       return Constant::getIntegerValue(ITy, IKnownOne);
794 
795     // If all of the demanded bits are known 1 on one side, return the other.
796     // These bits cannot contribute to the result of the 'and' in this
797     // context.
798     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
799       return I->getOperand(0);
800     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
801       return I->getOperand(1);
802 
803     Known.Zero = std::move(IKnownZero);
804     Known.One  = std::move(IKnownOne);
805     break;
806   }
807   case Instruction::Or: {
808     // We can simplify (X|Y) -> X or Y in the user's context if we know that
809     // only bits from X or Y are demanded.
810 
811     // If either the LHS or the RHS are One, the result is One.
812     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
813     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
814                      CxtI);
815 
816     // Output known-0 bits are only known if clear in both the LHS & RHS.
817     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
818     // Output known-1 are known to be set if set in either the LHS | RHS.
819     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
820 
821     // If the client is only demanding bits that we know, return the known
822     // constant.
823     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
824       return Constant::getIntegerValue(ITy, IKnownOne);
825 
826     // If all of the demanded bits are known zero on one side, return the
827     // other.  These bits cannot contribute to the result of the 'or' in this
828     // context.
829     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
830       return I->getOperand(0);
831     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
832       return I->getOperand(1);
833 
834     Known.Zero = std::move(IKnownZero);
835     Known.One  = std::move(IKnownOne);
836     break;
837   }
838   case Instruction::Xor: {
839     // We can simplify (X^Y) -> X or Y in the user's context if we know that
840     // only bits from X or Y are demanded.
841 
842     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
843     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
844                      CxtI);
845 
846     // Output known-0 bits are known if clear or set in both the LHS & RHS.
847     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
848                        (RHSKnown.One & LHSKnown.One);
849     // Output known-1 are known to be set if set in only one of the LHS, RHS.
850     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
851                        (RHSKnown.One & LHSKnown.Zero);
852 
853     // If the client is only demanding bits that we know, return the known
854     // constant.
855     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
856       return Constant::getIntegerValue(ITy, IKnownOne);
857 
858     // If all of the demanded bits are known zero on one side, return the
859     // other.
860     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
861       return I->getOperand(0);
862     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
863       return I->getOperand(1);
864 
865     // Output known-0 bits are known if clear or set in both the LHS & RHS.
866     Known.Zero = std::move(IKnownZero);
867     // Output known-1 are known to be set if set in only one of the LHS, RHS.
868     Known.One  = std::move(IKnownOne);
869     break;
870   }
871   default:
872     // Compute the Known bits to simplify things downstream.
873     computeKnownBits(I, Known, Depth, CxtI);
874 
875     // If this user is only demanding bits that we know, return the known
876     // constant.
877     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
878       return Constant::getIntegerValue(ITy, Known.One);
879 
880     break;
881   }
882 
883   return nullptr;
884 }
885 
886 
887 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
888 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
889 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
890 /// of "C2-C1".
891 ///
892 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
893 /// ..., bn}, without considering the specific value X is holding.
894 /// This transformation is legal iff one of following conditions is hold:
895 ///  1) All the bit in S are 0, in this case E1 == E2.
896 ///  2) We don't care those bits in S, per the input DemandedMask.
897 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
898 ///     rest bits.
899 ///
900 /// Currently we only test condition 2).
901 ///
902 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
903 /// not successful.
904 Value *
905 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
906                                          Instruction *Shl, const APInt &ShlOp1,
907                                          const APInt &DemandedMask,
908                                          KnownBits &Known) {
909   if (!ShlOp1 || !ShrOp1)
910     return nullptr; // No-op.
911 
912   Value *VarX = Shr->getOperand(0);
913   Type *Ty = VarX->getType();
914   unsigned BitWidth = Ty->getScalarSizeInBits();
915   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
916     return nullptr; // Undef.
917 
918   unsigned ShlAmt = ShlOp1.getZExtValue();
919   unsigned ShrAmt = ShrOp1.getZExtValue();
920 
921   Known.One.clearAllBits();
922   Known.Zero.setLowBits(ShlAmt - 1);
923   Known.Zero &= DemandedMask;
924 
925   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
926   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
927 
928   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
929   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
930                       (BitMask1.ashr(ShrAmt) << ShlAmt);
931 
932   if (ShrAmt <= ShlAmt) {
933     BitMask2 <<= (ShlAmt - ShrAmt);
934   } else {
935     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
936                         BitMask2.ashr(ShrAmt - ShlAmt);
937   }
938 
939   // Check if condition-2 (see the comment to this function) is satified.
940   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
941     if (ShrAmt == ShlAmt)
942       return VarX;
943 
944     if (!Shr->hasOneUse())
945       return nullptr;
946 
947     BinaryOperator *New;
948     if (ShrAmt < ShlAmt) {
949       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
950       New = BinaryOperator::CreateShl(VarX, Amt);
951       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
952       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
953       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
954     } else {
955       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
956       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
957                      BinaryOperator::CreateAShr(VarX, Amt);
958       if (cast<BinaryOperator>(Shr)->isExact())
959         New->setIsExact(true);
960     }
961 
962     return InsertNewInstWith(New, *Shl);
963   }
964 
965   return nullptr;
966 }
967 
968 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
969 ///
970 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have
971 ///       struct returns.
972 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
973                                                            APInt DemandedElts,
974                                                            int DMaskIdx) {
975   unsigned VWidth = II->getType()->getVectorNumElements();
976   if (VWidth == 1)
977     return nullptr;
978 
979   ConstantInt *NewDMask = nullptr;
980 
981   if (DMaskIdx < 0) {
982     // Pretend that a prefix of elements is demanded to simplify the code
983     // below.
984     DemandedElts = (1 << DemandedElts.getActiveBits()) - 1;
985   } else {
986     ConstantInt *DMask = dyn_cast<ConstantInt>(II->getArgOperand(DMaskIdx));
987     if (!DMask)
988       return nullptr; // non-constant dmask is not supported by codegen
989 
990     unsigned DMaskVal = DMask->getZExtValue() & 0xf;
991 
992     // Mask off values that are undefined because the dmask doesn't cover them
993     DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
994 
995     unsigned NewDMaskVal = 0;
996     unsigned OrigLoadIdx = 0;
997     for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
998       const unsigned Bit = 1 << SrcIdx;
999       if (!!(DMaskVal & Bit)) {
1000         if (!!DemandedElts[OrigLoadIdx])
1001           NewDMaskVal |= Bit;
1002         OrigLoadIdx++;
1003       }
1004     }
1005 
1006     if (DMaskVal != NewDMaskVal)
1007       NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal);
1008   }
1009 
1010   // TODO: Handle 3 vectors when supported in code gen.
1011   unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countPopulation());
1012   if (!NewNumElts)
1013     return UndefValue::get(II->getType());
1014 
1015   if (NewNumElts >= VWidth && DemandedElts.isMask()) {
1016     if (NewDMask)
1017       II->setArgOperand(DMaskIdx, NewDMask);
1018     return nullptr;
1019   }
1020 
1021   // Determine the overload types of the original intrinsic.
1022   auto IID = II->getIntrinsicID();
1023   SmallVector<Intrinsic::IITDescriptor, 16> Table;
1024   getIntrinsicInfoTableEntries(IID, Table);
1025   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1026 
1027   FunctionType *FTy = II->getCalledFunction()->getFunctionType();
1028   SmallVector<Type *, 6> OverloadTys;
1029   Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, OverloadTys);
1030   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1031     Intrinsic::matchIntrinsicType(FTy->getParamType(i), TableRef, OverloadTys);
1032 
1033   // Get the new return type overload of the intrinsic.
1034   Module *M = II->getParent()->getParent()->getParent();
1035   Type *EltTy = II->getType()->getVectorElementType();
1036   Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
1037 
1038   OverloadTys[0] = NewTy;
1039   Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
1040 
1041   SmallVector<Value *, 16> Args;
1042   for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1043     Args.push_back(II->getArgOperand(I));
1044 
1045   if (NewDMask)
1046     Args[DMaskIdx] = NewDMask;
1047 
1048   IRBuilderBase::InsertPointGuard Guard(Builder);
1049   Builder.SetInsertPoint(II);
1050 
1051   CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
1052   NewCall->takeName(II);
1053   NewCall->copyMetadata(*II);
1054 
1055   if (NewNumElts == 1) {
1056     return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
1057                                        DemandedElts.countTrailingZeros());
1058   }
1059 
1060   SmallVector<uint32_t, 8> EltMask;
1061   unsigned NewLoadIdx = 0;
1062   for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
1063     if (!!DemandedElts[OrigLoadIdx])
1064       EltMask.push_back(NewLoadIdx++);
1065     else
1066       EltMask.push_back(NewNumElts);
1067   }
1068 
1069   Value *Shuffle =
1070       Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
1071 
1072   return Shuffle;
1073 }
1074 
1075 /// The specified value produces a vector with any number of elements.
1076 /// DemandedElts contains the set of elements that are actually used by the
1077 /// caller. This method analyzes which elements of the operand are undef and
1078 /// returns that information in UndefElts.
1079 ///
1080 /// If the information about demanded elements can be used to simplify the
1081 /// operation, the operation is simplified, then the resultant value is
1082 /// returned.  This returns null if no change was made.
1083 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
1084                                                 APInt &UndefElts,
1085                                                 unsigned Depth) {
1086   unsigned VWidth = V->getType()->getVectorNumElements();
1087   APInt EltMask(APInt::getAllOnesValue(VWidth));
1088   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1089 
1090   if (isa<UndefValue>(V)) {
1091     // If the entire vector is undefined, just return this info.
1092     UndefElts = EltMask;
1093     return nullptr;
1094   }
1095 
1096   if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
1097     UndefElts = EltMask;
1098     return UndefValue::get(V->getType());
1099   }
1100 
1101   UndefElts = 0;
1102 
1103   if (auto *C = dyn_cast<Constant>(V)) {
1104     // Check if this is identity. If so, return 0 since we are not simplifying
1105     // anything.
1106     if (DemandedElts.isAllOnesValue())
1107       return nullptr;
1108 
1109     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1110     Constant *Undef = UndefValue::get(EltTy);
1111     SmallVector<Constant*, 16> Elts;
1112     for (unsigned i = 0; i != VWidth; ++i) {
1113       if (!DemandedElts[i]) {   // If not demanded, set to undef.
1114         Elts.push_back(Undef);
1115         UndefElts.setBit(i);
1116         continue;
1117       }
1118 
1119       Constant *Elt = C->getAggregateElement(i);
1120       if (!Elt) return nullptr;
1121 
1122       if (isa<UndefValue>(Elt)) {   // Already undef.
1123         Elts.push_back(Undef);
1124         UndefElts.setBit(i);
1125       } else {                               // Otherwise, defined.
1126         Elts.push_back(Elt);
1127       }
1128     }
1129 
1130     // If we changed the constant, return it.
1131     Constant *NewCV = ConstantVector::get(Elts);
1132     return NewCV != C ? NewCV : nullptr;
1133   }
1134 
1135   // Limit search depth.
1136   if (Depth == 10)
1137     return nullptr;
1138 
1139   // If multiple users are using the root value, proceed with
1140   // simplification conservatively assuming that all elements
1141   // are needed.
1142   if (!V->hasOneUse()) {
1143     // Quit if we find multiple users of a non-root value though.
1144     // They'll be handled when it's their turn to be visited by
1145     // the main instcombine process.
1146     if (Depth != 0)
1147       // TODO: Just compute the UndefElts information recursively.
1148       return nullptr;
1149 
1150     // Conservatively assume that all elements are needed.
1151     DemandedElts = EltMask;
1152   }
1153 
1154   Instruction *I = dyn_cast<Instruction>(V);
1155   if (!I) return nullptr;        // Only analyze instructions.
1156 
1157   bool MadeChange = false;
1158   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1159                               APInt Demanded, APInt &Undef) {
1160     auto *II = dyn_cast<IntrinsicInst>(Inst);
1161     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1162     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1163       if (II)
1164         II->setArgOperand(OpNum, V);
1165       else
1166         Inst->setOperand(OpNum, V);
1167       MadeChange = true;
1168     }
1169   };
1170 
1171   APInt UndefElts2(VWidth, 0);
1172   APInt UndefElts3(VWidth, 0);
1173   switch (I->getOpcode()) {
1174   default: break;
1175 
1176   case Instruction::GetElementPtr: {
1177     // Conservatively track the demanded elements back through any vector
1178     // operands we may have.  We know there must be at least one, or we
1179     // wouldn't have a vector result to get here. Note that we intentionally
1180     // merge the undef bits here since gepping with either an undef base or
1181     // index results in undef.
1182     for (unsigned i = 0; i < I->getNumOperands(); i++)
1183       if (I->getOperand(i)->getType()->isVectorTy())
1184         simplifyAndSetOp(I, i, DemandedElts, UndefElts);
1185 
1186     break;
1187   }
1188   case Instruction::InsertElement: {
1189     // If this is a variable index, we don't know which element it overwrites.
1190     // demand exactly the same input as we produce.
1191     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1192     if (!Idx) {
1193       // Note that we can't propagate undef elt info, because we don't know
1194       // which elt is getting updated.
1195       simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1196       break;
1197     }
1198 
1199     // The element inserted overwrites whatever was there, so the input demanded
1200     // set is simpler than the output set.
1201     unsigned IdxNo = Idx->getZExtValue();
1202     APInt PreInsertDemandedElts = DemandedElts;
1203     if (IdxNo < VWidth)
1204       PreInsertDemandedElts.clearBit(IdxNo);
1205 
1206     simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1207 
1208     // If this is inserting an element that isn't demanded, remove this
1209     // insertelement.
1210     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1211       Worklist.Add(I);
1212       return I->getOperand(0);
1213     }
1214 
1215     // The inserted element is defined.
1216     UndefElts.clearBit(IdxNo);
1217     break;
1218   }
1219   case Instruction::ShuffleVector: {
1220     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1221     unsigned LHSVWidth =
1222       Shuffle->getOperand(0)->getType()->getVectorNumElements();
1223     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1224     for (unsigned i = 0; i < VWidth; i++) {
1225       if (DemandedElts[i]) {
1226         unsigned MaskVal = Shuffle->getMaskValue(i);
1227         if (MaskVal != -1u) {
1228           assert(MaskVal < LHSVWidth * 2 &&
1229                  "shufflevector mask index out of range!");
1230           if (MaskVal < LHSVWidth)
1231             LeftDemanded.setBit(MaskVal);
1232           else
1233             RightDemanded.setBit(MaskVal - LHSVWidth);
1234         }
1235       }
1236     }
1237 
1238     APInt LHSUndefElts(LHSVWidth, 0);
1239     simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1240 
1241     APInt RHSUndefElts(LHSVWidth, 0);
1242     simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1243 
1244     bool NewUndefElts = false;
1245     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1246     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1247     bool LHSUniform = true;
1248     bool RHSUniform = true;
1249     for (unsigned i = 0; i < VWidth; i++) {
1250       unsigned MaskVal = Shuffle->getMaskValue(i);
1251       if (MaskVal == -1u) {
1252         UndefElts.setBit(i);
1253       } else if (!DemandedElts[i]) {
1254         NewUndefElts = true;
1255         UndefElts.setBit(i);
1256       } else if (MaskVal < LHSVWidth) {
1257         if (LHSUndefElts[MaskVal]) {
1258           NewUndefElts = true;
1259           UndefElts.setBit(i);
1260         } else {
1261           LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1262           LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
1263           LHSUniform = LHSUniform && (MaskVal == i);
1264         }
1265       } else {
1266         if (RHSUndefElts[MaskVal - LHSVWidth]) {
1267           NewUndefElts = true;
1268           UndefElts.setBit(i);
1269         } else {
1270           RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1271           RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
1272           RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
1273         }
1274       }
1275     }
1276 
1277     // Try to transform shuffle with constant vector and single element from
1278     // this constant vector to single insertelement instruction.
1279     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1280     // insertelement V, C[ci], ci-n
1281     if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1282       Value *Op = nullptr;
1283       Constant *Value = nullptr;
1284       unsigned Idx = -1u;
1285 
1286       // Find constant vector with the single element in shuffle (LHS or RHS).
1287       if (LHSIdx < LHSVWidth && RHSUniform) {
1288         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1289           Op = Shuffle->getOperand(1);
1290           Value = CV->getOperand(LHSValIdx);
1291           Idx = LHSIdx;
1292         }
1293       }
1294       if (RHSIdx < LHSVWidth && LHSUniform) {
1295         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1296           Op = Shuffle->getOperand(0);
1297           Value = CV->getOperand(RHSValIdx);
1298           Idx = RHSIdx;
1299         }
1300       }
1301       // Found constant vector with single element - convert to insertelement.
1302       if (Op && Value) {
1303         Instruction *New = InsertElementInst::Create(
1304             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1305             Shuffle->getName());
1306         InsertNewInstWith(New, *Shuffle);
1307         return New;
1308       }
1309     }
1310     if (NewUndefElts) {
1311       // Add additional discovered undefs.
1312       SmallVector<Constant*, 16> Elts;
1313       for (unsigned i = 0; i < VWidth; ++i) {
1314         if (UndefElts[i])
1315           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1316         else
1317           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1318                                           Shuffle->getMaskValue(i)));
1319       }
1320       I->setOperand(2, ConstantVector::get(Elts));
1321       MadeChange = true;
1322     }
1323     break;
1324   }
1325   case Instruction::Select: {
1326     // If this is a vector select, try to transform the select condition based
1327     // on the current demanded elements.
1328     SelectInst *Sel = cast<SelectInst>(I);
1329     if (Sel->getCondition()->getType()->isVectorTy()) {
1330       // TODO: We are not doing anything with UndefElts based on this call.
1331       // It is overwritten below based on the other select operands. If an
1332       // element of the select condition is known undef, then we are free to
1333       // choose the output value from either arm of the select. If we know that
1334       // one of those values is undef, then the output can be undef.
1335       simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1336     }
1337 
1338     // Next, see if we can transform the arms of the select.
1339     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1340     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1341       for (unsigned i = 0; i < VWidth; i++) {
1342         // isNullValue() always returns false when called on a ConstantExpr.
1343         // Skip constant expressions to avoid propagating incorrect information.
1344         Constant *CElt = CV->getAggregateElement(i);
1345         if (isa<ConstantExpr>(CElt))
1346           continue;
1347         // TODO: If a select condition element is undef, we can demand from
1348         // either side. If one side is known undef, choosing that side would
1349         // propagate undef.
1350         if (CElt->isNullValue())
1351           DemandedLHS.clearBit(i);
1352         else
1353           DemandedRHS.clearBit(i);
1354       }
1355     }
1356 
1357     simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1358     simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1359 
1360     // Output elements are undefined if the element from each arm is undefined.
1361     // TODO: This can be improved. See comment in select condition handling.
1362     UndefElts = UndefElts2 & UndefElts3;
1363     break;
1364   }
1365   case Instruction::BitCast: {
1366     // Vector->vector casts only.
1367     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1368     if (!VTy) break;
1369     unsigned InVWidth = VTy->getNumElements();
1370     APInt InputDemandedElts(InVWidth, 0);
1371     UndefElts2 = APInt(InVWidth, 0);
1372     unsigned Ratio;
1373 
1374     if (VWidth == InVWidth) {
1375       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1376       // elements as are demanded of us.
1377       Ratio = 1;
1378       InputDemandedElts = DemandedElts;
1379     } else if ((VWidth % InVWidth) == 0) {
1380       // If the number of elements in the output is a multiple of the number of
1381       // elements in the input then an input element is live if any of the
1382       // corresponding output elements are live.
1383       Ratio = VWidth / InVWidth;
1384       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1385         if (DemandedElts[OutIdx])
1386           InputDemandedElts.setBit(OutIdx / Ratio);
1387     } else if ((InVWidth % VWidth) == 0) {
1388       // If the number of elements in the input is a multiple of the number of
1389       // elements in the output then an input element is live if the
1390       // corresponding output element is live.
1391       Ratio = InVWidth / VWidth;
1392       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1393         if (DemandedElts[InIdx / Ratio])
1394           InputDemandedElts.setBit(InIdx);
1395     } else {
1396       // Unsupported so far.
1397       break;
1398     }
1399 
1400     simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1401 
1402     if (VWidth == InVWidth) {
1403       UndefElts = UndefElts2;
1404     } else if ((VWidth % InVWidth) == 0) {
1405       // If the number of elements in the output is a multiple of the number of
1406       // elements in the input then an output element is undef if the
1407       // corresponding input element is undef.
1408       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1409         if (UndefElts2[OutIdx / Ratio])
1410           UndefElts.setBit(OutIdx);
1411     } else if ((InVWidth % VWidth) == 0) {
1412       // If the number of elements in the input is a multiple of the number of
1413       // elements in the output then an output element is undef if all of the
1414       // corresponding input elements are undef.
1415       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1416         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1417         if (SubUndef.countPopulation() == Ratio)
1418           UndefElts.setBit(OutIdx);
1419       }
1420     } else {
1421       llvm_unreachable("Unimp");
1422     }
1423     break;
1424   }
1425   case Instruction::FPTrunc:
1426   case Instruction::FPExt:
1427     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1428     break;
1429 
1430   case Instruction::Call: {
1431     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1432     if (!II) break;
1433     switch (II->getIntrinsicID()) {
1434     case Intrinsic::x86_xop_vfrcz_ss:
1435     case Intrinsic::x86_xop_vfrcz_sd:
1436       // The instructions for these intrinsics are speced to zero upper bits not
1437       // pass them through like other scalar intrinsics. So we shouldn't just
1438       // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1439       // Instead we should return a zero vector.
1440       if (!DemandedElts[0]) {
1441         Worklist.Add(II);
1442         return ConstantAggregateZero::get(II->getType());
1443       }
1444 
1445       // Only the lower element is used.
1446       DemandedElts = 1;
1447       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1448 
1449       // Only the lower element is undefined. The high elements are zero.
1450       UndefElts = UndefElts[0];
1451       break;
1452 
1453     // Unary scalar-as-vector operations that work column-wise.
1454     case Intrinsic::x86_sse_rcp_ss:
1455     case Intrinsic::x86_sse_rsqrt_ss:
1456       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1457 
1458       // If lowest element of a scalar op isn't used then use Arg0.
1459       if (!DemandedElts[0]) {
1460         Worklist.Add(II);
1461         return II->getArgOperand(0);
1462       }
1463       // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1464       // checks).
1465       break;
1466 
1467     // Binary scalar-as-vector operations that work column-wise. The high
1468     // elements come from operand 0. The low element is a function of both
1469     // operands.
1470     case Intrinsic::x86_sse_min_ss:
1471     case Intrinsic::x86_sse_max_ss:
1472     case Intrinsic::x86_sse_cmp_ss:
1473     case Intrinsic::x86_sse2_min_sd:
1474     case Intrinsic::x86_sse2_max_sd:
1475     case Intrinsic::x86_sse2_cmp_sd: {
1476       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1477 
1478       // If lowest element of a scalar op isn't used then use Arg0.
1479       if (!DemandedElts[0]) {
1480         Worklist.Add(II);
1481         return II->getArgOperand(0);
1482       }
1483 
1484       // Only lower element is used for operand 1.
1485       DemandedElts = 1;
1486       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1487 
1488       // Lower element is undefined if both lower elements are undefined.
1489       // Consider things like undef&0.  The result is known zero, not undef.
1490       if (!UndefElts2[0])
1491         UndefElts.clearBit(0);
1492 
1493       break;
1494     }
1495 
1496     // Binary scalar-as-vector operations that work column-wise. The high
1497     // elements come from operand 0 and the low element comes from operand 1.
1498     case Intrinsic::x86_sse41_round_ss:
1499     case Intrinsic::x86_sse41_round_sd: {
1500       // Don't use the low element of operand 0.
1501       APInt DemandedElts2 = DemandedElts;
1502       DemandedElts2.clearBit(0);
1503       simplifyAndSetOp(II, 0, DemandedElts2, UndefElts);
1504 
1505       // If lowest element of a scalar op isn't used then use Arg0.
1506       if (!DemandedElts[0]) {
1507         Worklist.Add(II);
1508         return II->getArgOperand(0);
1509       }
1510 
1511       // Only lower element is used for operand 1.
1512       DemandedElts = 1;
1513       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1514 
1515       // Take the high undef elements from operand 0 and take the lower element
1516       // from operand 1.
1517       UndefElts.clearBit(0);
1518       UndefElts |= UndefElts2[0];
1519       break;
1520     }
1521 
1522     // Three input scalar-as-vector operations that work column-wise. The high
1523     // elements come from operand 0 and the low element is a function of all
1524     // three inputs.
1525     case Intrinsic::x86_avx512_mask_add_ss_round:
1526     case Intrinsic::x86_avx512_mask_div_ss_round:
1527     case Intrinsic::x86_avx512_mask_mul_ss_round:
1528     case Intrinsic::x86_avx512_mask_sub_ss_round:
1529     case Intrinsic::x86_avx512_mask_max_ss_round:
1530     case Intrinsic::x86_avx512_mask_min_ss_round:
1531     case Intrinsic::x86_avx512_mask_add_sd_round:
1532     case Intrinsic::x86_avx512_mask_div_sd_round:
1533     case Intrinsic::x86_avx512_mask_mul_sd_round:
1534     case Intrinsic::x86_avx512_mask_sub_sd_round:
1535     case Intrinsic::x86_avx512_mask_max_sd_round:
1536     case Intrinsic::x86_avx512_mask_min_sd_round:
1537       simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1538 
1539       // If lowest element of a scalar op isn't used then use Arg0.
1540       if (!DemandedElts[0]) {
1541         Worklist.Add(II);
1542         return II->getArgOperand(0);
1543       }
1544 
1545       // Only lower element is used for operand 1 and 2.
1546       DemandedElts = 1;
1547       simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1548       simplifyAndSetOp(II, 2, DemandedElts, UndefElts3);
1549 
1550       // Lower element is undefined if all three lower elements are undefined.
1551       // Consider things like undef&0.  The result is known zero, not undef.
1552       if (!UndefElts2[0] || !UndefElts3[0])
1553         UndefElts.clearBit(0);
1554 
1555       break;
1556 
1557     case Intrinsic::x86_sse2_packssdw_128:
1558     case Intrinsic::x86_sse2_packsswb_128:
1559     case Intrinsic::x86_sse2_packuswb_128:
1560     case Intrinsic::x86_sse41_packusdw:
1561     case Intrinsic::x86_avx2_packssdw:
1562     case Intrinsic::x86_avx2_packsswb:
1563     case Intrinsic::x86_avx2_packusdw:
1564     case Intrinsic::x86_avx2_packuswb:
1565     case Intrinsic::x86_avx512_packssdw_512:
1566     case Intrinsic::x86_avx512_packsswb_512:
1567     case Intrinsic::x86_avx512_packusdw_512:
1568     case Intrinsic::x86_avx512_packuswb_512: {
1569       auto *Ty0 = II->getArgOperand(0)->getType();
1570       unsigned InnerVWidth = Ty0->getVectorNumElements();
1571       assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1572 
1573       unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1574       unsigned VWidthPerLane = VWidth / NumLanes;
1575       unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1576 
1577       // Per lane, pack the elements of the first input and then the second.
1578       // e.g.
1579       // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1580       // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1581       for (int OpNum = 0; OpNum != 2; ++OpNum) {
1582         APInt OpDemandedElts(InnerVWidth, 0);
1583         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1584           unsigned LaneIdx = Lane * VWidthPerLane;
1585           for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1586             unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1587             if (DemandedElts[Idx])
1588               OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1589           }
1590         }
1591 
1592         // Demand elements from the operand.
1593         APInt OpUndefElts(InnerVWidth, 0);
1594         simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts);
1595 
1596         // Pack the operand's UNDEF elements, one lane at a time.
1597         OpUndefElts = OpUndefElts.zext(VWidth);
1598         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1599           APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1600           LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1601           LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
1602           UndefElts |= LaneElts;
1603         }
1604       }
1605       break;
1606     }
1607 
1608     // PSHUFB
1609     case Intrinsic::x86_ssse3_pshuf_b_128:
1610     case Intrinsic::x86_avx2_pshuf_b:
1611     case Intrinsic::x86_avx512_pshuf_b_512:
1612     // PERMILVAR
1613     case Intrinsic::x86_avx_vpermilvar_ps:
1614     case Intrinsic::x86_avx_vpermilvar_ps_256:
1615     case Intrinsic::x86_avx512_vpermilvar_ps_512:
1616     case Intrinsic::x86_avx_vpermilvar_pd:
1617     case Intrinsic::x86_avx_vpermilvar_pd_256:
1618     case Intrinsic::x86_avx512_vpermilvar_pd_512:
1619     // PERMV
1620     case Intrinsic::x86_avx2_permd:
1621     case Intrinsic::x86_avx2_permps: {
1622       simplifyAndSetOp(II, 1, DemandedElts, UndefElts);
1623       break;
1624     }
1625 
1626     // SSE4A instructions leave the upper 64-bits of the 128-bit result
1627     // in an undefined state.
1628     case Intrinsic::x86_sse4a_extrq:
1629     case Intrinsic::x86_sse4a_extrqi:
1630     case Intrinsic::x86_sse4a_insertq:
1631     case Intrinsic::x86_sse4a_insertqi:
1632       UndefElts.setHighBits(VWidth / 2);
1633       break;
1634     case Intrinsic::amdgcn_buffer_load:
1635     case Intrinsic::amdgcn_buffer_load_format:
1636     case Intrinsic::amdgcn_raw_buffer_load:
1637     case Intrinsic::amdgcn_raw_buffer_load_format:
1638     case Intrinsic::amdgcn_struct_buffer_load:
1639     case Intrinsic::amdgcn_struct_buffer_load_format:
1640       return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
1641     default: {
1642       if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) {
1643         LLVM_DEBUG(
1644           Value *TFC = II->getArgOperand(II->getNumOperands() - 2);
1645           assert(!isa<ConstantInt>(TFC) ||
1646                  dyn_cast<ConstantInt>(TFC)->getZExtValue() == 0);
1647         );
1648 
1649         return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);
1650       }
1651 
1652       break;
1653     }
1654     } // switch on IntrinsicID
1655     break;
1656   } // case Call
1657   } // switch on Opcode
1658 
1659   // TODO: We bail completely on integer div/rem and shifts because they have
1660   // UB/poison potential, but that should be refined.
1661   BinaryOperator *BO;
1662   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1663     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1664     simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1665 
1666     // Any change to an instruction with potential poison must clear those flags
1667     // because we can not guarantee those constraints now. Other analysis may
1668     // determine that it is safe to re-apply the flags.
1669     if (MadeChange)
1670       BO->dropPoisonGeneratingFlags();
1671 
1672     // Output elements are undefined if both are undefined. Consider things
1673     // like undef & 0. The result is known zero, not undef.
1674     UndefElts &= UndefElts2;
1675   }
1676 
1677   return MadeChange ? I : nullptr;
1678 }
1679