1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21 
22 using namespace llvm;
23 using namespace llvm::PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Check to see if the specified operand of the specified instruction is a
28 /// constant integer. If so, check to see if there are any bits set in the
29 /// constant that are not demanded. If so, shrink the constant and return true.
30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
31                                    const APInt &Demanded) {
32   assert(I && "No instruction?");
33   assert(OpNo < I->getNumOperands() && "Operand index too large");
34 
35   // The operand must be a constant integer or splat integer.
36   Value *Op = I->getOperand(OpNo);
37   const APInt *C;
38   if (!match(Op, m_APInt(C)))
39     return false;
40 
41   // If there are no bits set that aren't demanded, nothing to do.
42   if (C->isSubsetOf(Demanded))
43     return false;
44 
45   // This instruction is producing bits that are not demanded. Shrink the RHS.
46   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
47 
48   return true;
49 }
50 
51 
52 
53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54 /// the instruction has any properties that allow us to simplify its operands.
55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
56   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57   KnownBits Known(BitWidth);
58   APInt DemandedMask(APInt::getAllOnes(BitWidth));
59 
60   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
61                                      0, &Inst);
62   if (!V) return false;
63   if (V == &Inst) return true;
64   replaceInstUsesWith(Inst, V);
65   return true;
66 }
67 
68 /// This form of SimplifyDemandedBits simplifies the specified instruction
69 /// operand if possible, updating it in place. It returns true if it made any
70 /// change and false otherwise.
71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
72                                             const APInt &DemandedMask,
73                                             KnownBits &Known, unsigned Depth) {
74   Use &U = I->getOperandUse(OpNo);
75   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
76                                           Depth, I);
77   if (!NewVal) return false;
78   if (Instruction* OpInst = dyn_cast<Instruction>(U))
79     salvageDebugInfo(*OpInst);
80 
81   replaceUse(U, NewVal);
82   return true;
83 }
84 
85 /// This function attempts to replace V with a simpler value based on the
86 /// demanded bits. When this function is called, it is known that only the bits
87 /// set in DemandedMask of the result of V are ever used downstream.
88 /// Consequently, depending on the mask and V, it may be possible to replace V
89 /// with a constant or one of its operands. In such cases, this function does
90 /// the replacement and returns true. In all other cases, it returns false after
91 /// analyzing the expression and setting KnownOne and known to be one in the
92 /// expression. Known.Zero contains all the bits that are known to be zero in
93 /// the expression. These are provided to potentially allow the caller (which
94 /// might recursively be SimplifyDemandedBits itself) to simplify the
95 /// expression.
96 /// Known.One and Known.Zero always follow the invariant that:
97 ///   Known.One & Known.Zero == 0.
98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
101 /// be the same.
102 ///
103 /// This returns null if it did not change anything and it permits no
104 /// simplification.  This returns V itself if it did some simplification of V's
105 /// operands based on the information about what bits are demanded. This returns
106 /// some other non-null value if it found out that V is equal to another value
107 /// in the context where the specified bits are demanded, but not for all users.
108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
109                                                  KnownBits &Known,
110                                                  unsigned Depth,
111                                                  Instruction *CxtI) {
112   assert(V != nullptr && "Null pointer of Value???");
113   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
114   uint32_t BitWidth = DemandedMask.getBitWidth();
115   Type *VTy = V->getType();
116   assert(
117       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
118       Known.getBitWidth() == BitWidth &&
119       "Value *V, DemandedMask and Known must have same BitWidth");
120 
121   if (isa<Constant>(V)) {
122     computeKnownBits(V, Known, Depth, CxtI);
123     return nullptr;
124   }
125 
126   Known.resetAll();
127   if (DemandedMask.isZero()) // Not demanding any bits from V.
128     return UndefValue::get(VTy);
129 
130   if (Depth == MaxAnalysisRecursionDepth)
131     return nullptr;
132 
133   if (isa<ScalableVectorType>(VTy))
134     return nullptr;
135 
136   Instruction *I = dyn_cast<Instruction>(V);
137   if (!I) {
138     computeKnownBits(V, Known, Depth, CxtI);
139     return nullptr;        // Only analyze instructions.
140   }
141 
142   // If there are multiple uses of this value and we aren't at the root, then
143   // we can't do any simplifications of the operands, because DemandedMask
144   // only reflects the bits demanded by *one* of the users.
145   if (Depth != 0 && !I->hasOneUse())
146     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
147 
148   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
149 
150   // If this is the root being simplified, allow it to have multiple uses,
151   // just set the DemandedMask to all bits so that we can try to simplify the
152   // operands.  This allows visitTruncInst (for example) to simplify the
153   // operand of a trunc without duplicating all the logic below.
154   if (Depth == 0 && !V->hasOneUse())
155     DemandedMask.setAllBits();
156 
157   switch (I->getOpcode()) {
158   default:
159     computeKnownBits(I, Known, Depth, CxtI);
160     break;
161   case Instruction::And: {
162     // If either the LHS or the RHS are Zero, the result is zero.
163     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
164         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
165                              Depth + 1))
166       return I;
167     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
168     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
169 
170     Known = LHSKnown & RHSKnown;
171 
172     // If the client is only demanding bits that we know, return the known
173     // constant.
174     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
175       return Constant::getIntegerValue(VTy, Known.One);
176 
177     // If all of the demanded bits are known 1 on one side, return the other.
178     // These bits cannot contribute to the result of the 'and'.
179     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
180       return I->getOperand(0);
181     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
182       return I->getOperand(1);
183 
184     // If the RHS is a constant, see if we can simplify it.
185     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
186       return I;
187 
188     break;
189   }
190   case Instruction::Or: {
191     // If either the LHS or the RHS are One, the result is One.
192     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
193         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
194                              Depth + 1))
195       return I;
196     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
197     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
198 
199     Known = LHSKnown | RHSKnown;
200 
201     // If the client is only demanding bits that we know, return the known
202     // constant.
203     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
204       return Constant::getIntegerValue(VTy, Known.One);
205 
206     // If all of the demanded bits are known zero on one side, return the other.
207     // These bits cannot contribute to the result of the 'or'.
208     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
209       return I->getOperand(0);
210     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
211       return I->getOperand(1);
212 
213     // If the RHS is a constant, see if we can simplify it.
214     if (ShrinkDemandedConstant(I, 1, DemandedMask))
215       return I;
216 
217     break;
218   }
219   case Instruction::Xor: {
220     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
221         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
222       return I;
223     Value *LHS, *RHS;
224     if (DemandedMask == 1 &&
225         match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) &&
226         match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) {
227       // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1
228       IRBuilderBase::InsertPointGuard Guard(Builder);
229       Builder.SetInsertPoint(I);
230       auto *Xor = Builder.CreateXor(LHS, RHS);
231       return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor);
232     }
233 
234     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
235     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
236 
237     Known = LHSKnown ^ RHSKnown;
238 
239     // If the client is only demanding bits that we know, return the known
240     // constant.
241     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
242       return Constant::getIntegerValue(VTy, Known.One);
243 
244     // If all of the demanded bits are known zero on one side, return the other.
245     // These bits cannot contribute to the result of the 'xor'.
246     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
247       return I->getOperand(0);
248     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
249       return I->getOperand(1);
250 
251     // If all of the demanded bits are known to be zero on one side or the
252     // other, turn this into an *inclusive* or.
253     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
254     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
255       Instruction *Or =
256         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
257                                  I->getName());
258       return InsertNewInstWith(Or, *I);
259     }
260 
261     // If all of the demanded bits on one side are known, and all of the set
262     // bits on that side are also known to be set on the other side, turn this
263     // into an AND, as we know the bits will be cleared.
264     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
265     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
266         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
267       Constant *AndC = Constant::getIntegerValue(VTy,
268                                                  ~RHSKnown.One & DemandedMask);
269       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
270       return InsertNewInstWith(And, *I);
271     }
272 
273     // If the RHS is a constant, see if we can change it. Don't alter a -1
274     // constant because that's a canonical 'not' op, and that is better for
275     // combining, SCEV, and codegen.
276     const APInt *C;
277     if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) {
278       if ((*C | ~DemandedMask).isAllOnes()) {
279         // Force bits to 1 to create a 'not' op.
280         I->setOperand(1, ConstantInt::getAllOnesValue(VTy));
281         return I;
282       }
283       // If we can't turn this into a 'not', try to shrink the constant.
284       if (ShrinkDemandedConstant(I, 1, DemandedMask))
285         return I;
286     }
287 
288     // If our LHS is an 'and' and if it has one use, and if any of the bits we
289     // are flipping are known to be set, then the xor is just resetting those
290     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
291     // simplifying both of them.
292     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) {
293       ConstantInt *AndRHS, *XorRHS;
294       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
295           match(I->getOperand(1), m_ConstantInt(XorRHS)) &&
296           match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) &&
297           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
298         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
299 
300         Constant *AndC =
301             ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
302         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
303         InsertNewInstWith(NewAnd, *I);
304 
305         Constant *XorC =
306             ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
307         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
308         return InsertNewInstWith(NewXor, *I);
309       }
310     }
311     break;
312   }
313   case Instruction::Select: {
314     Value *LHS, *RHS;
315     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
316     if (SPF == SPF_UMAX) {
317       // UMax(A, C) == A if ...
318       // The lowest non-zero bit of DemandMask is higher than the highest
319       // non-zero bit of C.
320       const APInt *C;
321       unsigned CTZ = DemandedMask.countTrailingZeros();
322       if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
323         return LHS;
324     } else if (SPF == SPF_UMIN) {
325       // UMin(A, C) == A if ...
326       // The lowest non-zero bit of DemandMask is higher than the highest
327       // non-one bit of C.
328       // This comes from using DeMorgans on the above umax example.
329       const APInt *C;
330       unsigned CTZ = DemandedMask.countTrailingZeros();
331       if (match(RHS, m_APInt(C)) &&
332           CTZ >= C->getBitWidth() - C->countLeadingOnes())
333         return LHS;
334     }
335 
336     // If this is a select as part of any other min/max pattern, don't simplify
337     // any further in case we break the structure.
338     if (SPF != SPF_UNKNOWN)
339       return nullptr;
340 
341     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
342         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
343       return I;
344     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
345     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
346 
347     // If the operands are constants, see if we can simplify them.
348     // This is similar to ShrinkDemandedConstant, but for a select we want to
349     // try to keep the selected constants the same as icmp value constants, if
350     // we can. This helps not break apart (or helps put back together)
351     // canonical patterns like min and max.
352     auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
353                                          const APInt &DemandedMask) {
354       const APInt *SelC;
355       if (!match(I->getOperand(OpNo), m_APInt(SelC)))
356         return false;
357 
358       // Get the constant out of the ICmp, if there is one.
359       // Only try this when exactly 1 operand is a constant (if both operands
360       // are constant, the icmp should eventually simplify). Otherwise, we may
361       // invert the transform that reduces set bits and infinite-loop.
362       Value *X;
363       const APInt *CmpC;
364       ICmpInst::Predicate Pred;
365       if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) ||
366           isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth())
367         return ShrinkDemandedConstant(I, OpNo, DemandedMask);
368 
369       // If the constant is already the same as the ICmp, leave it as-is.
370       if (*CmpC == *SelC)
371         return false;
372       // If the constants are not already the same, but can be with the demand
373       // mask, use the constant value from the ICmp.
374       if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
375         I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
376         return true;
377       }
378       return ShrinkDemandedConstant(I, OpNo, DemandedMask);
379     };
380     if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
381         CanonicalizeSelectConstant(I, 2, DemandedMask))
382       return I;
383 
384     // Only known if known in both the LHS and RHS.
385     Known = KnownBits::commonBits(LHSKnown, RHSKnown);
386     break;
387   }
388   case Instruction::Trunc: {
389     // If we do not demand the high bits of a right-shifted and truncated value,
390     // then we may be able to truncate it before the shift.
391     Value *X;
392     const APInt *C;
393     if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
394       // The shift amount must be valid (not poison) in the narrow type, and
395       // it must not be greater than the high bits demanded of the result.
396       if (C->ult(I->getType()->getScalarSizeInBits()) &&
397           C->ule(DemandedMask.countLeadingZeros())) {
398         // trunc (lshr X, C) --> lshr (trunc X), C
399         IRBuilderBase::InsertPointGuard Guard(Builder);
400         Builder.SetInsertPoint(I);
401         Value *Trunc = Builder.CreateTrunc(X, I->getType());
402         return Builder.CreateLShr(Trunc, C->getZExtValue());
403       }
404     }
405   }
406     LLVM_FALLTHROUGH;
407   case Instruction::ZExt: {
408     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
409 
410     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
411     KnownBits InputKnown(SrcBitWidth);
412     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
413       return I;
414     assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
415     Known = InputKnown.zextOrTrunc(BitWidth);
416     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
417     break;
418   }
419   case Instruction::BitCast:
420     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
421       return nullptr;  // vector->int or fp->int?
422 
423     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
424       if (VectorType *SrcVTy =
425             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
426         if (cast<FixedVectorType>(DstVTy)->getNumElements() !=
427             cast<FixedVectorType>(SrcVTy)->getNumElements())
428           // Don't touch a bitcast between vectors of different element counts.
429           return nullptr;
430       } else
431         // Don't touch a scalar-to-vector bitcast.
432         return nullptr;
433     } else if (I->getOperand(0)->getType()->isVectorTy())
434       // Don't touch a vector-to-scalar bitcast.
435       return nullptr;
436 
437     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
438       return I;
439     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
440     break;
441   case Instruction::SExt: {
442     // Compute the bits in the result that are not present in the input.
443     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
444 
445     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
446 
447     // If any of the sign extended bits are demanded, we know that the sign
448     // bit is demanded.
449     if (DemandedMask.getActiveBits() > SrcBitWidth)
450       InputDemandedBits.setBit(SrcBitWidth-1);
451 
452     KnownBits InputKnown(SrcBitWidth);
453     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
454       return I;
455 
456     // If the input sign bit is known zero, or if the NewBits are not demanded
457     // convert this into a zero extension.
458     if (InputKnown.isNonNegative() ||
459         DemandedMask.getActiveBits() <= SrcBitWidth) {
460       // Convert to ZExt cast.
461       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
462       return InsertNewInstWith(NewCast, *I);
463      }
464 
465     // If the sign bit of the input is known set or clear, then we know the
466     // top bits of the result.
467     Known = InputKnown.sext(BitWidth);
468     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
469     break;
470   }
471   case Instruction::Add:
472     if ((DemandedMask & 1) == 0) {
473       // If we do not need the low bit, try to convert bool math to logic:
474       // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
475       Value *X, *Y;
476       if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
477                            m_OneUse(m_SExt(m_Value(Y))))) &&
478           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
479         // Truth table for inputs and output signbits:
480         //       X:0 | X:1
481         //      ----------
482         // Y:0  |  0 | 0 |
483         // Y:1  | -1 | 0 |
484         //      ----------
485         IRBuilderBase::InsertPointGuard Guard(Builder);
486         Builder.SetInsertPoint(I);
487         Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
488         return Builder.CreateSExt(AndNot, VTy);
489       }
490 
491       // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
492       // TODO: Relax the one-use checks because we are removing an instruction?
493       if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))),
494                          m_OneUse(m_SExt(m_Value(Y))))) &&
495           X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
496         // Truth table for inputs and output signbits:
497         //       X:0 | X:1
498         //      -----------
499         // Y:0  | -1 | -1 |
500         // Y:1  | -1 |  0 |
501         //      -----------
502         IRBuilderBase::InsertPointGuard Guard(Builder);
503         Builder.SetInsertPoint(I);
504         Value *Or = Builder.CreateOr(X, Y);
505         return Builder.CreateSExt(Or, VTy);
506       }
507     }
508     LLVM_FALLTHROUGH;
509   case Instruction::Sub: {
510     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
511     /// about the high bits of the operands.
512     unsigned NLZ = DemandedMask.countLeadingZeros();
513     // Right fill the mask of bits for this ADD/SUB to demand the most
514     // significant bit and all those below it.
515     APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
516     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
517         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
518         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
519         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
520       if (NLZ > 0) {
521         // Disable the nsw and nuw flags here: We can no longer guarantee that
522         // we won't wrap after simplification. Removing the nsw/nuw flags is
523         // legal here because the top bit is not demanded.
524         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
525         BinOP.setHasNoSignedWrap(false);
526         BinOP.setHasNoUnsignedWrap(false);
527       }
528       return I;
529     }
530 
531     // If we are known to be adding/subtracting zeros to every bit below
532     // the highest demanded bit, we just return the other side.
533     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
534       return I->getOperand(0);
535     // We can't do this with the LHS for subtraction, unless we are only
536     // demanding the LSB.
537     if ((I->getOpcode() == Instruction::Add || DemandedFromOps.isOne()) &&
538         DemandedFromOps.isSubsetOf(LHSKnown.Zero))
539       return I->getOperand(1);
540 
541     // Otherwise just compute the known bits of the result.
542     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
543     Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
544                                         NSW, LHSKnown, RHSKnown);
545     break;
546   }
547   case Instruction::Mul: {
548     // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
549     // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
550     // odd (has LSB set), then the left-shifted low bit of X is the answer.
551     if (DemandedMask.isPowerOf2()) {
552       unsigned CTZ = DemandedMask.countTrailingZeros();
553       const APInt *C;
554       if (match(I->getOperand(1), m_APInt(C)) &&
555           C->countTrailingZeros() == CTZ) {
556         Constant *ShiftC = ConstantInt::get(I->getType(), CTZ);
557         Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC);
558         return InsertNewInstWith(Shl, *I);
559       }
560       // 'Quadratic Reciprocity': mul(x,x) -> 0 if we're only demanding bit[1]
561       if (DemandedMask == 2 && I->getOperand(0) == I->getOperand(1))
562         return ConstantInt::getNullValue(VTy);
563     }
564     computeKnownBits(I, Known, Depth, CxtI);
565     break;
566   }
567   case Instruction::Shl: {
568     const APInt *SA;
569     if (match(I->getOperand(1), m_APInt(SA))) {
570       const APInt *ShrAmt;
571       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
572         if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
573           if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
574                                                     DemandedMask, Known))
575             return R;
576 
577       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
578       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
579 
580       // If the shift is NUW/NSW, then it does demand the high bits.
581       ShlOperator *IOp = cast<ShlOperator>(I);
582       if (IOp->hasNoSignedWrap())
583         DemandedMaskIn.setHighBits(ShiftAmt+1);
584       else if (IOp->hasNoUnsignedWrap())
585         DemandedMaskIn.setHighBits(ShiftAmt);
586 
587       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
588         return I;
589       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
590 
591       bool SignBitZero = Known.Zero.isSignBitSet();
592       bool SignBitOne = Known.One.isSignBitSet();
593       Known.Zero <<= ShiftAmt;
594       Known.One  <<= ShiftAmt;
595       // low bits known zero.
596       if (ShiftAmt)
597         Known.Zero.setLowBits(ShiftAmt);
598 
599       // If this shift has "nsw" keyword, then the result is either a poison
600       // value or has the same sign bit as the first operand.
601       if (IOp->hasNoSignedWrap()) {
602         if (SignBitZero)
603           Known.Zero.setSignBit();
604         else if (SignBitOne)
605           Known.One.setSignBit();
606         if (Known.hasConflict())
607           return UndefValue::get(I->getType());
608       }
609     } else {
610       // This is a variable shift, so we can't shift the demand mask by a known
611       // amount. But if we are not demanding high bits, then we are not
612       // demanding those bits from the pre-shifted operand either.
613       if (unsigned CTLZ = DemandedMask.countLeadingZeros()) {
614         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
615         if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) {
616           // We can't guarantee that nsw/nuw hold after simplifying the operand.
617           I->dropPoisonGeneratingFlags();
618           return I;
619         }
620       }
621       computeKnownBits(I, Known, Depth, CxtI);
622     }
623     break;
624   }
625   case Instruction::LShr: {
626     const APInt *SA;
627     if (match(I->getOperand(1), m_APInt(SA))) {
628       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
629 
630       // Unsigned shift right.
631       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
632 
633       // If the shift is exact, then it does demand the low bits (and knows that
634       // they are zero).
635       if (cast<LShrOperator>(I)->isExact())
636         DemandedMaskIn.setLowBits(ShiftAmt);
637 
638       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
639         return I;
640       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
641       Known.Zero.lshrInPlace(ShiftAmt);
642       Known.One.lshrInPlace(ShiftAmt);
643       if (ShiftAmt)
644         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
645     } else {
646       computeKnownBits(I, Known, Depth, CxtI);
647     }
648     break;
649   }
650   case Instruction::AShr: {
651     // If this is an arithmetic shift right and only the low-bit is set, we can
652     // always convert this into a logical shr, even if the shift amount is
653     // variable.  The low bit of the shift cannot be an input sign bit unless
654     // the shift amount is >= the size of the datatype, which is undefined.
655     if (DemandedMask.isOne()) {
656       // Perform the logical shift right.
657       Instruction *NewVal = BinaryOperator::CreateLShr(
658                         I->getOperand(0), I->getOperand(1), I->getName());
659       return InsertNewInstWith(NewVal, *I);
660     }
661 
662     // If the sign bit is the only bit demanded by this ashr, then there is no
663     // need to do it, the shift doesn't change the high bit.
664     if (DemandedMask.isSignMask())
665       return I->getOperand(0);
666 
667     const APInt *SA;
668     if (match(I->getOperand(1), m_APInt(SA))) {
669       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
670 
671       // Signed shift right.
672       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
673       // If any of the high bits are demanded, we should set the sign bit as
674       // demanded.
675       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
676         DemandedMaskIn.setSignBit();
677 
678       // If the shift is exact, then it does demand the low bits (and knows that
679       // they are zero).
680       if (cast<AShrOperator>(I)->isExact())
681         DemandedMaskIn.setLowBits(ShiftAmt);
682 
683       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
684         return I;
685 
686       unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
687 
688       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
689       // Compute the new bits that are at the top now plus sign bits.
690       APInt HighBits(APInt::getHighBitsSet(
691           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
692       Known.Zero.lshrInPlace(ShiftAmt);
693       Known.One.lshrInPlace(ShiftAmt);
694 
695       // If the input sign bit is known to be zero, or if none of the top bits
696       // are demanded, turn this into an unsigned shift right.
697       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
698       if (Known.Zero[BitWidth-ShiftAmt-1] ||
699           !DemandedMask.intersects(HighBits)) {
700         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
701                                                           I->getOperand(1));
702         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
703         return InsertNewInstWith(LShr, *I);
704       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
705         Known.One |= HighBits;
706       }
707     } else {
708       computeKnownBits(I, Known, Depth, CxtI);
709     }
710     break;
711   }
712   case Instruction::UDiv: {
713     // UDiv doesn't demand low bits that are zero in the divisor.
714     const APInt *SA;
715     if (match(I->getOperand(1), m_APInt(SA))) {
716       // If the shift is exact, then it does demand the low bits.
717       if (cast<UDivOperator>(I)->isExact())
718         break;
719 
720       // FIXME: Take the demanded mask of the result into account.
721       unsigned RHSTrailingZeros = SA->countTrailingZeros();
722       APInt DemandedMaskIn =
723           APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
724       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
725         return I;
726 
727       // Propagate zero bits from the input.
728       Known.Zero.setHighBits(std::min(
729           BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
730     } else {
731       computeKnownBits(I, Known, Depth, CxtI);
732     }
733     break;
734   }
735   case Instruction::SRem: {
736     ConstantInt *Rem;
737     if (match(I->getOperand(1), m_ConstantInt(Rem))) {
738       // X % -1 demands all the bits because we don't want to introduce
739       // INT_MIN % -1 (== undef) by accident.
740       if (Rem->isMinusOne())
741         break;
742       APInt RA = Rem->getValue().abs();
743       if (RA.isPowerOf2()) {
744         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
745           return I->getOperand(0);
746 
747         APInt LowBits = RA - 1;
748         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
749         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
750           return I;
751 
752         // The low bits of LHS are unchanged by the srem.
753         Known.Zero = LHSKnown.Zero & LowBits;
754         Known.One = LHSKnown.One & LowBits;
755 
756         // If LHS is non-negative or has all low bits zero, then the upper bits
757         // are all zero.
758         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
759           Known.Zero |= ~LowBits;
760 
761         // If LHS is negative and not all low bits are zero, then the upper bits
762         // are all one.
763         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
764           Known.One |= ~LowBits;
765 
766         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
767         break;
768       }
769     }
770 
771     // The sign bit is the LHS's sign bit, except when the result of the
772     // remainder is zero.
773     if (DemandedMask.isSignBitSet()) {
774       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
775       // If it's known zero, our sign bit is also zero.
776       if (LHSKnown.isNonNegative())
777         Known.makeNonNegative();
778     }
779     break;
780   }
781   case Instruction::URem: {
782     KnownBits Known2(BitWidth);
783     APInt AllOnes = APInt::getAllOnes(BitWidth);
784     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
785         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
786       return I;
787 
788     unsigned Leaders = Known2.countMinLeadingZeros();
789     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
790     break;
791   }
792   case Instruction::Call: {
793     bool KnownBitsComputed = false;
794     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
795       switch (II->getIntrinsicID()) {
796       case Intrinsic::abs: {
797         if (DemandedMask == 1)
798           return II->getArgOperand(0);
799         break;
800       }
801       case Intrinsic::ctpop: {
802         // Checking if the number of clear bits is odd (parity)? If the type has
803         // an even number of bits, that's the same as checking if the number of
804         // set bits is odd, so we can eliminate the 'not' op.
805         Value *X;
806         if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 &&
807             match(II->getArgOperand(0), m_Not(m_Value(X)))) {
808           Function *Ctpop = Intrinsic::getDeclaration(
809               II->getModule(), Intrinsic::ctpop, II->getType());
810           return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I);
811         }
812         break;
813       }
814       case Intrinsic::bswap: {
815         // If the only bits demanded come from one byte of the bswap result,
816         // just shift the input byte into position to eliminate the bswap.
817         unsigned NLZ = DemandedMask.countLeadingZeros();
818         unsigned NTZ = DemandedMask.countTrailingZeros();
819 
820         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
821         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
822         // have 14 leading zeros, round to 8.
823         NLZ = alignDown(NLZ, 8);
824         NTZ = alignDown(NTZ, 8);
825         // If we need exactly one byte, we can do this transformation.
826         if (BitWidth - NLZ - NTZ == 8) {
827           // Replace this with either a left or right shift to get the byte into
828           // the right place.
829           Instruction *NewVal;
830           if (NLZ > NTZ)
831             NewVal = BinaryOperator::CreateLShr(
832                 II->getArgOperand(0),
833                 ConstantInt::get(I->getType(), NLZ - NTZ));
834           else
835             NewVal = BinaryOperator::CreateShl(
836                 II->getArgOperand(0),
837                 ConstantInt::get(I->getType(), NTZ - NLZ));
838           NewVal->takeName(I);
839           return InsertNewInstWith(NewVal, *I);
840         }
841         break;
842       }
843       case Intrinsic::fshr:
844       case Intrinsic::fshl: {
845         const APInt *SA;
846         if (!match(I->getOperand(2), m_APInt(SA)))
847           break;
848 
849         // Normalize to funnel shift left. APInt shifts of BitWidth are well-
850         // defined, so no need to special-case zero shifts here.
851         uint64_t ShiftAmt = SA->urem(BitWidth);
852         if (II->getIntrinsicID() == Intrinsic::fshr)
853           ShiftAmt = BitWidth - ShiftAmt;
854 
855         APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
856         APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
857         if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
858             SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
859           return I;
860 
861         Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
862                      RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
863         Known.One = LHSKnown.One.shl(ShiftAmt) |
864                     RHSKnown.One.lshr(BitWidth - ShiftAmt);
865         KnownBitsComputed = true;
866         break;
867       }
868       case Intrinsic::umax: {
869         // UMax(A, C) == A if ...
870         // The lowest non-zero bit of DemandMask is higher than the highest
871         // non-zero bit of C.
872         const APInt *C;
873         unsigned CTZ = DemandedMask.countTrailingZeros();
874         if (match(II->getArgOperand(1), m_APInt(C)) &&
875             CTZ >= C->getActiveBits())
876           return II->getArgOperand(0);
877         break;
878       }
879       case Intrinsic::umin: {
880         // UMin(A, C) == A if ...
881         // The lowest non-zero bit of DemandMask is higher than the highest
882         // non-one bit of C.
883         // This comes from using DeMorgans on the above umax example.
884         const APInt *C;
885         unsigned CTZ = DemandedMask.countTrailingZeros();
886         if (match(II->getArgOperand(1), m_APInt(C)) &&
887             CTZ >= C->getBitWidth() - C->countLeadingOnes())
888           return II->getArgOperand(0);
889         break;
890       }
891       default: {
892         // Handle target specific intrinsics
893         Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
894             *II, DemandedMask, Known, KnownBitsComputed);
895         if (V.hasValue())
896           return V.getValue();
897         break;
898       }
899       }
900     }
901 
902     if (!KnownBitsComputed)
903       computeKnownBits(V, Known, Depth, CxtI);
904     break;
905   }
906   }
907 
908   // If the client is only demanding bits that we know, return the known
909   // constant.
910   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
911     return Constant::getIntegerValue(VTy, Known.One);
912   return nullptr;
913 }
914 
915 /// Helper routine of SimplifyDemandedUseBits. It computes Known
916 /// bits. It also tries to handle simplifications that can be done based on
917 /// DemandedMask, but without modifying the Instruction.
918 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
919     Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
920     Instruction *CxtI) {
921   unsigned BitWidth = DemandedMask.getBitWidth();
922   Type *ITy = I->getType();
923 
924   KnownBits LHSKnown(BitWidth);
925   KnownBits RHSKnown(BitWidth);
926 
927   // Despite the fact that we can't simplify this instruction in all User's
928   // context, we can at least compute the known bits, and we can
929   // do simplifications that apply to *just* the one user if we know that
930   // this instruction has a simpler value in that context.
931   switch (I->getOpcode()) {
932   case Instruction::And: {
933     // If either the LHS or the RHS are Zero, the result is zero.
934     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
935     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
936                      CxtI);
937 
938     Known = LHSKnown & RHSKnown;
939 
940     // If the client is only demanding bits that we know, return the known
941     // constant.
942     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
943       return Constant::getIntegerValue(ITy, Known.One);
944 
945     // If all of the demanded bits are known 1 on one side, return the other.
946     // These bits cannot contribute to the result of the 'and' in this
947     // context.
948     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
949       return I->getOperand(0);
950     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
951       return I->getOperand(1);
952 
953     break;
954   }
955   case Instruction::Or: {
956     // We can simplify (X|Y) -> X or Y in the user's context if we know that
957     // only bits from X or Y are demanded.
958 
959     // If either the LHS or the RHS are One, the result is One.
960     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
961     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
962                      CxtI);
963 
964     Known = LHSKnown | RHSKnown;
965 
966     // If the client is only demanding bits that we know, return the known
967     // constant.
968     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
969       return Constant::getIntegerValue(ITy, Known.One);
970 
971     // If all of the demanded bits are known zero on one side, return the
972     // other.  These bits cannot contribute to the result of the 'or' in this
973     // context.
974     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
975       return I->getOperand(0);
976     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
977       return I->getOperand(1);
978 
979     break;
980   }
981   case Instruction::Xor: {
982     // We can simplify (X^Y) -> X or Y in the user's context if we know that
983     // only bits from X or Y are demanded.
984 
985     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
986     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
987                      CxtI);
988 
989     Known = LHSKnown ^ RHSKnown;
990 
991     // If the client is only demanding bits that we know, return the known
992     // constant.
993     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
994       return Constant::getIntegerValue(ITy, Known.One);
995 
996     // If all of the demanded bits are known zero on one side, return the
997     // other.
998     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
999       return I->getOperand(0);
1000     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
1001       return I->getOperand(1);
1002 
1003     break;
1004   }
1005   case Instruction::AShr: {
1006     // Compute the Known bits to simplify things downstream.
1007     computeKnownBits(I, Known, Depth, CxtI);
1008 
1009     // If this user is only demanding bits that we know, return the known
1010     // constant.
1011     if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1012       return Constant::getIntegerValue(ITy, Known.One);
1013 
1014     // If the right shift operand 0 is a result of a left shift by the same
1015     // amount, this is probably a zero/sign extension, which may be unnecessary,
1016     // if we do not demand any of the new sign bits. So, return the original
1017     // operand instead.
1018     const APInt *ShiftRC;
1019     const APInt *ShiftLC;
1020     Value *X;
1021     unsigned BitWidth = DemandedMask.getBitWidth();
1022     if (match(I,
1023               m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) &&
1024         ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) &&
1025         DemandedMask.isSubsetOf(APInt::getLowBitsSet(
1026             BitWidth, BitWidth - ShiftRC->getZExtValue()))) {
1027       return X;
1028     }
1029 
1030     break;
1031   }
1032   default:
1033     // Compute the Known bits to simplify things downstream.
1034     computeKnownBits(I, Known, Depth, CxtI);
1035 
1036     // If this user is only demanding bits that we know, return the known
1037     // constant.
1038     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
1039       return Constant::getIntegerValue(ITy, Known.One);
1040 
1041     break;
1042   }
1043 
1044   return nullptr;
1045 }
1046 
1047 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
1048 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
1049 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
1050 /// of "C2-C1".
1051 ///
1052 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
1053 /// ..., bn}, without considering the specific value X is holding.
1054 /// This transformation is legal iff one of following conditions is hold:
1055 ///  1) All the bit in S are 0, in this case E1 == E2.
1056 ///  2) We don't care those bits in S, per the input DemandedMask.
1057 ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
1058 ///     rest bits.
1059 ///
1060 /// Currently we only test condition 2).
1061 ///
1062 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
1063 /// not successful.
1064 Value *InstCombinerImpl::simplifyShrShlDemandedBits(
1065     Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
1066     const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
1067   if (!ShlOp1 || !ShrOp1)
1068     return nullptr; // No-op.
1069 
1070   Value *VarX = Shr->getOperand(0);
1071   Type *Ty = VarX->getType();
1072   unsigned BitWidth = Ty->getScalarSizeInBits();
1073   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
1074     return nullptr; // Undef.
1075 
1076   unsigned ShlAmt = ShlOp1.getZExtValue();
1077   unsigned ShrAmt = ShrOp1.getZExtValue();
1078 
1079   Known.One.clearAllBits();
1080   Known.Zero.setLowBits(ShlAmt - 1);
1081   Known.Zero &= DemandedMask;
1082 
1083   APInt BitMask1(APInt::getAllOnes(BitWidth));
1084   APInt BitMask2(APInt::getAllOnes(BitWidth));
1085 
1086   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
1087   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
1088                       (BitMask1.ashr(ShrAmt) << ShlAmt);
1089 
1090   if (ShrAmt <= ShlAmt) {
1091     BitMask2 <<= (ShlAmt - ShrAmt);
1092   } else {
1093     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
1094                         BitMask2.ashr(ShrAmt - ShlAmt);
1095   }
1096 
1097   // Check if condition-2 (see the comment to this function) is satified.
1098   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
1099     if (ShrAmt == ShlAmt)
1100       return VarX;
1101 
1102     if (!Shr->hasOneUse())
1103       return nullptr;
1104 
1105     BinaryOperator *New;
1106     if (ShrAmt < ShlAmt) {
1107       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
1108       New = BinaryOperator::CreateShl(VarX, Amt);
1109       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
1110       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
1111       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
1112     } else {
1113       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
1114       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
1115                      BinaryOperator::CreateAShr(VarX, Amt);
1116       if (cast<BinaryOperator>(Shr)->isExact())
1117         New->setIsExact(true);
1118     }
1119 
1120     return InsertNewInstWith(New, *Shl);
1121   }
1122 
1123   return nullptr;
1124 }
1125 
1126 /// The specified value produces a vector with any number of elements.
1127 /// This method analyzes which elements of the operand are undef or poison and
1128 /// returns that information in UndefElts.
1129 ///
1130 /// DemandedElts contains the set of elements that are actually used by the
1131 /// caller, and by default (AllowMultipleUsers equals false) the value is
1132 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1133 /// to true, DemandedElts refers to the union of sets of elements that are
1134 /// used by all callers.
1135 ///
1136 /// If the information about demanded elements can be used to simplify the
1137 /// operation, the operation is simplified, then the resultant value is
1138 /// returned.  This returns null if no change was made.
1139 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
1140                                                     APInt DemandedElts,
1141                                                     APInt &UndefElts,
1142                                                     unsigned Depth,
1143                                                     bool AllowMultipleUsers) {
1144   // Cannot analyze scalable type. The number of vector elements is not a
1145   // compile-time constant.
1146   if (isa<ScalableVectorType>(V->getType()))
1147     return nullptr;
1148 
1149   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
1150   APInt EltMask(APInt::getAllOnes(VWidth));
1151   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1152 
1153   if (match(V, m_Undef())) {
1154     // If the entire vector is undef or poison, just return this info.
1155     UndefElts = EltMask;
1156     return nullptr;
1157   }
1158 
1159   if (DemandedElts.isZero()) { // If nothing is demanded, provide poison.
1160     UndefElts = EltMask;
1161     return PoisonValue::get(V->getType());
1162   }
1163 
1164   UndefElts = 0;
1165 
1166   if (auto *C = dyn_cast<Constant>(V)) {
1167     // Check if this is identity. If so, return 0 since we are not simplifying
1168     // anything.
1169     if (DemandedElts.isAllOnes())
1170       return nullptr;
1171 
1172     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1173     Constant *Poison = PoisonValue::get(EltTy);
1174     SmallVector<Constant*, 16> Elts;
1175     for (unsigned i = 0; i != VWidth; ++i) {
1176       if (!DemandedElts[i]) {   // If not demanded, set to poison.
1177         Elts.push_back(Poison);
1178         UndefElts.setBit(i);
1179         continue;
1180       }
1181 
1182       Constant *Elt = C->getAggregateElement(i);
1183       if (!Elt) return nullptr;
1184 
1185       Elts.push_back(Elt);
1186       if (isa<UndefValue>(Elt))   // Already undef or poison.
1187         UndefElts.setBit(i);
1188     }
1189 
1190     // If we changed the constant, return it.
1191     Constant *NewCV = ConstantVector::get(Elts);
1192     return NewCV != C ? NewCV : nullptr;
1193   }
1194 
1195   // Limit search depth.
1196   if (Depth == 10)
1197     return nullptr;
1198 
1199   if (!AllowMultipleUsers) {
1200     // If multiple users are using the root value, proceed with
1201     // simplification conservatively assuming that all elements
1202     // are needed.
1203     if (!V->hasOneUse()) {
1204       // Quit if we find multiple users of a non-root value though.
1205       // They'll be handled when it's their turn to be visited by
1206       // the main instcombine process.
1207       if (Depth != 0)
1208         // TODO: Just compute the UndefElts information recursively.
1209         return nullptr;
1210 
1211       // Conservatively assume that all elements are needed.
1212       DemandedElts = EltMask;
1213     }
1214   }
1215 
1216   Instruction *I = dyn_cast<Instruction>(V);
1217   if (!I) return nullptr;        // Only analyze instructions.
1218 
1219   bool MadeChange = false;
1220   auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1221                               APInt Demanded, APInt &Undef) {
1222     auto *II = dyn_cast<IntrinsicInst>(Inst);
1223     Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1224     if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1225       replaceOperand(*Inst, OpNum, V);
1226       MadeChange = true;
1227     }
1228   };
1229 
1230   APInt UndefElts2(VWidth, 0);
1231   APInt UndefElts3(VWidth, 0);
1232   switch (I->getOpcode()) {
1233   default: break;
1234 
1235   case Instruction::GetElementPtr: {
1236     // The LangRef requires that struct geps have all constant indices.  As
1237     // such, we can't convert any operand to partial undef.
1238     auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1239       for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1240            I != E; I++)
1241         if (I.isStruct())
1242           return true;
1243       return false;
1244     };
1245     if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1246       break;
1247 
1248     // Conservatively track the demanded elements back through any vector
1249     // operands we may have.  We know there must be at least one, or we
1250     // wouldn't have a vector result to get here. Note that we intentionally
1251     // merge the undef bits here since gepping with either an poison base or
1252     // index results in poison.
1253     for (unsigned i = 0; i < I->getNumOperands(); i++) {
1254       if (i == 0 ? match(I->getOperand(i), m_Undef())
1255                  : match(I->getOperand(i), m_Poison())) {
1256         // If the entire vector is undefined, just return this info.
1257         UndefElts = EltMask;
1258         return nullptr;
1259       }
1260       if (I->getOperand(i)->getType()->isVectorTy()) {
1261         APInt UndefEltsOp(VWidth, 0);
1262         simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1263         // gep(x, undef) is not undef, so skip considering idx ops here
1264         // Note that we could propagate poison, but we can't distinguish between
1265         // undef & poison bits ATM
1266         if (i == 0)
1267           UndefElts |= UndefEltsOp;
1268       }
1269     }
1270 
1271     break;
1272   }
1273   case Instruction::InsertElement: {
1274     // If this is a variable index, we don't know which element it overwrites.
1275     // demand exactly the same input as we produce.
1276     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1277     if (!Idx) {
1278       // Note that we can't propagate undef elt info, because we don't know
1279       // which elt is getting updated.
1280       simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1281       break;
1282     }
1283 
1284     // The element inserted overwrites whatever was there, so the input demanded
1285     // set is simpler than the output set.
1286     unsigned IdxNo = Idx->getZExtValue();
1287     APInt PreInsertDemandedElts = DemandedElts;
1288     if (IdxNo < VWidth)
1289       PreInsertDemandedElts.clearBit(IdxNo);
1290 
1291     // If we only demand the element that is being inserted and that element
1292     // was extracted from the same index in another vector with the same type,
1293     // replace this insert with that other vector.
1294     // Note: This is attempted before the call to simplifyAndSetOp because that
1295     //       may change UndefElts to a value that does not match with Vec.
1296     Value *Vec;
1297     if (PreInsertDemandedElts == 0 &&
1298         match(I->getOperand(1),
1299               m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) &&
1300         Vec->getType() == I->getType()) {
1301       return Vec;
1302     }
1303 
1304     simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1305 
1306     // If this is inserting an element that isn't demanded, remove this
1307     // insertelement.
1308     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1309       Worklist.push(I);
1310       return I->getOperand(0);
1311     }
1312 
1313     // The inserted element is defined.
1314     UndefElts.clearBit(IdxNo);
1315     break;
1316   }
1317   case Instruction::ShuffleVector: {
1318     auto *Shuffle = cast<ShuffleVectorInst>(I);
1319     assert(Shuffle->getOperand(0)->getType() ==
1320            Shuffle->getOperand(1)->getType() &&
1321            "Expected shuffle operands to have same type");
1322     unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType())
1323                            ->getNumElements();
1324     // Handle trivial case of a splat. Only check the first element of LHS
1325     // operand.
1326     if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
1327         DemandedElts.isAllOnes()) {
1328       if (!match(I->getOperand(1), m_Undef())) {
1329         I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType()));
1330         MadeChange = true;
1331       }
1332       APInt LeftDemanded(OpWidth, 1);
1333       APInt LHSUndefElts(OpWidth, 0);
1334       simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1335       if (LHSUndefElts[0])
1336         UndefElts = EltMask;
1337       else
1338         UndefElts.clearAllBits();
1339       break;
1340     }
1341 
1342     APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1343     for (unsigned i = 0; i < VWidth; i++) {
1344       if (DemandedElts[i]) {
1345         unsigned MaskVal = Shuffle->getMaskValue(i);
1346         if (MaskVal != -1u) {
1347           assert(MaskVal < OpWidth * 2 &&
1348                  "shufflevector mask index out of range!");
1349           if (MaskVal < OpWidth)
1350             LeftDemanded.setBit(MaskVal);
1351           else
1352             RightDemanded.setBit(MaskVal - OpWidth);
1353         }
1354       }
1355     }
1356 
1357     APInt LHSUndefElts(OpWidth, 0);
1358     simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1359 
1360     APInt RHSUndefElts(OpWidth, 0);
1361     simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1362 
1363     // If this shuffle does not change the vector length and the elements
1364     // demanded by this shuffle are an identity mask, then this shuffle is
1365     // unnecessary.
1366     //
1367     // We are assuming canonical form for the mask, so the source vector is
1368     // operand 0 and operand 1 is not used.
1369     //
1370     // Note that if an element is demanded and this shuffle mask is undefined
1371     // for that element, then the shuffle is not considered an identity
1372     // operation. The shuffle prevents poison from the operand vector from
1373     // leaking to the result by replacing poison with an undefined value.
1374     if (VWidth == OpWidth) {
1375       bool IsIdentityShuffle = true;
1376       for (unsigned i = 0; i < VWidth; i++) {
1377         unsigned MaskVal = Shuffle->getMaskValue(i);
1378         if (DemandedElts[i] && i != MaskVal) {
1379           IsIdentityShuffle = false;
1380           break;
1381         }
1382       }
1383       if (IsIdentityShuffle)
1384         return Shuffle->getOperand(0);
1385     }
1386 
1387     bool NewUndefElts = false;
1388     unsigned LHSIdx = -1u, LHSValIdx = -1u;
1389     unsigned RHSIdx = -1u, RHSValIdx = -1u;
1390     bool LHSUniform = true;
1391     bool RHSUniform = true;
1392     for (unsigned i = 0; i < VWidth; i++) {
1393       unsigned MaskVal = Shuffle->getMaskValue(i);
1394       if (MaskVal == -1u) {
1395         UndefElts.setBit(i);
1396       } else if (!DemandedElts[i]) {
1397         NewUndefElts = true;
1398         UndefElts.setBit(i);
1399       } else if (MaskVal < OpWidth) {
1400         if (LHSUndefElts[MaskVal]) {
1401           NewUndefElts = true;
1402           UndefElts.setBit(i);
1403         } else {
1404           LHSIdx = LHSIdx == -1u ? i : OpWidth;
1405           LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1406           LHSUniform = LHSUniform && (MaskVal == i);
1407         }
1408       } else {
1409         if (RHSUndefElts[MaskVal - OpWidth]) {
1410           NewUndefElts = true;
1411           UndefElts.setBit(i);
1412         } else {
1413           RHSIdx = RHSIdx == -1u ? i : OpWidth;
1414           RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1415           RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1416         }
1417       }
1418     }
1419 
1420     // Try to transform shuffle with constant vector and single element from
1421     // this constant vector to single insertelement instruction.
1422     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1423     // insertelement V, C[ci], ci-n
1424     if (OpWidth ==
1425         cast<FixedVectorType>(Shuffle->getType())->getNumElements()) {
1426       Value *Op = nullptr;
1427       Constant *Value = nullptr;
1428       unsigned Idx = -1u;
1429 
1430       // Find constant vector with the single element in shuffle (LHS or RHS).
1431       if (LHSIdx < OpWidth && RHSUniform) {
1432         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1433           Op = Shuffle->getOperand(1);
1434           Value = CV->getOperand(LHSValIdx);
1435           Idx = LHSIdx;
1436         }
1437       }
1438       if (RHSIdx < OpWidth && LHSUniform) {
1439         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1440           Op = Shuffle->getOperand(0);
1441           Value = CV->getOperand(RHSValIdx);
1442           Idx = RHSIdx;
1443         }
1444       }
1445       // Found constant vector with single element - convert to insertelement.
1446       if (Op && Value) {
1447         Instruction *New = InsertElementInst::Create(
1448             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1449             Shuffle->getName());
1450         InsertNewInstWith(New, *Shuffle);
1451         return New;
1452       }
1453     }
1454     if (NewUndefElts) {
1455       // Add additional discovered undefs.
1456       SmallVector<int, 16> Elts;
1457       for (unsigned i = 0; i < VWidth; ++i) {
1458         if (UndefElts[i])
1459           Elts.push_back(UndefMaskElem);
1460         else
1461           Elts.push_back(Shuffle->getMaskValue(i));
1462       }
1463       Shuffle->setShuffleMask(Elts);
1464       MadeChange = true;
1465     }
1466     break;
1467   }
1468   case Instruction::Select: {
1469     // If this is a vector select, try to transform the select condition based
1470     // on the current demanded elements.
1471     SelectInst *Sel = cast<SelectInst>(I);
1472     if (Sel->getCondition()->getType()->isVectorTy()) {
1473       // TODO: We are not doing anything with UndefElts based on this call.
1474       // It is overwritten below based on the other select operands. If an
1475       // element of the select condition is known undef, then we are free to
1476       // choose the output value from either arm of the select. If we know that
1477       // one of those values is undef, then the output can be undef.
1478       simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1479     }
1480 
1481     // Next, see if we can transform the arms of the select.
1482     APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1483     if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1484       for (unsigned i = 0; i < VWidth; i++) {
1485         // isNullValue() always returns false when called on a ConstantExpr.
1486         // Skip constant expressions to avoid propagating incorrect information.
1487         Constant *CElt = CV->getAggregateElement(i);
1488         if (isa<ConstantExpr>(CElt))
1489           continue;
1490         // TODO: If a select condition element is undef, we can demand from
1491         // either side. If one side is known undef, choosing that side would
1492         // propagate undef.
1493         if (CElt->isNullValue())
1494           DemandedLHS.clearBit(i);
1495         else
1496           DemandedRHS.clearBit(i);
1497       }
1498     }
1499 
1500     simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1501     simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1502 
1503     // Output elements are undefined if the element from each arm is undefined.
1504     // TODO: This can be improved. See comment in select condition handling.
1505     UndefElts = UndefElts2 & UndefElts3;
1506     break;
1507   }
1508   case Instruction::BitCast: {
1509     // Vector->vector casts only.
1510     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1511     if (!VTy) break;
1512     unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements();
1513     APInt InputDemandedElts(InVWidth, 0);
1514     UndefElts2 = APInt(InVWidth, 0);
1515     unsigned Ratio;
1516 
1517     if (VWidth == InVWidth) {
1518       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1519       // elements as are demanded of us.
1520       Ratio = 1;
1521       InputDemandedElts = DemandedElts;
1522     } else if ((VWidth % InVWidth) == 0) {
1523       // If the number of elements in the output is a multiple of the number of
1524       // elements in the input then an input element is live if any of the
1525       // corresponding output elements are live.
1526       Ratio = VWidth / InVWidth;
1527       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1528         if (DemandedElts[OutIdx])
1529           InputDemandedElts.setBit(OutIdx / Ratio);
1530     } else if ((InVWidth % VWidth) == 0) {
1531       // If the number of elements in the input is a multiple of the number of
1532       // elements in the output then an input element is live if the
1533       // corresponding output element is live.
1534       Ratio = InVWidth / VWidth;
1535       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1536         if (DemandedElts[InIdx / Ratio])
1537           InputDemandedElts.setBit(InIdx);
1538     } else {
1539       // Unsupported so far.
1540       break;
1541     }
1542 
1543     simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1544 
1545     if (VWidth == InVWidth) {
1546       UndefElts = UndefElts2;
1547     } else if ((VWidth % InVWidth) == 0) {
1548       // If the number of elements in the output is a multiple of the number of
1549       // elements in the input then an output element is undef if the
1550       // corresponding input element is undef.
1551       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1552         if (UndefElts2[OutIdx / Ratio])
1553           UndefElts.setBit(OutIdx);
1554     } else if ((InVWidth % VWidth) == 0) {
1555       // If the number of elements in the input is a multiple of the number of
1556       // elements in the output then an output element is undef if all of the
1557       // corresponding input elements are undef.
1558       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1559         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1560         if (SubUndef.countPopulation() == Ratio)
1561           UndefElts.setBit(OutIdx);
1562       }
1563     } else {
1564       llvm_unreachable("Unimp");
1565     }
1566     break;
1567   }
1568   case Instruction::FPTrunc:
1569   case Instruction::FPExt:
1570     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1571     break;
1572 
1573   case Instruction::Call: {
1574     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1575     if (!II) break;
1576     switch (II->getIntrinsicID()) {
1577     case Intrinsic::masked_gather: // fallthrough
1578     case Intrinsic::masked_load: {
1579       // Subtlety: If we load from a pointer, the pointer must be valid
1580       // regardless of whether the element is demanded.  Doing otherwise risks
1581       // segfaults which didn't exist in the original program.
1582       APInt DemandedPtrs(APInt::getAllOnes(VWidth)),
1583           DemandedPassThrough(DemandedElts);
1584       if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1585         for (unsigned i = 0; i < VWidth; i++) {
1586           Constant *CElt = CV->getAggregateElement(i);
1587           if (CElt->isNullValue())
1588             DemandedPtrs.clearBit(i);
1589           else if (CElt->isAllOnesValue())
1590             DemandedPassThrough.clearBit(i);
1591         }
1592       if (II->getIntrinsicID() == Intrinsic::masked_gather)
1593         simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1594       simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1595 
1596       // Output elements are undefined if the element from both sources are.
1597       // TODO: can strengthen via mask as well.
1598       UndefElts = UndefElts2 & UndefElts3;
1599       break;
1600     }
1601     default: {
1602       // Handle target specific intrinsics
1603       Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
1604           *II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
1605           simplifyAndSetOp);
1606       if (V.hasValue())
1607         return V.getValue();
1608       break;
1609     }
1610     } // switch on IntrinsicID
1611     break;
1612   } // case Call
1613   } // switch on Opcode
1614 
1615   // TODO: We bail completely on integer div/rem and shifts because they have
1616   // UB/poison potential, but that should be refined.
1617   BinaryOperator *BO;
1618   if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1619     simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1620     simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1621 
1622     // Output elements are undefined if both are undefined. Consider things
1623     // like undef & 0. The result is known zero, not undef.
1624     UndefElts &= UndefElts2;
1625   }
1626 
1627   // If we've proven all of the lanes undef, return an undef value.
1628   // TODO: Intersect w/demanded lanes
1629   if (UndefElts.isAllOnes())
1630     return UndefValue::get(I->getType());;
1631 
1632   return MadeChange ? I : nullptr;
1633 }
1634