1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/TargetTransformInfo.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Check to see if the specified operand of the specified instruction is a 28 /// constant integer. If so, check to see if there are any bits set in the 29 /// constant that are not demanded. If so, shrink the constant and return true. 30 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 31 const APInt &Demanded) { 32 assert(I && "No instruction?"); 33 assert(OpNo < I->getNumOperands() && "Operand index too large"); 34 35 // The operand must be a constant integer or splat integer. 36 Value *Op = I->getOperand(OpNo); 37 const APInt *C; 38 if (!match(Op, m_APInt(C))) 39 return false; 40 41 // If there are no bits set that aren't demanded, nothing to do. 42 if (C->isSubsetOf(Demanded)) 43 return false; 44 45 // This instruction is producing bits that are not demanded. Shrink the RHS. 46 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 47 48 return true; 49 } 50 51 52 53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 54 /// the instruction has any properties that allow us to simplify its operands. 55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { 56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 57 KnownBits Known(BitWidth); 58 APInt DemandedMask(APInt::getAllOnes(BitWidth)); 59 60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 61 0, &Inst); 62 if (!V) return false; 63 if (V == &Inst) return true; 64 replaceInstUsesWith(Inst, V); 65 return true; 66 } 67 68 /// This form of SimplifyDemandedBits simplifies the specified instruction 69 /// operand if possible, updating it in place. It returns true if it made any 70 /// change and false otherwise. 71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 72 const APInt &DemandedMask, 73 KnownBits &Known, unsigned Depth) { 74 Use &U = I->getOperandUse(OpNo); 75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 76 Depth, I); 77 if (!NewVal) return false; 78 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 79 salvageDebugInfo(*OpInst); 80 81 replaceUse(U, NewVal); 82 return true; 83 } 84 85 /// This function attempts to replace V with a simpler value based on the 86 /// demanded bits. When this function is called, it is known that only the bits 87 /// set in DemandedMask of the result of V are ever used downstream. 88 /// Consequently, depending on the mask and V, it may be possible to replace V 89 /// with a constant or one of its operands. In such cases, this function does 90 /// the replacement and returns true. In all other cases, it returns false after 91 /// analyzing the expression and setting KnownOne and known to be one in the 92 /// expression. Known.Zero contains all the bits that are known to be zero in 93 /// the expression. These are provided to potentially allow the caller (which 94 /// might recursively be SimplifyDemandedBits itself) to simplify the 95 /// expression. 96 /// Known.One and Known.Zero always follow the invariant that: 97 /// Known.One & Known.Zero == 0. 98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 101 /// be the same. 102 /// 103 /// This returns null if it did not change anything and it permits no 104 /// simplification. This returns V itself if it did some simplification of V's 105 /// operands based on the information about what bits are demanded. This returns 106 /// some other non-null value if it found out that V is equal to another value 107 /// in the context where the specified bits are demanded, but not for all users. 108 Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 109 KnownBits &Known, 110 unsigned Depth, 111 Instruction *CxtI) { 112 assert(V != nullptr && "Null pointer of Value???"); 113 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 114 uint32_t BitWidth = DemandedMask.getBitWidth(); 115 Type *VTy = V->getType(); 116 assert( 117 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 118 Known.getBitWidth() == BitWidth && 119 "Value *V, DemandedMask and Known must have same BitWidth"); 120 121 if (isa<Constant>(V)) { 122 computeKnownBits(V, Known, Depth, CxtI); 123 return nullptr; 124 } 125 126 Known.resetAll(); 127 if (DemandedMask.isZero()) // Not demanding any bits from V. 128 return UndefValue::get(VTy); 129 130 if (Depth == MaxAnalysisRecursionDepth) 131 return nullptr; 132 133 if (isa<ScalableVectorType>(VTy)) 134 return nullptr; 135 136 Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) { 138 computeKnownBits(V, Known, Depth, CxtI); 139 return nullptr; // Only analyze instructions. 140 } 141 142 // If there are multiple uses of this value and we aren't at the root, then 143 // we can't do any simplifications of the operands, because DemandedMask 144 // only reflects the bits demanded by *one* of the users. 145 if (Depth != 0 && !I->hasOneUse()) 146 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 147 148 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 149 150 // If this is the root being simplified, allow it to have multiple uses, 151 // just set the DemandedMask to all bits so that we can try to simplify the 152 // operands. This allows visitTruncInst (for example) to simplify the 153 // operand of a trunc without duplicating all the logic below. 154 if (Depth == 0 && !V->hasOneUse()) 155 DemandedMask.setAllBits(); 156 157 switch (I->getOpcode()) { 158 default: 159 computeKnownBits(I, Known, Depth, CxtI); 160 break; 161 case Instruction::And: { 162 // If either the LHS or the RHS are Zero, the result is zero. 163 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 164 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 165 Depth + 1)) 166 return I; 167 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 168 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 169 170 Known = LHSKnown & RHSKnown; 171 172 // If the client is only demanding bits that we know, return the known 173 // constant. 174 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 175 return Constant::getIntegerValue(VTy, Known.One); 176 177 // If all of the demanded bits are known 1 on one side, return the other. 178 // These bits cannot contribute to the result of the 'and'. 179 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 180 return I->getOperand(0); 181 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 182 return I->getOperand(1); 183 184 // If the RHS is a constant, see if we can simplify it. 185 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 186 return I; 187 188 break; 189 } 190 case Instruction::Or: { 191 // If either the LHS or the RHS are One, the result is One. 192 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 193 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 194 Depth + 1)) 195 return I; 196 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 197 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 198 199 Known = LHSKnown | RHSKnown; 200 201 // If the client is only demanding bits that we know, return the known 202 // constant. 203 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 204 return Constant::getIntegerValue(VTy, Known.One); 205 206 // If all of the demanded bits are known zero on one side, return the other. 207 // These bits cannot contribute to the result of the 'or'. 208 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 209 return I->getOperand(0); 210 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 211 return I->getOperand(1); 212 213 // If the RHS is a constant, see if we can simplify it. 214 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 215 return I; 216 217 break; 218 } 219 case Instruction::Xor: { 220 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 221 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 222 return I; 223 Value *LHS, *RHS; 224 if (DemandedMask == 1 && 225 match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) && 226 match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) { 227 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1 228 IRBuilderBase::InsertPointGuard Guard(Builder); 229 Builder.SetInsertPoint(I); 230 auto *Xor = Builder.CreateXor(LHS, RHS); 231 return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor); 232 } 233 234 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 235 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 236 237 Known = LHSKnown ^ RHSKnown; 238 239 // If the client is only demanding bits that we know, return the known 240 // constant. 241 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 242 return Constant::getIntegerValue(VTy, Known.One); 243 244 // If all of the demanded bits are known zero on one side, return the other. 245 // These bits cannot contribute to the result of the 'xor'. 246 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 247 return I->getOperand(0); 248 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 249 return I->getOperand(1); 250 251 // If all of the demanded bits are known to be zero on one side or the 252 // other, turn this into an *inclusive* or. 253 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 254 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 255 Instruction *Or = 256 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 257 I->getName()); 258 return InsertNewInstWith(Or, *I); 259 } 260 261 // If all of the demanded bits on one side are known, and all of the set 262 // bits on that side are also known to be set on the other side, turn this 263 // into an AND, as we know the bits will be cleared. 264 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 265 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 266 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 267 Constant *AndC = Constant::getIntegerValue(VTy, 268 ~RHSKnown.One & DemandedMask); 269 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 270 return InsertNewInstWith(And, *I); 271 } 272 273 // If the RHS is a constant, see if we can change it. Don't alter a -1 274 // constant because that's a canonical 'not' op, and that is better for 275 // combining, SCEV, and codegen. 276 const APInt *C; 277 if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) { 278 if ((*C | ~DemandedMask).isAllOnes()) { 279 // Force bits to 1 to create a 'not' op. 280 I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); 281 return I; 282 } 283 // If we can't turn this into a 'not', try to shrink the constant. 284 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 285 return I; 286 } 287 288 // If our LHS is an 'and' and if it has one use, and if any of the bits we 289 // are flipping are known to be set, then the xor is just resetting those 290 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 291 // simplifying both of them. 292 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { 293 ConstantInt *AndRHS, *XorRHS; 294 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 295 match(I->getOperand(1), m_ConstantInt(XorRHS)) && 296 match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && 297 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 298 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 299 300 Constant *AndC = 301 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 302 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 303 InsertNewInstWith(NewAnd, *I); 304 305 Constant *XorC = 306 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 307 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 308 return InsertNewInstWith(NewXor, *I); 309 } 310 } 311 break; 312 } 313 case Instruction::Select: { 314 Value *LHS, *RHS; 315 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 316 if (SPF == SPF_UMAX) { 317 // UMax(A, C) == A if ... 318 // The lowest non-zero bit of DemandMask is higher than the highest 319 // non-zero bit of C. 320 const APInt *C; 321 unsigned CTZ = DemandedMask.countTrailingZeros(); 322 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 323 return LHS; 324 } else if (SPF == SPF_UMIN) { 325 // UMin(A, C) == A if ... 326 // The lowest non-zero bit of DemandMask is higher than the highest 327 // non-one bit of C. 328 // This comes from using DeMorgans on the above umax example. 329 const APInt *C; 330 unsigned CTZ = DemandedMask.countTrailingZeros(); 331 if (match(RHS, m_APInt(C)) && 332 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 333 return LHS; 334 } 335 336 // If this is a select as part of any other min/max pattern, don't simplify 337 // any further in case we break the structure. 338 if (SPF != SPF_UNKNOWN) 339 return nullptr; 340 341 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 342 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 343 return I; 344 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 345 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 346 347 // If the operands are constants, see if we can simplify them. 348 // This is similar to ShrinkDemandedConstant, but for a select we want to 349 // try to keep the selected constants the same as icmp value constants, if 350 // we can. This helps not break apart (or helps put back together) 351 // canonical patterns like min and max. 352 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 353 const APInt &DemandedMask) { 354 const APInt *SelC; 355 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 356 return false; 357 358 // Get the constant out of the ICmp, if there is one. 359 // Only try this when exactly 1 operand is a constant (if both operands 360 // are constant, the icmp should eventually simplify). Otherwise, we may 361 // invert the transform that reduces set bits and infinite-loop. 362 Value *X; 363 const APInt *CmpC; 364 ICmpInst::Predicate Pred; 365 if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || 366 isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) 367 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 368 369 // If the constant is already the same as the ICmp, leave it as-is. 370 if (*CmpC == *SelC) 371 return false; 372 // If the constants are not already the same, but can be with the demand 373 // mask, use the constant value from the ICmp. 374 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 375 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 376 return true; 377 } 378 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 379 }; 380 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 381 CanonicalizeSelectConstant(I, 2, DemandedMask)) 382 return I; 383 384 // Only known if known in both the LHS and RHS. 385 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 386 break; 387 } 388 case Instruction::Trunc: { 389 // If we do not demand the high bits of a right-shifted and truncated value, 390 // then we may be able to truncate it before the shift. 391 Value *X; 392 const APInt *C; 393 if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 394 // The shift amount must be valid (not poison) in the narrow type, and 395 // it must not be greater than the high bits demanded of the result. 396 if (C->ult(I->getType()->getScalarSizeInBits()) && 397 C->ule(DemandedMask.countLeadingZeros())) { 398 // trunc (lshr X, C) --> lshr (trunc X), C 399 IRBuilderBase::InsertPointGuard Guard(Builder); 400 Builder.SetInsertPoint(I); 401 Value *Trunc = Builder.CreateTrunc(X, I->getType()); 402 return Builder.CreateLShr(Trunc, C->getZExtValue()); 403 } 404 } 405 } 406 LLVM_FALLTHROUGH; 407 case Instruction::ZExt: { 408 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 409 410 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 411 KnownBits InputKnown(SrcBitWidth); 412 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 413 return I; 414 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 415 Known = InputKnown.zextOrTrunc(BitWidth); 416 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 417 break; 418 } 419 case Instruction::BitCast: 420 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 421 return nullptr; // vector->int or fp->int? 422 423 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 424 if (VectorType *SrcVTy = 425 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 426 if (cast<FixedVectorType>(DstVTy)->getNumElements() != 427 cast<FixedVectorType>(SrcVTy)->getNumElements()) 428 // Don't touch a bitcast between vectors of different element counts. 429 return nullptr; 430 } else 431 // Don't touch a scalar-to-vector bitcast. 432 return nullptr; 433 } else if (I->getOperand(0)->getType()->isVectorTy()) 434 // Don't touch a vector-to-scalar bitcast. 435 return nullptr; 436 437 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 438 return I; 439 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 440 break; 441 case Instruction::SExt: { 442 // Compute the bits in the result that are not present in the input. 443 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 444 445 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 446 447 // If any of the sign extended bits are demanded, we know that the sign 448 // bit is demanded. 449 if (DemandedMask.getActiveBits() > SrcBitWidth) 450 InputDemandedBits.setBit(SrcBitWidth-1); 451 452 KnownBits InputKnown(SrcBitWidth); 453 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 454 return I; 455 456 // If the input sign bit is known zero, or if the NewBits are not demanded 457 // convert this into a zero extension. 458 if (InputKnown.isNonNegative() || 459 DemandedMask.getActiveBits() <= SrcBitWidth) { 460 // Convert to ZExt cast. 461 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 462 return InsertNewInstWith(NewCast, *I); 463 } 464 465 // If the sign bit of the input is known set or clear, then we know the 466 // top bits of the result. 467 Known = InputKnown.sext(BitWidth); 468 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 469 break; 470 } 471 case Instruction::Add: 472 if ((DemandedMask & 1) == 0) { 473 // If we do not need the low bit, try to convert bool math to logic: 474 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 475 Value *X, *Y; 476 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 477 m_OneUse(m_SExt(m_Value(Y))))) && 478 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 479 // Truth table for inputs and output signbits: 480 // X:0 | X:1 481 // ---------- 482 // Y:0 | 0 | 0 | 483 // Y:1 | -1 | 0 | 484 // ---------- 485 IRBuilderBase::InsertPointGuard Guard(Builder); 486 Builder.SetInsertPoint(I); 487 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 488 return Builder.CreateSExt(AndNot, VTy); 489 } 490 491 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 492 // TODO: Relax the one-use checks because we are removing an instruction? 493 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 494 m_OneUse(m_SExt(m_Value(Y))))) && 495 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 496 // Truth table for inputs and output signbits: 497 // X:0 | X:1 498 // ----------- 499 // Y:0 | -1 | -1 | 500 // Y:1 | -1 | 0 | 501 // ----------- 502 IRBuilderBase::InsertPointGuard Guard(Builder); 503 Builder.SetInsertPoint(I); 504 Value *Or = Builder.CreateOr(X, Y); 505 return Builder.CreateSExt(Or, VTy); 506 } 507 } 508 LLVM_FALLTHROUGH; 509 case Instruction::Sub: { 510 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 511 /// about the high bits of the operands. 512 unsigned NLZ = DemandedMask.countLeadingZeros(); 513 // Right fill the mask of bits for this ADD/SUB to demand the most 514 // significant bit and all those below it. 515 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 516 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 517 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 518 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 519 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 520 if (NLZ > 0) { 521 // Disable the nsw and nuw flags here: We can no longer guarantee that 522 // we won't wrap after simplification. Removing the nsw/nuw flags is 523 // legal here because the top bit is not demanded. 524 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 525 BinOP.setHasNoSignedWrap(false); 526 BinOP.setHasNoUnsignedWrap(false); 527 } 528 return I; 529 } 530 531 // If we are known to be adding/subtracting zeros to every bit below 532 // the highest demanded bit, we just return the other side. 533 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 534 return I->getOperand(0); 535 // We can't do this with the LHS for subtraction, unless we are only 536 // demanding the LSB. 537 if ((I->getOpcode() == Instruction::Add || DemandedFromOps.isOne()) && 538 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 539 return I->getOperand(1); 540 541 // Otherwise just compute the known bits of the result. 542 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 543 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 544 NSW, LHSKnown, RHSKnown); 545 break; 546 } 547 case Instruction::Mul: { 548 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 549 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 550 // odd (has LSB set), then the left-shifted low bit of X is the answer. 551 if (DemandedMask.isPowerOf2()) { 552 unsigned CTZ = DemandedMask.countTrailingZeros(); 553 const APInt *C; 554 if (match(I->getOperand(1), m_APInt(C)) && 555 C->countTrailingZeros() == CTZ) { 556 Constant *ShiftC = ConstantInt::get(I->getType(), CTZ); 557 Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC); 558 return InsertNewInstWith(Shl, *I); 559 } 560 // 'Quadratic Reciprocity': mul(x,x) -> 0 if we're only demanding bit[1] 561 if (DemandedMask == 2 && I->getOperand(0) == I->getOperand(1)) 562 return ConstantInt::getNullValue(VTy); 563 } 564 computeKnownBits(I, Known, Depth, CxtI); 565 break; 566 } 567 case Instruction::Shl: { 568 const APInt *SA; 569 if (match(I->getOperand(1), m_APInt(SA))) { 570 const APInt *ShrAmt; 571 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 572 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 573 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 574 DemandedMask, Known)) 575 return R; 576 577 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 578 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 579 580 // If the shift is NUW/NSW, then it does demand the high bits. 581 ShlOperator *IOp = cast<ShlOperator>(I); 582 if (IOp->hasNoSignedWrap()) 583 DemandedMaskIn.setHighBits(ShiftAmt+1); 584 else if (IOp->hasNoUnsignedWrap()) 585 DemandedMaskIn.setHighBits(ShiftAmt); 586 587 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 588 return I; 589 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 590 591 bool SignBitZero = Known.Zero.isSignBitSet(); 592 bool SignBitOne = Known.One.isSignBitSet(); 593 Known.Zero <<= ShiftAmt; 594 Known.One <<= ShiftAmt; 595 // low bits known zero. 596 if (ShiftAmt) 597 Known.Zero.setLowBits(ShiftAmt); 598 599 // If this shift has "nsw" keyword, then the result is either a poison 600 // value or has the same sign bit as the first operand. 601 if (IOp->hasNoSignedWrap()) { 602 if (SignBitZero) 603 Known.Zero.setSignBit(); 604 else if (SignBitOne) 605 Known.One.setSignBit(); 606 if (Known.hasConflict()) 607 return UndefValue::get(I->getType()); 608 } 609 } else { 610 // This is a variable shift, so we can't shift the demand mask by a known 611 // amount. But if we are not demanding high bits, then we are not 612 // demanding those bits from the pre-shifted operand either. 613 if (unsigned CTLZ = DemandedMask.countLeadingZeros()) { 614 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 615 if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) { 616 // We can't guarantee that nsw/nuw hold after simplifying the operand. 617 I->dropPoisonGeneratingFlags(); 618 return I; 619 } 620 } 621 computeKnownBits(I, Known, Depth, CxtI); 622 } 623 break; 624 } 625 case Instruction::LShr: { 626 const APInt *SA; 627 if (match(I->getOperand(1), m_APInt(SA))) { 628 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 629 630 // Unsigned shift right. 631 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 632 633 // If the shift is exact, then it does demand the low bits (and knows that 634 // they are zero). 635 if (cast<LShrOperator>(I)->isExact()) 636 DemandedMaskIn.setLowBits(ShiftAmt); 637 638 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 639 return I; 640 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 641 Known.Zero.lshrInPlace(ShiftAmt); 642 Known.One.lshrInPlace(ShiftAmt); 643 if (ShiftAmt) 644 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 645 } else { 646 computeKnownBits(I, Known, Depth, CxtI); 647 } 648 break; 649 } 650 case Instruction::AShr: { 651 // If this is an arithmetic shift right and only the low-bit is set, we can 652 // always convert this into a logical shr, even if the shift amount is 653 // variable. The low bit of the shift cannot be an input sign bit unless 654 // the shift amount is >= the size of the datatype, which is undefined. 655 if (DemandedMask.isOne()) { 656 // Perform the logical shift right. 657 Instruction *NewVal = BinaryOperator::CreateLShr( 658 I->getOperand(0), I->getOperand(1), I->getName()); 659 return InsertNewInstWith(NewVal, *I); 660 } 661 662 // If the sign bit is the only bit demanded by this ashr, then there is no 663 // need to do it, the shift doesn't change the high bit. 664 if (DemandedMask.isSignMask()) 665 return I->getOperand(0); 666 667 const APInt *SA; 668 if (match(I->getOperand(1), m_APInt(SA))) { 669 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 670 671 // Signed shift right. 672 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 673 // If any of the high bits are demanded, we should set the sign bit as 674 // demanded. 675 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 676 DemandedMaskIn.setSignBit(); 677 678 // If the shift is exact, then it does demand the low bits (and knows that 679 // they are zero). 680 if (cast<AShrOperator>(I)->isExact()) 681 DemandedMaskIn.setLowBits(ShiftAmt); 682 683 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 684 return I; 685 686 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 687 688 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 689 // Compute the new bits that are at the top now plus sign bits. 690 APInt HighBits(APInt::getHighBitsSet( 691 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 692 Known.Zero.lshrInPlace(ShiftAmt); 693 Known.One.lshrInPlace(ShiftAmt); 694 695 // If the input sign bit is known to be zero, or if none of the top bits 696 // are demanded, turn this into an unsigned shift right. 697 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 698 if (Known.Zero[BitWidth-ShiftAmt-1] || 699 !DemandedMask.intersects(HighBits)) { 700 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 701 I->getOperand(1)); 702 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 703 return InsertNewInstWith(LShr, *I); 704 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 705 Known.One |= HighBits; 706 } 707 } else { 708 computeKnownBits(I, Known, Depth, CxtI); 709 } 710 break; 711 } 712 case Instruction::UDiv: { 713 // UDiv doesn't demand low bits that are zero in the divisor. 714 const APInt *SA; 715 if (match(I->getOperand(1), m_APInt(SA))) { 716 // If the shift is exact, then it does demand the low bits. 717 if (cast<UDivOperator>(I)->isExact()) 718 break; 719 720 // FIXME: Take the demanded mask of the result into account. 721 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 722 APInt DemandedMaskIn = 723 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 724 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 725 return I; 726 727 // Propagate zero bits from the input. 728 Known.Zero.setHighBits(std::min( 729 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 730 } else { 731 computeKnownBits(I, Known, Depth, CxtI); 732 } 733 break; 734 } 735 case Instruction::SRem: { 736 ConstantInt *Rem; 737 if (match(I->getOperand(1), m_ConstantInt(Rem))) { 738 // X % -1 demands all the bits because we don't want to introduce 739 // INT_MIN % -1 (== undef) by accident. 740 if (Rem->isMinusOne()) 741 break; 742 APInt RA = Rem->getValue().abs(); 743 if (RA.isPowerOf2()) { 744 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 745 return I->getOperand(0); 746 747 APInt LowBits = RA - 1; 748 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 749 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 750 return I; 751 752 // The low bits of LHS are unchanged by the srem. 753 Known.Zero = LHSKnown.Zero & LowBits; 754 Known.One = LHSKnown.One & LowBits; 755 756 // If LHS is non-negative or has all low bits zero, then the upper bits 757 // are all zero. 758 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 759 Known.Zero |= ~LowBits; 760 761 // If LHS is negative and not all low bits are zero, then the upper bits 762 // are all one. 763 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 764 Known.One |= ~LowBits; 765 766 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 767 break; 768 } 769 } 770 771 // The sign bit is the LHS's sign bit, except when the result of the 772 // remainder is zero. 773 if (DemandedMask.isSignBitSet()) { 774 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 775 // If it's known zero, our sign bit is also zero. 776 if (LHSKnown.isNonNegative()) 777 Known.makeNonNegative(); 778 } 779 break; 780 } 781 case Instruction::URem: { 782 KnownBits Known2(BitWidth); 783 APInt AllOnes = APInt::getAllOnes(BitWidth); 784 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 785 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 786 return I; 787 788 unsigned Leaders = Known2.countMinLeadingZeros(); 789 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 790 break; 791 } 792 case Instruction::Call: { 793 bool KnownBitsComputed = false; 794 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 795 switch (II->getIntrinsicID()) { 796 case Intrinsic::abs: { 797 if (DemandedMask == 1) 798 return II->getArgOperand(0); 799 break; 800 } 801 case Intrinsic::ctpop: { 802 // Checking if the number of clear bits is odd (parity)? If the type has 803 // an even number of bits, that's the same as checking if the number of 804 // set bits is odd, so we can eliminate the 'not' op. 805 Value *X; 806 if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && 807 match(II->getArgOperand(0), m_Not(m_Value(X)))) { 808 Function *Ctpop = Intrinsic::getDeclaration( 809 II->getModule(), Intrinsic::ctpop, II->getType()); 810 return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I); 811 } 812 break; 813 } 814 case Intrinsic::bswap: { 815 // If the only bits demanded come from one byte of the bswap result, 816 // just shift the input byte into position to eliminate the bswap. 817 unsigned NLZ = DemandedMask.countLeadingZeros(); 818 unsigned NTZ = DemandedMask.countTrailingZeros(); 819 820 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 821 // we need all the bits down to bit 8. Likewise, round NLZ. If we 822 // have 14 leading zeros, round to 8. 823 NLZ = alignDown(NLZ, 8); 824 NTZ = alignDown(NTZ, 8); 825 // If we need exactly one byte, we can do this transformation. 826 if (BitWidth - NLZ - NTZ == 8) { 827 // Replace this with either a left or right shift to get the byte into 828 // the right place. 829 Instruction *NewVal; 830 if (NLZ > NTZ) 831 NewVal = BinaryOperator::CreateLShr( 832 II->getArgOperand(0), 833 ConstantInt::get(I->getType(), NLZ - NTZ)); 834 else 835 NewVal = BinaryOperator::CreateShl( 836 II->getArgOperand(0), 837 ConstantInt::get(I->getType(), NTZ - NLZ)); 838 NewVal->takeName(I); 839 return InsertNewInstWith(NewVal, *I); 840 } 841 break; 842 } 843 case Intrinsic::fshr: 844 case Intrinsic::fshl: { 845 const APInt *SA; 846 if (!match(I->getOperand(2), m_APInt(SA))) 847 break; 848 849 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 850 // defined, so no need to special-case zero shifts here. 851 uint64_t ShiftAmt = SA->urem(BitWidth); 852 if (II->getIntrinsicID() == Intrinsic::fshr) 853 ShiftAmt = BitWidth - ShiftAmt; 854 855 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 856 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 857 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 858 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 859 return I; 860 861 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 862 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 863 Known.One = LHSKnown.One.shl(ShiftAmt) | 864 RHSKnown.One.lshr(BitWidth - ShiftAmt); 865 KnownBitsComputed = true; 866 break; 867 } 868 case Intrinsic::umax: { 869 // UMax(A, C) == A if ... 870 // The lowest non-zero bit of DemandMask is higher than the highest 871 // non-zero bit of C. 872 const APInt *C; 873 unsigned CTZ = DemandedMask.countTrailingZeros(); 874 if (match(II->getArgOperand(1), m_APInt(C)) && 875 CTZ >= C->getActiveBits()) 876 return II->getArgOperand(0); 877 break; 878 } 879 case Intrinsic::umin: { 880 // UMin(A, C) == A if ... 881 // The lowest non-zero bit of DemandMask is higher than the highest 882 // non-one bit of C. 883 // This comes from using DeMorgans on the above umax example. 884 const APInt *C; 885 unsigned CTZ = DemandedMask.countTrailingZeros(); 886 if (match(II->getArgOperand(1), m_APInt(C)) && 887 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 888 return II->getArgOperand(0); 889 break; 890 } 891 default: { 892 // Handle target specific intrinsics 893 Optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( 894 *II, DemandedMask, Known, KnownBitsComputed); 895 if (V.hasValue()) 896 return V.getValue(); 897 break; 898 } 899 } 900 } 901 902 if (!KnownBitsComputed) 903 computeKnownBits(V, Known, Depth, CxtI); 904 break; 905 } 906 } 907 908 // If the client is only demanding bits that we know, return the known 909 // constant. 910 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 911 return Constant::getIntegerValue(VTy, Known.One); 912 return nullptr; 913 } 914 915 /// Helper routine of SimplifyDemandedUseBits. It computes Known 916 /// bits. It also tries to handle simplifications that can be done based on 917 /// DemandedMask, but without modifying the Instruction. 918 Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( 919 Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, 920 Instruction *CxtI) { 921 unsigned BitWidth = DemandedMask.getBitWidth(); 922 Type *ITy = I->getType(); 923 924 KnownBits LHSKnown(BitWidth); 925 KnownBits RHSKnown(BitWidth); 926 927 // Despite the fact that we can't simplify this instruction in all User's 928 // context, we can at least compute the known bits, and we can 929 // do simplifications that apply to *just* the one user if we know that 930 // this instruction has a simpler value in that context. 931 switch (I->getOpcode()) { 932 case Instruction::And: { 933 // If either the LHS or the RHS are Zero, the result is zero. 934 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 935 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 936 CxtI); 937 938 Known = LHSKnown & RHSKnown; 939 940 // If the client is only demanding bits that we know, return the known 941 // constant. 942 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 943 return Constant::getIntegerValue(ITy, Known.One); 944 945 // If all of the demanded bits are known 1 on one side, return the other. 946 // These bits cannot contribute to the result of the 'and' in this 947 // context. 948 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 949 return I->getOperand(0); 950 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 951 return I->getOperand(1); 952 953 break; 954 } 955 case Instruction::Or: { 956 // We can simplify (X|Y) -> X or Y in the user's context if we know that 957 // only bits from X or Y are demanded. 958 959 // If either the LHS or the RHS are One, the result is One. 960 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 961 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 962 CxtI); 963 964 Known = LHSKnown | RHSKnown; 965 966 // If the client is only demanding bits that we know, return the known 967 // constant. 968 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 969 return Constant::getIntegerValue(ITy, Known.One); 970 971 // If all of the demanded bits are known zero on one side, return the 972 // other. These bits cannot contribute to the result of the 'or' in this 973 // context. 974 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 975 return I->getOperand(0); 976 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 977 return I->getOperand(1); 978 979 break; 980 } 981 case Instruction::Xor: { 982 // We can simplify (X^Y) -> X or Y in the user's context if we know that 983 // only bits from X or Y are demanded. 984 985 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 986 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 987 CxtI); 988 989 Known = LHSKnown ^ RHSKnown; 990 991 // If the client is only demanding bits that we know, return the known 992 // constant. 993 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 994 return Constant::getIntegerValue(ITy, Known.One); 995 996 // If all of the demanded bits are known zero on one side, return the 997 // other. 998 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 999 return I->getOperand(0); 1000 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 1001 return I->getOperand(1); 1002 1003 break; 1004 } 1005 case Instruction::AShr: { 1006 // Compute the Known bits to simplify things downstream. 1007 computeKnownBits(I, Known, Depth, CxtI); 1008 1009 // If this user is only demanding bits that we know, return the known 1010 // constant. 1011 if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) 1012 return Constant::getIntegerValue(ITy, Known.One); 1013 1014 // If the right shift operand 0 is a result of a left shift by the same 1015 // amount, this is probably a zero/sign extension, which may be unnecessary, 1016 // if we do not demand any of the new sign bits. So, return the original 1017 // operand instead. 1018 const APInt *ShiftRC; 1019 const APInt *ShiftLC; 1020 Value *X; 1021 unsigned BitWidth = DemandedMask.getBitWidth(); 1022 if (match(I, 1023 m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && 1024 ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && 1025 DemandedMask.isSubsetOf(APInt::getLowBitsSet( 1026 BitWidth, BitWidth - ShiftRC->getZExtValue()))) { 1027 return X; 1028 } 1029 1030 break; 1031 } 1032 default: 1033 // Compute the Known bits to simplify things downstream. 1034 computeKnownBits(I, Known, Depth, CxtI); 1035 1036 // If this user is only demanding bits that we know, return the known 1037 // constant. 1038 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 1039 return Constant::getIntegerValue(ITy, Known.One); 1040 1041 break; 1042 } 1043 1044 return nullptr; 1045 } 1046 1047 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 1048 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 1049 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 1050 /// of "C2-C1". 1051 /// 1052 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 1053 /// ..., bn}, without considering the specific value X is holding. 1054 /// This transformation is legal iff one of following conditions is hold: 1055 /// 1) All the bit in S are 0, in this case E1 == E2. 1056 /// 2) We don't care those bits in S, per the input DemandedMask. 1057 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 1058 /// rest bits. 1059 /// 1060 /// Currently we only test condition 2). 1061 /// 1062 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 1063 /// not successful. 1064 Value *InstCombinerImpl::simplifyShrShlDemandedBits( 1065 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, 1066 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { 1067 if (!ShlOp1 || !ShrOp1) 1068 return nullptr; // No-op. 1069 1070 Value *VarX = Shr->getOperand(0); 1071 Type *Ty = VarX->getType(); 1072 unsigned BitWidth = Ty->getScalarSizeInBits(); 1073 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1074 return nullptr; // Undef. 1075 1076 unsigned ShlAmt = ShlOp1.getZExtValue(); 1077 unsigned ShrAmt = ShrOp1.getZExtValue(); 1078 1079 Known.One.clearAllBits(); 1080 Known.Zero.setLowBits(ShlAmt - 1); 1081 Known.Zero &= DemandedMask; 1082 1083 APInt BitMask1(APInt::getAllOnes(BitWidth)); 1084 APInt BitMask2(APInt::getAllOnes(BitWidth)); 1085 1086 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1087 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1088 (BitMask1.ashr(ShrAmt) << ShlAmt); 1089 1090 if (ShrAmt <= ShlAmt) { 1091 BitMask2 <<= (ShlAmt - ShrAmt); 1092 } else { 1093 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1094 BitMask2.ashr(ShrAmt - ShlAmt); 1095 } 1096 1097 // Check if condition-2 (see the comment to this function) is satified. 1098 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1099 if (ShrAmt == ShlAmt) 1100 return VarX; 1101 1102 if (!Shr->hasOneUse()) 1103 return nullptr; 1104 1105 BinaryOperator *New; 1106 if (ShrAmt < ShlAmt) { 1107 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1108 New = BinaryOperator::CreateShl(VarX, Amt); 1109 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1110 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1111 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1112 } else { 1113 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1114 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1115 BinaryOperator::CreateAShr(VarX, Amt); 1116 if (cast<BinaryOperator>(Shr)->isExact()) 1117 New->setIsExact(true); 1118 } 1119 1120 return InsertNewInstWith(New, *Shl); 1121 } 1122 1123 return nullptr; 1124 } 1125 1126 /// The specified value produces a vector with any number of elements. 1127 /// This method analyzes which elements of the operand are undef or poison and 1128 /// returns that information in UndefElts. 1129 /// 1130 /// DemandedElts contains the set of elements that are actually used by the 1131 /// caller, and by default (AllowMultipleUsers equals false) the value is 1132 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1133 /// to true, DemandedElts refers to the union of sets of elements that are 1134 /// used by all callers. 1135 /// 1136 /// If the information about demanded elements can be used to simplify the 1137 /// operation, the operation is simplified, then the resultant value is 1138 /// returned. This returns null if no change was made. 1139 Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, 1140 APInt DemandedElts, 1141 APInt &UndefElts, 1142 unsigned Depth, 1143 bool AllowMultipleUsers) { 1144 // Cannot analyze scalable type. The number of vector elements is not a 1145 // compile-time constant. 1146 if (isa<ScalableVectorType>(V->getType())) 1147 return nullptr; 1148 1149 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 1150 APInt EltMask(APInt::getAllOnes(VWidth)); 1151 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1152 1153 if (match(V, m_Undef())) { 1154 // If the entire vector is undef or poison, just return this info. 1155 UndefElts = EltMask; 1156 return nullptr; 1157 } 1158 1159 if (DemandedElts.isZero()) { // If nothing is demanded, provide poison. 1160 UndefElts = EltMask; 1161 return PoisonValue::get(V->getType()); 1162 } 1163 1164 UndefElts = 0; 1165 1166 if (auto *C = dyn_cast<Constant>(V)) { 1167 // Check if this is identity. If so, return 0 since we are not simplifying 1168 // anything. 1169 if (DemandedElts.isAllOnes()) 1170 return nullptr; 1171 1172 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1173 Constant *Poison = PoisonValue::get(EltTy); 1174 SmallVector<Constant*, 16> Elts; 1175 for (unsigned i = 0; i != VWidth; ++i) { 1176 if (!DemandedElts[i]) { // If not demanded, set to poison. 1177 Elts.push_back(Poison); 1178 UndefElts.setBit(i); 1179 continue; 1180 } 1181 1182 Constant *Elt = C->getAggregateElement(i); 1183 if (!Elt) return nullptr; 1184 1185 Elts.push_back(Elt); 1186 if (isa<UndefValue>(Elt)) // Already undef or poison. 1187 UndefElts.setBit(i); 1188 } 1189 1190 // If we changed the constant, return it. 1191 Constant *NewCV = ConstantVector::get(Elts); 1192 return NewCV != C ? NewCV : nullptr; 1193 } 1194 1195 // Limit search depth. 1196 if (Depth == 10) 1197 return nullptr; 1198 1199 if (!AllowMultipleUsers) { 1200 // If multiple users are using the root value, proceed with 1201 // simplification conservatively assuming that all elements 1202 // are needed. 1203 if (!V->hasOneUse()) { 1204 // Quit if we find multiple users of a non-root value though. 1205 // They'll be handled when it's their turn to be visited by 1206 // the main instcombine process. 1207 if (Depth != 0) 1208 // TODO: Just compute the UndefElts information recursively. 1209 return nullptr; 1210 1211 // Conservatively assume that all elements are needed. 1212 DemandedElts = EltMask; 1213 } 1214 } 1215 1216 Instruction *I = dyn_cast<Instruction>(V); 1217 if (!I) return nullptr; // Only analyze instructions. 1218 1219 bool MadeChange = false; 1220 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1221 APInt Demanded, APInt &Undef) { 1222 auto *II = dyn_cast<IntrinsicInst>(Inst); 1223 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1224 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1225 replaceOperand(*Inst, OpNum, V); 1226 MadeChange = true; 1227 } 1228 }; 1229 1230 APInt UndefElts2(VWidth, 0); 1231 APInt UndefElts3(VWidth, 0); 1232 switch (I->getOpcode()) { 1233 default: break; 1234 1235 case Instruction::GetElementPtr: { 1236 // The LangRef requires that struct geps have all constant indices. As 1237 // such, we can't convert any operand to partial undef. 1238 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1239 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1240 I != E; I++) 1241 if (I.isStruct()) 1242 return true; 1243 return false; 1244 }; 1245 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1246 break; 1247 1248 // Conservatively track the demanded elements back through any vector 1249 // operands we may have. We know there must be at least one, or we 1250 // wouldn't have a vector result to get here. Note that we intentionally 1251 // merge the undef bits here since gepping with either an poison base or 1252 // index results in poison. 1253 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1254 if (i == 0 ? match(I->getOperand(i), m_Undef()) 1255 : match(I->getOperand(i), m_Poison())) { 1256 // If the entire vector is undefined, just return this info. 1257 UndefElts = EltMask; 1258 return nullptr; 1259 } 1260 if (I->getOperand(i)->getType()->isVectorTy()) { 1261 APInt UndefEltsOp(VWidth, 0); 1262 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1263 // gep(x, undef) is not undef, so skip considering idx ops here 1264 // Note that we could propagate poison, but we can't distinguish between 1265 // undef & poison bits ATM 1266 if (i == 0) 1267 UndefElts |= UndefEltsOp; 1268 } 1269 } 1270 1271 break; 1272 } 1273 case Instruction::InsertElement: { 1274 // If this is a variable index, we don't know which element it overwrites. 1275 // demand exactly the same input as we produce. 1276 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1277 if (!Idx) { 1278 // Note that we can't propagate undef elt info, because we don't know 1279 // which elt is getting updated. 1280 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1281 break; 1282 } 1283 1284 // The element inserted overwrites whatever was there, so the input demanded 1285 // set is simpler than the output set. 1286 unsigned IdxNo = Idx->getZExtValue(); 1287 APInt PreInsertDemandedElts = DemandedElts; 1288 if (IdxNo < VWidth) 1289 PreInsertDemandedElts.clearBit(IdxNo); 1290 1291 // If we only demand the element that is being inserted and that element 1292 // was extracted from the same index in another vector with the same type, 1293 // replace this insert with that other vector. 1294 // Note: This is attempted before the call to simplifyAndSetOp because that 1295 // may change UndefElts to a value that does not match with Vec. 1296 Value *Vec; 1297 if (PreInsertDemandedElts == 0 && 1298 match(I->getOperand(1), 1299 m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && 1300 Vec->getType() == I->getType()) { 1301 return Vec; 1302 } 1303 1304 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1305 1306 // If this is inserting an element that isn't demanded, remove this 1307 // insertelement. 1308 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1309 Worklist.push(I); 1310 return I->getOperand(0); 1311 } 1312 1313 // The inserted element is defined. 1314 UndefElts.clearBit(IdxNo); 1315 break; 1316 } 1317 case Instruction::ShuffleVector: { 1318 auto *Shuffle = cast<ShuffleVectorInst>(I); 1319 assert(Shuffle->getOperand(0)->getType() == 1320 Shuffle->getOperand(1)->getType() && 1321 "Expected shuffle operands to have same type"); 1322 unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) 1323 ->getNumElements(); 1324 // Handle trivial case of a splat. Only check the first element of LHS 1325 // operand. 1326 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1327 DemandedElts.isAllOnes()) { 1328 if (!match(I->getOperand(1), m_Undef())) { 1329 I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType())); 1330 MadeChange = true; 1331 } 1332 APInt LeftDemanded(OpWidth, 1); 1333 APInt LHSUndefElts(OpWidth, 0); 1334 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1335 if (LHSUndefElts[0]) 1336 UndefElts = EltMask; 1337 else 1338 UndefElts.clearAllBits(); 1339 break; 1340 } 1341 1342 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1343 for (unsigned i = 0; i < VWidth; i++) { 1344 if (DemandedElts[i]) { 1345 unsigned MaskVal = Shuffle->getMaskValue(i); 1346 if (MaskVal != -1u) { 1347 assert(MaskVal < OpWidth * 2 && 1348 "shufflevector mask index out of range!"); 1349 if (MaskVal < OpWidth) 1350 LeftDemanded.setBit(MaskVal); 1351 else 1352 RightDemanded.setBit(MaskVal - OpWidth); 1353 } 1354 } 1355 } 1356 1357 APInt LHSUndefElts(OpWidth, 0); 1358 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1359 1360 APInt RHSUndefElts(OpWidth, 0); 1361 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1362 1363 // If this shuffle does not change the vector length and the elements 1364 // demanded by this shuffle are an identity mask, then this shuffle is 1365 // unnecessary. 1366 // 1367 // We are assuming canonical form for the mask, so the source vector is 1368 // operand 0 and operand 1 is not used. 1369 // 1370 // Note that if an element is demanded and this shuffle mask is undefined 1371 // for that element, then the shuffle is not considered an identity 1372 // operation. The shuffle prevents poison from the operand vector from 1373 // leaking to the result by replacing poison with an undefined value. 1374 if (VWidth == OpWidth) { 1375 bool IsIdentityShuffle = true; 1376 for (unsigned i = 0; i < VWidth; i++) { 1377 unsigned MaskVal = Shuffle->getMaskValue(i); 1378 if (DemandedElts[i] && i != MaskVal) { 1379 IsIdentityShuffle = false; 1380 break; 1381 } 1382 } 1383 if (IsIdentityShuffle) 1384 return Shuffle->getOperand(0); 1385 } 1386 1387 bool NewUndefElts = false; 1388 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1389 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1390 bool LHSUniform = true; 1391 bool RHSUniform = true; 1392 for (unsigned i = 0; i < VWidth; i++) { 1393 unsigned MaskVal = Shuffle->getMaskValue(i); 1394 if (MaskVal == -1u) { 1395 UndefElts.setBit(i); 1396 } else if (!DemandedElts[i]) { 1397 NewUndefElts = true; 1398 UndefElts.setBit(i); 1399 } else if (MaskVal < OpWidth) { 1400 if (LHSUndefElts[MaskVal]) { 1401 NewUndefElts = true; 1402 UndefElts.setBit(i); 1403 } else { 1404 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1405 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1406 LHSUniform = LHSUniform && (MaskVal == i); 1407 } 1408 } else { 1409 if (RHSUndefElts[MaskVal - OpWidth]) { 1410 NewUndefElts = true; 1411 UndefElts.setBit(i); 1412 } else { 1413 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1414 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1415 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1416 } 1417 } 1418 } 1419 1420 // Try to transform shuffle with constant vector and single element from 1421 // this constant vector to single insertelement instruction. 1422 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1423 // insertelement V, C[ci], ci-n 1424 if (OpWidth == 1425 cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { 1426 Value *Op = nullptr; 1427 Constant *Value = nullptr; 1428 unsigned Idx = -1u; 1429 1430 // Find constant vector with the single element in shuffle (LHS or RHS). 1431 if (LHSIdx < OpWidth && RHSUniform) { 1432 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1433 Op = Shuffle->getOperand(1); 1434 Value = CV->getOperand(LHSValIdx); 1435 Idx = LHSIdx; 1436 } 1437 } 1438 if (RHSIdx < OpWidth && LHSUniform) { 1439 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1440 Op = Shuffle->getOperand(0); 1441 Value = CV->getOperand(RHSValIdx); 1442 Idx = RHSIdx; 1443 } 1444 } 1445 // Found constant vector with single element - convert to insertelement. 1446 if (Op && Value) { 1447 Instruction *New = InsertElementInst::Create( 1448 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1449 Shuffle->getName()); 1450 InsertNewInstWith(New, *Shuffle); 1451 return New; 1452 } 1453 } 1454 if (NewUndefElts) { 1455 // Add additional discovered undefs. 1456 SmallVector<int, 16> Elts; 1457 for (unsigned i = 0; i < VWidth; ++i) { 1458 if (UndefElts[i]) 1459 Elts.push_back(UndefMaskElem); 1460 else 1461 Elts.push_back(Shuffle->getMaskValue(i)); 1462 } 1463 Shuffle->setShuffleMask(Elts); 1464 MadeChange = true; 1465 } 1466 break; 1467 } 1468 case Instruction::Select: { 1469 // If this is a vector select, try to transform the select condition based 1470 // on the current demanded elements. 1471 SelectInst *Sel = cast<SelectInst>(I); 1472 if (Sel->getCondition()->getType()->isVectorTy()) { 1473 // TODO: We are not doing anything with UndefElts based on this call. 1474 // It is overwritten below based on the other select operands. If an 1475 // element of the select condition is known undef, then we are free to 1476 // choose the output value from either arm of the select. If we know that 1477 // one of those values is undef, then the output can be undef. 1478 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1479 } 1480 1481 // Next, see if we can transform the arms of the select. 1482 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1483 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1484 for (unsigned i = 0; i < VWidth; i++) { 1485 // isNullValue() always returns false when called on a ConstantExpr. 1486 // Skip constant expressions to avoid propagating incorrect information. 1487 Constant *CElt = CV->getAggregateElement(i); 1488 if (isa<ConstantExpr>(CElt)) 1489 continue; 1490 // TODO: If a select condition element is undef, we can demand from 1491 // either side. If one side is known undef, choosing that side would 1492 // propagate undef. 1493 if (CElt->isNullValue()) 1494 DemandedLHS.clearBit(i); 1495 else 1496 DemandedRHS.clearBit(i); 1497 } 1498 } 1499 1500 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1501 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1502 1503 // Output elements are undefined if the element from each arm is undefined. 1504 // TODO: This can be improved. See comment in select condition handling. 1505 UndefElts = UndefElts2 & UndefElts3; 1506 break; 1507 } 1508 case Instruction::BitCast: { 1509 // Vector->vector casts only. 1510 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1511 if (!VTy) break; 1512 unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); 1513 APInt InputDemandedElts(InVWidth, 0); 1514 UndefElts2 = APInt(InVWidth, 0); 1515 unsigned Ratio; 1516 1517 if (VWidth == InVWidth) { 1518 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1519 // elements as are demanded of us. 1520 Ratio = 1; 1521 InputDemandedElts = DemandedElts; 1522 } else if ((VWidth % InVWidth) == 0) { 1523 // If the number of elements in the output is a multiple of the number of 1524 // elements in the input then an input element is live if any of the 1525 // corresponding output elements are live. 1526 Ratio = VWidth / InVWidth; 1527 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1528 if (DemandedElts[OutIdx]) 1529 InputDemandedElts.setBit(OutIdx / Ratio); 1530 } else if ((InVWidth % VWidth) == 0) { 1531 // If the number of elements in the input is a multiple of the number of 1532 // elements in the output then an input element is live if the 1533 // corresponding output element is live. 1534 Ratio = InVWidth / VWidth; 1535 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1536 if (DemandedElts[InIdx / Ratio]) 1537 InputDemandedElts.setBit(InIdx); 1538 } else { 1539 // Unsupported so far. 1540 break; 1541 } 1542 1543 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1544 1545 if (VWidth == InVWidth) { 1546 UndefElts = UndefElts2; 1547 } else if ((VWidth % InVWidth) == 0) { 1548 // If the number of elements in the output is a multiple of the number of 1549 // elements in the input then an output element is undef if the 1550 // corresponding input element is undef. 1551 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1552 if (UndefElts2[OutIdx / Ratio]) 1553 UndefElts.setBit(OutIdx); 1554 } else if ((InVWidth % VWidth) == 0) { 1555 // If the number of elements in the input is a multiple of the number of 1556 // elements in the output then an output element is undef if all of the 1557 // corresponding input elements are undef. 1558 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1559 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1560 if (SubUndef.countPopulation() == Ratio) 1561 UndefElts.setBit(OutIdx); 1562 } 1563 } else { 1564 llvm_unreachable("Unimp"); 1565 } 1566 break; 1567 } 1568 case Instruction::FPTrunc: 1569 case Instruction::FPExt: 1570 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1571 break; 1572 1573 case Instruction::Call: { 1574 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1575 if (!II) break; 1576 switch (II->getIntrinsicID()) { 1577 case Intrinsic::masked_gather: // fallthrough 1578 case Intrinsic::masked_load: { 1579 // Subtlety: If we load from a pointer, the pointer must be valid 1580 // regardless of whether the element is demanded. Doing otherwise risks 1581 // segfaults which didn't exist in the original program. 1582 APInt DemandedPtrs(APInt::getAllOnes(VWidth)), 1583 DemandedPassThrough(DemandedElts); 1584 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1585 for (unsigned i = 0; i < VWidth; i++) { 1586 Constant *CElt = CV->getAggregateElement(i); 1587 if (CElt->isNullValue()) 1588 DemandedPtrs.clearBit(i); 1589 else if (CElt->isAllOnesValue()) 1590 DemandedPassThrough.clearBit(i); 1591 } 1592 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1593 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1594 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1595 1596 // Output elements are undefined if the element from both sources are. 1597 // TODO: can strengthen via mask as well. 1598 UndefElts = UndefElts2 & UndefElts3; 1599 break; 1600 } 1601 default: { 1602 // Handle target specific intrinsics 1603 Optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( 1604 *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 1605 simplifyAndSetOp); 1606 if (V.hasValue()) 1607 return V.getValue(); 1608 break; 1609 } 1610 } // switch on IntrinsicID 1611 break; 1612 } // case Call 1613 } // switch on Opcode 1614 1615 // TODO: We bail completely on integer div/rem and shifts because they have 1616 // UB/poison potential, but that should be refined. 1617 BinaryOperator *BO; 1618 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1619 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1620 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1621 1622 // Output elements are undefined if both are undefined. Consider things 1623 // like undef & 0. The result is known zero, not undef. 1624 UndefElts &= UndefElts2; 1625 } 1626 1627 // If we've proven all of the lanes undef, return an undef value. 1628 // TODO: Intersect w/demanded lanes 1629 if (UndefElts.isAllOnes()) 1630 return UndefValue::get(I->getType());; 1631 1632 return MadeChange ? I : nullptr; 1633 } 1634