1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains logic for simplifying instructions based on information 10 // about how they are used. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/IntrinsicsAMDGPU.h" 18 #include "llvm/IR/IntrinsicsX86.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 namespace { 28 29 struct AMDGPUImageDMaskIntrinsic { 30 unsigned Intr; 31 }; 32 33 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 34 #include "InstCombineTables.inc" 35 36 } // end anonymous namespace 37 38 /// Check to see if the specified operand of the specified instruction is a 39 /// constant integer. If so, check to see if there are any bits set in the 40 /// constant that are not demanded. If so, shrink the constant and return true. 41 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 42 const APInt &Demanded) { 43 assert(I && "No instruction?"); 44 assert(OpNo < I->getNumOperands() && "Operand index too large"); 45 46 // The operand must be a constant integer or splat integer. 47 Value *Op = I->getOperand(OpNo); 48 const APInt *C; 49 if (!match(Op, m_APInt(C))) 50 return false; 51 52 // If there are no bits set that aren't demanded, nothing to do. 53 if (C->isSubsetOf(Demanded)) 54 return false; 55 56 // This instruction is producing bits that are not demanded. Shrink the RHS. 57 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 58 59 return true; 60 } 61 62 63 64 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 65 /// the instruction has any properties that allow us to simplify its operands. 66 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 67 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 68 KnownBits Known(BitWidth); 69 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 70 71 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 72 0, &Inst); 73 if (!V) return false; 74 if (V == &Inst) return true; 75 replaceInstUsesWith(Inst, V); 76 return true; 77 } 78 79 /// This form of SimplifyDemandedBits simplifies the specified instruction 80 /// operand if possible, updating it in place. It returns true if it made any 81 /// change and false otherwise. 82 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 83 const APInt &DemandedMask, 84 KnownBits &Known, 85 unsigned Depth) { 86 Use &U = I->getOperandUse(OpNo); 87 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 88 Depth, I); 89 if (!NewVal) return false; 90 if (Instruction* OpInst = dyn_cast<Instruction>(U)) 91 salvageDebugInfoOrMarkUndef(*OpInst); 92 93 replaceUse(U, NewVal); 94 return true; 95 } 96 97 98 /// This function attempts to replace V with a simpler value based on the 99 /// demanded bits. When this function is called, it is known that only the bits 100 /// set in DemandedMask of the result of V are ever used downstream. 101 /// Consequently, depending on the mask and V, it may be possible to replace V 102 /// with a constant or one of its operands. In such cases, this function does 103 /// the replacement and returns true. In all other cases, it returns false after 104 /// analyzing the expression and setting KnownOne and known to be one in the 105 /// expression. Known.Zero contains all the bits that are known to be zero in 106 /// the expression. These are provided to potentially allow the caller (which 107 /// might recursively be SimplifyDemandedBits itself) to simplify the 108 /// expression. 109 /// Known.One and Known.Zero always follow the invariant that: 110 /// Known.One & Known.Zero == 0. 111 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 112 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 113 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 114 /// be the same. 115 /// 116 /// This returns null if it did not change anything and it permits no 117 /// simplification. This returns V itself if it did some simplification of V's 118 /// operands based on the information about what bits are demanded. This returns 119 /// some other non-null value if it found out that V is equal to another value 120 /// in the context where the specified bits are demanded, but not for all users. 121 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 122 KnownBits &Known, unsigned Depth, 123 Instruction *CxtI) { 124 assert(V != nullptr && "Null pointer of Value???"); 125 assert(Depth <= 6 && "Limit Search Depth"); 126 uint32_t BitWidth = DemandedMask.getBitWidth(); 127 Type *VTy = V->getType(); 128 assert( 129 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 130 Known.getBitWidth() == BitWidth && 131 "Value *V, DemandedMask and Known must have same BitWidth"); 132 133 if (isa<Constant>(V)) { 134 computeKnownBits(V, Known, Depth, CxtI); 135 return nullptr; 136 } 137 138 Known.resetAll(); 139 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 140 return UndefValue::get(VTy); 141 142 if (Depth == 6) // Limit search depth. 143 return nullptr; 144 145 Instruction *I = dyn_cast<Instruction>(V); 146 if (!I) { 147 computeKnownBits(V, Known, Depth, CxtI); 148 return nullptr; // Only analyze instructions. 149 } 150 151 // If there are multiple uses of this value and we aren't at the root, then 152 // we can't do any simplifications of the operands, because DemandedMask 153 // only reflects the bits demanded by *one* of the users. 154 if (Depth != 0 && !I->hasOneUse()) 155 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 156 157 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 158 159 // If this is the root being simplified, allow it to have multiple uses, 160 // just set the DemandedMask to all bits so that we can try to simplify the 161 // operands. This allows visitTruncInst (for example) to simplify the 162 // operand of a trunc without duplicating all the logic below. 163 if (Depth == 0 && !V->hasOneUse()) 164 DemandedMask.setAllBits(); 165 166 switch (I->getOpcode()) { 167 default: 168 computeKnownBits(I, Known, Depth, CxtI); 169 break; 170 case Instruction::And: { 171 // If either the LHS or the RHS are Zero, the result is zero. 172 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 173 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 174 Depth + 1)) 175 return I; 176 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 177 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 178 179 // Output known-0 are known to be clear if zero in either the LHS | RHS. 180 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 181 // Output known-1 bits are only known if set in both the LHS & RHS. 182 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 183 184 // If the client is only demanding bits that we know, return the known 185 // constant. 186 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 187 return Constant::getIntegerValue(VTy, IKnownOne); 188 189 // If all of the demanded bits are known 1 on one side, return the other. 190 // These bits cannot contribute to the result of the 'and'. 191 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 192 return I->getOperand(0); 193 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 194 return I->getOperand(1); 195 196 // If the RHS is a constant, see if we can simplify it. 197 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 198 return I; 199 200 Known.Zero = std::move(IKnownZero); 201 Known.One = std::move(IKnownOne); 202 break; 203 } 204 case Instruction::Or: { 205 // If either the LHS or the RHS are One, the result is One. 206 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 207 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 208 Depth + 1)) 209 return I; 210 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 211 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 212 213 // Output known-0 bits are only known if clear in both the LHS & RHS. 214 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 215 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 216 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 217 218 // If the client is only demanding bits that we know, return the known 219 // constant. 220 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 221 return Constant::getIntegerValue(VTy, IKnownOne); 222 223 // If all of the demanded bits are known zero on one side, return the other. 224 // These bits cannot contribute to the result of the 'or'. 225 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 226 return I->getOperand(0); 227 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 228 return I->getOperand(1); 229 230 // If the RHS is a constant, see if we can simplify it. 231 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 232 return I; 233 234 Known.Zero = std::move(IKnownZero); 235 Known.One = std::move(IKnownOne); 236 break; 237 } 238 case Instruction::Xor: { 239 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 240 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 241 return I; 242 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 243 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 244 245 // Output known-0 bits are known if clear or set in both the LHS & RHS. 246 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 247 (RHSKnown.One & LHSKnown.One); 248 // Output known-1 are known to be set if set in only one of the LHS, RHS. 249 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 250 (RHSKnown.One & LHSKnown.Zero); 251 252 // If the client is only demanding bits that we know, return the known 253 // constant. 254 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 255 return Constant::getIntegerValue(VTy, IKnownOne); 256 257 // If all of the demanded bits are known zero on one side, return the other. 258 // These bits cannot contribute to the result of the 'xor'. 259 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 260 return I->getOperand(0); 261 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 262 return I->getOperand(1); 263 264 // If all of the demanded bits are known to be zero on one side or the 265 // other, turn this into an *inclusive* or. 266 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 267 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 268 Instruction *Or = 269 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 270 I->getName()); 271 return InsertNewInstWith(Or, *I); 272 } 273 274 // If all of the demanded bits on one side are known, and all of the set 275 // bits on that side are also known to be set on the other side, turn this 276 // into an AND, as we know the bits will be cleared. 277 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 278 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 279 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 280 Constant *AndC = Constant::getIntegerValue(VTy, 281 ~RHSKnown.One & DemandedMask); 282 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 283 return InsertNewInstWith(And, *I); 284 } 285 286 // If the RHS is a constant, see if we can simplify it. 287 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 288 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 289 return I; 290 291 // If our LHS is an 'and' and if it has one use, and if any of the bits we 292 // are flipping are known to be set, then the xor is just resetting those 293 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 294 // simplifying both of them. 295 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 296 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 297 isa<ConstantInt>(I->getOperand(1)) && 298 isa<ConstantInt>(LHSInst->getOperand(1)) && 299 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 300 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 301 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 302 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 303 304 Constant *AndC = 305 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 306 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 307 InsertNewInstWith(NewAnd, *I); 308 309 Constant *XorC = 310 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 311 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 312 return InsertNewInstWith(NewXor, *I); 313 } 314 315 // Output known-0 bits are known if clear or set in both the LHS & RHS. 316 Known.Zero = std::move(IKnownZero); 317 // Output known-1 are known to be set if set in only one of the LHS, RHS. 318 Known.One = std::move(IKnownOne); 319 break; 320 } 321 case Instruction::Select: { 322 Value *LHS, *RHS; 323 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 324 if (SPF == SPF_UMAX) { 325 // UMax(A, C) == A if ... 326 // The lowest non-zero bit of DemandMask is higher than the highest 327 // non-zero bit of C. 328 const APInt *C; 329 unsigned CTZ = DemandedMask.countTrailingZeros(); 330 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 331 return LHS; 332 } else if (SPF == SPF_UMIN) { 333 // UMin(A, C) == A if ... 334 // The lowest non-zero bit of DemandMask is higher than the highest 335 // non-one bit of C. 336 // This comes from using DeMorgans on the above umax example. 337 const APInt *C; 338 unsigned CTZ = DemandedMask.countTrailingZeros(); 339 if (match(RHS, m_APInt(C)) && 340 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 341 return LHS; 342 } 343 344 // If this is a select as part of any other min/max pattern, don't simplify 345 // any further in case we break the structure. 346 if (SPF != SPF_UNKNOWN) 347 return nullptr; 348 349 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 350 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 351 return I; 352 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 353 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 354 355 // If the operands are constants, see if we can simplify them. 356 // This is similar to ShrinkDemandedConstant, but for a select we want to 357 // try to keep the selected constants the same as icmp value constants, if 358 // we can. This helps not break apart (or helps put back together) 359 // canonical patterns like min and max. 360 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, 361 APInt DemandedMask) { 362 const APInt *SelC; 363 if (!match(I->getOperand(OpNo), m_APInt(SelC))) 364 return false; 365 366 // Get the constant out of the ICmp, if there is one. 367 const APInt *CmpC; 368 ICmpInst::Predicate Pred; 369 if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) || 370 CmpC->getBitWidth() != SelC->getBitWidth()) 371 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 372 373 // If the constant is already the same as the ICmp, leave it as-is. 374 if (*CmpC == *SelC) 375 return false; 376 // If the constants are not already the same, but can be with the demand 377 // mask, use the constant value from the ICmp. 378 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { 379 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); 380 return true; 381 } 382 return ShrinkDemandedConstant(I, OpNo, DemandedMask); 383 }; 384 if (CanonicalizeSelectConstant(I, 1, DemandedMask) || 385 CanonicalizeSelectConstant(I, 2, DemandedMask)) 386 return I; 387 388 // Only known if known in both the LHS and RHS. 389 Known.One = RHSKnown.One & LHSKnown.One; 390 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 391 break; 392 } 393 case Instruction::ZExt: 394 case Instruction::Trunc: { 395 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 396 397 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 398 KnownBits InputKnown(SrcBitWidth); 399 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 400 return I; 401 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); 402 Known = InputKnown.zextOrTrunc(BitWidth); 403 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 404 break; 405 } 406 case Instruction::BitCast: 407 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 408 return nullptr; // vector->int or fp->int? 409 410 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 411 if (VectorType *SrcVTy = 412 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 413 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 414 // Don't touch a bitcast between vectors of different element counts. 415 return nullptr; 416 } else 417 // Don't touch a scalar-to-vector bitcast. 418 return nullptr; 419 } else if (I->getOperand(0)->getType()->isVectorTy()) 420 // Don't touch a vector-to-scalar bitcast. 421 return nullptr; 422 423 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 424 return I; 425 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 426 break; 427 case Instruction::SExt: { 428 // Compute the bits in the result that are not present in the input. 429 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 430 431 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 432 433 // If any of the sign extended bits are demanded, we know that the sign 434 // bit is demanded. 435 if (DemandedMask.getActiveBits() > SrcBitWidth) 436 InputDemandedBits.setBit(SrcBitWidth-1); 437 438 KnownBits InputKnown(SrcBitWidth); 439 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 440 return I; 441 442 // If the input sign bit is known zero, or if the NewBits are not demanded 443 // convert this into a zero extension. 444 if (InputKnown.isNonNegative() || 445 DemandedMask.getActiveBits() <= SrcBitWidth) { 446 // Convert to ZExt cast. 447 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 448 return InsertNewInstWith(NewCast, *I); 449 } 450 451 // If the sign bit of the input is known set or clear, then we know the 452 // top bits of the result. 453 Known = InputKnown.sext(BitWidth); 454 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 455 break; 456 } 457 case Instruction::Add: 458 if ((DemandedMask & 1) == 0) { 459 // If we do not need the low bit, try to convert bool math to logic: 460 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN 461 Value *X, *Y; 462 if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), 463 m_OneUse(m_SExt(m_Value(Y))))) && 464 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 465 // Truth table for inputs and output signbits: 466 // X:0 | X:1 467 // ---------- 468 // Y:0 | 0 | 0 | 469 // Y:1 | -1 | 0 | 470 // ---------- 471 IRBuilderBase::InsertPointGuard Guard(Builder); 472 Builder.SetInsertPoint(I); 473 Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); 474 return Builder.CreateSExt(AndNot, VTy); 475 } 476 477 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN 478 // TODO: Relax the one-use checks because we are removing an instruction? 479 if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), 480 m_OneUse(m_SExt(m_Value(Y))))) && 481 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { 482 // Truth table for inputs and output signbits: 483 // X:0 | X:1 484 // ----------- 485 // Y:0 | -1 | -1 | 486 // Y:1 | -1 | 0 | 487 // ----------- 488 IRBuilderBase::InsertPointGuard Guard(Builder); 489 Builder.SetInsertPoint(I); 490 Value *Or = Builder.CreateOr(X, Y); 491 return Builder.CreateSExt(Or, VTy); 492 } 493 } 494 LLVM_FALLTHROUGH; 495 case Instruction::Sub: { 496 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 497 /// about the high bits of the operands. 498 unsigned NLZ = DemandedMask.countLeadingZeros(); 499 // Right fill the mask of bits for this ADD/SUB to demand the most 500 // significant bit and all those below it. 501 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 502 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 503 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 504 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 505 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 506 if (NLZ > 0) { 507 // Disable the nsw and nuw flags here: We can no longer guarantee that 508 // we won't wrap after simplification. Removing the nsw/nuw flags is 509 // legal here because the top bit is not demanded. 510 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 511 BinOP.setHasNoSignedWrap(false); 512 BinOP.setHasNoUnsignedWrap(false); 513 } 514 return I; 515 } 516 517 // If we are known to be adding/subtracting zeros to every bit below 518 // the highest demanded bit, we just return the other side. 519 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 520 return I->getOperand(0); 521 // We can't do this with the LHS for subtraction, unless we are only 522 // demanding the LSB. 523 if ((I->getOpcode() == Instruction::Add || 524 DemandedFromOps.isOneValue()) && 525 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 526 return I->getOperand(1); 527 528 // Otherwise just compute the known bits of the result. 529 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 530 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 531 NSW, LHSKnown, RHSKnown); 532 break; 533 } 534 case Instruction::Shl: { 535 const APInt *SA; 536 if (match(I->getOperand(1), m_APInt(SA))) { 537 const APInt *ShrAmt; 538 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 539 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 540 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 541 DemandedMask, Known)) 542 return R; 543 544 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 545 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 546 547 // If the shift is NUW/NSW, then it does demand the high bits. 548 ShlOperator *IOp = cast<ShlOperator>(I); 549 if (IOp->hasNoSignedWrap()) 550 DemandedMaskIn.setHighBits(ShiftAmt+1); 551 else if (IOp->hasNoUnsignedWrap()) 552 DemandedMaskIn.setHighBits(ShiftAmt); 553 554 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 555 return I; 556 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 557 558 bool SignBitZero = Known.Zero.isSignBitSet(); 559 bool SignBitOne = Known.One.isSignBitSet(); 560 Known.Zero <<= ShiftAmt; 561 Known.One <<= ShiftAmt; 562 // low bits known zero. 563 if (ShiftAmt) 564 Known.Zero.setLowBits(ShiftAmt); 565 566 // If this shift has "nsw" keyword, then the result is either a poison 567 // value or has the same sign bit as the first operand. 568 if (IOp->hasNoSignedWrap()) { 569 if (SignBitZero) 570 Known.Zero.setSignBit(); 571 else if (SignBitOne) 572 Known.One.setSignBit(); 573 if (Known.hasConflict()) 574 return UndefValue::get(I->getType()); 575 } 576 } else { 577 computeKnownBits(I, Known, Depth, CxtI); 578 } 579 break; 580 } 581 case Instruction::LShr: { 582 const APInt *SA; 583 if (match(I->getOperand(1), m_APInt(SA))) { 584 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 585 586 // Unsigned shift right. 587 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 588 589 // If the shift is exact, then it does demand the low bits (and knows that 590 // they are zero). 591 if (cast<LShrOperator>(I)->isExact()) 592 DemandedMaskIn.setLowBits(ShiftAmt); 593 594 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 595 return I; 596 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 597 Known.Zero.lshrInPlace(ShiftAmt); 598 Known.One.lshrInPlace(ShiftAmt); 599 if (ShiftAmt) 600 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 601 } else { 602 computeKnownBits(I, Known, Depth, CxtI); 603 } 604 break; 605 } 606 case Instruction::AShr: { 607 // If this is an arithmetic shift right and only the low-bit is set, we can 608 // always convert this into a logical shr, even if the shift amount is 609 // variable. The low bit of the shift cannot be an input sign bit unless 610 // the shift amount is >= the size of the datatype, which is undefined. 611 if (DemandedMask.isOneValue()) { 612 // Perform the logical shift right. 613 Instruction *NewVal = BinaryOperator::CreateLShr( 614 I->getOperand(0), I->getOperand(1), I->getName()); 615 return InsertNewInstWith(NewVal, *I); 616 } 617 618 // If the sign bit is the only bit demanded by this ashr, then there is no 619 // need to do it, the shift doesn't change the high bit. 620 if (DemandedMask.isSignMask()) 621 return I->getOperand(0); 622 623 const APInt *SA; 624 if (match(I->getOperand(1), m_APInt(SA))) { 625 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 626 627 // Signed shift right. 628 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 629 // If any of the high bits are demanded, we should set the sign bit as 630 // demanded. 631 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 632 DemandedMaskIn.setSignBit(); 633 634 // If the shift is exact, then it does demand the low bits (and knows that 635 // they are zero). 636 if (cast<AShrOperator>(I)->isExact()) 637 DemandedMaskIn.setLowBits(ShiftAmt); 638 639 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 640 return I; 641 642 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 643 644 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 645 // Compute the new bits that are at the top now plus sign bits. 646 APInt HighBits(APInt::getHighBitsSet( 647 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 648 Known.Zero.lshrInPlace(ShiftAmt); 649 Known.One.lshrInPlace(ShiftAmt); 650 651 // If the input sign bit is known to be zero, or if none of the top bits 652 // are demanded, turn this into an unsigned shift right. 653 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 654 if (Known.Zero[BitWidth-ShiftAmt-1] || 655 !DemandedMask.intersects(HighBits)) { 656 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 657 I->getOperand(1)); 658 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 659 return InsertNewInstWith(LShr, *I); 660 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 661 Known.One |= HighBits; 662 } 663 } else { 664 computeKnownBits(I, Known, Depth, CxtI); 665 } 666 break; 667 } 668 case Instruction::UDiv: { 669 // UDiv doesn't demand low bits that are zero in the divisor. 670 const APInt *SA; 671 if (match(I->getOperand(1), m_APInt(SA))) { 672 // If the shift is exact, then it does demand the low bits. 673 if (cast<UDivOperator>(I)->isExact()) 674 break; 675 676 // FIXME: Take the demanded mask of the result into account. 677 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 678 APInt DemandedMaskIn = 679 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 680 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 681 return I; 682 683 // Propagate zero bits from the input. 684 Known.Zero.setHighBits(std::min( 685 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 686 } else { 687 computeKnownBits(I, Known, Depth, CxtI); 688 } 689 break; 690 } 691 case Instruction::SRem: 692 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 693 // X % -1 demands all the bits because we don't want to introduce 694 // INT_MIN % -1 (== undef) by accident. 695 if (Rem->isMinusOne()) 696 break; 697 APInt RA = Rem->getValue().abs(); 698 if (RA.isPowerOf2()) { 699 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 700 return I->getOperand(0); 701 702 APInt LowBits = RA - 1; 703 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 704 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 705 return I; 706 707 // The low bits of LHS are unchanged by the srem. 708 Known.Zero = LHSKnown.Zero & LowBits; 709 Known.One = LHSKnown.One & LowBits; 710 711 // If LHS is non-negative or has all low bits zero, then the upper bits 712 // are all zero. 713 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 714 Known.Zero |= ~LowBits; 715 716 // If LHS is negative and not all low bits are zero, then the upper bits 717 // are all one. 718 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 719 Known.One |= ~LowBits; 720 721 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 722 break; 723 } 724 } 725 726 // The sign bit is the LHS's sign bit, except when the result of the 727 // remainder is zero. 728 if (DemandedMask.isSignBitSet()) { 729 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 730 // If it's known zero, our sign bit is also zero. 731 if (LHSKnown.isNonNegative()) 732 Known.makeNonNegative(); 733 } 734 break; 735 case Instruction::URem: { 736 KnownBits Known2(BitWidth); 737 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 738 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 739 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 740 return I; 741 742 unsigned Leaders = Known2.countMinLeadingZeros(); 743 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 744 break; 745 } 746 case Instruction::Call: { 747 bool KnownBitsComputed = false; 748 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 749 switch (II->getIntrinsicID()) { 750 default: break; 751 case Intrinsic::bswap: { 752 // If the only bits demanded come from one byte of the bswap result, 753 // just shift the input byte into position to eliminate the bswap. 754 unsigned NLZ = DemandedMask.countLeadingZeros(); 755 unsigned NTZ = DemandedMask.countTrailingZeros(); 756 757 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 758 // we need all the bits down to bit 8. Likewise, round NLZ. If we 759 // have 14 leading zeros, round to 8. 760 NLZ &= ~7; 761 NTZ &= ~7; 762 // If we need exactly one byte, we can do this transformation. 763 if (BitWidth-NLZ-NTZ == 8) { 764 unsigned ResultBit = NTZ; 765 unsigned InputBit = BitWidth-NTZ-8; 766 767 // Replace this with either a left or right shift to get the byte into 768 // the right place. 769 Instruction *NewVal; 770 if (InputBit > ResultBit) 771 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 772 ConstantInt::get(I->getType(), InputBit-ResultBit)); 773 else 774 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 775 ConstantInt::get(I->getType(), ResultBit-InputBit)); 776 NewVal->takeName(I); 777 return InsertNewInstWith(NewVal, *I); 778 } 779 break; 780 } 781 case Intrinsic::fshr: 782 case Intrinsic::fshl: { 783 const APInt *SA; 784 if (!match(I->getOperand(2), m_APInt(SA))) 785 break; 786 787 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 788 // defined, so no need to special-case zero shifts here. 789 uint64_t ShiftAmt = SA->urem(BitWidth); 790 if (II->getIntrinsicID() == Intrinsic::fshr) 791 ShiftAmt = BitWidth - ShiftAmt; 792 793 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 794 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 795 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 796 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 797 return I; 798 799 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 800 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 801 Known.One = LHSKnown.One.shl(ShiftAmt) | 802 RHSKnown.One.lshr(BitWidth - ShiftAmt); 803 KnownBitsComputed = true; 804 break; 805 } 806 case Intrinsic::x86_mmx_pmovmskb: 807 case Intrinsic::x86_sse_movmsk_ps: 808 case Intrinsic::x86_sse2_movmsk_pd: 809 case Intrinsic::x86_sse2_pmovmskb_128: 810 case Intrinsic::x86_avx_movmsk_ps_256: 811 case Intrinsic::x86_avx_movmsk_pd_256: 812 case Intrinsic::x86_avx2_pmovmskb: { 813 // MOVMSK copies the vector elements' sign bits to the low bits 814 // and zeros the high bits. 815 unsigned ArgWidth; 816 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 817 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 818 } else { 819 auto Arg = II->getArgOperand(0); 820 auto ArgType = cast<VectorType>(Arg->getType()); 821 ArgWidth = ArgType->getNumElements(); 822 } 823 824 // If we don't need any of low bits then return zero, 825 // we know that DemandedMask is non-zero already. 826 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 827 if (DemandedElts.isNullValue()) 828 return ConstantInt::getNullValue(VTy); 829 830 // We know that the upper bits are set to zero. 831 Known.Zero.setBitsFrom(ArgWidth); 832 KnownBitsComputed = true; 833 break; 834 } 835 case Intrinsic::x86_sse42_crc32_64_64: 836 Known.Zero.setBitsFrom(32); 837 KnownBitsComputed = true; 838 break; 839 } 840 } 841 842 if (!KnownBitsComputed) 843 computeKnownBits(V, Known, Depth, CxtI); 844 break; 845 } 846 } 847 848 // If the client is only demanding bits that we know, return the known 849 // constant. 850 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 851 return Constant::getIntegerValue(VTy, Known.One); 852 return nullptr; 853 } 854 855 /// Helper routine of SimplifyDemandedUseBits. It computes Known 856 /// bits. It also tries to handle simplifications that can be done based on 857 /// DemandedMask, but without modifying the Instruction. 858 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 859 const APInt &DemandedMask, 860 KnownBits &Known, 861 unsigned Depth, 862 Instruction *CxtI) { 863 unsigned BitWidth = DemandedMask.getBitWidth(); 864 Type *ITy = I->getType(); 865 866 KnownBits LHSKnown(BitWidth); 867 KnownBits RHSKnown(BitWidth); 868 869 // Despite the fact that we can't simplify this instruction in all User's 870 // context, we can at least compute the known bits, and we can 871 // do simplifications that apply to *just* the one user if we know that 872 // this instruction has a simpler value in that context. 873 switch (I->getOpcode()) { 874 case Instruction::And: { 875 // If either the LHS or the RHS are Zero, the result is zero. 876 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 877 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 878 CxtI); 879 880 // Output known-0 are known to be clear if zero in either the LHS | RHS. 881 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 882 // Output known-1 bits are only known if set in both the LHS & RHS. 883 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 884 885 // If the client is only demanding bits that we know, return the known 886 // constant. 887 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 888 return Constant::getIntegerValue(ITy, IKnownOne); 889 890 // If all of the demanded bits are known 1 on one side, return the other. 891 // These bits cannot contribute to the result of the 'and' in this 892 // context. 893 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 894 return I->getOperand(0); 895 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 896 return I->getOperand(1); 897 898 Known.Zero = std::move(IKnownZero); 899 Known.One = std::move(IKnownOne); 900 break; 901 } 902 case Instruction::Or: { 903 // We can simplify (X|Y) -> X or Y in the user's context if we know that 904 // only bits from X or Y are demanded. 905 906 // If either the LHS or the RHS are One, the result is One. 907 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 908 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 909 CxtI); 910 911 // Output known-0 bits are only known if clear in both the LHS & RHS. 912 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 913 // Output known-1 are known to be set if set in either the LHS | RHS. 914 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 915 916 // If the client is only demanding bits that we know, return the known 917 // constant. 918 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 919 return Constant::getIntegerValue(ITy, IKnownOne); 920 921 // If all of the demanded bits are known zero on one side, return the 922 // other. These bits cannot contribute to the result of the 'or' in this 923 // context. 924 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 925 return I->getOperand(0); 926 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 927 return I->getOperand(1); 928 929 Known.Zero = std::move(IKnownZero); 930 Known.One = std::move(IKnownOne); 931 break; 932 } 933 case Instruction::Xor: { 934 // We can simplify (X^Y) -> X or Y in the user's context if we know that 935 // only bits from X or Y are demanded. 936 937 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 938 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 939 CxtI); 940 941 // Output known-0 bits are known if clear or set in both the LHS & RHS. 942 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 943 (RHSKnown.One & LHSKnown.One); 944 // Output known-1 are known to be set if set in only one of the LHS, RHS. 945 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 946 (RHSKnown.One & LHSKnown.Zero); 947 948 // If the client is only demanding bits that we know, return the known 949 // constant. 950 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 951 return Constant::getIntegerValue(ITy, IKnownOne); 952 953 // If all of the demanded bits are known zero on one side, return the 954 // other. 955 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 956 return I->getOperand(0); 957 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 958 return I->getOperand(1); 959 960 // Output known-0 bits are known if clear or set in both the LHS & RHS. 961 Known.Zero = std::move(IKnownZero); 962 // Output known-1 are known to be set if set in only one of the LHS, RHS. 963 Known.One = std::move(IKnownOne); 964 break; 965 } 966 default: 967 // Compute the Known bits to simplify things downstream. 968 computeKnownBits(I, Known, Depth, CxtI); 969 970 // If this user is only demanding bits that we know, return the known 971 // constant. 972 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 973 return Constant::getIntegerValue(ITy, Known.One); 974 975 break; 976 } 977 978 return nullptr; 979 } 980 981 982 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 983 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 984 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 985 /// of "C2-C1". 986 /// 987 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 988 /// ..., bn}, without considering the specific value X is holding. 989 /// This transformation is legal iff one of following conditions is hold: 990 /// 1) All the bit in S are 0, in this case E1 == E2. 991 /// 2) We don't care those bits in S, per the input DemandedMask. 992 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 993 /// rest bits. 994 /// 995 /// Currently we only test condition 2). 996 /// 997 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 998 /// not successful. 999 Value * 1000 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 1001 Instruction *Shl, const APInt &ShlOp1, 1002 const APInt &DemandedMask, 1003 KnownBits &Known) { 1004 if (!ShlOp1 || !ShrOp1) 1005 return nullptr; // No-op. 1006 1007 Value *VarX = Shr->getOperand(0); 1008 Type *Ty = VarX->getType(); 1009 unsigned BitWidth = Ty->getScalarSizeInBits(); 1010 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 1011 return nullptr; // Undef. 1012 1013 unsigned ShlAmt = ShlOp1.getZExtValue(); 1014 unsigned ShrAmt = ShrOp1.getZExtValue(); 1015 1016 Known.One.clearAllBits(); 1017 Known.Zero.setLowBits(ShlAmt - 1); 1018 Known.Zero &= DemandedMask; 1019 1020 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 1021 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 1022 1023 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 1024 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 1025 (BitMask1.ashr(ShrAmt) << ShlAmt); 1026 1027 if (ShrAmt <= ShlAmt) { 1028 BitMask2 <<= (ShlAmt - ShrAmt); 1029 } else { 1030 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 1031 BitMask2.ashr(ShrAmt - ShlAmt); 1032 } 1033 1034 // Check if condition-2 (see the comment to this function) is satified. 1035 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 1036 if (ShrAmt == ShlAmt) 1037 return VarX; 1038 1039 if (!Shr->hasOneUse()) 1040 return nullptr; 1041 1042 BinaryOperator *New; 1043 if (ShrAmt < ShlAmt) { 1044 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 1045 New = BinaryOperator::CreateShl(VarX, Amt); 1046 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 1047 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 1048 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 1049 } else { 1050 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 1051 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 1052 BinaryOperator::CreateAShr(VarX, Amt); 1053 if (cast<BinaryOperator>(Shr)->isExact()) 1054 New->setIsExact(true); 1055 } 1056 1057 return InsertNewInstWith(New, *Shl); 1058 } 1059 1060 return nullptr; 1061 } 1062 1063 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 1064 /// 1065 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have 1066 /// struct returns. 1067 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, 1068 APInt DemandedElts, 1069 int DMaskIdx) { 1070 1071 // FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported. 1072 if (DMaskIdx < 0 && 1073 II->getType()->getScalarSizeInBits() != 32 && 1074 DemandedElts.getActiveBits() == 3) 1075 return nullptr; 1076 1077 unsigned VWidth = II->getType()->getVectorNumElements(); 1078 if (VWidth == 1) 1079 return nullptr; 1080 1081 IRBuilderBase::InsertPointGuard Guard(Builder); 1082 Builder.SetInsertPoint(II); 1083 1084 // Assume the arguments are unchanged and later override them, if needed. 1085 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 1086 1087 if (DMaskIdx < 0) { 1088 // Buffer case. 1089 1090 const unsigned ActiveBits = DemandedElts.getActiveBits(); 1091 const unsigned UnusedComponentsAtFront = DemandedElts.countTrailingZeros(); 1092 1093 // Start assuming the prefix of elements is demanded, but possibly clear 1094 // some other bits if there are trailing zeros (unused components at front) 1095 // and update offset. 1096 DemandedElts = (1 << ActiveBits) - 1; 1097 1098 if (UnusedComponentsAtFront > 0) { 1099 static const unsigned InvalidOffsetIdx = 0xf; 1100 1101 unsigned OffsetIdx; 1102 switch (II->getIntrinsicID()) { 1103 case Intrinsic::amdgcn_raw_buffer_load: 1104 OffsetIdx = 1; 1105 break; 1106 case Intrinsic::amdgcn_s_buffer_load: 1107 // If resulting type is vec3, there is no point in trimming the 1108 // load with updated offset, as the vec3 would most likely be widened to 1109 // vec4 anyway during lowering. 1110 if (ActiveBits == 4 && UnusedComponentsAtFront == 1) 1111 OffsetIdx = InvalidOffsetIdx; 1112 else 1113 OffsetIdx = 1; 1114 break; 1115 case Intrinsic::amdgcn_struct_buffer_load: 1116 OffsetIdx = 2; 1117 break; 1118 default: 1119 // TODO: handle tbuffer* intrinsics. 1120 OffsetIdx = InvalidOffsetIdx; 1121 break; 1122 } 1123 1124 if (OffsetIdx != InvalidOffsetIdx) { 1125 // Clear demanded bits and update the offset. 1126 DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); 1127 auto *Offset = II->getArgOperand(OffsetIdx); 1128 unsigned SingleComponentSizeInBits = 1129 getDataLayout().getTypeSizeInBits(II->getType()->getScalarType()); 1130 unsigned OffsetAdd = 1131 UnusedComponentsAtFront * SingleComponentSizeInBits / 8; 1132 auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); 1133 Args[OffsetIdx] = Builder.CreateAdd(Offset, OffsetAddVal); 1134 } 1135 } 1136 } else { 1137 // Image case. 1138 1139 ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx)); 1140 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1141 1142 // Mask off values that are undefined because the dmask doesn't cover them 1143 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; 1144 1145 unsigned NewDMaskVal = 0; 1146 unsigned OrigLoadIdx = 0; 1147 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1148 const unsigned Bit = 1 << SrcIdx; 1149 if (!!(DMaskVal & Bit)) { 1150 if (!!DemandedElts[OrigLoadIdx]) 1151 NewDMaskVal |= Bit; 1152 OrigLoadIdx++; 1153 } 1154 } 1155 1156 if (DMaskVal != NewDMaskVal) 1157 Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); 1158 } 1159 1160 unsigned NewNumElts = DemandedElts.countPopulation(); 1161 if (!NewNumElts) 1162 return UndefValue::get(II->getType()); 1163 1164 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1165 if (DMaskIdx >= 0) 1166 II->setArgOperand(DMaskIdx, Args[DMaskIdx]); 1167 return nullptr; 1168 } 1169 1170 // Determine the overload types of the original intrinsic. 1171 auto IID = II->getIntrinsicID(); 1172 SmallVector<Intrinsic::IITDescriptor, 16> Table; 1173 getIntrinsicInfoTableEntries(IID, Table); 1174 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1175 1176 // Validate function argument and return types, extracting overloaded types 1177 // along the way. 1178 FunctionType *FTy = II->getCalledFunction()->getFunctionType(); 1179 SmallVector<Type *, 6> OverloadTys; 1180 Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys); 1181 1182 Module *M = II->getParent()->getParent()->getParent(); 1183 Type *EltTy = II->getType()->getVectorElementType(); 1184 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts); 1185 1186 OverloadTys[0] = NewTy; 1187 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys); 1188 1189 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); 1190 NewCall->takeName(II); 1191 NewCall->copyMetadata(*II); 1192 1193 if (NewNumElts == 1) { 1194 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall, 1195 DemandedElts.countTrailingZeros()); 1196 } 1197 1198 SmallVector<uint32_t, 8> EltMask; 1199 unsigned NewLoadIdx = 0; 1200 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1201 if (!!DemandedElts[OrigLoadIdx]) 1202 EltMask.push_back(NewLoadIdx++); 1203 else 1204 EltMask.push_back(NewNumElts); 1205 } 1206 1207 Value *Shuffle = 1208 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask); 1209 1210 return Shuffle; 1211 } 1212 1213 /// The specified value produces a vector with any number of elements. 1214 /// This method analyzes which elements of the operand are undef and returns 1215 /// that information in UndefElts. 1216 /// 1217 /// DemandedElts contains the set of elements that are actually used by the 1218 /// caller, and by default (AllowMultipleUsers equals false) the value is 1219 /// simplified only if it has a single caller. If AllowMultipleUsers is set 1220 /// to true, DemandedElts refers to the union of sets of elements that are 1221 /// used by all callers. 1222 /// 1223 /// If the information about demanded elements can be used to simplify the 1224 /// operation, the operation is simplified, then the resultant value is 1225 /// returned. This returns null if no change was made. 1226 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 1227 APInt &UndefElts, 1228 unsigned Depth, 1229 bool AllowMultipleUsers) { 1230 unsigned VWidth = V->getType()->getVectorNumElements(); 1231 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1232 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1233 1234 if (isa<UndefValue>(V)) { 1235 // If the entire vector is undefined, just return this info. 1236 UndefElts = EltMask; 1237 return nullptr; 1238 } 1239 1240 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 1241 UndefElts = EltMask; 1242 return UndefValue::get(V->getType()); 1243 } 1244 1245 UndefElts = 0; 1246 1247 if (auto *C = dyn_cast<Constant>(V)) { 1248 // Check if this is identity. If so, return 0 since we are not simplifying 1249 // anything. 1250 if (DemandedElts.isAllOnesValue()) 1251 return nullptr; 1252 1253 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1254 Constant *Undef = UndefValue::get(EltTy); 1255 SmallVector<Constant*, 16> Elts; 1256 for (unsigned i = 0; i != VWidth; ++i) { 1257 if (!DemandedElts[i]) { // If not demanded, set to undef. 1258 Elts.push_back(Undef); 1259 UndefElts.setBit(i); 1260 continue; 1261 } 1262 1263 Constant *Elt = C->getAggregateElement(i); 1264 if (!Elt) return nullptr; 1265 1266 if (isa<UndefValue>(Elt)) { // Already undef. 1267 Elts.push_back(Undef); 1268 UndefElts.setBit(i); 1269 } else { // Otherwise, defined. 1270 Elts.push_back(Elt); 1271 } 1272 } 1273 1274 // If we changed the constant, return it. 1275 Constant *NewCV = ConstantVector::get(Elts); 1276 return NewCV != C ? NewCV : nullptr; 1277 } 1278 1279 // Limit search depth. 1280 if (Depth == 10) 1281 return nullptr; 1282 1283 if (!AllowMultipleUsers) { 1284 // If multiple users are using the root value, proceed with 1285 // simplification conservatively assuming that all elements 1286 // are needed. 1287 if (!V->hasOneUse()) { 1288 // Quit if we find multiple users of a non-root value though. 1289 // They'll be handled when it's their turn to be visited by 1290 // the main instcombine process. 1291 if (Depth != 0) 1292 // TODO: Just compute the UndefElts information recursively. 1293 return nullptr; 1294 1295 // Conservatively assume that all elements are needed. 1296 DemandedElts = EltMask; 1297 } 1298 } 1299 1300 Instruction *I = dyn_cast<Instruction>(V); 1301 if (!I) return nullptr; // Only analyze instructions. 1302 1303 bool MadeChange = false; 1304 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1305 APInt Demanded, APInt &Undef) { 1306 auto *II = dyn_cast<IntrinsicInst>(Inst); 1307 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1308 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1309 replaceOperand(*Inst, OpNum, V); 1310 MadeChange = true; 1311 } 1312 }; 1313 1314 APInt UndefElts2(VWidth, 0); 1315 APInt UndefElts3(VWidth, 0); 1316 switch (I->getOpcode()) { 1317 default: break; 1318 1319 case Instruction::GetElementPtr: { 1320 // The LangRef requires that struct geps have all constant indices. As 1321 // such, we can't convert any operand to partial undef. 1322 auto mayIndexStructType = [](GetElementPtrInst &GEP) { 1323 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); 1324 I != E; I++) 1325 if (I.isStruct()) 1326 return true;; 1327 return false; 1328 }; 1329 if (mayIndexStructType(cast<GetElementPtrInst>(*I))) 1330 break; 1331 1332 // Conservatively track the demanded elements back through any vector 1333 // operands we may have. We know there must be at least one, or we 1334 // wouldn't have a vector result to get here. Note that we intentionally 1335 // merge the undef bits here since gepping with either an undef base or 1336 // index results in undef. 1337 for (unsigned i = 0; i < I->getNumOperands(); i++) { 1338 if (isa<UndefValue>(I->getOperand(i))) { 1339 // If the entire vector is undefined, just return this info. 1340 UndefElts = EltMask; 1341 return nullptr; 1342 } 1343 if (I->getOperand(i)->getType()->isVectorTy()) { 1344 APInt UndefEltsOp(VWidth, 0); 1345 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); 1346 UndefElts |= UndefEltsOp; 1347 } 1348 } 1349 1350 break; 1351 } 1352 case Instruction::InsertElement: { 1353 // If this is a variable index, we don't know which element it overwrites. 1354 // demand exactly the same input as we produce. 1355 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1356 if (!Idx) { 1357 // Note that we can't propagate undef elt info, because we don't know 1358 // which elt is getting updated. 1359 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1360 break; 1361 } 1362 1363 // The element inserted overwrites whatever was there, so the input demanded 1364 // set is simpler than the output set. 1365 unsigned IdxNo = Idx->getZExtValue(); 1366 APInt PreInsertDemandedElts = DemandedElts; 1367 if (IdxNo < VWidth) 1368 PreInsertDemandedElts.clearBit(IdxNo); 1369 1370 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1371 1372 // If this is inserting an element that isn't demanded, remove this 1373 // insertelement. 1374 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1375 Worklist.push(I); 1376 return I->getOperand(0); 1377 } 1378 1379 // The inserted element is defined. 1380 UndefElts.clearBit(IdxNo); 1381 break; 1382 } 1383 case Instruction::ShuffleVector: { 1384 auto *Shuffle = cast<ShuffleVectorInst>(I); 1385 assert(Shuffle->getOperand(0)->getType() == 1386 Shuffle->getOperand(1)->getType() && 1387 "Expected shuffle operands to have same type"); 1388 unsigned OpWidth = 1389 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1390 // Handle trivial case of a splat. Only check the first element of LHS 1391 // operand. 1392 if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && 1393 DemandedElts.isAllOnesValue()) { 1394 if (!isa<UndefValue>(I->getOperand(1))) { 1395 I->setOperand(1, UndefValue::get(I->getOperand(1)->getType())); 1396 MadeChange = true; 1397 } 1398 APInt LeftDemanded(OpWidth, 1); 1399 APInt LHSUndefElts(OpWidth, 0); 1400 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1401 if (LHSUndefElts[0]) 1402 UndefElts = EltMask; 1403 else 1404 UndefElts.clearAllBits(); 1405 break; 1406 } 1407 1408 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); 1409 for (unsigned i = 0; i < VWidth; i++) { 1410 if (DemandedElts[i]) { 1411 unsigned MaskVal = Shuffle->getMaskValue(i); 1412 if (MaskVal != -1u) { 1413 assert(MaskVal < OpWidth * 2 && 1414 "shufflevector mask index out of range!"); 1415 if (MaskVal < OpWidth) 1416 LeftDemanded.setBit(MaskVal); 1417 else 1418 RightDemanded.setBit(MaskVal - OpWidth); 1419 } 1420 } 1421 } 1422 1423 APInt LHSUndefElts(OpWidth, 0); 1424 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1425 1426 APInt RHSUndefElts(OpWidth, 0); 1427 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1428 1429 // If this shuffle does not change the vector length and the elements 1430 // demanded by this shuffle are an identity mask, then this shuffle is 1431 // unnecessary. 1432 // 1433 // We are assuming canonical form for the mask, so the source vector is 1434 // operand 0 and operand 1 is not used. 1435 // 1436 // Note that if an element is demanded and this shuffle mask is undefined 1437 // for that element, then the shuffle is not considered an identity 1438 // operation. The shuffle prevents poison from the operand vector from 1439 // leaking to the result by replacing poison with an undefined value. 1440 if (VWidth == OpWidth) { 1441 bool IsIdentityShuffle = true; 1442 for (unsigned i = 0; i < VWidth; i++) { 1443 unsigned MaskVal = Shuffle->getMaskValue(i); 1444 if (DemandedElts[i] && i != MaskVal) { 1445 IsIdentityShuffle = false; 1446 break; 1447 } 1448 } 1449 if (IsIdentityShuffle) 1450 return Shuffle->getOperand(0); 1451 } 1452 1453 bool NewUndefElts = false; 1454 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1455 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1456 bool LHSUniform = true; 1457 bool RHSUniform = true; 1458 for (unsigned i = 0; i < VWidth; i++) { 1459 unsigned MaskVal = Shuffle->getMaskValue(i); 1460 if (MaskVal == -1u) { 1461 UndefElts.setBit(i); 1462 } else if (!DemandedElts[i]) { 1463 NewUndefElts = true; 1464 UndefElts.setBit(i); 1465 } else if (MaskVal < OpWidth) { 1466 if (LHSUndefElts[MaskVal]) { 1467 NewUndefElts = true; 1468 UndefElts.setBit(i); 1469 } else { 1470 LHSIdx = LHSIdx == -1u ? i : OpWidth; 1471 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; 1472 LHSUniform = LHSUniform && (MaskVal == i); 1473 } 1474 } else { 1475 if (RHSUndefElts[MaskVal - OpWidth]) { 1476 NewUndefElts = true; 1477 UndefElts.setBit(i); 1478 } else { 1479 RHSIdx = RHSIdx == -1u ? i : OpWidth; 1480 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; 1481 RHSUniform = RHSUniform && (MaskVal - OpWidth == i); 1482 } 1483 } 1484 } 1485 1486 // Try to transform shuffle with constant vector and single element from 1487 // this constant vector to single insertelement instruction. 1488 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1489 // insertelement V, C[ci], ci-n 1490 if (OpWidth == Shuffle->getType()->getNumElements()) { 1491 Value *Op = nullptr; 1492 Constant *Value = nullptr; 1493 unsigned Idx = -1u; 1494 1495 // Find constant vector with the single element in shuffle (LHS or RHS). 1496 if (LHSIdx < OpWidth && RHSUniform) { 1497 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1498 Op = Shuffle->getOperand(1); 1499 Value = CV->getOperand(LHSValIdx); 1500 Idx = LHSIdx; 1501 } 1502 } 1503 if (RHSIdx < OpWidth && LHSUniform) { 1504 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1505 Op = Shuffle->getOperand(0); 1506 Value = CV->getOperand(RHSValIdx); 1507 Idx = RHSIdx; 1508 } 1509 } 1510 // Found constant vector with single element - convert to insertelement. 1511 if (Op && Value) { 1512 Instruction *New = InsertElementInst::Create( 1513 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1514 Shuffle->getName()); 1515 InsertNewInstWith(New, *Shuffle); 1516 return New; 1517 } 1518 } 1519 if (NewUndefElts) { 1520 // Add additional discovered undefs. 1521 SmallVector<int, 16> Elts; 1522 for (unsigned i = 0; i < VWidth; ++i) { 1523 if (UndefElts[i]) 1524 Elts.push_back(UndefMaskElem); 1525 else 1526 Elts.push_back(Shuffle->getMaskValue(i)); 1527 } 1528 Shuffle->setShuffleMask(Elts); 1529 MadeChange = true; 1530 } 1531 break; 1532 } 1533 case Instruction::Select: { 1534 // If this is a vector select, try to transform the select condition based 1535 // on the current demanded elements. 1536 SelectInst *Sel = cast<SelectInst>(I); 1537 if (Sel->getCondition()->getType()->isVectorTy()) { 1538 // TODO: We are not doing anything with UndefElts based on this call. 1539 // It is overwritten below based on the other select operands. If an 1540 // element of the select condition is known undef, then we are free to 1541 // choose the output value from either arm of the select. If we know that 1542 // one of those values is undef, then the output can be undef. 1543 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1544 } 1545 1546 // Next, see if we can transform the arms of the select. 1547 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1548 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1549 for (unsigned i = 0; i < VWidth; i++) { 1550 // isNullValue() always returns false when called on a ConstantExpr. 1551 // Skip constant expressions to avoid propagating incorrect information. 1552 Constant *CElt = CV->getAggregateElement(i); 1553 if (isa<ConstantExpr>(CElt)) 1554 continue; 1555 // TODO: If a select condition element is undef, we can demand from 1556 // either side. If one side is known undef, choosing that side would 1557 // propagate undef. 1558 if (CElt->isNullValue()) 1559 DemandedLHS.clearBit(i); 1560 else 1561 DemandedRHS.clearBit(i); 1562 } 1563 } 1564 1565 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1566 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1567 1568 // Output elements are undefined if the element from each arm is undefined. 1569 // TODO: This can be improved. See comment in select condition handling. 1570 UndefElts = UndefElts2 & UndefElts3; 1571 break; 1572 } 1573 case Instruction::BitCast: { 1574 // Vector->vector casts only. 1575 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1576 if (!VTy) break; 1577 unsigned InVWidth = VTy->getNumElements(); 1578 APInt InputDemandedElts(InVWidth, 0); 1579 UndefElts2 = APInt(InVWidth, 0); 1580 unsigned Ratio; 1581 1582 if (VWidth == InVWidth) { 1583 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1584 // elements as are demanded of us. 1585 Ratio = 1; 1586 InputDemandedElts = DemandedElts; 1587 } else if ((VWidth % InVWidth) == 0) { 1588 // If the number of elements in the output is a multiple of the number of 1589 // elements in the input then an input element is live if any of the 1590 // corresponding output elements are live. 1591 Ratio = VWidth / InVWidth; 1592 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1593 if (DemandedElts[OutIdx]) 1594 InputDemandedElts.setBit(OutIdx / Ratio); 1595 } else if ((InVWidth % VWidth) == 0) { 1596 // If the number of elements in the input is a multiple of the number of 1597 // elements in the output then an input element is live if the 1598 // corresponding output element is live. 1599 Ratio = InVWidth / VWidth; 1600 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1601 if (DemandedElts[InIdx / Ratio]) 1602 InputDemandedElts.setBit(InIdx); 1603 } else { 1604 // Unsupported so far. 1605 break; 1606 } 1607 1608 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1609 1610 if (VWidth == InVWidth) { 1611 UndefElts = UndefElts2; 1612 } else if ((VWidth % InVWidth) == 0) { 1613 // If the number of elements in the output is a multiple of the number of 1614 // elements in the input then an output element is undef if the 1615 // corresponding input element is undef. 1616 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1617 if (UndefElts2[OutIdx / Ratio]) 1618 UndefElts.setBit(OutIdx); 1619 } else if ((InVWidth % VWidth) == 0) { 1620 // If the number of elements in the input is a multiple of the number of 1621 // elements in the output then an output element is undef if all of the 1622 // corresponding input elements are undef. 1623 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1624 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1625 if (SubUndef.countPopulation() == Ratio) 1626 UndefElts.setBit(OutIdx); 1627 } 1628 } else { 1629 llvm_unreachable("Unimp"); 1630 } 1631 break; 1632 } 1633 case Instruction::FPTrunc: 1634 case Instruction::FPExt: 1635 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1636 break; 1637 1638 case Instruction::Call: { 1639 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1640 if (!II) break; 1641 switch (II->getIntrinsicID()) { 1642 case Intrinsic::masked_gather: // fallthrough 1643 case Intrinsic::masked_load: { 1644 // Subtlety: If we load from a pointer, the pointer must be valid 1645 // regardless of whether the element is demanded. Doing otherwise risks 1646 // segfaults which didn't exist in the original program. 1647 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), 1648 DemandedPassThrough(DemandedElts); 1649 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) 1650 for (unsigned i = 0; i < VWidth; i++) { 1651 Constant *CElt = CV->getAggregateElement(i); 1652 if (CElt->isNullValue()) 1653 DemandedPtrs.clearBit(i); 1654 else if (CElt->isAllOnesValue()) 1655 DemandedPassThrough.clearBit(i); 1656 } 1657 if (II->getIntrinsicID() == Intrinsic::masked_gather) 1658 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); 1659 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); 1660 1661 // Output elements are undefined if the element from both sources are. 1662 // TODO: can strengthen via mask as well. 1663 UndefElts = UndefElts2 & UndefElts3; 1664 break; 1665 } 1666 case Intrinsic::x86_xop_vfrcz_ss: 1667 case Intrinsic::x86_xop_vfrcz_sd: 1668 // The instructions for these intrinsics are speced to zero upper bits not 1669 // pass them through like other scalar intrinsics. So we shouldn't just 1670 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1671 // Instead we should return a zero vector. 1672 if (!DemandedElts[0]) { 1673 Worklist.push(II); 1674 return ConstantAggregateZero::get(II->getType()); 1675 } 1676 1677 // Only the lower element is used. 1678 DemandedElts = 1; 1679 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1680 1681 // Only the lower element is undefined. The high elements are zero. 1682 UndefElts = UndefElts[0]; 1683 break; 1684 1685 // Unary scalar-as-vector operations that work column-wise. 1686 case Intrinsic::x86_sse_rcp_ss: 1687 case Intrinsic::x86_sse_rsqrt_ss: 1688 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1689 1690 // If lowest element of a scalar op isn't used then use Arg0. 1691 if (!DemandedElts[0]) { 1692 Worklist.push(II); 1693 return II->getArgOperand(0); 1694 } 1695 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1696 // checks). 1697 break; 1698 1699 // Binary scalar-as-vector operations that work column-wise. The high 1700 // elements come from operand 0. The low element is a function of both 1701 // operands. 1702 case Intrinsic::x86_sse_min_ss: 1703 case Intrinsic::x86_sse_max_ss: 1704 case Intrinsic::x86_sse_cmp_ss: 1705 case Intrinsic::x86_sse2_min_sd: 1706 case Intrinsic::x86_sse2_max_sd: 1707 case Intrinsic::x86_sse2_cmp_sd: { 1708 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1709 1710 // If lowest element of a scalar op isn't used then use Arg0. 1711 if (!DemandedElts[0]) { 1712 Worklist.push(II); 1713 return II->getArgOperand(0); 1714 } 1715 1716 // Only lower element is used for operand 1. 1717 DemandedElts = 1; 1718 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1719 1720 // Lower element is undefined if both lower elements are undefined. 1721 // Consider things like undef&0. The result is known zero, not undef. 1722 if (!UndefElts2[0]) 1723 UndefElts.clearBit(0); 1724 1725 break; 1726 } 1727 1728 // Binary scalar-as-vector operations that work column-wise. The high 1729 // elements come from operand 0 and the low element comes from operand 1. 1730 case Intrinsic::x86_sse41_round_ss: 1731 case Intrinsic::x86_sse41_round_sd: { 1732 // Don't use the low element of operand 0. 1733 APInt DemandedElts2 = DemandedElts; 1734 DemandedElts2.clearBit(0); 1735 simplifyAndSetOp(II, 0, DemandedElts2, UndefElts); 1736 1737 // If lowest element of a scalar op isn't used then use Arg0. 1738 if (!DemandedElts[0]) { 1739 Worklist.push(II); 1740 return II->getArgOperand(0); 1741 } 1742 1743 // Only lower element is used for operand 1. 1744 DemandedElts = 1; 1745 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1746 1747 // Take the high undef elements from operand 0 and take the lower element 1748 // from operand 1. 1749 UndefElts.clearBit(0); 1750 UndefElts |= UndefElts2[0]; 1751 break; 1752 } 1753 1754 // Three input scalar-as-vector operations that work column-wise. The high 1755 // elements come from operand 0 and the low element is a function of all 1756 // three inputs. 1757 case Intrinsic::x86_avx512_mask_add_ss_round: 1758 case Intrinsic::x86_avx512_mask_div_ss_round: 1759 case Intrinsic::x86_avx512_mask_mul_ss_round: 1760 case Intrinsic::x86_avx512_mask_sub_ss_round: 1761 case Intrinsic::x86_avx512_mask_max_ss_round: 1762 case Intrinsic::x86_avx512_mask_min_ss_round: 1763 case Intrinsic::x86_avx512_mask_add_sd_round: 1764 case Intrinsic::x86_avx512_mask_div_sd_round: 1765 case Intrinsic::x86_avx512_mask_mul_sd_round: 1766 case Intrinsic::x86_avx512_mask_sub_sd_round: 1767 case Intrinsic::x86_avx512_mask_max_sd_round: 1768 case Intrinsic::x86_avx512_mask_min_sd_round: 1769 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1770 1771 // If lowest element of a scalar op isn't used then use Arg0. 1772 if (!DemandedElts[0]) { 1773 Worklist.push(II); 1774 return II->getArgOperand(0); 1775 } 1776 1777 // Only lower element is used for operand 1 and 2. 1778 DemandedElts = 1; 1779 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1780 simplifyAndSetOp(II, 2, DemandedElts, UndefElts3); 1781 1782 // Lower element is undefined if all three lower elements are undefined. 1783 // Consider things like undef&0. The result is known zero, not undef. 1784 if (!UndefElts2[0] || !UndefElts3[0]) 1785 UndefElts.clearBit(0); 1786 1787 break; 1788 1789 case Intrinsic::x86_sse2_packssdw_128: 1790 case Intrinsic::x86_sse2_packsswb_128: 1791 case Intrinsic::x86_sse2_packuswb_128: 1792 case Intrinsic::x86_sse41_packusdw: 1793 case Intrinsic::x86_avx2_packssdw: 1794 case Intrinsic::x86_avx2_packsswb: 1795 case Intrinsic::x86_avx2_packusdw: 1796 case Intrinsic::x86_avx2_packuswb: 1797 case Intrinsic::x86_avx512_packssdw_512: 1798 case Intrinsic::x86_avx512_packsswb_512: 1799 case Intrinsic::x86_avx512_packusdw_512: 1800 case Intrinsic::x86_avx512_packuswb_512: { 1801 auto *Ty0 = II->getArgOperand(0)->getType(); 1802 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1803 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1804 1805 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1806 unsigned VWidthPerLane = VWidth / NumLanes; 1807 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1808 1809 // Per lane, pack the elements of the first input and then the second. 1810 // e.g. 1811 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1812 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1813 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1814 APInt OpDemandedElts(InnerVWidth, 0); 1815 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1816 unsigned LaneIdx = Lane * VWidthPerLane; 1817 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1818 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1819 if (DemandedElts[Idx]) 1820 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1821 } 1822 } 1823 1824 // Demand elements from the operand. 1825 APInt OpUndefElts(InnerVWidth, 0); 1826 simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts); 1827 1828 // Pack the operand's UNDEF elements, one lane at a time. 1829 OpUndefElts = OpUndefElts.zext(VWidth); 1830 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1831 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1832 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1833 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1834 UndefElts |= LaneElts; 1835 } 1836 } 1837 break; 1838 } 1839 1840 // PSHUFB 1841 case Intrinsic::x86_ssse3_pshuf_b_128: 1842 case Intrinsic::x86_avx2_pshuf_b: 1843 case Intrinsic::x86_avx512_pshuf_b_512: 1844 // PERMILVAR 1845 case Intrinsic::x86_avx_vpermilvar_ps: 1846 case Intrinsic::x86_avx_vpermilvar_ps_256: 1847 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1848 case Intrinsic::x86_avx_vpermilvar_pd: 1849 case Intrinsic::x86_avx_vpermilvar_pd_256: 1850 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1851 // PERMV 1852 case Intrinsic::x86_avx2_permd: 1853 case Intrinsic::x86_avx2_permps: { 1854 simplifyAndSetOp(II, 1, DemandedElts, UndefElts); 1855 break; 1856 } 1857 1858 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1859 // in an undefined state. 1860 case Intrinsic::x86_sse4a_extrq: 1861 case Intrinsic::x86_sse4a_extrqi: 1862 case Intrinsic::x86_sse4a_insertq: 1863 case Intrinsic::x86_sse4a_insertqi: 1864 UndefElts.setHighBits(VWidth / 2); 1865 break; 1866 case Intrinsic::amdgcn_buffer_load: 1867 case Intrinsic::amdgcn_buffer_load_format: 1868 case Intrinsic::amdgcn_raw_buffer_load: 1869 case Intrinsic::amdgcn_raw_buffer_load_format: 1870 case Intrinsic::amdgcn_raw_tbuffer_load: 1871 case Intrinsic::amdgcn_s_buffer_load: 1872 case Intrinsic::amdgcn_struct_buffer_load: 1873 case Intrinsic::amdgcn_struct_buffer_load_format: 1874 case Intrinsic::amdgcn_struct_tbuffer_load: 1875 case Intrinsic::amdgcn_tbuffer_load: 1876 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts); 1877 default: { 1878 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) 1879 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0); 1880 1881 break; 1882 } 1883 } // switch on IntrinsicID 1884 break; 1885 } // case Call 1886 } // switch on Opcode 1887 1888 // TODO: We bail completely on integer div/rem and shifts because they have 1889 // UB/poison potential, but that should be refined. 1890 BinaryOperator *BO; 1891 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1892 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1893 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1894 1895 // Any change to an instruction with potential poison must clear those flags 1896 // because we can not guarantee those constraints now. Other analysis may 1897 // determine that it is safe to re-apply the flags. 1898 if (MadeChange) 1899 BO->dropPoisonGeneratingFlags(); 1900 1901 // Output elements are undefined if both are undefined. Consider things 1902 // like undef & 0. The result is known zero, not undef. 1903 UndefElts &= UndefElts2; 1904 } 1905 1906 // If we've proven all of the lanes undef, return an undef value. 1907 // TODO: Intersect w/demanded lanes 1908 if (UndefElts.isAllOnesValue()) 1909 return UndefValue::get(I->getType());; 1910 1911 return MadeChange ? I : nullptr; 1912 } 1913